
Political Analysis (2025), 00, 1–17
doi:10.1017/pan.2025.10017

A R T I C L E

Codebook LLMs: Evaluating LLMs as Measurement Tools
for Political Science Concepts

Andrew Halterman1 and Katherine A. Keith2

1Department of Political Science, Michigan State University, East Lansing, MI, USA; 2Department of Computer Science,
Williams College, Williamstown, MA, USA

Corresponding author: Andrew Halterman; Email: halterm3@msu.edu

(Received 11 September 2024; revised 12 February 2025; accepted 13 February 2025)

Abstract

Codebooks—documents that operationalize concepts and outline annotation procedures—are used almost
universally by social scientists when coding political texts. To code these texts automatically, researchers
are increasingly turning to generative large language models (LLMs). However, there is limited empirical
evidence on whether “off-the-shelf ” LLMs faithfully follow real-world codebook operationalizations and
measure complex political constructs with sufficient accuracy. To address this, we gather and curate
three real-world political science codebooks—covering protest events, political violence, and manifestos—
along with their unstructured texts and human-coded labels. We also propose a five-stage framework for
codebook-LLM measurement: Preparing a codebook for both humans and LLMs, testing LLMs’ basic
capabilities on a codebook, evaluating zero-shot measurement accuracy (i.e., off-the-shelf performance),
analyzing errors, and further (parameter-efficient) supervised training of LLMs. We provide an empirical
demonstration of this framework using our three codebook datasets and several pre-trained 7–12 billion
open-weight LLMs. We find current open-weight LLMs have limitations in following codebooks zero-shot,
but that supervised instruction-tuning can substantially improve performance. Rather than suggesting the
“best” LLM, our contribution lies in our codebook datasets, evaluation framework, and guidance for applied
researchers who wish to implement their own codebook-LLM measurement projects.

Keywords: Text as data; Large Language Models; Automated content analysis; Computational methods; Natural language
processing

Edited by: Daniel J. Hopkins and Brandon M. Stewart

1. Introduction

Political scientists are increasingly turning to generative large language models (LLMs) for text analysis
due in part to their potential to classify documents with no labeled examples, i.e., “zero-shot” (Atreja
et al. 2025; Egami et al. 2023; Gilardi, Alizadeh, and Kubli 2023; Heseltine and Clemm von Hohenberg
2024; Peskoff and Stewart 2023; Rytting et al. 2023; Ziems et al. 2024). Researchers typically provide
an LLM with a set of categorical labels (e.g., protest or riot), (sometimes) brief label descriptions, and
instructions to classify documents. An LLM then generates the predicted (natural-language) label of
each document (e.g., the LLM generates “protest”). While this approach enables cheap and fast analysis
of large text corpora, it implicitly assumes that these simple instructions alone operationalize the precise
concepts that researchers aim to measure from text. Because LLMs are pre-trained on extremely large
text corpora, the models often have reasonable zero-shot predictive accuracy on concepts that have
broad coverage and straightforward definitions in their pre-training data.

However, this use of LLMs is in tension with foundational concepts of measurement in political
science. In the standard conception of measurement validity (Adcock and Collier 2001), researchers

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Political Methodology
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/
by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

www.doi.org/10.1017/pan.2025.10017
https://orcid.org/0000-0001-9716-9555
mailto:halterm3@msu.edu
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/pan.2025.10017


2 Andrew Halterman and Katherine A. Keith

must transform broad “background” concepts into precise, systematized constructs through care-
ful operationalization. These operationalizations are often recorded by researchers in codebooks,
documents that define concepts in precise terms and outline annotation procedures. As a brief example,
different projects systematize “protest” in substantively different ways. For instance, the Crowd Counting
Consortium (2024)’s definition of “protest” excludes labor strikes, while the CAMEO event ontology
(Gerner et al. 2002)’s definition of “protest” includes them. Suppose, we choose the CAMEO definition
of a protest, but our LLM has learned an internal representation of “protest” from contexts in which the
word occurred in its pre-training data and these contexts included strikes. If we use the LLM zero-shot,
we may have many “protest” measurements that include labor strikes and lead to incorrect substantive
conclusions.

This mismatch between measurement theory and current LLM use arises from two potential sources.
First, analysts often provide an LLM with only simple category labels or brief definitions rather than
complete codebooks. Second, even when provided the full codebook, an LLM may not actually attend
to the detailed label definitions in the codebook. In both scenarios, an LLM may generate labels for
documents without updating its internal representation of what the label means based on the codebook,
and the output will likely correspond to a more general background concept rather than the systematized
construct, threatening measurement validity.

To address this mismatch, we introduce a framework to rigorously evaluate and improve codebook-
LLM measurement and provide an empirical demonstration of the framework. We make four main
contributions. First, our five-stage evaluation framework guides researchers through codebook prepa-
ration, label-free testing, zero-shot evaluation, robustness evaluations, and training LLMs on supervised
examples. Within these stages, we contribute seven new codebook-specific behavioral tests (Ribeiro et al.
2020)—controllable interventions on LLM inputs that test LLMs basic capabilities and failure modes.
Many of these require no ground-truth labels so can be used early in a project’s lifecycle. Second,
we collect, format, and release three real-world political science codebooks, their associated hand-
labeled datasets, and source texts covering contentious politics in the United States, political violence in
Pakistan, and party manifestos. The codebook settings are realistic but potentially challenging for LLMs
due to their domain-specific concepts, large number of class labels (up to 142), and lengthy codebook
definitions. Third, we use several open-weight LLMs to classify documents from these datasets, and
find limitations in select LLMs’ ability to comply with codebook instructions in zero-shot settings.
Finally, we show that supervised instruction-tuning—updating LLM weights directly from human-
coded examples—can substantially improve performance (by up to 55%), and provide detailed guidance
for researchers who wish to implement parameter-efficient versions of this training.

2. A Framework for Codebook-LLM Measurement

In this section, we provide an overview of our framework to evaluate codebook-LLM measurement,
classifying unlabeled documents with LLMs given a human-written codebook. For applied readers new
to this space, we provide a glossary of technical terms in SI A in the Supplementary Material. In this
work, we focus on multi-class (single-label) classification of N documents, {Ẑi ∈Z∣Xi}N

i=1, whereZ is the
finite set of labels described in the codebook, Ẑi is an LLM-predicted class of a document i, and Xi is the
document text. Most often these measurements, Ẑi, are then used in downstream analysis (Knox, Lucas,
and Cho 2022). Although, recent work has shown one can adjust for noisy measurement-induced bias
in downstream analysis (Egami et al. 2023), more accurate measurement will often yield more precise
estimates (and thus tighter valid confidence intervals).

Our proposed codebook-LLM measurement evaluation framework consists of a preparatory stage
then four main stages. The rest of this article expands on each stage.

• Stage 0: Codebook preparation: Even when using LLMs, researchers must prepare their codebook
by operationalizing their social science concepts. We suggest a semi-structured format with
standardized components including definitions, clarifications, and examples that can be used by
both humans and machines.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


Political Analysis 3

• Stage 1: Label-free behavioral testing: Before investing in hand-labeling, we suggest researchers use
our proposed label-free behavioral tests to assess an LLM’s ability to follow instructions and make
consistent predictions “off-the-shelf ”. The results can help guide both LLM selection and the choice
between zero-shot use and supervised learning.

• Stage 2: Zero-shot evaluation with labels: The next stage requires researchers to hand-label a
small evaluation set and then assess LLM zero-shot performance. Quantitative results can reveal
weaknesses in either the codebook or the LLM’s ability to predict from it, potentially requiring
codebook revision or a different LLM.

• Stage 3: Zero-shot error analysis: We suggest thorough error analysis using ablation experiments,
behavioral tests requiring labels, and manual analysis of outputs to understand systematic errors.

• Stage 4: Supervised fine-tuning: If zero-shot performance proves inadequate, researchers can update
the LLM weights directly via instruction-tuning on human-coded examples. We provide guidance
on parameter-efficient techniques to make this computationally feasible.

The stages can be performed sequentially or iteratively as needed, with results from later stages
potentially informing revisions to earlier decisions. The rest of the article details each stage.

3. Related Work

Recent work has demonstrated LLMs’ potential for classifying social science concepts. Early zero-shot
evaluations showed promise: Halterman et al. (2021) achieved F1 scores up to 0.74 using entailment
models for political event classification, while Ziems et al. (2024)’s evaluation across 25 computational
social science benchmarks found respectable zero-shot LLM performance on some tasks. Several
studies found LLM’s annotation abilities to be at human-level: Gilardi et al. (2023) showed ChatGPT
outperformed crowd workers on tasks like stance detection and Mellon et al. (2024) found similar
accuracy to human annotators when coding survey responses. Some researchers have explored using
LLMs indirectly for classification: Halterman (2025) used LLMs to generate synthetic training data and
Pangakis and Wolken (2024) used LLMs to produce labels to train downstream classifiers. However,
most of this research relied on providing LLMs with a set of labels to choose from, without detailed
coding instructions.

Our work builds more directly on previous work that examines LLMs’ responsiveness to prompts
and ability to apply precise category definitions. Atreja et al. (2025) vary prompt components across
four social science tasks, finding that both task characteristics and prompt design substantially affect
performance. Burnham (2025) emphasized the importance of providing LLMs with detailed definitions
and broader context. Most directly relevant to our work, Thalken et al. (2023) found that even state-of-
the-art LLMs struggle to apply a three-category legal reasoning codebook, though fine-tuned models
showed better performance.

After obtaining predicted document labels (likely from LLMs), another line of work has examined
the consequences of using these noisy labels—labels that are not perfectly accurate—in downstream
inference (Chen, Bhattacharya, and Keith 2024; Egami et al. 2023; Knox et al. 2022). Specifically, Egami
et al. (2023) find that even when LLMs achieve decent labeling accuracy, using these noisy labels in
downstream analysis can induce severe bias and coverage issues and suggest a correction. In this work,
we focus on studying LLMs’ accuracy with complex categories, but note that even highly accurate labels
may still result in estimation issues, and point applied researchers to this existing work.

Finally, both academic and industry researchers have developed a large set of benchmarks for evalu-
ating LLM performance. While our work proposes new codebook-specific LLM evaluation techniques,
we leave a detailed discussion of existing LLM benchmarks to SI C in the Supplementary Material.

4. Empirical Set-Up: Data and LLMs

4.1. Codebook Datasets
To serve as real-world training and evaluation datasets, we collect three separate English-language
political science datasets, each of which provide document-level or (quasi-) sentence-level labels

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


4 Andrew Halterman and Katherine A. Keith

Table 1. Descriptive statistics about the codebook datasets.

Dataset BFRS CCC Manifestos

No. of classes 12 8 142

Per-class definition median whitespace toks 20 28 14

Codebook total whitespace toks 1,614 608 3,910

Codebook total Llama toks 2,083 721 5,145

Input text (doc.) median whitespace toks 28 437 16

No. of train instances 20,978 4,710 8,081

No. of dev. instances 4,495 1,009 1,732

No. of test instances 4,496 1,010 1,732

Note: For length of the codebooks, we report both whitespace tokens and number of tokens after
using the Llama-3 tokenizer (Llama toks.).

according to a codebook-defined schema: the Crowd Counting Consortium (CCC) dataset on protests
in the United States (Crowd Counting Consortium 2024), the BFRS dataset on violence in Pakistan
(Bueno de Mesquita et al. 2015), and the Manifesto Project corpus (Lehmann et al. 2017). We obtain
their original codebooks and a selection of the English-language text that the data was coded from
(see SI Section D for additional details). We believe this collection reflects the real-world difficulty of
the codebook-LLM measurement due to the datasets’ (1) construction by social scientists to measure
specific political concepts that potentially do not exist in LLMs supervised training data; (2) large
number of classes (up to 142; see Table 1); (3) longer documents (in the CCC dataset), and (4) long
codebook lengths.

In our curation effort, we reformat these datasets for single-label, multi-class classification. For the
Manifestos dataset, we use the Manifesto Project issue category label for a (quasi) sentence in a political
party’s manifesto. For BFRS and CCC, we focus solely on classifying event types from news articles. We
randomly split the data 70-15-15 into training, development, and test splits, respectively. In this work,
we only use the training and development sets to guard against overfitting to the test set.

SI D in the Supplementary Material provides more details on the dataset preprocessing, including
the process of scraping or obtaining raw text, sampling documents, converting multi-label examples
to single-label, multi-class labels, and in the case of BFRS, using an alternative text source. We believe
that all three of these datasets are mostly safe from training set contamination, that is, that they are not
present in the LLM’s pre-training data (see SI D.2 in the Supplementary Material).

4.2. Choosing LLMs
Our evaluation framework is model-agnostic, but we constrain our empirical demonstration to open-
weight LLMs for reproducibility and to models that fit on a consumer GPU (24GB VRAM). We
select four high-performing LLMs in the 7–12 billion (B) parameter range: Mistral-7B-Instruct-v0.2
(“Mistral-7B”), Mistral-NeMo-Instruct-2407 (“Mistral-NeMo-12B”), Llama-3.1-8B-Instruct (“Llama-
8B”), and OLMo-7B-0724-Instruct-hf (“OLMo-7B”). SI Section F provides details and citations for these
models. We emphasize that we select open weight models to ensure reproducibility. Applied researchers
may make a different accuracy–reproducibility tradeoff and select larger closed-weight models (Palmer,
Smith, and Spirling 2024).

These models have varying context lengths: Llama-8B and Mistral-NeMo-12B handle 128K tokens,
Mistral-7B handles 32K, and OLMo-7B a maximum input of 4096 tokens. We note that effective context
length for information retrieval may be shorter (Hsieh et al. 2024).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


Political Analysis 5

4.3. LLMs for Multi-Class Classification
We use LLMs for multi-class classification by providing the entire codebook and document as input,
then selecting the first generated token sequence matching a valid label as the predicted label Ẑ. Some
research has attempted to constrain the output vocabulary or bias the generated tokens towards the valid
set of labels (Ziems et al. 2024). However, other work has found using the generated text outputs is more
accurate (Wang et al. 2024) and our choice of LLMs almost always outputted valid labels (see Test I in
Stage 1), so we did not modify the LLM generation process for simplicity.

As an alternative to inputting the entire codebook with all class labels and descriptions, one could use
LLMs in a one-versus-rest approach. In this approach, the LLM takes as input a single class description
and makes a binary prediction, that the document is that label or not, e.g., Burnham et al. (2024).
However, in preliminary experiments, we found no accuracy improvements in a one-versus-rest set-up.
We hypothesize that for the datasets we gathered, the full codebook and all labels together are required to
delineate between classes (see SI F in the Supplementary Material). For example, an LLM used in a one-
versus-rest set-up might incorrectly predict that a drone strike meets the BFRS codebook’s definition of
an Assassination, unless it has access to the full codebook with the (correct) Drone Assassination
category. Furthermore, one-versus-rest significantly increases the computational time.

We leave to future work a full engineering effort comparing these implementation details. Further-
more, with the rapid advancement of LLM development, we believe the quantitative results we present
about particular LLMs will quickly be surpassed. However, we believe our evaluation framework, behav-
ioral test templates, and curated codebook datasets will stand the test of time. We now describe in more
detail the five stages of our empirical evaluation framework and provide an empirical demonstration of
this framework with our codebook datasets and selected LLMs.

5. Stage 0: Codebook Preparation

In preparation for our main stages, researchers prepare the codebook by writing natural-language
operationalizations of the variables and formatting the codebook so that is readable by both machines
and humans. While LLMs offer exciting possibilities for scaling up measurement, this stage cannot be
bypassed or automated. Researchers should also establish a desired level of classification accuracy for
their downstream task and use this target to guide their progress through the remaining steps. In our
case, we hoped to exceed F1 scores of 0.7.

5.1. Codebook Operationalization
Codebook-LLM measurement is fundamentally different from typical NLP classification because the
same background concept or label—e.g., a “protest”—could have several different possible natural-
language written operationalizations in the codebook. The goal is to have an LLM correctly attend to
the specific operationalization, otherwise different political variables may be incorrectly conflated or
correlated in downstream analysis.

5.2. Machine-Readable Semi-Structured Codebook Format
We propose a new generalizable and consistent format for codebooks that is both human and machine-
readable. Previous instruction-tuning research suggests that explicitly providing a definition, positive
example, and negative example can improve zero-shot performance on a diverse set of NLP tasks
(Wang et al. 2022). Separating parts of each codebook definition into components also allows us to
experimentally isolate and ablate components to evaluate changes in performance (see Section 8.3).

An excerpt of the restructured BFRS codebook is shown in Figure 1 and example output in Figure 2.
We manually restructure each of the codebooks into this format. Future researchers could write
codebooks from the outset to be both human- and machine-readable.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


6 Andrew Halterman and Katherine A. Keith

Figure 1. BFRS codebook as part of an LLM prompt. From the BFRS codebook, this is a (truncated to 2/12 labels) example of how the

codebook is formatted as the LLM input.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


Political Analysis 7

Figure 2. Zero-shot output generated by Mistral-7B given the full BFRS prompt, an excerpt of which appears in Figure 1. We

deterministically match the first part of the beginning of the output with the set of valid labels to determine the predicted label.

Test IIIb: Classify
(negative) in−context examples

Test IIIa: Classify
(positive) in−context examples

Test II: Definition
recovery

Test I: Legal Labels

0% 25% 50% 75% 100%
Percent Correct

Moderage Substantial Near Perfect

Test IV: Codebook order
invariance (agreement)

0.00 0.25 0.50 0.75 1.00
Fleiss' Kappa (across original, reversed, and shuffled codebook order)

Test IV: Codebook order
invariance (reversed codebook)

Test IV: Codebook order
invariance (shuffled codebook)

0% 25% 50% 75% 100%
Consistency in codebook predictions (1 − disagreement)

Model Type OLMo−8B Mistral−7B Mistral NeMo−12B LLama−8B

Figure 3. Label-free behavioral test results on the BFRS dataset. For all tests, higher numbers are better (see Table 2 for details of each

test). For Test IV, dashed lines are the Fleiss Kappa heuristics from Landis (1977).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


8 Andrew Halterman and Katherine A. Keith

Our format consists of the following codebook components (see Figure 1):

1. Label: The exact label that the LLM should return if predicting the class.
2. Label Definition. We provide a succinct definition of the class, which is generally a single sentence.
3. Clarification & Negative Clarification. Most classes require further details to define them. This

includes both additional inclusion criteria, as well as exclusion criteria for the class. For example,
the BFRS category for riot does not apply if one of the groups involved is a police force.

4. Positive & Negative Examples. Optionally, a codebook can provide examples of documents
that both fit and do not fit, with explations. “Few shot” or “in-context learning”, when an
LLM is provided example input–output pairs in the prompt, has been shown to improve LLM
performance on new tasks (Brown et al. 2020).

In the LLM prompt, we also include an overall codebook-specific instruction describing the task and
an “Output reminder”. Depending on the measurement task, researchers can omit components or add
others, e.g., adding a structured output (JSON) requirement.

6. Stage 1: Label-Free Behavioral Testing

At the outset of a project, applied researchers can benefit from cheap (i.e., requiring no ground truth
labels) and interpretable tests to assure themselves that an LLM can perform basic tasks with the
codebook and choose between LLMs early on in their project’s lifecycle. We propose four label-free
“behavioral tests” (Ribeiro et al. 2020) to measure an LLM’s ability to recall basic parts of the codebook,
to comply with codebook instructions, and to “comprehend” the definitions in the codebook. Table 2
provides a summary of the tests.

Test I provides a simple test of the LLM’s ability to follow prompt instructions to only return the valid
labels defined in the codebook.1 Specifically, we check if any of the legal labels appear in the output text.
Tests II and III measure the basic ability of the LLM to “memorize” parts of the prompt/codebook.
For Test II, we provide the LLM with a prompt that contains the structured codebook, along with a
(verbatim) class definition and an instruction to provide the label for the class definition. Passing the
test requires the basic ability to match the provided definition with the (identical) definition in the
codebook. For Test III, we provide verbatim positive and negative examples from the codebook and ask
for their labels. None of these tasks require “reasoning”, just simple pattern matching. Failure on these
tasks may indicate problems with the LLM’s ability to recall components of the codebook, which could
have serious ramifications for codebook-LLM measurement as a whole.

If the LLM is “comprehending” the codebook, then its predicted labels should not change if the order
that the categories are presented in the codebook changes (Test IV). We evaluate the LLM sensitivity to
codebook order in two ways. First, we calculate the percentage of predicted labels that remain the same
between the original codebook and predictions when the category order is (1) reversed or (2) randomly
shuffled. Second, we calculate the inter-“coder” agreement, measured using Fleiss’s kappa, in predictions
across the original, reversed, and shuffled codebooks.

6.1. Results
We evaluate the four LLMs described in Section 4.2 on these four codebook-specific behavioral label-
free tests. Because only the BFRS codebook had positive and negative examples, we conduct these tests
only the BFRS dataset (see Figure 3 for results). Mistral-7B, Mistral-NeMo-12B, and Llama-8B perform
well on Tests I through III, checking for legal outputs and verbatim definition and example recovery. We
find that all models are sensitive to the order that categories are described in the codebook (IV), which
may indicate problems with the LLM’s attention for our long prompt contexts (see Liu et al. 2024, Zhao
et al. 2021.

1Code for running these tests is available in the replication materials in behavioral_tests.py.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


Political Analysis 9

Table 2. Proposed behavioral tests for codebooks.

Test Ramifications of failed test

Label-free behavioral tests

I Legal labels

Does the LLM only return labels defined in the

codebook?

Inability to follow basic instructions or to recall the

set of legal labels provided in the prompt.

II Definition recovery

Can the LLM correctly label a verbatim codebook

definition?

Inability to “memorize” or retrieve portions of the

codebook.

III Classify in-context examples

Can the LLM correctly label verbatim examples

provided in the codebook?

Inability to “memorize” or retrieve portions of the

codebook.

IV Codebook order invariance

Are LLM predictions unaffected by codebook category

order?

Inconsistent attention across the length of the

prompt or ordering effects. Predicted labels

depend on the order of classes in the prompt.

Labels-required behavioral tests

V Exclusion criteria consistency

Across the four combinations of (modified, original) ×

(document, codebook), are the LLM predictions

consistently correct?

Inability to follow instructions and ignore irrelevant

distractions. May reveal problems attending to

specific inclusion or exclusion criteria.

VI Generic label accuracy

Can the LLM classify examples when given

non-informative labels?

Over-reliance on the label as opposed to the

definitions. May indicate that the predicted label

reflects the background concept instead of the

operationalized concept.

VII Swapped label accuracy

Can the LLM classify examples according to the

codebook’s definitions when (informative) labels

are randomly swapped?

Over-reliance on the names of the labels (vs.

definitions).

Note: See Section 6 for “label-free” tests and Section 8 for “labels-required” tests.

Just as an applied researcher using our framework may do after this stage, we omit OLMo-7B from
our later evaluation stages since its performance was very poor compared to the other models. Mistral-
NeMo-12B performs well on some tests, but the improvement is not great enough to justify the larger
model size and increased computational costs. Thus, we only compare Mistral-7B and Llama-8B in the
next stages.

7. Stage 2: Zero-Shot Evaluation With Labels

After identifying promising models through label-free behavioral tests, applied researchers can hand-
label a subset of their data and evaluate the zero-shot performance of LLMs on labeled data. This is not
a new evaluation approach—see (Atreja et al. 2025; Ziems et al. 2024, inter alia)—but, in this work, we
evaluate LLMs on our curated codebook datasets which we believe provide a more realistic picture of
codebook-LLM measurement.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


10 Andrew Halterman and Katherine A. Keith

Table 3. Zero-shot weighted F1 scores for each LLM on each development

dataset.

Dataset Codebook format Llama-8B Mistral-7B

BFRS Ours 0.57 [0.55-0.58] 0.53 [0.52-0.55]

Original 0.55 [0.53-0.56] 0.44 [0.42-0.45]

CCC Ours 0.61 [0.58-0.64] 0.65 [0.62-0.68]

Original 0.48 [0.45-0.52] 0.51 [0.48-0.54]

Manifestos Ours 0.19 [0.17-0.21] 0.15 [0.13-0.17]

Original 0.21 [0.19-0.23] 0.14 [0.12-0.16]

Note: We compare our semi-structured codebook format (“ours”) and the original
authors’ format (the latter only changed by prepending “Label:” when appropriate).
Square brackets indicate 95% confidence intervals via 500 bootstrap resamples of the
(predicted, true) pairs.

Table 4. Codebook ablation results for zero-shot predictions from Mistral-7B on the BFRS develop-

ment dataset.

Codebook component

Class Output Positive Negative Negative

definition reminder example example Clarification clarification Dev F1

0.53 ∗

✗ 0.42

✗ ✗ 0.46

✗ ✗ ✗ ✗ 0.43

✗ ✗ ✗ ✗ ✗ 0.20

✗ ✗ ✗ ✗ ✗ ✗ 0.29

Note: We report the weighted F1 scores, and ✗ indicates the component of the codebook that we ablated. ∗The
unablated zero-shot result in the first row is the same as Table 3.

7.1. Zero-Shot Results
Table 3 shows the zero-shot weighted F1 scores2 on the development set of each of our three datasets
for Llama-8B and Mistral-7B. We compare our new semi-structured codebook format with the original
codebooks as written by the original authors, only changing them by prepending “Label:” to each
label in the codebook to indicate what the LLM should predict in its output.

In Table 3, the development-set zero-shot results range from very poor with 0.21 (weighted) F1 on
Manifestos, to marginal with 0.65 and 0.57 F1 on CCC and BFRS, respectively. There is no clear “winner”
between Llama-8B and Mistral-7B. This weak performance suggests that using either LLM on complex
codebook tasks—with either the original or re-written codebook—is unlikely to be useful to applied
analysts without fundamental improvements in the base LLMs to read, comprehend, and comply with
codebook instructions or further updating the LLM weights on supervised examples (i.e., instruction-
tuning in Stage 4). There is significant variation in the per-class F1 (see SI Tables 1, 2, and 3). We examine
the robustness and further try to understand these zero-shot results in Stage 3.

2Specifically, we implement this via scikit-learn’s function f1_score(y_true, y_pred,
average=‘weighted’). This takes the average of per-class F1 scores, weighted by sample size, to account for
imbalance.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


Political Analysis 11

8. Stage 3: Zero-Shot Error Analysis

Stage 3 of our framework expands zero-shot evaluation of LLMs beyond aggregate performance metrics
in order to better understand the LLMs’ errors and robustness. We use three complementary approaches:
(1) we propose three additional behavioral tests that require labeled examples; (2) we systematically
ablate different components of the codebook to understand how these different components affect LLM
performance; and (3) we conduct detailed manual analysis of the output and explanations. We encourage
applied researchers to use all of these approaches on their own codebook-LLM measurement projects—
regardless of the aggregate zero-shot performance—to understand the errors the specific LLM they use
is prone to make.

8.1. Labels-Required Behavioral Tests
We build from the label-free behavioral tests in Stage 1, to conduct additional behavioral tests that
require ground-truth labels. We describe and implement three additional tests (Test V, VI, and VII)
(see Table 2 and Figure 4).

Test V–Exclusion criteria consistency borrows a technique proposed by Karpinska et al. (2024) and
examines LLMs’ handling of exclusion rules. We modify a codebook to add a simple rule that invalidates
a label when a specific word appears (e.g., “This category does not apply if the document discusses
elephants”). We then create four test conditions by varying whether:

1. The document contains the trigger phrase (e.g., “We support elephants”).
2. The codebook contains the exclusion rule.

A model that follows codebook instructions should only reject the label when both the trigger word
is present and the exclusion rule exists in the codebook. To achieve perfect performance requires the
model to attend to and apply the exclusion rule when present and ignore irrelevant words when there
is no exclusion rule.

Tests VI and VII provide a direct measure of how much the LLM is relying on the label itself versus
following the instructions in the codebook. In Test VI–Generic Label Accuracy, we replace the original
labels with a non-informative labels (e.g., LABEL_1). In VII–Swapped Label Accuracy, we permute the
original labels in the codebook so each label is paired with a different definition. An LLM should ideally
follow the definitions despite the distraction of the swapped labels.

Test V (baseline):
Exclusion minimal pairs

(normal codebook, normal doc)

Test V: Exclusion minimal
pairs (all correct)

0% 25% 50% 75% 100%
Percent correctly classified

Test VII: Swapped Label
Accuracy

Test VI: Generic Label
Accuracy

Baseline F1

0.00 0.25 0.50 0.75 1.00
F1 Score

Model Type Mistral−7B LLama−8B

Figure 4. Labels-required behavioral tests of the two LLMs on the BFRS development dataset (see Table 2 for details of each test).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


12 Andrew Halterman and Katherine A. Keith

8.2. Results
Figure 4 shows the performance of Mistral-7B and Llama-8B on the labels-required behavioral tests,
again using the BFRS development dataset and codebook. The models perform poorly on Test V,
providing evidence that LLMs are not following specific codebook operationalizations. Finally, tests
VI and VII show that the LLMs are indeed relying on the semantic content of the labels themselves,
performing worse when the labels are replaced with generic terms or swapped. We caution applied
researchers that if their constructs in their codebooks deviate too far from the background concepts an
LLM has learned during pre-training, the zero-shot results may have systematic errors that could affect
overall substantive results.

8.3. Zero-Shot Ablations
Next, to understand how different components of the codebook affect LLM performance, we conduct
an ablation experiment on the BFRS dataset by systematically removing (ablating) different codebook
elements (e.g., dropping “Negative Clarification” or “Positive Example”) and measuring the impact
on Mistral-7B’s zero-shot F1 scores (see Table 4). We used the BFRS codebook because its original
codebook was the most similar to our proposed new format (i.e., it already included positive and
negative examples). We explore a limited set of the 26 possible options, focusing on the ones we believe
are most relevant to applied researchers.

8.4. Results
Table 4 shows the results of five ablation experiments. As expected, systematically ablating components
decreases performance, indicating most components are necessary to achieve even the original F1 score
of 0.53. Ablating the output reminder results in decreased performance (from 0.53 to 0.42 F1). Notably,
comparing the fifth to sixth rows in Table 4 results in surprisingly better performance when dropping the
class definition, providing only the label itself. In combination with our other error analysis results in this
stage, this finding may suggest that the LLM is not fully adhering to the label definition in the codebook,
which could be consequential for any codebook-LLM measurement that compared the same label across
two operationalizations (e.g., the two “protest” operationalizations we mentioned in the introduction).
In this codebook–LLM combination, including all codebook components improves performance,
but we are cautious about drawing universal conclusions about optimal codebook components and
encourage applied researchers to perform ablation exeriments for their own applications.

8.5. Manual Analysis of Zero-Shot Generative Outputs
We recommend applied researchers manually analyze LLM outputs. Although the explanations gener-
ated by an LLM are not necessarily always logically consistent or “faithful” to their internal representa-
tions and predictions (Jacovi and Goldberg 2020; Lyu, Apidianaki, and Callison-Burch 2024), inspecting
the output can illuminate some of the LLM’s failure modes. As a demonstration, we conducted a careful
manual analysis on a sample from each dataset of the zero-shot outputs from Mistral-7B. Then, we (the
two authors) manually analyzed the model inputs, model outputs, and gold-standard labels. After an
initial pilot round, we manually labeled LLM’s outputs into one of six classes (see SI K for details in the
Supplementary Material).

8.6. Results
Table 5 shows the aggregate results of the manual analysis. Mistral-7B compliance with prompt
instructions related to allowable labels was excellent for BFRS (0% non-compliance) and CCC (2% non-
compliance). However, for Manifestos, 45% of the sampled LLM outputs were non-compliant. These

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


Political Analysis 13

Table 5. Manual error analysis results on a sample of the zero-shot generative

outputs for Mistral-7B given each development dataset.

BFRS CCC Manifestos

Sample: No. of examples 24 50 62

Sample: No. of unique classes 12 5 50

A. LLM correct 0.38 0.48 0.11

B. Incorrect gold standard 0.04 0.10 0.08

C. Document error (scraping/lack context) 0.04 0.02 0.03

D. LLM non-compliance 0.00 0.02 0.45

E. LLM semantics/reasoning mistake 0.50 0.26 0.29

F. Other 0.04 0.10 0.02

Note: For each dataset, we report the number of examples and the number of unique classes
in that sample as well as the proportion of outputs in categories A-F as judged by the authors
(see SI K for definitions of each category).

included errors such as outputting multiple labels or more egregious errors such as hallucinating labels
(see Table SI 4).

We find evidence suggesting that Mistral-7B is relying on heuristics and shortcuts and not actually
“reading” the codebooks. In one instance, a Manifesto example supporting increased education funding
gets the predicted label “WELFARE_POSITIVE (or EDUCATION_POSITIVE)” (see SI Table 4).
However, an explicit constraint in the Manifesto’s codebook for the welfare_positive label is “This
category excludes education.”

We also find evidence that Mistral is using lexical overlap heuristics (Levy, Ravfogel, and Goldberg
2023)—selecting label words that appear in the text, even if the label is incorrect. For example, in CCC-1
in SI Table 4, the word “rally” occurs in the first sentence of the text and the LLM predicts the rally
label even though the text clearly aligns with the codebook definition of a demonstration.

These errors reveal limitations in how Mistral-7B interprets and applies the precise definitional
boundaries that make codebooks valuable as measurement tools, and motivates Stage 4 to update the
weights of an LLM given additional supervised examples.

9. Stage 4: Supervised Fine-tuning

If Stages 1–3 show zero-shot performance is inadequate, researchers may need to abandon the zero-shot
approach. If this is the case, they can return to (familiar) supervised classification techniques: training a
“classic” supervised machine learning model from scratch or fine-tuning a BERT-based model to predict
the label for each document (Grimmer, Roberts, and Stewart 2022). Rather than repeat the extensive
literature on supervised text classification, we describe and provide an empirical demonstration for
a promising new technique–instruction-tuning in which an LLM’s weights are further updated on
supervised input/output pairs via a next token prediction objective function (Longpre et al. 2023; Sanh
et al. 2022; Wang et al. 2023; Wang et al. 2022; Wei et al. 2022). While zero-shot prompting provides
instructions to an off-the-shelf model at inference time, instruction-tuning allows us to potentially
improve the model’s ability to follow instructions, using supervised learning. This approach differs from
traditional supervised learning—rather than training a supervised model on (document, label) pairs to
return the correct label, we train it on (instruction, document, label) pairs, and obtain a generated label
(e.g., y = "protest"). (For a glossary of terms used in this section, see SI A in the Supplementary Material.)

Directly updating the weights in LLMs given supervised examples is very expensive in terms of
training time and memory because most LLMs consist of billions of weights. However, we describe how
to use parameter-efficient techniques of quantization—loading model weights with less precision, i.e.,
using fewer bits—and low-rank adaptation (LoRA) in which only a fraction of the weights are updated.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


14 Andrew Halterman and Katherine A. Keith

In practice, instruction-tuning involves providing the LLM with training examples from the original
datasets, consisting of:

1. the codebook (C);
2. a document to classify (Xi);
3. the correct natural-language label for that document e.g., “protest” (yi).

For our instruction-tuning set-up, a training dataset—BFRS, CCC, or Manifestos—consists of D
tuples {(mi,yi)}D

i=1, where mi is the entire “prompt” (consisting of the concatenation of C and Xi as well
as any other instructions; see Figure 1).

Following previous work (Wang et al. 2023), we do not compute the language modeling loss on the
prompt, only on the output (See SI G). For each example i = 1, . . . ,D, let Nmi be the total number of
tokens for the example’s prompt mi and Nyi be the total number of tokens for the corresponding output
yi. Then, the negative log-likelihood loss function (masking inputs) is:

Lθ ≡ −
D
∑
i=1

∑
j∈[Nmi,Nyi ]

logpθ(ti,j∣ti,<j)×
⎧⎪⎪
⎨
⎪⎪⎩

0 if j ∈Nmi

1 otherwise,
(1)

where ti,j is the gold-standard jth token in either the input mi or output yi. The model weights θ are then
updated to minimize this loss function.

9.1. QLoRA Training: Quantization + LoRA
Fully updating all the weights in an LLM during instruction-tuning is costly in computing time and
memory requirements. To address this, we use “quantized low-rank adaptation” (QLoRA) (Dettmers
et al. 2023; Hu et al. 2022), a technique that makes fine-tuning LLMs more efficient in two ways. First, it
“quantizes” each weight. Quantization is a tradeoff between a model’s memory footprint and accuracy;
quantization reduces the numerical precision of the model’s weights (e.g., from 32 bits to 4 bits) to
use less memory but this decrease in information can also decrease the model’s performance. Second,
instead of updating the full matrix of weights, it decomposes the weight matrix into two low-rank weight
matrices to update.3 This approach closely matches the set-up described in (Jindal, Rajpoot, and Parikh
2024), which won the 2023 NeurIPS challenge for efficient LLM instruction-tuning.

We use a fixed rank of 16 in the results shown in Table 6. LoRA models have a broader set of
hyperparameters, which we keep fixed; future work could look to domain-specific hyperparameter
tuning (see Section G in the Supplementary Material for details).

9.2. Instruction-Tuning Results
Table 6 reports the weighted F1 scores of our instruction-tuned models. For each model, we conduct
QLoRA fine-tuning on the entire training set and evaluate on the entire dev set. We find consistent
improvement in all instruction-tuned models over their zero-shot results. For example, on BFRS,
Mistral-7B improves its performance over its zero-shot results by 0.29 F1 (from 0.53 zero-shot to 0.82
instruction-tuned) which is a 55% relative improvement. Performance gains for CCC are lower across
both models and only slightly better than the baseline of the majority class. We hypothesize this could
be due to CCC documents being much longer and thus much more difficult to classify. We omit the
result for Llama on Manifestos—even with a batch size of one, the training process exceeded our GPU’s
memory.

3That is, rather than updating the entire weight matrix W ∈ Rd×d , LoRA decomposes W into d× r, r× d matrices, with
significantly fewer weights than the full weight matrix (with r=16, ∼ 0.5%.)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


Political Analysis 15

Table 6. Results of the LLMs after instruction-tuning on each training dataset.

Dataset N LLM Dev F1 Δ Zero-shot Train time

BFRS 20,978 Baseline: Majority class 0.16 – –

Llama-8B 0.81 [0.80–0.82] +0.24 6h 01m 11s

Mistral-7B 0.82 [0.81–0.83] +0.29 6h 51m 59s

CCC 4,710 Baseline: Majority class 0.51 – –

Llama-8B 0.68 [0.64–0.70] +0.07 1h 29m 52s

Mistral-7B 0.72 [0.69–0.75] +0.07 1h 40m 38s

Manifestos 8,081 Baseline: Majority class 0.03 – –

Llama-8B –∗ – –

Mistral-7B 0.38 [0.35–0.40] +0.23 17h 53m 47s

Note: N is the number training examples (same as Table 1). We report a baseline of predicting only the class that was seen
the most during training (majority class), the weighted F1 score on the development set (Dev F1), the change from the
corresponding model’s zero-shot results in Table 3 (Δ zero-shot), and the total training wall time on our single NVIDIA RTX
4090 GPU. Square brackets indicate 95% confidence intervals via 500 bootstrap resamples of the (predicted, true) pairs. ∗We
do not report Llama result on the Manifestos due to out-of-memory error with batch size=1.

The fine-tuning process was quite costly in terms of total training time. However, the loss plateaued
after about 10% of the total training examples so future work might be able to speed this up by training
on fewer examples or better “early stopping.” Overall, these results indicate that instruction-tuning is a
viable approach for improving a model’s ability to predict classes given challenging codebooks and poor
zero-shot results, albeit with increased computational and annotation costs.

10. Future Work

We see several avenues for future research. Our set of three datasets and codebooks provide a challenging
test bed (especially Manifestos) for a real-world codebook-LLM measurement. Future engineering work
will improve on our zero-shot and instruction-tuning results presented in this article by using newer
models, employing techniques such as chain-of-thought reasoning (Wang et al. 2022) or self-improving
prompts (Khattab et al. 2024), and experimenting with different instruction-tuning hyperparameters.
We emphasize that our article’s core contributions lie in formalizing codebook-LLM measurement,
proposing a set of behavioral tests, providing benchmark datasets, and establishing baseline perfor-
mance results. We fully expect future work to achieve improved performance.

LLMs could also be used in-the-loop for codebook development. Codebooks are often developed
iteratively during annotation as edge cases arise or annotators raise questions. Updating the codebook
during annotation requires retraining annotators and potentially re-annotating existing documents,
which can slow the annotation process. LLMs have the potential to reduce the number of changes a
codebook requires after annotation begins by identifying gaps in the codebook.

Finally, future work could explore different tasks, such as information extraction or multi-label
classification, and performance on non-English language text.

11. Conclusion

LLMs offer exciting possibilities for analyzing and classifying text with less human effort. However,
using LLMs for codebook-based measurement is different than many other applications of LLMs: It
requires the LLM to follow the lengthy and detailed operationalization of concepts in a codebook and
to faithfully apply the provided coding criteria rather than solely relying on what it learned from pre-
training. We believe the three codebook datasets we gathered and curated in this article represent the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2025.10017


16 Andrew Halterman and Katherine A. Keith

real-world complexity of the codebook-LLM measurement task, and there likely exist many more that
could be added to this collection.

For applied researchers looking to use LLMs now, we recommend following our five-stage empirical
framework to systematically evaluate whether and how to employ LLMs for their specific measurement
tasks. As LLMs improve, we expect measurement accuracy to improve as well. Rather than identifying a
“best” LLM, we provide guidance and tools for researchers to make informed decisions about codebook
preparation, model selection, and the choice between zero-shot use and supervised fine-tuning. We
expect our framework, particularly our behavioral tests and error analysis techniques, will remain
valuable tools for assessing measurement validity as the technology evolves.

Acknowledgements. We thank Dallas Card, Luke Sanford, Maria Antoniak, the anonymous reviewers, and attendees at
PolMeth 2024 for helpful comments on the manuscript.

Data Availability Statement. Replication code and data for this article is available as Halterman and Keith (2025) and
available via Dataverse at https://doi.org/10.7910/DVN/NUWHQP.

Supplementary Material. For supplementary material accompanying this paper, please visit https://doi.org/10.1017/
pan.2025.10017.

References

Adcock, R., and D. Collier. 2001. “Measurement Validity: A Shared Standard for Qualitative and Quantitative Research.”
American Political Science Review 95 (3): 529–546.

Atreja, S., J. Ashkinaze, L. Li, J. Mendelsohn, and L. Hemphill. 2025. “What’s in a Prompt?: A Large-Scale Experiment to Assess
the Impact of Prompt Design on the Compliance and Accuracy of LLM-Generated Text Annotations.” Proceedings of the
International AAAI Conference on Web and Social Media 19: 122–145.

Brown, T., et al. 2020 “Language Models are Few-Shot Learners.” In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (Eds.) NeurIPS, virtual 33: 331877–1901.

Bueno de Mesquita, E., C. C. Fair, J. Jordan, R. B. Rais, and J. N. Shapiro. 2015. “Measuring Political Violence in Pakistan:
Insights from the BFRS Dataset.” Conflict Management and Peace Science 32 (5): 536–558.

Burnham, M. 2025. “Stance Detection: A Practical Guide to Classifying Political Beliefs in Text.” Political Science Research and
Methods 13 (3): 611–628.

Burnham, M., K. Kahn, R. Y. Wang, and R. X. Peng. 2024. “Political Debate: Efficient Zero-Shot and Few-Shot Classifiers for
Political Text.” Preprint, arXiv:2409.02078.

Chen, J. M., R. Bhattacharya, and K. A. Keith. 2024. “Proximal Causal Inference with Text Data.” In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (Eds.) NeurIPS, Vancouver, Canada 37: 135983–136017.

Crowd Counting Consortium. 2024. crowdcounting.org.
Dettmers, T., A. Pagnoni, A. Holtzman, and L. Zettlemoyer. 2023. “QLoRA: Efficient Finetuning of Quantized LLMs.” In A.

Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (Eds.) NeurIPS, New Orleans 36: 10088–10115.
Egami, N., M. Hinck, B. Stewart, and H. Wei. 2023. “Using Imperfect Surrogates for Downstream Inference: Design-Based

Supervised Learning for Social Science Applications of Large Language Models.” In A. Oh, T. Naumann, A. Globerson, K.
Saenko, M. Hardt, and S. Levine (Eds.) NeurIPS, New Orleans 36: 10088–10115.

Gerner, D. J., P. A. Schrodt, O. Yilmaz, and R. Abu-Jabr. 2002. “Conflict and Mediation Event Observations (CAMEO): A New
Event Data Framework for the Analysis of Foreign Policy Interactions.” International Studies Association conference paper.
New Orleans.

Gilardi, F., M. Alizadeh, and M. Kubli. 2023. “ChatGPT Outperforms Crowd Workers for Text-Annotation Tasks.” PNAS 120
(30): e2305016120.

Grimmer, J., M. E. Roberts, and B. M. Stewart. 2022. Text as Data: A New Framework for Machine Learning and the Social
Sciences. Princeton, NJ: Princeton University Press.

Halterman, A. 2025. “Synthetically Generated Text for Supervised Text Analysis.” Political Analysis 33: 181–194.
Halterman, A., K. Keith, S. Sarwar, and B. O’Connor. 2021. Corpus-Level Evaluation for Event QA: The IndiaPoliceEvents

Corpus Covering the 2002 Gujarat Violence.” In C. Zong, F. Xia, W. Li, and R. Navigli (Eds.) Findings of the ACL-IJCNLP,
virtual 4240–4253.

Halterman, A., and K. A. Keith. 2025. “Replication Data for “Codebook LLMs: Evaluating LLMs as Measurement Tools for
Political Science Concepts”.” Harvard Dataverse. https://doi.org/10.7910/DVN/NUWHQP

Heseltine, M., and B. Clemm von Hohenberg. 2024. “Large Language Models as a Substitute for Human Experts in Annotating
Political Text.” Research & Politics 11(1).

Hsieh, C.-P., et al. 2024. “RULER: What’s the real context size of your long-context language models?” COLM.
Hu, E. J., et al. 2022. “LoRA: Low-Rank Adaptation of Large Language Models.” In ICLR, virtual.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.7910/DVN/NUWHQP
https://doi.org/10.1017/pan.2025.10017
https://arxiv.org/abs/2409.02078
https://doi.org/10.1017/pan.2025.10017


Political Analysis 17

Jacovi, A., and Y. Goldberg. 2020. “Towards Faithfully Interpretable NLP Systems: How Should we Define and Evaluate
Faithfulness?” In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault (Eds.) ACL, virtual. 4198–4205.

Jindal, A. K., P. K. Rajpoot, and A. Parikh. 2024. “Birbal: An Efficient 7B Instruct-Model Fine-Tuned With Curated Datasets.”
Preprint, arXiv:2403.02247.

Karpinska, M., K. Thai, K. Lo, T. Goyal, and M. Iyyer. 2024. “One Thousand and One Pairs: A “Novel” Challenge for Long-
Context Language Models.” In Y. Al-Onaizan, M. Bansal, and Y. Chen (Eds.) EMNLP, Miami, Florida, USA 17048–17085.

Khattab, O., et al. 2024. “DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines.” In ICLR, Vienna.
Knox, D., C. Lucas, and W. K. T. Cho. 2022. “Testing Causal Theories with Learned Proxies.” Annual Review of Political Science

25: 419–441.
Landis, J. 1977. “The Measurement of Observer Agreement for Categorical Data.” Biometrics 33 (1): 159–74.
Lehmann, P., T. Matthieß, N. Merz, S. Regel, and A. Werner. 2017. Manifesto Corpus. Version: 2017b. Berlin: WZB Berlin Social

Science Center.
Levy, M., S. Ravfogel, and Y. Goldberg. 2023. “Guiding LLM to Fool Itself: Automatically Manipulating Machine Reading

Comprehension Shortcut Triggers.” In H. Bouamor, J. Pino, and K. Bali (Eds.) Findings of EMNLP, Singapore. 8495–8505.
Liu, N. F., et al. 2024. “Lost in the Middle: How Language Models Use Long Contexts.” Transactions of the Association for

Computational Linguistics 12: 157–173.
Longpre, S., et al. 2023. “The Flan Collection: Designing Data and Methods for Effective Instruction Tuning.” In A. Krause, E.

Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett (Eds.) ICML, Honolulu, Hawaii, USA 202: 22631–22648.
Lyu, Q., M. Apidianaki, and C. Callison-Burch. 2024. “Towards Faithful Model Explanation in NLP: A Survey.” Computational

Linguistics 50 (2): 657–723.
Mellon, J., J. Bailey, R. Scott, J. Breckwoldt, M. Miori, and P. Schmedeman. 2024. “Do AIs Know What the Most Important

Issue is? Using Language Models to Code Open-Text Social Survey Responses at Scale.” Research & Politics 11 (1).
Palmer, A., N. A. Smith, and A. Spirling. 2024. “Using Proprietary Language Models in Academic Research Requires Explicit

Justification.” Nature Computational Science 4: 2–3.
Pangakis, N., and S. Wolken. 2024. “Knowledge Distillation in Automated Annotation: Supervised Text Classification with

LLM-Generated Training Labels.” In D. Card, A. Field, D. Hovy, and K. Keith (Eds.) NLP+CSS Workshop, Mexico City,
Mexico 113–131.

Peskoff, D., and B. M. Stewart. 2023. “Credible Without Credit: Domain Experts Assess Generative Language Models.” In A.
Rogers, J. Boyd-Graber, and N. Okazaki (Eds.) ACL, Toronto, Canada 427–438.

Ribeiro, M. T., T. Wu, C. Guestrin, and S. Singh. 2020. “Beyond Accuracy: Behavioral Testing of NLP Models with CheckList.”
In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault (Eds.) ACL, virtual 4902–4912.

Rytting, C. M., et al. 2023. “Towards Coding Social Science Datasets with Language Models.” Preprint, arXiv:2306.02177.
Sanh, V., et al. 2022. “Multitask Prompted Training Enables Zero-Shot Task Generalization.” In ICLR, virtual.
Thalken, R., Stiglitz, E., Mimno, D., & Wilkens, M. (2023). “Modeling Legal Reasoning: LM Annotation at the Edge of Human

Agreement.” In H. Bouamor, J. Pino, and K. Bali (Eds.) EMNLP, Singapore 9252–9265.
Wang, X., C. Hu, B. Ma, P. Röttger, and B. Plank. 2024. “Look at the Text: Instruction-Tuned Language Models are More Robust

Multiple Choice Selectors Than You Think.” In COLM, Philadephia, PA, USA.
Wang, Y., et al. 2023. “How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources.” In A. Oh, T.

Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (Eds.) NeurIPS, New Orleans, LA, USA 74764–74786.
Wang, Y., et al. 2022. “Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks.” In Y.

Goldberg, Z. Kozareva, and Y. Zhang (Eds.) EMNLP, Abu Dhabi, United Arab Emirates 5085–5109.
Wei, J., et al. 2022. “Finetuned Language Models are Zero-Shot Learners.” In ICLR, virtual.
Zhao, Z., E. Wallace, S. Feng, D. Klein, and S. Singh. 2021. “Calibrate Before Use: Improving Few-Shot Performance of Language

Models.” In M. Meila, T. Zhang (Eds.) ICML, virtual 139: 12697–12706.
Ziems, C., W. Held, O. Shaikh, J. Chen, Z. Zhang, and D. Yang. 2024. “Can Large Language Models Transform Computational

Social Science?” Computational Linguistics 50 (1): 237–291.

Cite this article: Halterman, A. and Keith, K. A. (2025). Codebook LLMs: Evaluating LLMs as Measurement Tools for Political
Science Concepts. Political Analysis, 1–17. https://doi.org/10.1017/pan.2025.10017

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
5.

10
01

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://arxiv.org/abs/2403.02247
https://arxiv.org/abs/2306.02177
https://doi.org/10.1017/pan.2025.10017
https://doi.org/10.1017/pan.2025.10017

	1 Introduction
	2 A Framework for Codebook-LLM Measurement
	3 Related Work
	4 Empirical Set-Up: Data and LLMs
	4.1 Codebook Datasets
	4.2 Choosing LLMs
	4.3 LLMs for Multi-Class Classification

	5 Stage 0: Codebook Preparation
	5.1 Codebook Operationalization
	5.2 Machine-Readable Semi-Structured Codebook Format

	6 Stage 1: Label-Free Behavioral Testing
	6.1 Results

	7 Stage 2: Zero-Shot Evaluation With Labels
	7.1 Zero-Shot Results

	8 Stage 3: Zero-Shot Error Analysis
	8.1 Labels-Required Behavioral Tests
	8.2 Results
	8.3 Zero-Shot Ablations
	8.4 Results
	8.5 Manual Analysis of Zero-Shot Generative Outputs
	8.6 Results

	9 Stage 4: Supervised Fine-tuning
	9.1 QLoRA Training: Quantization + LoRA
	9.2 Instruction-Tuning Results

	10 Future Work
	11 Conclusion

