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Abstract

This article addresses the challenges of assessing pedestrian-level wind conditions in urban environments using a
deep learning approach. The influence of large buildings on urban wind patterns has significant implications for
thermal comfort, pollutant transport, pedestrian safety, and energy usage. Traditional methods, such as wind tunnel
testing, are time-consuming and costly, leading to a growing interest in computational methods like computational
fluid dynamics (CFD) simulations. However, CFD still requires a significant time investment for such studies,
limiting the available time for design modification prior to lockdown. This study proposes a deep learning surrogate
model based on a MLP-mixer architecture to predict mean flow conditions for complex arrays of buildings. The
model is trained on a diverse dataset of synthetic geometries and corresponding CFD simulations, demonstrating its
effectiveness in capturing intricate wind dynamics. The article discusses the model architecture and data preparation
and evaluates its performance qualitatively and quantitatively. Results show promising capabilities in replicating key
wind features with a mean error of 0.3 m/s and rarely exceeding 0.75 m/s, making the proposed model a valuable tool
for early-stage urban wind modelling.

Impact Statement

This research introduces a deep learning surrogate model for pedestrian-level wind assessment in urban
environments, offering a novel approach to address critical challenges in urban planning and design. By
leveraging relatively simple machine learning techniques, the proposed model provides a rapid and cost-
effective alternative to traditional wind assessment methods. The impact of this research has the potential to
span across various sectors, including city planning, public health, and energy generation, where considerations
for thermal comfort, pollutant transport, and pedestrian safety are paramount. The model’s ability to accurately
predict wind conditions in complex urban configurations can augment the early stages of urban development,
enabling designers and planners to optimise building layouts for enhanced sustainability and human well-being.
Moreover, the study contributes to the growing field of climate informatics, showcasing the potential of artificial
intelligence in understanding andmitigating the impact of urban structures onmicroscale wind patterns. Overall,
the research lays the foundation for a deep-learning model with the potential to shape more resilient and liveable
urban spaces in the face of evolving climate challenges.
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1. Introduction

Urban climates are significantly influenced by the morphology of the built environment and the
presence of tall buildings impacting local wind patterns and posing challenges for residents and urban
planners. Architects, engineers, and city planners must consider factors such as thermal comfort,
pollutant transport, and pedestrian safety when proposing new urban developments (Moonen et al.,
2012). High-wind conditions can render public spaces and infrastructure unusable and unsafe, affecting
economic activities (Afe, 1970). To address these concerns, some city authorities mandate assessments
of wind effects before issuing permits for new developments (City of London, 2019; Leeds City
Council, 2021). Moreover, the phenomenon of the urban heat island effect plays an important role in
overall energy consumption amidst trends in global climate as inhabitants strive to maintain comfort-
able living conditions. Ambient temperatures in cities can increase 4 °C above the surrounding area on
average with peaks exceeding a 10 °C rise (Santamouris, 2015; Santamouris, 2016). Wind plays
multiple roles in easing the rise in temperature through natural ventilation, convecting heat energy away
from the area (Oke et al., 1991) while also significantly influencing individuals perception of thermal
comfort (Nikolopoulou, 2004). Pedestrian-level wind (PLW) assessment is the quantification of
resulting microclimate as drag effects create turbulent flow, buildings block or deflect flows, and street
canyons artificially increase velocities. Wind tunnel testing using physical models has been used in the
past to conduct such studies; however, owing to the time and financial costs incurred by this type of
study, they are often delayed until designs are locked down in the later stages, favouring computational
methods that can be used to rapidly estimate wind conditions and iterate through designs toward an
optimal solution (Mittal et al., 2018). Effective PLW assessment requires meteorological data, aero-
dynamic information, and defined assessment criteria (Blocken et al., 2016). Many such wind comfort
criteria exist (Isyumov and Davenport, 1977; Lawson, 1978; Melbourne, 1978; Willemsen and Wisse,
2007), and each stipulates comfort bands based on a threshold velocity and probability of exceedance.
To ensure a comprehensive assessment of the area, studies usually incorporate data from up to 32 wind
directions across multiple seasons and times of day, as the nature of the wind changes with respect to
these variables (Hågbo and Giljarhus, 2022; Hågbo and Teigen Giljarhus, 2023). The requirement for
many situations to be accounted for nudges the industry toward lower cost and rapid solutions such as
computational fluid dynamics (CFD). Large Eddy simulations (LES) and Reynolds Averaged Navier–
Stokes (RANS) are typically used with RANS being the preferred method for conducting PLW
assessments (Blocken, 2018). RANS offers a time-averaged solution, providing the assessor with
mean flow conditions. In contrast, LES directly solves turbulent flow down to the scale of the spatial
descritizaton, relying on models to solve the finer details. It is known that RANS performs poorly in
describing wind conditions in the low-velocity wake region of large buildings (Blocken et al., 2016).
However, as lowwind conditions do not pose threats to pedestrian safety or comfort, this shortcoming is
often overlooked in favour of the reduced time and computational cost in the early stages of design
assessment. There is a clear tolerance within the industry to trade some level of accuracy for increased
cadence through the design iterations. This has motivated the exploration of surrogate models (Vasan
and Saneinejad, 2023). Machine learning methods have become ubiquitous across many areas of
science and engineering, owing to their versatility and powerful ability to fit models to data that are
intractable to humans. Several studies have attempted to develop surrogate models with the ability to
predict urban wind environments (Benmoshe et al., 2023; Hoeiness et al., 2022; Mokhtar et al., 2020;
Weerasuriya et al., 2021). In these studies, geometric information was provided to the models, while
CFD results were used as a ground truth. Notably, the urban configurations in these studies are
comparatively smaller than those presented here.

In this study, we propose a learned surrogate model that leverages global information communication
methods to learn a mapping between a given set of boundary conditions and the expected mean flow
conditions for complex arrays of bluff-shaped buildings. A novel extension to the model architecture that
aids the learning process is introduced, and a number of model iterations are assessed for their efficacy in
generating accurate flow fields.
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2. Methodology

2.1. Problem formulation

The problem at hand involves the determination of the pedestrian-level flow field, framed as an image-to-
image translation task. Specifically, the task is approached by leveraging a set of preprocessed geometries
denoted asX, represented as grey-scale images. These images are input into amodel f with the objective of
learning a mapping to a pre-computed flow field Y , derived from a RANS simulation. Each pixel value in
an individual image xi ∈X encodes the heights of the buildings within the spatial domain. In contrast, the
corresponding output image yi is a 3-channel RGB image, where each channel represents the x,y,z
velocity components at a 2 m height. It is crucial to note that the boundary conditions for the CFD
solutions are uniform across all data points in Y and are implicitly incorporated into the model. The
learning process, encapsulated in the mapping from X! Y , is achieved by adjusting the model’s free
parameters denoted as θ. This adjustment is facilitated through backpropagation, employing a defined set
of loss function equations:

f θ : xi ! yi xi,yi ∈X,Y (1)

minθ
1
2
∥yi� f x,θð Þ∥1þ∥byi� f bxð ,θÞ∥1ð Þ

� �
(2)

The loss function employed in this study aims to quantify the disparity between the model’s output
and the precomputed flow fields, utilising the mean absolute error (MAE). To further emphasise the
significance of the central section in the evaluation process, an additional term has been introduced.
This supplementary term accounts for the central portion of the image, bx, acknowledging its
heightened importance in capturing nuanced details critical to the accuracy of the flow field
prediction. The loss function is designed as the average of two components: the MAE computed
across the entire image and the MAE calculated for a cropped central section. This approach ensures a
balanced evaluation, promoting both overall accuracy and the model’s ability to capture fine details in
the central region of the flow field.

2.2. Geometries

The training dataset used in this study consists of 163 distinct synthetic geometries, each serving as the
foundation for generating eight individual CFD scenarios. These scenarios account for wind flow from
each of the cardinal and ordinal directions. The choice of a circular formation for each geometry
introduces a deliberate uniformity among simulations, particularly in terms of wind interaction around
the outer edge of the urban configuration.

The buildings within each geometry are characterised by simple, smooth prisms, featuring either sharp
corners or fillet angles reminiscent of architectural styles found in early-stage design. Each building
maintains a consistent cross-sectional area along its height axis. Notably, the architectural design
intentionally omits intricate features such as bridges, skywalks, balconies, or masts. Moreover, it is
crucial to highlight that the buildings in the synthetic geometries are entirely impermeable, contributing to
a simplified yet representative simulation environment. Each geometry within the dataset exhibits
variability in terms of density, building height, and the extent of open areas, providing a diverse range
of scenarios for training the model.

2.3. CFD simulations

The CFD solutions in this study were generated using the open-source OpenFOAM v2206 software,
utilising the simpleFOAM steady-state solver tailored for incompressible turbulent flow. To model
turbulence closure, a k� ϵ model was employed, with specific coefficients, Cμ,Cϵ1,Cϵ2,σk set to
0:09,1:44,1:92,1:11, respectively, as per the work of Hargreaves et al (Hargreaves and Wright, 2007).
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The synthetic geometries were positioned at the centre of a cylindrical domain with a diameter of
3000 m and a height of 300 m. An internal orthogonal grid was used to refine the mesh within 75 m from
the extremities of the geometry. This refinement not only enhanced cell quality but also provided a higher
spatial resolution crucial for capturing the nuanced physics of the flow. The mesh resolution was
adaptively adjusted, progressively increasing cell volumes with distance from the ground where a finer
resolution was deemed unnecessary, thereby mitigating computational load. The mesh generation around
the building geometries was facilitated by the in-built snappyHexMesh routine (OpenFOAM, n.d.).

The inflow conditionswere characterised by a logarithmic profile with a reference velocity of 5m/s at a
height of 10 m. A slip boundary condition was applied at the top surface of the domain. A total of 1304
unique results were obtained by simulating wind flow from eight directions for each geometry, consid-
ering both cardinal and ordinal directions. The solver was run for 1000 iterations with a time step sizeΔt of
1 s chosen as a tradeoff between accuracy, convergence, and computational efficiency to generate a
sufficiently robust training dataset.

2.4. Data preparation

For each of the 163 unique geometries, a transformation into a 2-dimensional grey-scale image is
performed using the PyVista Python package (Bane Sullivan and Alexander Kaszynski, 2019), yielding
images with dimensions H ×W ¼ 1024× 1024px. Each pixel represents an area of approximately 1 m2

and has a valuewithin the range of 0,1½ � representing the scaled height of the building at that specific point
in space.

Similarly, the precomputed flow fields undergo preparation also using the PyVista package. a slice of
the XY plane is taken, capturing the velocity components of the flow field in separate channels as RGB
pixel values. Specifically, the red, green, and blue channels encode the x,y,z velocity components,
resulting in a tensor of size H ×W ×C¼ 1024× 1024× 3px. A colour mapping is applied to the velocity
components, with �6,6½ �! 0,1½ � for x,y direction and �2,2½ �! 0,1½ � for the z component. A sample
training pair is shown in Figure 1.

To ensure consistency, each of the 1304 image representations of the velocity fields is rotated such that
the wind inflow is from the top of the image. The relevant components are transformed using a rotation
matrix congruent with their shift in the frame of reference. Augmentation is further applied by mirroring
each rotational orientation about the Y-axis, resulting in the full 16 octagonal symmetries for each
geometry. Consequently, the final training set comprises 2608 geometry-flow field pairs, providing a
robust and diverse dataset for model training. To describe the velocity flow field in our analysis, we
employ a Cartesian coordinate system with axesUx,Uy, andUz, representing the horizontal, vertical and

Figure 1. Training Data Overview: (a) 3D model of a synthetic geometry used to generate training data
for the deep learning model. (b) Processed geometry, a 2D representation of the synthetic geometry after
preprocessing, where pixel colour corresponds to the height of the buildings. (c) PostprocessedCFDData
where the RGB channels encode the velocity components in the x, y, and z directions. This image provides
a visual representation of the ground truth used for training and evaluating the deep learning model.
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depth components. Positive values indicatemotion toward the right and top of the image for theUx andUy

components and emerging from the page for the UZ component.
Given that the geometries undergo rotations at angles such as 45, 135, 225 degrees, etc., a notable

consequence is the absence of data in the corners of the resulting images.While such data gaps do not pose
an issue when rotations occur in multiples of 90 degrees, the irregular angles necessitate a corrective
measure. To address this, a corner mask is systematically applied to all images. This mask effectively
removes the data in the corners, ensuring uniformity across all orientations andmitigating confusion in the
model, thereby enhancing the overall consistency and reliability of the dataset.

2.5. Model architecture

The model architecture draws inspiration from the image-to-image multilayer perceptron (MLP) mixer
model introduced by Mansour et al. (Mansour et al., 2023). This supervised learning model, comprising
solely of linear transformations, nonlinear activations, and data transpositions, demonstrated state-of-the-
art performance in computer vision tasks such as reconstructing noisy images. Information transfer in this
architecture is facilitated through MLP layers acting on linear transformations of input images across all
spatial dimensions and token channels. Unlike a convolutional neural network, which inherently captures
local spatial relationships due to their convolutional nature and receptive fields, giving them a strong
inductive bias toward translation invariance while allowing them to learn hierarchical spatial represen-
tations, MLP mixers rely more on learning global interactions across image patches resulting in a lower
inductive bias toward spatial relationships. Crucially, the number ofmodel parameters scales linearly with
the size of the input dimension, rendering it well-suited for handling higher-resolution images without the
need for prior compression via auto-encoders or similar techniques.

Each input image undergoes a discretization process, where it is divided into discrete patches of size
P×P. Each patch is then transformed into an embedding vector with an arbitrary number of channels C.
These latent vectors are amalgamated to form a tensor with dimensions H

P × W
P ×C, preserving their

relative position in the image. This tensor undergoes mixing operations in each of its three dimensions
using a sharedMLP-mixer block, consisting of twoMLP layers in series with a GELU activation function
separating them. The size of the single hidden layer in each MLP layer is proportional to the size of the
layer input and is determined by a hyperparameter f .

Multiple mixer blocks can be stacked, performing repeated mixing operations as the model attends to
different areas in each layer, increasing the network’s learning power. After n such mixing layers, the
latent tensor is transformed back to the desired image dimension. The image reconstruction is managed in
the patch expansion step, where each transformed latent vector is expanded into a flattened patch of size
CP2 via a shared linear transformation. The grouped vectors are reshaped to form a tensor, restoring the
height and width dimensions of the image. Finally, a 1 × 1 convolution layer collapses the channel
dimension into the original three colour channels.

2.5.1. Architectural enhancements
Unique to this model formulation is an additional mixing step that incorporates information from
immediate neighbours within a predefined area, enhancing the model’s capacity to consider local context
during the learning process. This is achieved using two 2-dimensional convolutional layers in series
separated by a GELU activation. The size of the latent dimension between the two layers is governed by a
hyperparameter f c. Similar to the original mixer block, the modified mixer block maintains the size of the
input tensor through its operation. A schematic of the modified model is shown in Figure 2.

2.6. Compute resource

The training and hyperparameter tuning processes were conducted on a Linux machine, leveraging the
computational power of a single A100 GPU, accompanied by 16 CPU cores and 64GB RAM. The model
underwent training for a total of 20 epochs, taking approximately 8 hours.
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3. Discussion of results

To gauge the effectiveness of the model, we conducted evaluations by comparing generated flow fields to
their pre-computed counterparts for a reserved set of geometries that remained concealed from the model
during the training phase. We begin the section with a qualitative comparison. Subsequently, quantitative
measures are defined to systematically evaluate performance and suitability for the specific task of
generating accurate flow fields at pedestrian-level height (2 m). Following the qualitative and quantitative
analyses, we examine of the benefits of the neighbourhood mixing modification by using a standard,
unmodified mixer model as per Mansour et al.’s work (Mansour et al., 2023) as a baseline for the
assessment.

3.1. Qualitative comparison to CFD

From a qualitative perspective, we compared the model-generated flow patterns to those produced by
CFD simulations. This evaluation aimed to assess the model’s capability to capture the expected physical
behavior of the wind, particularly in areas characterised by high wind velocity amplification, often
associatedwith increased discomfort and risk to pedestrians. This qualitative assessment involved a visual
inspection of model predictions alongside the corresponding ground truth for each velocity component
and magnitude. An illustrative example of this comparison is presented in Figure 3. Notably, the model
exhibits proficiency in replicating key features around the geometry, including small areas of stagnation at
the leading edge of the geometry and the wake region on the leeward side. As the wind circulates around
the outer perimeter of the geometry, the model accurately captures regions of high velocity, particularly in
gaps between buildings. Additionally, the model successfully reproduces amplified flows penetrating
from the outer edge through canyons formed between buildings. In areas where courtyards exist,
characterised by open spaces surrounded by buildings, the model appropriately reflects the increase in
wind flow. Toward the centre of the geometry, the model demonstrates its ability to predict heightened
flow velocities between buildings, even far from the free stream, after undergoing complex interactions.

Upon examining individual velocity components, the model effectively captures the majority of
significant flow features for both the Ux and Uy directions. Particularly noteworthy is the model’s
accurate representation of the reversal of flow direction in the Uy component, observed in the wake
region and on the windward side of the geometry. An analysis of the Uz component reveals the model’s
success in reproducing downwash on the windward side of the buildings throughout the entire geometry.

Figure 2. A schematic representation of the proposed modified image-to-image mixer model adapted
from (Mansour et al., 2023). Details of the mixing layers are shown underneath.
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Figure 3.Aqualitative comparison between the predicted flow field generated by the deep learningmodel
and the corresponding CFD simulation. Highlighted areas pinpoint instances where the model
successfully replicates essential features of the wind flow, providing valuable insights into its
performance.
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The agreement between the model and the ground truth is reasonably high for the z-components, which
aligns with expectations due to the naturally lower velocities associated with this component.

3.2. Quantitative comparison to CFD

To quantify the model’s performance, we initially plot the error ∥yi∥�∥f xi,θð Þ∥ normalised by the
reference velocity at a height of 2 m shown in Figure 4. In general, the model demonstrates commendable
performance across the domain, with low errors typically falling within the range of ± 0:625m/s.
However, it becomes evident that while the majority of flow features are effectively captured, the precise
shapes of these features and the predicted associated wind velocities can exhibit errors in the region of
2 m/s with rare occurrences exceeding 3.5 m/s. The level of under/over-prediction by the model is not
consistent throughout the domain, displaying no clear pattern.

The findings from the error plots are further supported by descriptive statistics provided in Table 1.

Figure 4. Error plots depicting the difference between the predicted magnitude generated by the deep
learning model and the simulated magnitude from CFD for the entire image and the centre section. The
magnitude difference is normalised by the reference velocity at a 2 m height.

Table 1. Performance comparison between the standard MLP mixer and the modified version
measured on the test set. Mean absolute errors and the 90th percentile absolute errors for the entire
image and the centre section, excluding building or masked corner pixels, provide insights into the
accuracy and robustness of each model in predicting pedestrian-level wind conditions. Lower errors

indicate superior performance.

Full image Cropped section

Model
Mean absolute

error
90th% Absolute

error
Mean absolute

error
90th% Absolute

error

Standard 0.43 0.97 0.46 0.91
Neighbourhood mixing 0.32 0.75 0.35 0.71
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3.3. Effect of neighbourhood mixing

Comparison between a model equipped with a neighbourhood mixing layer to the standard unmodified
architecture reveals significant enhancements across all error metrics and in the representation of flow
patterns. The quality of the comparison is particularly marked by a reduction in pixel-wise errors and
effectivemitigation of discontinuities in the generated flow fields.Moreover, the standardmixer exhibits a
tendency to introduce artifacts into the generated image, implying valuable information can be captured in
the immediate local area. Omitting this information leads to confusion and the presentation of behaviors
that contradict physical laws such as discontinuities in the flow field. These improvements signify the
efficacy of the introduced architectural modification in refining the model’s ability to generate more
accurate and coherent representations of wind behaviour. Consequently, this enhancement contributes to
an overall improvement in the model’s performance and predictive capabilities, which is clearly depicted
in Figure 5.

3.4. Effect of training set size

Deep learning models are inherently shaped by the data they are trained on, making the volume and
quality of the training dataset pivotal factors in determining model performance. In our study, we explore
the impact of training set size by comparing models trained on varying proportions of the total dataset:
100%, 80%, 60%, and 40%. The mean absolute error (MAE) for each trained model is documented in
Table 2. Notably, the largest decrease in loss is observed between the models trained on 40% and 60% of
the dataset, indicating the importance of sufficient data for model effectiveness. Furthermore, as the
proportion of training samples increases, there is a consistent linear decrease in loss, underscoring the
direct correlation between data volume and model performance.

Despite these improvements, our analysis suggests that there remains potential for further enhance-
ment, particularly through the expansion of the training dataset. Increasing the size of the training set
could offer additional opportunities for refining model accuracy and generalisation, thereby optimising
performance in PLW assessment tasks.

3.5. Effect of model size

We conducted training iterations of the model using different numbers of layers: 4, 6, 8, and 10.
Interestingly, models with 4 and 6 layers exhibited comparable performance, with minimal disparity in

Figure 5. A side-by-side comparison of the predicted flow fields produced by the standard mixer model
(a) and the proposed modified version (b).
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MAE loss. However, as additional layers were added, the loss demonstrated a further decrease, suggesting
the potential for continued improvement with larger models.

It is noteworthy, however, that increasing the number of layers introduces a risk of overfitting,
particularly when working with a relatively small dataset. As the model parameters expand, so does
the susceptibility to overfitting, where the model may excel in learning from the training data but struggle
to generalise effectively to unseen data.

3.6. Inference time

CFD studies are known to be time-intensive. The data generated for model training and testing took 80–
100minutes to resolve a single training example. In contrast, our developed deep learningmodel achieves
remarkable efficiency, with an average inference time of just 0.008 seconds per forward pass. This
significant speed enhancement is particularly advantageous considering the multitude of wind directions
that must be simulated for each design iteration in a PLW assessment. Consequently, our model holds
considerable promise as a rapid and effective tool for preliminary design assessments, offering substantial
time savings over traditional CFD approaches.

4. Conclusion

This article introduced a modified multilayer perceptron machine learning network designed to serve as a
surrogate for the generation of accurate wind flow fields in the specific context of PLWassessment. The
presented model demonstrates its capability to produce detailed, physically consistent, flow fields with a
mean error of approximately 0.3 m/s for complex urban configurations. A notable feature of the model is
its inherent capacity to capture long-range dependencies and positional information, crucial for making
accurate inferences in the intricate urban wind environment. Given the broad ranges of the PLW
assessment criteria, it could be feasible to use such a model as a viable tool for early-stage urban wind
modelling, providing a rapid inference time while requiring a reasonably small set of training examples.
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