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Interface-resolved direct numerical simulations are performed to investigate bubble-
induced transition from a laminar to elasto-inertial turbulent (EIT) state in a pressure-
driven viscoelastic square channel flow. The Giesekus model is used to account for
the viscoelasticity of the continuous phase, while the dispersed phase is Newtonian.
Simulations are performed for both single- and two-phase flows for a wide range of
Reynolds (Re) and Weissenberg (Wi) numbers. In the absence of any discrete external
perturbations, single-phase viscoelastic flow is transitioned to an EIT regime at a critical
Weissenberg number (Wi.,.) that decreases with increasing Re. It is demonstrated that
injection of bubbles into a laminar viscoelastic flow introduces streamline curvature that
is sufficient to trigger an elastic instability leading to a transition to an EIT regime. The
temporal turbulent kinetic energy spectrum shows a scaling of —2 for this multiphase EIT
regime, and this scaling is found to be independent of size and number of bubbles injected
into the flow. It is also observed that bubbles move towards the channel centreline and
form a string-shaped alignment pattern in the core region at the lower values of Re = 10
and Wi=1. In this regime, there are disturbances in the core region in the vicinity of
bubbles while flow remains essentially laminar. Unlike the solid particles, it is found that
increasing shear-thinning effect breaks up the alignment of bubbles.
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1. Introduction

Adding a minute amount of long-chain flexible polymers can drastically change
mechanical properties of an otherwise Newtonian fluid and makes it viscoelastic.
Stretching of polymer molecules causes elastic stresses and gives a memory to the fluid
flow, resulting in a range of exotic and often counter-intuitive behaviours such as rod
climbing, elastic recoil and drag reduction in turbulent flows (Datta et al. 2022). The exact
mechanism behind many of the exotic phenomena exhibited by the viscoelastic fluids are
yet to be fully explored. A striking example of such phenomena is sustaining a chaotic,
turbulent-like fluid motion observed at a low Reynolds number (Groisman & Steinberg
2000; Steinberg 2021; Datta et al. 2022; Singh et al. 2024). In the case of a classical
Newtonian turbulent flow, the flow instabilities arise from the nonlinear convective terms
of the Navier—Stokes equations and, therefore, a very high Reynolds number is always
required to sustain a turbulent flow field. In the case of a viscoelastic fluid flow, however,
the nonlinear coupling between viscous and viscoelastic stresses are capable of triggering
and sustaining a chaotic motion even in the absence of inertia (Datta et al. 2022). This
turbulent flow state at a Reynolds number below the threshold value of inertial turbulence
(IT) is often referred to as the ‘elasto-inertial turbulence’ (EIT). When the Reynolds
number is further reduced to a negligibly smaller value, it turns out that high enough
viscoelastic stresses are still capable of sustaining a chaotic turbulent-like state, referred to
as the elastic turbulence (ET), which is purely dominated by the elastic effects (Steinberg
2021). The present study mainly focuses on the elasto-inertial instability and transition to
the elasto-inertial turbulence where, as the name implies, the chaotic flow state is caused
and sustained by both elastic and inertial effects.

In the inertialess limit, only nonlinearity arises from the elastic stress that becomes
anisotropic in a shear flow and results in the hoop stress acting on the fluid in the direction
of the streamline curvature. This hoop stress provides the driving force for the elastic
instability and triggers a transition to the elastic turbulent state even in the absence
of inertia (Steinberg 2021). Since the discovery of ET in inertialess flows with curved
streamlines by Groisman & Steinberg (2000), a nonlinear instability leading to a similar
kind of chaotic state in planar shear flows was suspected and investigated by Morozov &
van Saarloos (2005, 2019). These studies suggested that a nonlinear instability can also be
triggered in a planar shear flow when a sufficient flow curvature is induced via external
perturbations. To realise this, the initial perturbations have been usually induced in the
form of blowing/suction at the wall or by placing an obstacle in the channel to trigger the
instability and attain an EIT state (Dubief, Terrapon & Hof 2023).

There are different pathways which can be followed to achieve the EIT state in a
wall-bounded flow. Samanta et al. (2013) have demonstrated that the transition threshold
to inertial turbulence can be controlled by varying the polymer concentration. They
computed the puff lifetimes to examine the effects of viscoelasticity on transition and
differentiate the EIT states from the Newtonian turbulence in a pipe flow. They found
that polymer additives delay the subcritical transition to IT conforming to their drag-
reducing effects in turbulent channel flows. They also demonstrated that, as the shear
rate is increased, a separate instability occurs at a much lower Reynolds number than
the inertial turbulence and triggers a very different type of disordered motion of elasto-
inertial turbulence. Foggi Rota et al. (2024) showed that a reverse pathway can also be
followed to achieve the EIT state. That is, viscoelasticity is introduced into an already
turbulent Newtonian flow and then the Reynolds number is reduced gradually. Unlike
the Newtonian flow, which would immediately re-laminarise below a certain threshold
value of Re, the viscoelastic flow is capable of maintaining its turbulent state even at a
Reynolds number as low as Re = 0.5 in a rectilinear channel. Moreover, at a low Reynolds
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number, if some external perturbations are superimposed on a laminar viscoelastic flow
field, these instabilities can grow and achieve the EIT state under a certain parametric
setting (Garg et al. 2018; Beneitez et al. 2023, 2024).

The dynamic features of EIT differ greatly from the inertial turbulence, which is
the focus of many contemporary investigations. Sid, Terrapon & Dubief (2018) have
demonstrated that the essential dynamic structures of EIT exist even in a two-dimensional
(2-D) flow. More recently, Dubief er al. (2022) have identified four distinct regimes of the
stress field in a 2-D channel flow by using the FENE-P viscoelastic model. These regimes
were named as chaotic, chaotic arrowhead, intermittent arrowhead and stable arrowhead
regimes based on constant contours of first normal stress difference (N1) and pressure
field. A sharp pressure gradient was observed within the flow field, similar to that across
a shock wave, promoting the shape of an arrowhead. In this 2-D flow field, it was reported
that an increase in the polymer concentration promoted stability while an increase in the
domain length promoted chaos, indicating the role of large scales in the dynamics of EIT.
The drag was found to be increasing in all these EIT regimes when compared with the
corresponding laminar states. In a three-dimensional (3-D) periodic channel flow, Dubief
et al. (2010) observed an alternating train of positive and negative Q-iso-surfaces (second
invariant of velocity gradient tensor) near the channel wall during transition to the EIT
state. Interestingly, these patterns were sustained on a smaller scale unlike the inertial
turbulence even when the viscoelastic flow was fully developed. These patterns were inter-
preted as the regions of local rotation (Q > 0) and dissipation of turbulent kinetic energy
(Q < 0), and were found to change their alignment from streamwise to spanwise direction
during low-drag events. Another striking difference between IT and EIT is the reversed
energy cascade. Unlike the inertial turbulence where the energy transfer occurs from large
to small scales, energy transfer of turbulent elastic energy to turbulent kinetic energy is
observed to be from smaller to larger scales in EIT (Dubief, Terrapon & Soria 2013).

Despite an ever increasing interest in this area in recent years, many fundamental
aspects related to EIT are still elusive. In the present study, we focus on two such
aspects. First, instead of providing any external perturbations to the flow, direct numerical
simulations of concentrated viscoleastic flows are performed in a square-shaped channel
by gradually increasing the fluid elasticity while keeping the Reynolds number fixed at
a low value for which the corresponding Newtonian flow is fully laminar to examine the
conditions for attaining an EIT state. Second, a novel mechanism of injecting bubbles
into a laminar viscoelastic flow is investigated to ascertain whether the presence of
bubbles can trigger a transition to an EIT state in this straight channel. For this purpose,
extensive interface-resolved direct numerical simulations are performed using a finite-
difference/front-tracking method (Unverdi & Tryggvason 1992). The log-conformation
method (Fattal & Kupferman 2005) is employed to handle the stiff constitutive equations
of the viscoelastic model (Giesekus) at high Weissenberg numbers.

The numerical method and the computational set-up are described in §§2 and 3,
respectively. The results are presented and discussed for a single-phase and then for the
multiphase flows in § 4, followed by the conclusions in § 5.

2. Governing equations and numerical method

The flow equations and the Giesekus model are presented within the framework of
the finite-difference/front-tracking (FT) method. The front-tracking method used in the
present study was originally developed by Unverdi & Tryggvason (1992). Izbassarov &
Muradoglu (2015) added a capability to this FT method to simulate viscoelastic two-phase
systems in which one or both phases could be viscoelastic. This robust and high fidelity
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method has been extensively used in our several previous works involving laminar (e.g.
Izbassarov & Muradoglu 2016a, b; Naseer et al. 2023; Naseer et al. 2024) as well as
turbulent multiphase flows (e.g. Ahmed ef al. 2020; Izbassarov et al. 2021a). Referring
to the coordinate system shown in figure 1 and employing the one-field formulation, the
Navier—Stokes equations can be written as

u dpo . T
p¥+pV-(uu):—Vp— dy]—i—V-r—i—V-pLs(Vu-l—Vu )
+/ oknd(x —xy)dA, 2.1)
A

where u, T, p, p and u, are the velocity vector, the polymer stress tensor, the pressure,
and the discontinuous density and solvent viscosity fields, respectively. A pressure gradient
—(dp,/dy)j is applied to drive the flow and it is adjusted dynamically to keep the flow
rate constant, where j is the unit vector in the y-direction. The effect of surface tension is
added as a body force term on the right-hand side of the momentum equation, where o is
the surface tension coefficient, « is twice the mean curvature and » is a unit vector normal
to the interface. As the surface tension acts only on the interface, § represents a three-
dimensional Dirac delta function with the arguments x and x y being a point at which the
equation is evaluated and a point at the interface, respectively. The momentum equation is
supplemented by the incompressibility condition

V.u=0. (2.2)

Viscoelasticity of bulk liquid is modelled using the Giesekus model (Giesekus 1982).
Since this model accounts for the polymer—polymer interactions, it is a suitable choice to
simulate concentrated polymer solutions (Varchanis et al. 2022). In the Giesekus model,
the polymer stress tensor T evolves by

_Htrp_
r="FB-D, 2.3)

where 1, is the polymer viscosity, 4 is the polymer relaxation time, B is the conformation
tensor and I is the identity tensor. The conformation tensor evolves by

oB T 1 2

E—i—u-VB—Vu -B—B-Vu:i[(l—oc)l—l—(Zoc—l)B—aB ] (2.4)
where o is the mobility factor representing the anisotropy of the hydrodynamic drag
exerted on the polymer molecules. Due to the thermodynamic considerations, o is
restricted to 0 < o < 0.5 (Schleiniger & Weinacht 1991). When o = 0, the Giesekus model
reduces to the Oldroyd-B model.

At high Weissenberg numbers, these highly nonlinear viscoelastic constitutive equations
become extremely stiff, which makes their numerical solution a challenging task. Artificial
diffusion terms may be added to the discretised viscoelastic model equations to alleviate
this problem. However, it has been found that when the model equations are discretised
using the conventional numerical schemes, this artificial diffusion method may alter the
mathematical nature of the constitutive equations from hyperbolic to parabolic, affecting
the integrity of the simulated EIT physics, especially at high Weissenberg numbers (Dubief
et al. 2023). The log-conformation method offers an alternative solution to this problem
and it is used in the present study. In this approach, an eigen decomposition is employed to
re-write the constitutive equation of the conformation tensor (Fattal & Kupferman 2005;
Izbassarov et al. 2018). It is found that, although it is computationally more expensive
than the artificial diffusion method, the log-conformation retains the hyperbolic nature
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Figure 1. Computational domain and coordinate system considered in the present study. The constant contours
of Q-criterion are shown around the bubbles (red colour) at a value of Q =25 (Re =1000, Wi =10, Ca =
0.01, 8 =0.1).

and thus removes the stiffness of the viscoelastic model equations, allowing robust and
accurate numerical solutions by preserving large-scale features in the simulations of elastic
turbulence, as shown recently by Yerasi et al. (2024). The interested readers are referred
to Fattal & Kupferman (2005) for the details of the procedure.

The flow equations (2.1) and (2.2) are solved fully coupled with the Giesekus model
equation (2.3). A QUICK scheme is used to discretise the convective terms in the
momentum equations, while second-order central differences are used for the diffusive
terms. For the convective terms in the viscoelastic equations, a fifth-order WENO-Z
(Borges et al. 2008) scheme is used. An FFT-based solver is employed to solve the pressure
Poisson equation. Since the pressure equation is not separable due to variable density in the
present multiphase flow, the FFT-based solvers cannot be used directly. To overcome this
challenge, a pressure-splitting technique presented by Dong & Shen (2012) and Dodd &
Ferrante (2014) is employed. A predictor-corrector scheme is used to achieve second-order
time accuracy as described by Tryggvason et al. (2001). The details of the front-tracking
method can be found in the book by Tryggvason, Scardovelli & Zaleski (2011) and in
the review paper by Tryggvason et al. (2001), and the treatment of the viscoelastic model
equations in Izbassarov & Muradoglu (2015) and Izbassarov et al. (2018). The present
numerical scheme is second-order accurate both in space and time.

3. Computational set-up

Figure 1 shows the computational domain which is a square channel with the dimensions
of 2h x 12h x 2h in the x, y and z directions, respectively, where & is half of the channel
width. Periodic boundary conditions are applied in the streamwise (y) direction, whereas
the other two directions (x and z) have no-slip/no-penetration boundary conditions. The
length of the channel is set to 12/ so that a sufficient length is available for the bubbles to
exhibit their effects in the viscoelastic flow field.
The flow conditions are characterised by the following non-dimensional numbers
defined as
Re= Pl , Ca=llle g M G.1)
Ko h o Ko
where Re, Wi and Ca are the Reynolds, Weissenberg and capillary numbers, respectively.
Further, B is the ratio of the solvent viscosity (i) to the zero shear viscosity () of the
viscoelastic fluid. In (3.1), p, is the density of the bulk fluid and u, is the average velocity
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in the channel. The viscosity ratio is fixed at 8§ = 0.1, representing a highly concentrated
polymer solution, for all the results presented in this paper.

The present study covers the Reynolds and the Weissenberg numbers spanning in the
ranges of 10 < Re < 1000 and 1 < Wi < 1000. Note that the highest value of Re = 1000
is still less than the minimum value required to sustain inertial turbulence in a channel
flow (Owolabi, Poole & Dennis 2016). For these low values of Re, the grid resolution near
the wall cannot be determined by the classical wall criterion of x™ < 1 and z* < 1 . As the
bubbles are also injected into the flow, despite a low Re, a sufficiently fine grid is required
to resolve the bubble interfaces and to capture the essential flow features of this chaotic
viscoelastic flow regime. Therefore, a grid size of 320 x 960 x 320 is used in the x, y and
z directions even for the Re = 10 case. For a reference, this grid resolution is sufficient to
achieve xT < 0.8 and z* < 0.8 in an inertial turbulent channel flow at Re = 5600 (Re; =
180). For the multiphase cases, there are 64 grid cells per equivalent bubble diameter with
this selected grid size.

The flow is driven by applying dp,/dy in the negative y-direction. This external
pressure gradient is adjusted dynamically at each time step to keep the flow rate (and
thus the bulk Reynolds number) constant in the channel. To normalise various quantities
reported in this study, 4 is used as the length scale, u, as the velocity scale and &k /u, as
the time scale. The normalised quantities are denoted by the superscript *. The stresses
are normalised by ,oov%, where v; = /Ty /0o With T, being the average total wall shear
stress. Once the flow reaches a statistically steady state, the combined force due to the
shear stresses at the four walls of the channel is balanced by the force due to the applied
pressure gradient dp, /dy. In this multiphase flow, the density and viscosity of the bubble
are denoted by p; and u;, respectively. The density and the viscosity ratios are set to
o/ pi =10 and p,/u; = 80, respectively. These comparatively small ratios are used to
enhance numerical stability and thus relax the time step restrictions. Apparently, this low
density ratio may seem unrealistic when compared with a liquid—air system. However, a
higher density ratio does not affect the bubble dynamics significantly as has been reported
by Bunner & Tryggvason (2002) for a Newtonian flow. Further simulations are also
performed here to check the effects of the density and viscosity ratios on the viscoelastic
multiphase flows considered in this study. As documented in the Appendix, the results
are not very sensitive to a further increase in the density and viscosity ratios beyond

Po/pi =10 and u,/p; = 80.

4. Results and discussion

Simulations are first performed for a single-phase flow by gradually increasing the
Reynolds number from Re =10 to Re = 1000. Subsequently, the flow is made more
viscoelastic by gradually increasing the Weissenberg number in the range of 1 < Wi <
1000 at a fixed Reynolds number to ascertain whether the flow attains an EIT state without
introducing any explicit external perturbations. To facilitate the development of a second
normal stress difference (N3), a square-channel (duct) is used and a small shear-thinning
effect is also incorporated by setting o« = 0.001 for the Giesekus model. A concentrated
polymer solution (8 = 0.1) is selected to follow the pathway identified by Samanta et al.
(2013) for the earlier possible transition to an EIT regime. After identifying the range of
Wi for which the single-phase flow remains essentially laminar, bubbles are subsequently
injected into fully developed viscoelastic laminar flows at Wi =1, 5 and 10, while keeping
Re constant to ascertain whether the presence of bubbles can trigger a flow instability. The
bubble volume fraction is kept constant at 3 % for all the cases. The capillary number is
fixed at a low value of Ca = 0.01 to maintain approximately spherical bubble shapes. The
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Figure 2. Various flow states in the Re—Wi space (Ca =0.01, g =0.1).

resultant single-phase and multiphase flows are presented and discussed in the following
sections.

4.1. EIT in a single-phase flow

Figure 2 summarises the flow states in the Re—Wi space. At a low value of Re = 10, the
single-phase flow remains fully laminar for up to Wi = 1000. Two points are selected in the
computational domain to collect all the components of velocity and viscoelastic stresses
at each time step to monitor their evolution to ascertain the attainment of a statistically
steady-state solution. One of the ‘numerical probes’ is located at the centre of the channel
(x* =1, y* =6, z* = 1), while the other one at 25 % distance (x* = 0.5, y* =6, z* = 1)
from one of the walls. Once the flow reaches a statistically steady state, the simulations are
continued at least for another 31 time units, during which, full flow fields are stored for a
further statistical analysis.

The simulations are then repeated for Re = 100. While gradually increasing Wi, it
is observed that the flow remains laminar until Wi= 100. However, for Wi > 100,
instabilities start to appear in this low-Re flow. These instabilities start to grow with time
and fluctuations are observed ultimately in all three components of velocity akin to a
typical turbulent signal. Viscoelastic stresses also start to fluctuate in the time domain,
as collected by the numerical probes at two different locations of the channel. It is
important to emphasise that no explicit perturbations are provided from outside the system
to initialise any instabilities in the flow. Only for Wi > 100, the viscoelastic stresses are
high enough to trigger an instability that ultimately leads to a chaotic flow regime. As the
flow rate is kept constant for a fixed Re, a sudden increase in the applied pressure gradient
is also observed once the flow is transitioned from laminar to this chaotic state, indicating
a rapid increase in the drag. The characteristics of this chaotic flow regime for Wi > 100
will be discussed in detail in the subsequent paragraphs.

When Re is increased further to 1000, the transition to a chaotic flow regime starts to
appear at a lower value of Wi > 50. This Re is still smaller than the minimum Re., =~ 1100
required for sustaining the inertial turbulence in a channel flow (Owolabi et al. 2016). As
Wi is increased further, the turbulent intensity of this chaotic regime increases with a
change in statistical quantities as well.

Figure 3(a) shows the velocity vectors in a vertical cutting xz-plane of the viscoelastic
duct flow once it reaches a statistically steady state for the Re = 1000 and Wi = 1000 case.
The instantaneous and time-averaged flow fields are plotted in the left and right panels
of figure 3(a), respectively. As seen, the instantaneous flow field exhibits a chaotic flow
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Figure 3. (a) Instantaneous (left) and averaged (right) snapshots of velocity vectors showing the secondary
flow field at Re = 1000 and Wi = 1000. (b) Instantaneous (left) and time-averaged (right) snapshots of second
normal stress difference (N;) at Re = 1000 and Wi = 1000. (c¢) Contours of first normal stress difference (Ny)
are shown in a statistically steady EIT regime for different values of Re and Wi. (d) Iso-surfaces of Q-criterion
are shown close to the bottom wall of the channel in a statistically steady EIT regime for different values of
Re and Wi. The red and grey colours represent the positive and the negative values, respectively. The contours
are plotted at £5, +0.05 and £0.005 for the (Re, Wi) = (1000, 1000), (1000, 100) and (100, 1000) cases,
respectively.

regime, while the time-averaged velocity field shows an almost similar secondary flow
pattern as also observed in the viscoelastic laminar duct flow with the shear-thinning
effect (Li, McKinley & Ardekani 2015; Naseer et al. 2024). This secondary flow field
is developed in the duct flow primarily due to the presence of a second normal stress
difference N> = 7;; — 7,x. The instantaneous and time-averaged contour plots of Ny are
shown in the left and right panels of figure 3(b), respectively. The instantaneous plot
confirms the chaotic flow pattern, while the time-averaged one resembles the typical
distribution of N3 in a laminar duct flow. As the EIT regime is associated with long-
elongated sheets of the first normal difference (N1), the distribution of Nj is also shown
in figure 3(c) in the yz-plane at the centre of the duct for the various combinations of Re
and Wi for which the single-phase flow becomes chaotic. Dubief ef al. (2023) categorised
different EIT regimes based on the structures of N for a 2-D channel flow. For a low value
of Re =100, a similar ‘chaotic regime’ is observed in the present 3-D duct flow as shown
in figure 3(c). At a higher value of Re = 1000, but with a moderate value of Wi = 100, this
regime is shifted to ‘chaotic arrowhead’ and once the Weissenberg number is increased to
a very high value of Wi = 1000, the long-elongated sheets of N break down completely
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Figure 4. (a) One-dimensional energy spectrum for the (Re, Wi) = (1000, 1000), (1000, 100) and (100, 1000)
cases. (b) Distribution of the components of the average shear stress from the channel wall towards the centre
in the mid-plane for (Re, Wi) = (1000, 1000) (top panel) and (Re, Wi) = (1000, 100) (bottom panel). (c, d, e)
Distribution of turbulent kinetic energy in the mid-plane of the channel for different values of Re and Wi.
(f, g h) Average elongation of polymer molecules represented by 7 (B) shown in the same mid-plane.

and the flow starts to resemble a typical inertial turbulence. The iso-surfaces of the second
invariant of the velocity gradient tensor (Q-criterion) is depicted in figure 3(d) to show the
corresponding change in the near-wall vortices for the same combinations of Re and Wi.
At a very high value of Re and Wi, the positive and negative contours of the Q-criterion
show a chaotic pattern near the wall. With decreasing Re or Wi, the spanwise elongated
pattern of positive and negative contours of the Q-criterion starts to appear indicating
that the signatures of elastic turbulence become increasingly more apparent in the EIT
regime once the elastic effects dominate over the inertial effects. In the absence of any
perturbations from outside the system, the flow is laminar at a lower value of Wi in the
present scenario, as shown in figure 2. Therefore, a clear pattern of alternating contours of
Q-criterion is not visible here, as also observed by Dubief et al. (2023).

Figure 4 shows various quantities used to evaluate turbulent characteristics of this
single-phase chaotic flow regime for various combinations of Re and Wi. The first one
is the 1-D energy spectrum (figure 4a). The energy axis is normalised by (1/2) p,,u,% and
the frequency axis by u,/h. At the higher values of (Re, Wi) = (1000, 1000), the kinetic
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energy spectrum shows a typical —5/3 scaling at the large scales but it shifts to —4
at the smaller scales (dissipation range). These values are consistent with the results
obtained in a single-phase channel flow at lower values of Re by Mukherjee et al. (2023)
and Foggi Rota et al. (2024). The elasticity number, E/ = Wi/Re, provides a measure
of the relative strength of elastic to inertial effects. At (Re, Wi) = (1000, 1000), El =1,
indicating a balanced elasto-inertial regime. The transition to a —4 slope at smaller scales
indicates that viscoelastic effects become significant as the length scale decreases. The
steep slope suggests strong suppression of small-scale fluctuations due to elastic stresses
in this highly concentrated polymer solution (8 = 0.1). At large scales, the flow behaves
like classical turbulence, driven by inertial forces, as seen in figure 3(c). At smaller
scales, high Wi and low § cause elastic stresses to dominate, altering the cascade. This
dual scaling suggests a cross-over frequency where the flow transitions from inertia-
dominated to elasticity-dominated dynamics. The exact frequency depends on the balance
among Re, Wi and the polymer properties. Once Wi is decreased to Wi= 100 while
keeping Re = 1000, the scaling of energy spectrum shifts from —4 to —3 across the
majority of the spectrum (figure 4a). It indicates that lowering Wi reduces the elastic
effects, allowing inertial forces to distribute energy more effectively to smaller scales,
thus resulting in a less steep spectrum. The —3 slope also suggests a transitional EIT
regime where the inertial and the elastic effects are not so balanced (E/ = 0.1), with less
suppression of small-scale fluctuations compared with the —4 slope at Wi = 1000. This
is characterised by the ‘chaotic arrowhead’ regime in figure 3(c). Once Re is reduced to
100 while keeping Wi = 1000, the energy spectrum again yields a slope of —3. Here, low
Re weakens the inertial effects, increasing the relative importance of viscous and elastic
forces (El = 10). The —3 slope suggests a regime closer to ET, where elastic instabilities
drive the flow, modulated by viscous dissipation. The similarity in the —3 slope between
(Re, Wi) = (1000, 100) and (Re, Wi) = (100, 1000) indicates that different combinations
of inertial and elastic effects can produce similar spectral characteristics. It can be inferred
from these scales that once the turbulent flow is entirely governed by inertia (classical
inertial turbulence), the energy spectrum assumes a slope of —5/3, whereas once the
turbulent regime is dominated by the elastic effects with negligible inertia, as in ET, the
spectrum exhibits a slope of —4. Any combination of Re and Wi in between these two
regimes assumes a slope in between these two limits.

The total mean shear stress in the mid-plane comprises three components: the viscous
shear due to mean flow Ty, the Reynolds stress due to velocity fluctuations 7 and a
polymeric stress Tp. Once the flow reaches a statistically steady state, the applied pressure
gradient must balance the total shear stress at the four walls of the channel. The three
components of shear stress (Ty = 4,(0v/0z2), TR = — pom, Tp = Ty;) are plotted for the
central plane of the duct (x* = 1) for two values of Wi = 1000 and Wi = 100 at Re = 1000
(figure 4b). The fluctuating and the time-averaged quantities are denoted by prime (.")
and overbar (7), respectively. Note that the averaging is performed both in time and in
streamwise direction since the flow is expected to be homogeneous in the streamwise
direction once a statistically steady state is reached. The stress components are normalised
by the local shear stress at the wall of the respective plane. For the high value of Wi = 1000,
it is observed that the stress balance in the mid-plane of the channel resembles that of a
classical inertial turbulence. The viscous stress is maximum at the wall and decays to zero
at the channel centre, whereas the Reynolds stress is zero at the wall, gradually increases
to its peak value and then goes to zero at the channel centre. The viscoelastic stress also
follows the viscous stress profile, and becomes maximum at the wall and zero at the
channel centre. As a result, the total shear stress decays linearly from the wall towards
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the channel centre (figure 4b). Once Wi is reduced to 100 while keeping Re = 1000,
the magnitude of Reynolds stress becomes negligibly small compared with viscous and
polymeric stresses. Although the —3 scaling of the energy spectrum and the turbulent
signal are indicative of a turbulent flow field at this comparatively lower value of Wi = 100,
the Reynolds stress becomes negligibly small compared with the overall shear stress in
the mid-plane. These not-so-smooth profiles of different shear stress components indicate
a clear departure of the turbulent flow field from the inertial one. The distribution of the

turbulent kinetic energy (TKE) K = 0.5(u'2 + v'2 4+ w’2) is shown in figures 4(c), 4(d) and
4(e) at the mid-plane where TKE is found to be maximum near the walls and decays to a
minimum value at the centre. Interestingly, the average elongation of polymer molecules
quantified by the trace of the conformation tensor ¢r (B) shows a similar trend for different
values of Wi, as shown in figures 4(f), 4(g) and 4(h). It is worth mentioning that the value
of the applied pressure gradient decreases as Wi increases for a constant value of Re,
indicating a decrease in the drag force. As the chaotic flow is driven by elasticity, this
unexpected drag reduction with an increase in Wi is attributed to the shear-thinning effect
that dominates the drag increase caused by the pronounced chaotic flow.

Garg et al. (2018) have shown that for the large Weissenberg numbers, the viscoelastic
pipe flow can be linearly unstable to axisymmetric disturbances down to a critical Reynolds
number of Re. =~ 63. Wan, Sun & Zhang (2021) and Buza, Page & Kerswell (2022)
later demonstrated that the polymer concentration (8) is the main controlling factor. At
a higher polymer concentration, the unstable region shrinks and the transition is mostly
supercritical. A similar mechanism seems to be at play in the present single-phase duct
flow, where transition occurs even in the absence of any finite perturbation at a high
Weissenberg number. The subcritical transition does not occur in a single-phase flow
due to the stabilising role of high polymer concentration (8 = 0.1), as seen for the lower
Weissenberg number cases for all the three Reynolds numbers.

Foggi Rota et al. (2024) have demonstrated that a single-phase viscoelastic flow can
sustain a chaotic flow state in a straight channel at a Reynolds number as low as Re = 0.5
(Wi =50) if started from a turbulent initial condition for a dilute polymer solution by
using the FENE-P model with 8 =0.9. The value of Wi =50 was kept constant in their
simulations while bringing down the Reynolds number from Re =2800 to Re =0.5 to
keep the polymers in their stretched state. To observe whether the chaotic state is sustained
in the present scenario of a duct flow with a concentrated polymer solution, extensive
simulations are next performed by keeping the Reynolds number constant at Re = 1000
and the Weissenberg number is reduced from Wi = 1000 to [500, 100, 50, 40, 10]. Each of
the lower Wi is started by using the initial conditions of the previous higher Wi case. It is
found that the chaotic flow state is sustained until Wi = 40. When Wi is further reduced to
10, the single-phase flow is laminarised. Next, the same simulations are repeated by fixing
the Reynolds number at Re = 100. The Weissenberg number is reduced gradually from
Wi = 1000 until 10 and it is observed that the chaotic flow is sustained until Wi > 40. The
same limit of Wi > 40 is observed for the Re = 10 cases to sustain a chaotic regime in this
duct flow if perturbed initially. It can be concluded that if the flow is perturbed initially,
the chaotic flow is sustained in this single-phase viscoelastic duct flow only if the value
of Wi > 40. Below this value, the single-phase flow is laminarised. This value is close to
Wi = 50 used by Foggi Rota et al. (2024) in their channel flow simulations.

It is important to highlight that exceptionally high Weissenberg numbers required to
trigger flow instability in the absence of any discrete external perturbations in this rectilin-
ear channel may seem impractical. However, it should be noted that Wi is defined based on
the average flow velocity in the channel. As shear rate decreases significantly towards the
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channel centre in this duct flow, the effective local Weissenberg number is actually much
lower than the nominal value of Wi, which is based on the average flow velocity.

4.1.1. Turbulent kinetic energy
The turbulent kinetic energy (C = (1/ 2)u§u;) in a viscoelastic flow evolves by
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where A, Q, R, P, D, €, W, and B represent advection by mean flow, transport by velocity
fluctuations, transport by pressure, production by mean flow, viscous diffusion, viscous
dissipation, polymer work and work done by body force, respectively. In a viscoelastic
turbulent flow, YW, may change its sign and can serve as either dissipation or production
depending upon the signs of the polymer stress fluctuations and fluctuating velocity
gradients, as has been observed in both experimental (Ptasinski ez al. 2001) and numerical
(Dallas, Vassilicos & Hewitt 2010) works.

To get better insight of the EIT regime in this duct flow, these terms are averaged in
time and in the streamwise (y) direction once the flow reaches a statistically steady state.
The constant contours of all the terms in (4.1) normalised by v% are shown in figure 5
at two different values of Re in a vertical cutting xz-plane except for the body force
term that is zero for this single-phase flow. For Re = 1000, the advection by mean flow
(figure Sa-left) shows small regions of positive peaks at the four corners and towards the
centre of the duct. A pattern of four negative peaks is also observed slightly away from
the walls at this high-Reynolds-number EIT flow. However, once the Reynolds number
is lowered to Re = 100, the magnitude of the advection term becomes negligibly small.
Similarly, a symmetric pattern of transport term is observed for the higher Reynolds
number (figure 5h-left) and the same term becomes negligibly small at lower inertia. At
Re = 1000, the positive and negative peaks of the transport term remain closer to the
channel walls except at the corners where it remains approximately zero. An opposite
trend is observed for the pressure term (figure 5c¢). Once the flow is dominated by the
inertial effects (Re = 1000), the pressure term remains significant while, in an elastically
dominated EIT regime (Re = 100), it shows a symmetric pattern of positive and negative
zones, however, with a negligibly small magnitude. The positive peaks of the pressure term
extend from four corners of the duct until the centre with negative peaks in the vicinity of
the channel walls. Turbulence production by the mean flow is mainly produced near the
walls except at the four corners (figure 5d) and becomes zero in most of the central region
of the duct with a symmetric pattern at Re = 1000. However, in the elastically dominated
EIT flow (Re = 100), this pattern changes with four regions of positive peaks away from
the walls. As the turbulence is mainly produced by the elastic effects at Re = 100, the
magnitude of the production term also remains negligibly small. The diffusion term
(figure Se) shows positive peaks adjacent to the walls except at the corners, immediately
followed by the negative peaks before decaying to zero for Re = 1000 whereas, for the
Re =100 case, it is positive near the walls and remains chaotic in most of the remaining
central portions of the duct. The dissipation term shows a similar pattern for both cases
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Figure 5. Contours of (a) advection by mean flow, (b) transport by velocity fluctuations, (c) transport by
pressure, (d) production by mean flow, (e) viscous diffusion, (f) viscous dissipation, (g) polymer work and
(h) time derivative of TKE are shown in a vertical cutting xz-plane for the (left) Re = 1000, Wi = 1000 and
(right) Re = 100, Wi = 1000 cases, respectively.

(figure 5f), i.e. it is maximum at the walls except in the corners and becomes zero
towards the duct centre. The most important term in this EIT regime is the work done
by the elastic force (figure 5g) as it can contribute towards both generation or dissipation
of turbulence. At higher inertia (Re = 1000), the positive peak of the polymer work is
observed to be closer to the four walls of the channel. It indicates that the viscoelastic
stresses contribute to the turbulence production closer to the walls, but act as a dissipating
sink away from it. The same term remains negligible at the centre. Interestingly, at lower
inertia (Re = 100) where the elastic effects dominate, the polymer stresses contribute
towards turbulence dissipation at the four corners and towards the central region of the
duct. The turbulence production by polymer stresses is concentrated near the walls away
from the corners. The viscous dissipation and the pressure terms follow the similar pattern,
as seen in figures 5(f) and 5(c), respectively. Finally, the summation of all the terms in
(4.1) approaches zero confirming that a statistically steady state is reached, as shown in
figure 5(h).

Notably, the distribution of various components of TKE in the present EIT regime of a
highly concentrated polymer solution at low Re is markedly different than that in a dilute
viscoelastic turbulent duct flow at high Re as studied by Shahmardi et al. (2019), where
the turbulent statistics of the flow were entirely dominated by the inertial effects.
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Figure 6. (a) Evolution of flow velocity and its transition to turbulent state once bubbles are injected into the
flow. (b) Contours of vorticity magnitude in an xz-plane at the centre of the domain for the single-phase and
multiphase regimes (Re = 1000, Wi=5, $ =0.1, Ca =0.01).

4.2. EIT in a multiphase flow

For a given Reynolds number, a significantly high Wi is always required to achieve the
EIT state in a single-phase flow in the absence of any external perturbations, as has been
shown in the previous section. When Re is low (e.g. Re = 10), even a Weissenberg number
as high as 1000 cannot make the flow unstable (figure 2). Similarly, the single-phase flow is
found to be essentially laminar at the lower values of Wi even when the Reynolds number
is as high as Re = 1000.

We next examine the effects of bubble injection into the viscoelastic laminar channel
flow. For this purpose, simulations are performed for three relatively low values of Wi =1,
5 and 10 at each value of Re = 10, 100 and 1000. Note that the single-phase flow remains
laminar for these combinations of Wi and Re. Calculations are first carried out for the
single-phase flow until a statistically steady state is reached. Then, spherical bubbles are
injected instantaneously into the flow with a volume fraction of 3 % and a relative bubble
size of d,/2h = 0.2, where d), is the bubble diameter. The bubbles are initially injected
randomly and uniformly in the entire duct. The capillary number is fixed at Ca = 0.01 to
keep the bubbles nearly spherical. The state of this multiphase flow field is continuously
monitored at each time step using the two numerical probes as for the single-phase case.
By introducing the bubbles into the flow, the flow is found to achieve a chaotic state even
for Reynolds and Weissenberg numbers as low as Re = 10 and Wi = 5. Time histories of
instantaneous velocity components are plotted in figure 6(a) for the Re = 1000 and Wi =5
case to show the transition from a laminar to an EIT state after the injection of bubbles.
Bubbles are injected at approximately r* =400. As seen, the signals are very smooth
until the injection of bubbles indicating a laminar flow. Once the bubbles are injected
into the flow, all three components of the velocity exhibit random fluctuations indicating
a transition to the EIT state. These fluctuations propagate throughout the domain over
time, ultimately leading to a fully chaotic flow field. This chaotic flow state is visualised
by plotting constant contours of vorticity (w =V x u) magnitude in figure 6(b) for the
single-phase and multiphase regimes in a vertical cutting xz-plane at the centre of the
duct. Once the flow reaches a statistically steady state after the injection of bubbles, the
simulations are continued at least for another 10 flow-through time units (10 x 12A/u,) to
collect data for further statistical analysis.

Although not shown here due to space considerations, further simulations are performed
to demonstrate the effect of bubble-induced streamline curvature on the destabilisation of
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the flow. For this purpose, simulations start from a two-phase Newtonian laminar flow at
Re =100. Subsequently, the flow is made weakly viscoelastic by setting a small value of
Wi = 0.5 and the simulation is continued until the viscoelastic stresses are fully developed
and no flow destabilisation is observed. Then, the Weissenberg number is gradually
increased first to Wi = 1, then to Wi =2 and eventually to Wi =5, while the flow state is
continuously monitored. In this process, the simulations are carried out until a statistically
steady state is reached before increasing Wi in each step. No transition occurred at low
Wi, i.e. Wi < 2. The flow remained laminar despite the presence of bubbles, confirming
that the initial discontinuity (bubble injection) alone is insufficient to trigger transition
to turbulence. Transition is finally observed at Wi = 5. The transition is governed by the
interplay of elasticity and streamline curvature but not the transient discontinuity. The
destabilisation coincided with the development of strong streamline curvature around
bubbles, consistent with prior studies showing that viscoelastic stresses amplify curvature-
driven instabilities, as first observed and quantified by McKinley, Pakdel & Oztekin (1996)
and has also been confirmed in our earlier work as well (Naseer et al. 2024).

Figure 7(a) shows the distribution of first normal stress difference (V1) in the mid-plane
for three different values of Re =10, Re =100 and Re = 1000 at Wi =10. A ‘chaotic
arrowhead’ regime is observed for all three values of Re at this relatively low Wi for
which the single-phase flow remains fully laminar. Note that all bubbles are of the same
size in figure 7(a) and the seemingly different appearance of the bubble sizes is simply
caused by the out-of-plane bubbles at this particular time instant. The constant contours of
Q-criterion at the walls for the same three cases are depicted in figure 7(b), showing a
chaotic pattern similar to that observed in the single-phase cases at a low value of Wi
(figure 3d). The contours of Q-criterion at the wall are shown in figure 7(c) for Re = 10,
100 and 1000 at Wi=1. It is observed that, for this low Wi=1 case, the flow remains
laminar at the walls for the Re =10 and Re =100 cases. Small perturbations remain
confined to the immediate surroundings of bubbles. The positive and negative structures
of Q-criterion are only visible at the walls once plotted at negligibly smaller values (i.e.
+1 x 1073). For Re = 1000, however, a chaotic flow regime is observed even at Wi = 1 as
seen by the contours of Q-criterion (figure 7c).

The bubble distributions in the duct are depicted in figure 7(d). It is interesting to see
that, although the bubble distribution is essentially uniform in the other cases, the majority
of the bubbles are aligned in the centre of the duct forming a string-shaped pattern for the
lower values of Re = 10 and Wi = 1, which also explains the reason why the disturbances
remain confined to the core region of the duct away from the walls for this case. In the case
of non-colloidal spherical solid particles, Won & Kim (2004) have experimentally shown
that although the main driving force for the lateral migration of particles is the first normal
stress difference, particle alignment is actually promoted by the shear-thinning effect for
a particular rheological setting. In the present case of bubbles, the role of shear-thinning
effect in the alignment of bubbles is investigated by performing another simulation at
Re =10 and Wi =1 with a higher shear thinning and the results are shown in figure 8.
The change in the effective viscosity (u.) of the flow due to the shear-thinning effect
at different shear rates (y) is governed by the concentration of polymers (8) and the
mobility factor («) in the Giesekus model. The slope of viscosity versus shear rate plot
is controlled by the mobility factor o and the final value of viscosity at a high enough
shear rate is determined by the concentration of polymers B8 (Yoo & Choi 1989). The
vertical line in figure 8(a) indicates the shear rate at the wall for the mid-plane of the
duct for the Re =10 and Wi =1 case. Once the mobility factor is increased to o = 0.1,
a random distribution of bubbles is observed instead of the string-shaped aggregation at
the centre of the duct (figure 8b). We thus conclude that, unlike the solid particles, a
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Figure 7. (a) Contours of N in the mid-plane for different values of Re at Wi = 10. Iso-surfaces of Q-criterion
at the bottom walls of the channel for the multiphase EIT regime at (b) Wi = 10 and at (c¢) Wi =1 for different
values of Re. For panel (), the contours are plotted at +0.00001, £0.001 and +0.01 for the Re = 10, 100 and
1000 cases with red colour (positive) and grey (negative), respectively. For panel (c), the contours are plotted
at £0.00001 for Re = 10, 100 and at £0.1 for the Re = 1000 case. (d) Distribution of bubbles coloured by the
magnitude of streamwise flow velocity in the channel for different values of Re at Wi =1.
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Figure 8. (@) Change in the effective viscosity of a Giesekus fluid in a concentrated polymer solution. The
vertical line shows the value of shear rate at the wall for the central yz-plane of the present duct flow.
(b) Distribution of bubbles in the duct for different values of shear-thinning parameter o (Re =10, Wi=
1,Ca=0.01, B=0.1).

higher shear-thinning effect of the ambient fluid breaks up the alignment of bubbles at
least for this particular rheological setting. Further investigation is required to reveal the
exact mechanism behind the role of the shear-thinning effect on different forces acting on
the bubbles and causing them to align in the central region of the duct.

Figure 9(a) shows that, for the case of (Re, Wi) = (10, 1), the majority of bubbles
accumulate in the core region, and the perturbations remain confined to immediate
surroundings of the bubbles indicating a laminar flow, as shown by the contours of
QO-criterion. When the inertia is increased (Re = 100) at the same low value of Wi=1,
the bubbles become more uniformly distributed, but the flow still remains laminar. Finally,
once the inertia is sufficiently high (Re = 1000), the bubbles become randomly distributed
in the entire duct and a fully chaotic flow regime is observed in the entire domain
(figure 9a) with a significant increase in the friction drag. Figure 9(b) shows a 1-D energy
spectrum of the streamwise component of flow velocity for Wi=1, Wi=5 and Wi =10 at
Re =10. Once the flow reaches a statistically steady state, the velocity signal is collected
from the point away from the centre (x* = 0.5, y* =6, z* = 1) to avoid the noise due to the
bubble cluster. The flow velocity inside the bubbles is filtered out from the signal. A slope
of —2 is observed for the Wi = 5 and 10 cases when the flow is chaotic in the entire domain.
This slope is the same as the temporal spectrum scaling of centreline velocity observed by
Lellep, Linkmann & Morozov (2024) indicating a similar chaotic state. The energy spectra
of the Wi =5 and Wi = 10 cases overlap each other, showing a similar flow state for both
the cases in the presence of bubbles. As the flow is not fully chaotic at Wi=1 and its
signal shows a very high intermittency, the same is manifested in its spectrum where the
slope does not match with the slopes of the Wi =5 and 10 cases. For the Re = 100 cases,
the slope for Wi =1 gets closer to the slopes in the Wi =135 and 10 cases, and finally at
Re = 1000, all the three cases show a similar slope of —2 (figure 9d). This slope of —2
is greater than the classical slope of —5/3 in the inertial turbulence, but still less than —4
reported for a purely elastic turbulence in the absence of inertia (Datta et al. 2022) or at
a very high value of Wi = 1000 observed in the single-phase cases (figure 4a, c). As this
multiphase EIT regime is achieved at the lower values of Wi, it is governed by both inertia
and viscoelasticity, and hence the slope remains in between these two limits.

The distribution of different components of shear stress from the channel wall towards
the centre are shown in figures 9(e), 9(f) and 9(g) in the mid-plane of the duct for Re =
10, 100 and 1000 cases, respectively. As the flow is multiphase, an additional contribution
from the surface tension force of the bubbles (7s) is added towards the total shear stress
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Figure 9. (a) Iso-surfaces of Q-criterion are shown at different values of Re for Wi = 1. The contours are
plotted at +0.002, £0.2 and £2 for the Re = 10, 100 and 1000 cases, respectively. The bubbles are marked
with green colour, while the positive and negative values of Q-criterion are marked with red and grey colours,
respectively. (b, ¢, d) One-dimensional energy spectrum, (e, f, g) the distribution of various components of shear
stress and (h, i, j) turbulent kinetic energy (K) are plotted in the mid-plane for the Re = 10 (left), Re = 100

(middle) and Re = 1000 (right) cases, respectively (8 =0.1 and Ca =0.01).
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balance. However, this contribution remains much smaller than the remaining components
as the bubble volume fraction is a mere 3 %. Similar to the single-phase flow cases, these
stress components are normalised by the local shear stress at the wall of the mid-plane.
As seen in the figure, the chaotic flow regime is dominated by the viscoelastic stress (Tp)
followed by the viscous stress due to the mean flow (7). These two stress components
are highest at the wall and decay to zero towards the channel centre where the shear rate is
minimum. The contribution of the Reynolds stress (Tg) remains negligible for the Re = 10
and Re = 100 cases. The Reynolds stress component Tg starts to show its effect once the
inertia becomes high enough in the Re = 1000 cases. As the source of flow instability is
the curved streamlines around the bubble in this multiphase flow regime (McKinley et al.
1996), the transition to the EIT state greatly depends upon the distribution of bubbles
across the channel. The role of viscoelasticity in promoting the bubble migration towards
the channel centre or towards the wall is governed by the relative change in the convective
time scale of the bubbles and the polymer relaxation time, as has been explained by Bothe
et al. (2022). A similar observation was also made in our earlier work (Naseer et al. 2024).
The distribution of turbulent kinetic energy (TKE) for all these three values of Re shows a
peak value near the wall and minimum at the channel centre, as shown in figures 9(%), 9(i)
and 9(j). By increasing the value of Wi, the magnitude of TKE also increases following
the same qualitative trend in agreement with our previous study of viscoelastic turbulent
single phase case (Izbassarov et al. 2021b).

Next, further simulations are performed to examine the effects of size and number of
bubbles on the transition and resulting chaotic flow for the (Re, Wi) = (1000, 1) case. First,
the number of bubbles are increased from the previous volume fraction of @ =3 % to
@ =9 % while keeping the bubble size the same, and then the bubble volume is decreased
by 50 % while keeping the volume fraction the same at @ =3 %. As shown in figure 10,
neither the number of bubbles nor their size has any significant effect on the scaling of
energy spectrum except for a slight increase in the energy content at the smaller scales for
@ =9 %. Moreover, no significant change in transition to a chaotic state is observed by
varying the number of bubbles or their size.

Once the flow reaches a steady state, the applied pressure gradient is balanced by the
total shear stress at the walls and the average wall shear stress can be simply computed
as Ty = —(h/2)(dp,/dy). The change in the drag is quantified by AD = (T — tw,)/Tw,,
where 1, is the wall shear stress of the corresponding Newtonian laminar flow for the
same Reynolds number. Figure 11 summarises the percentage change in drag for all the
multiphase simulations. The single-phase viscoelastic laminar flow has lower drag as
compared with the Newtonian laminar flow for the same value of Re. Understandably,
as the inertia increases in this shear thinning viscoelastic fluid once the flow is made
viscoelastic, the drag is reduced. For a particular value of Wi, the percentage reduction
in drag is found to be the same for every value of Re. However, the drag increases
significantly once a viscoelastic flow transitions to a chaotic turbulent state after injecting
the bubbles (figure 11). In particular, a rapid increase in the drag is observed at Re = 1000
once the flow becomes turbulent for all three values of Wi. It is interesting to observe
that, although the drag increases for the Re = 10 and 100 cases at Wi =35 and 10 upon
transition to the EIT state, it still remains less than that of the respective Newtonian laminar
state. Another interesting feature is also observed at Wi = 1 for the Re = 10 and 100 cases.
Once bubbles are injected into the flow, minor fluctuations remain confined to the core
region away from the walls where the bubbles collect and form a string-shaped pattern
(Re =10) or small clusters (Re = 100). The flow remains essentially laminar closer to
walls and in the major portion of the duct. In this regime, the drag is reduced as compared
with the single-phase laminar state. For this case, the bubbles forming a string-shaped
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Figure 10. Effects of number of bubbles and bubble size. The bubble distribution (left) and the evolution of
flow velocity (right) for the void fraction of (a) ® =3 %, (b) ® =9 % for the same bubble size of d, /2h =0.2

and (c) for the bubble size of dj, /2h = 0.2/ V2 =0.159 with @ =3 %. (d) One-dimensional energy spectra for
the same cases (Re = 1000, Wi =1, Ca =0.01, « =0.001).

pattern create a low viscosity corridor at the core region where they move faster and thus
the streamwise component of flow velocity is slightly increased. As a result, the applied
pressure gradient is reduced effectively to maintain the same flow rate. Furthermore, it
is important to highlight that the magnitude of drag is small for this laminar flow, so the
change is also small. At a higher inertia (Re = 1000), the flow becomes fully chaotic in
the entire channel, and thus the drag is increased significantly even for the Wi =1 case
(figure 11).

It is interesting to note that for the (Re, Wi) = (10, 10) and (100, 10) cases, the flow has
become completely chaotic and the EIT state is achieved by injecting the bubbles into the
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Figure 11. Percentage change in drag measured by the change in total shear stress at the wall (7,) as compared
with the Newtonian laminar flow once the flow is made viscoelastic and is subsequently transitioned to turbulent
state by injecting the bubbles.

flow; however, the drag is still less than the corresponding Newtonian laminar state, which
is primarily attributed to the shear-thinning effect of viscoelastic fluid (figure 11).

4.2.1. TKE in a multiphase EIT regime

To get further insight into the multiphase EIT regime, all the terms in (4.1) are integrated
in the streamwise direction and averaged in time after the flow reaches a statistically
steady state. The results are plotted in figure 12 for Re = 100 and Re = 1000 at Wi = 10.
Compared with the single-phase case shown in figure 5, a prominent effect of bubbles at
low Weissenberg number is observed in smoothing sharp gradients near the wall in all the
terms that contribute to TKE. We note, however, that comparison between single-phase
and multiphase cases should be interpreted only qualitatively since Wi is two orders of
magnitude higher in the single-phase case. Figure 12 shows that the magnitudes of all
terms are amplified as Re is increased from 100 to 1000, but the amplification is more
pronounced in advection (A), turbulent transport (Q), production by mean flow (P) and
viscous diffusion (D) terms. There are also some qualitative differences in these terms in
the Re = 100 and Re = 1000 cases. The peak values of A, Q, P and € occur in the corners
and in the middle of the side walls for Re = 100 and Re = 1000, respectively. In contrast
to the single-phase case, the maximum value of ‘R occurs in the central portion of the duct
due to the presence of bubbles (figure 12¢). Significant viscous dissipation observed in the
channel centre is also attributed to the presence of bubbles there. The positive peaks of
polymer work for the multiphase case shows that it still contributes towards the production
instead of dissipation in some portions of the domain (figure 12g). The body force term
contributes significantly to the TKE budget now due to the work done by the surface
tension (figure 124).

Notably, the chaotic flow state at these lower values of Weissenberg numbers is only
sustained in the presence of bubbles. If the bubbles are removed, the single-phase flow
would laminarise, as observed in the simulations of single-phase flow where the chaotic
flow state could not be sustained below Wi < 40.

In the ET regime (very low Re), it is well established that a sufficiently strong
extensional perturbation is required to destabilise the flow and trigger chaos. As inertia
increases, the threshold for instability decreases and the flow becomes more susceptible
to a wider range of perturbations — including those introduced by bubbles. In the present
simulations, the presence of bubbles provides persistent, finite-amplitude disturbances that
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Figure 12. Contours of (a) advection by mean flow, (b) transport by velocity fluctuations, (¢) transport by
pressure, (d) production by mean flow, (e) viscous diffusion, (f) viscous dissipation, (g) polymer work and
(h) body force terms are shown in a vertical cutting xz-plane for (left) Re =100, Wi =10 and (right) Re =
1000, Wi = 10 multiphase cases, respectively.

can maintain a chaotic state even as inertia becomes more significant. Thus, the bubbly
chaotic state observed in the present study at moderate Re can be interpreted as a form
of ET that is transitioning towards EIT as inertia increases. This is further supported by
the fact that the energy spectra do not yet reach the inertial —5/3 scaling, and the flow
structures retain characteristic features of ET.

In summary, ET and EIT can be seen as two ends of a spectrum, with present results
occupying an intermediate and transitional regime. The bubbly chaotic state in the present
scenario likely represents a version of ET influenced by finite inertia and persistent
multiphase perturbations, rather than a fully developed EIT state. The spectra and flow
localisation support this interpretation.

5. Conclusions

Direct numerical simulations of single-phase and multiphase viscoelastic fluid flows are
performed in a square-shaped channel and the complex dynamics of the elasto-inertial
turbulent regime are explored without introducing any explicit perturbations from outside
the system. The bubble interfaces are fully resolved using a finite-difference/front-tracking
method coupled with the Giesekus model equations to simulate chaotic flow regime of
a shear-thinning viscoelastic fluid. Instead of using conventional numerical schemes to
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discretise the constitutive equations by introducing artificial diffusion, a computationally
expensive but robust log-conformation method is employed for the present DNS to
preserve the integrity of EIT physics (Yerasi et al. 2024). The Reynolds number is
varied by two orders of magnitude to cover a vast range below the threshold value of
the inertial turbulence in the channel flow. Then, the Weissenberg number is varied by
three orders of magnitude at each of these values of Reynolds numbers to explore the
conditions for triggering transition to a turbulent regime in this rectilinear channel flow.
Subsequently, unlike any previously tested methods, bubbles are injected into the flow
under the conditions for which a single-phase flow remains fully laminar to check whether
the presence of bubbles can trigger an instability to achieve the EIT flow regime. A
constant flow rate is maintained corresponding to each Re by dynamically adjusting the
applied pressure gradient. As different pathways can be followed in Re— Wi space to
achieve EIT (Samanta et al. 2013), a concentrated polymer solution (8 = 0.1) is considered
in the present study for which the EIT regime is triggered much earlier than the inertial
turbulence as the Reynolds number is increased.

It is observed that beyond Wi > 100, a single-phase flow becomes unstable when
Re > 100. Fluctuations start to grow in this straight channel even without introducing any
discrete external perturbations. These fluctuations propagate throughout the domain over
time, ultimately leading to a fully chaotic flow field. The threshold value of Wi to trigger
instability in the flow reduces with an increase in Re. For Re = 1000, the critical value
of Wi to trigger the transition from laminar to turbulent state is found to be 50. When
the value of Re is low (Re = 10), a Weissenberg number as high as 1000 cannot make
the flow unstable. The energy spectra of this single-phase EIT regime reveal —4 scaling
at the higher frequencies (dissipation range), while the classical —5/3 scaling is observed
at the lower frequencies (inertial range) as the flow is dominated by both inertia as well as
the elasticity.

It is found that if perturbed initially, single-phase viscoelastic flow cannot sustain
a chaotic state in this rectilinear duct when Wi <40 for all the three values of
Re =1000, 100 and 10 used in the present study.

A novel mechanism of achieving the EIT state by injecting the bubbles into the flow
under the conditions for which a single-phase flow remains laminar is tested and verified
at a Reynolds number as low as 10 and a Weissenberg number as low as 5. The curved
streamlines across the bubble interfaces provide the necessary condition to trigger an
instability even when the viscoelastic stresses are not very high and the single-phase flow
remains completely laminar. The energy spectra shows a scaling of —2 for this low Wi
multiphase EIT regime. It is found that this scaling is independent of size and the number
of bubbles injected into the flow. Thus, it is concluded that the scaling of energy spectra
varies from —4 to —5/3 depending upon the relative dominance of inertia and elasticity,
i.e. —4 for a purely elastic turbulence and —5/3 for a purely inertial turbulence. All the
other values of energy scaling would fall in between these two limits depending upon
the relative strength of inertia (Re) and elasticity (Wi). It is also observed that the drag
increases for all the situations where the laminar viscoelastic flow is fully transitioned to
a turbulent state by injecting the bubbles into the flow. However, at the lower values of
Re =10 and 100, this higher value of skin friction drag of the EIT regime still remains
lower than that of the corresponding laminar Newtonian flow for the same Reynolds
number. Once the inertia and the elasticity are both low, the bubbles are aligned in the
core region of the duct forming a string-shaped pattern (Re =10, Wi=1) or clusters
(Re =100, Wi=1), and the flow remains laminar. For these cases, the friction drag
reduces even further instead of increasing. Unlike the solid particles, it is found that a
higher shear-thinning effect breaks up the alignment of bubbles.
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Figure 13. Effects of density and viscosity ratios. Evolution of a single bubble path in the wall-normal (z)
direction in a concentrated polymer solution at (a) different density and at (b) different viscosity ratios (Re =
10, Wi=1, Ca=0.01, 8 =0.1).

The idea of achieving the EIT state at a very low value of Re and Wi just by injecting
the bubbles into the flow can find many potential applications involving processes where
mixing, heat transfer or other transport phenomena are of primary importance. The
present study would intrigue experimental verification as it has been demonstrated that
the requirement of Wi to achieve the EIT state in a multiphase flow is low and realistic.
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Appendix

Further simulations are performed to examine the effect of density and viscosity ratios
on the multiphase flows considered in this study. For this purpose, the migration of a
single bubble is examined in the pressure-driven viscoelastic channel flow, and the density
and viscosity ratios are varied in the ranges of 10 < po/p; <40 and 10 < /i < 160.
The other parameters are fixed at Re =10, Wi=1, Ca =0.01 and 8 =0.1. The results
are shown in figure 13. It is observed that the effects of density and viscosity ratios
are negligible when pg/p; > 10 and w,/pu; = 80, as seen in figures 13(a) and 13(b),
respectively. Therefore, the density and viscosity ratios are set to pg/p; = 10 and p, /i =
80 in all the results presented in this paper. In a concentrated polymer solution (e.g.
B =0.1), as considered in the present study, the viscosity ratio may have an impact on the
bubble dynamics as the actual ratio can be as high as 103. However, it is shown here that
beyond w, /i = 80, the difference in the bubble path becomes less than 1 % (figure 13).
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