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Abstract
Body posture determination methods have many applications, including product design, ergonomic workplace
design, human body simulation, virtual reality, and animation industry. Initiated in robotics, inverse kinematic
(IK) method has been widely applied to proactive human body posture estimation. The analytic inverse kinematic
(AIK) method is a convenient and time-saving type of IK methods. It is also indicated that, based on AIK methods,
a specific body posture can be determined by the optimization of an arbitrary objective function. The objective of
this paper is to predict the postures of human arms during reaching tasks. In this research, a human body model
is established in MATLAB, where the middle rotation axis analytic kinematic method is accomplished, based on
this model. The joint displacement function and joint discomfort function are selected to be initially applied in this
AIK method. Results show that neither the joint displacement function nor the joint discomfort function predicts
postures that are close enough to natural upper limb postures of human being, during reaching tasks. Therefore, a
bi-criterion objective function is proposed by integrating the joint displacement function and joint discomfort func-
tion. The accuracy of the arm postures, predicted by the proposed objective function, is the most satisfactory, while
the optimal value of the coefficient, in the proposed objective function, is determined by golden section search.

1. Introduction
Proactive body posture determination is very useful in many areas. First, it can be applied in virtual
design of workspace [1–3]. An example is that it has been validated in the prediction of human body
postures while reaching buttons in a car, which can help to re-design the location of those buttons [2].
Second, it is useful for the ergonomic simulation of manual tasks [4–8], which enables the correspond-
ing ergonomic risks to be proactively assessed. With proactively estimated body posture, necessary
adjustments will be made to the tasks in advance [5, 6]. Proactive body posture estimation is also useful
for virtual reality and computer graphics. To be specific, in virtual reality, it can be applied to improve
the embodiment of human characters [9], while in computer graphics, it can be utilized to generate the
animation of human models or the models of other legged creatures [10].

This research is aimed at increasing the accuracy of previous methods and keep their solving effi-
ciency, as well as studying the mechanism of the determination of natural body postures. The problem
of determining appropriate body postures (i.e., appropriate configurations of joint-angle values), based
on a desired target point position, is named as inverse kinematic (IK) problem [10]. IK problem was ini-
tiated in robotic manipulators, in order to move the end-effector to desired positions [10, 11]. Before the
appearance of IK solutions, robotic manipulator control is mainly based on master–slave systems [12],
which require the operation from human workers [11]. Denavit and Hartenberg developed a four-by-four
matrix to formulate the kinematics of linkage systems [13], which was later used to analyze the motion
of four-link systems [14]. The same concepts and similar method were later applied to the human upper
limb [15], which is regarded as a seven-link system.
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Figure 1. Inverse kinematic problem and analytical inverse kinematic method: (a) Inverse kinematic
problem. (Dashed line shows the initial position of the arm. η, θ , ζ, ϕ are the joint angles, which are the
shoulder adduction, shoulder flexion, shoulder rotation and elbow flexion, respectively.) (b) Definition
of swivel angle.

In the control of robotic manipulators, IK solutions avoid the inconvenience and excessive time delay,
when the distance is over far, of the master–slave system [11]. Apart from its application on robotics, IK
methods have later been widely applied for analysis of human motion. This research focuses on analytic
IK methods, which is a convenient and time-saving sort of IK method. In this research, an optimization
module is merged into a previous analytic IK method, in order to increase the accuracy of the previous
methods. In the optimization module, two objective functions (the joint displacement function and the
joint discomfort function) are combined to form a bi-criterion objective function. The coefficient in the
bi-criterion objective function is determined, based on experimental data of a reaching task extracted
from the publication of other researchers [16].

1.1. Analytic IK method and swivel angle
IK methods can be categorized into three major types: analytic IK methods, numerical IK methods,
and data-driven IK methods [9]. Analytic IK methods are meant to find out the solution as a func-
tion of the target point position. Numerical IK methods achieve satisfactory solutions through a set of
iterations, while data-driven IK methods use previously learned postures to match the positions of the
end-effector [10].

Compared with analytic IK methods, numerical IK methods can achieve better accuracy, but require
400–600 times of the time that analytic IK methods usually need [17]. When it comes to data-driven IK
methods, they ensure natural body postures, but need a large amount of motion data for each task, which
is expensive and time consuming to acquire [10]. Therefore, this research focuses on Analytic Inverse
Kinematic (AIK) methods.

AIK methods are reliable IK methods which usually do not have singularity problems [10]. A
schematic of the IK problem is given in Fig. 1(a). For upper-limb applications, elbow flexion is solved
first, based on the target distance from wrist joint center to shoulder joint center. Then, the elbow joint
position is limited on a circle in Fig. 1(b). In order to parameterize the elbow position, the swivel angle
φ is defined to evaluate the rotation of arm (shown in Fig. 1(b)) [15, 18, 19].

The swivel angle is defined around the middle rotation axis (an axis pointing from shoulder joint
center to wrist joint center), which can be determined by applying joint limits [18, 19]. However, joint
limits can only provide a possible range of angles, instead of a specific swivel angle [10]. Tolani et al
pointed out three ways of selecting an appropriate swivel angle, from the possible range of angles: (1)
select the midpoint of the possible range; (2) choose a possible value which is closest to a desired value;
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and (3) find a swivel angle value of φ which minimizes an arbitrary objective function [15]. This research
focuses on the third approach, combining objective functions with the analytic IK method, in order to
find an accurate solution, as well as to explore the mechanisms of the body posture determination.

1.2. Body oosture optimization and cost function
In this paper, body posture optimization (BPO) is combined into a previous AIK method in order to
achieve a scientific determination of the swivel angle. Previous BOP problem is defined as follows.
Previous researchers try to find the configuration (joint angles q) of a human body when the fingertip
or other end-effector reaches the target point [2]. The hypothesis is that human performance measures
govern the movements of human bodies. Based on this hypothesis, the BPO problem can be formulated
as follows [2, 20, 21]:

Find: q ∈ RDOF

to minimize: f obj(q)
subject to: distance = || xend-effector (q) – xtarget-point || < ε

qi
L < qi < qi

U (i = 1, 2, . . ., DOF)
where fobj is an arbitrary objective function;
q is the joint angle vector, whose elements are joint vectors;
R indicates the real number space;
ε is a small number close to zero;
xend-effector (q) is the position vector of the end-effector, as a function of the joint angles;
xtarget-point is the position vector of the target point;
DOF is the total number of the degree-of-freedom of the applied kinematic structure.
qi is the ith element of the joint angle vector q, which is equal to the ith joint angle of the kinematic

structure;
qi

L and qi
U are the lower and upper limits of the ith joint angle, respectively.

It is shown that the objective function is an important part of the BPO problem. Cost functions are
functions evaluating human performance measures [20], which can be applied as the objective functions,
for the determination of human body posture. One thing that the authors wish to point out here is that
this paper combines AIK with the BPO method, where the joint limit model of AIK performs as the
constraint (details are discussed in the methodology section). Therefore, this section discusses different
objective functions without considering the complete constrained optimization problem.

In order to determine which cost function(s) to be applied in this research, a literature review has been
conducted (shown in Table I). Thirteen publications are studied in this review (Table I). Since one of
the aims of this research is studying the mechanism of body-posture prediction, only those publications,
related to human postures, are studied, while publications on robotics are excluded.

Among selected publications, the joint discomfort function is the most commonly applied cost func-
tion. The joint displacement function and delta potential energy function are the second most commonly
applied cost functions. Therefore, the joint discomfort function, joint displacement function and delta
potential energy function are analyzed in this research.

Based on searched literature, previous objective functions can be categorized into single objective
functions and multiple objective functions. (In this section, bi-criterion objective functions are also
categorized as multiple objective functions.) Multiple objective functions can also be categorized into
two types: one is the product of different cost functions [22], while the other is weighted sum of different
cost functions [1, 2, 8]. It has been reported that the combination of different cost functions (i.e., multiple
objective functions [23]) is able to increase the accuracy of predicted body postures [16]. However,
based on searched literature, there is not a systematic approach to accurately determine the weights
of different cost functions [24]. In addition, previous research has not clarified how the different cost
functions coupled together are.
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Table I. Selected studies and applied cost functions.

No. Year Title of publication Applied cost functions
1 1994 Psychophysical Cost Function of Joint

Movement for Arm Reach Posture Prediction
[25]

- joint discomfort

2 1995 Inverse Kinetics for Center of Mass Position
Control and Posture Optimization [34]

- support torque (from the ground)
- joint effort

3 1996 Optimal Posture of a Human Operator and
CAD in Robotics [35] (via [1])

- joint torque

4 2009 Use of Multiobjective Optimization for Digital
Human Posture Prediction [1]

- joint displacement
- joint discomfort
- delta potential energy

5 2009 Optimization-based Posture Prediction for
Human Upper Body [20]

- joint displacement

6 2011 Multiobjective Optimization-based Method for
Kinematic Posture Prediction: Development
and Validation [2]

- joint discomfort
- delta potential energy

7 2011 Optimization-based Posture Prediction for
Analysis of Box Lifting Tasks [7]

- Joint torque

8 2012 A Bi-Criterion Model for Human Arm Posture
Prediction [23]

- joint displacement

9 2012 An Inverse Optimization Approach for
Determining Weights of Joint Displacement
Objective Function for Upper Body Kinematic
Posture Prediction [26]

- joint displacement

10 2013 A New Criterion for Redundancy Resolution of
Human Arm in Reaching Tasks [24]

- gravitational potential energy
- elastic potential energy

11 2018 Optimization of Posture Analysis in Manual
Assembly [36]

- joint discomfort
- total energy expenditure

12 2020 Optimization of Posture Prediction Using
MOO in Brick Stacking Operation [22]

- joint discomfort
- total energy expenditure

13 2020 Multi-Objective Optimization Method for
Posture Prediction of Symmetric Static Lifting
Using a Three-Dimensional Human Model [8])

- joint torque
- delta potential energy
- compression/tension forces
- shear forces (vertebrate)
- joint discomfort
- sight angle (eyesight)

1.2.1. Delta potential energy
Delta potential energy describes the change of the gravity potential energy of human body, from initial
posture to final posture [20]. Eq. (1) shows a commonly applied formulation of the delta potential energy
function [20].

fdpe (q) =
n∑

i=1

(mi · g)2 · (�hi)
2 (1)

where mi is the mass of the ith body segment (Usually, a unit of kilogram is applied. In this research, mi

is normalized by the body mass. Therefore, body mass is applied as the unit.),
g is the gravitational acceleration (The body mass multiplied by the gravitational acceleration is body

weight. Therefore, the body weight (BW) is applied as the unit of mig.),
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�hi is the change of the height, of the centre of mass of the ith body segment, from the initial body
posture to the final body posture (unit: meter or millimeter; millimeter is applied in this research).

For each couple of initial target point and final target point, as the swivel angle increases, �hi will
also increase, so that the delta potential energy of human arm will keep increasing. Therefore, the pure
minimization of delta potential energy will always lead to the smallest swivel angle, which is probably
not an accurate optimization.

1.2.2. Joint discomfort
The joint discomfort function has been widely applied to predict body posture [20, 22, 25], which eval-
uates the musculoskeletal discomfort of human body [1]. Based on searched literature, the latest joint
discomfort function is developed by Marler et al. [21], as shown in Eq. (2).

fdiscomf(q) = 1

G

n∑
i=1

[γi · (�qn,norm
i )2 + G · QUi + G · QLi] (2)

�qn,norm
i = qi − qn

i

qu
i − qL

i

(3)

QUi =
(

0.5 · sin

(
5.0(qU

i − qi)

qU
i − qL

i

+ 1.571

)
+ 1

)100

(4)

QLi =
(

0.5 · sin

(
5.0(qU

i − qi)

qU
i − qL

i

+ 1.571

)
+ 1

)100

(5)

where, qi is the value of ith joint angle (unit: degree or rad),
qi

n is the neutral value of ith joint angle (unit: degree or rad),
qi

U is the upper limit of the ith joint angle (unit: degree or rad),
qi

L is the lower limit of the ith joint angle (unit: degree or rad),
�qi,norm

i is the normalized value of the ith joint angle, based on the neutral joint angle value (as shown
in Eq. (3)). Therefore, it has no unit.

γi is the joint weight (without unit),
QUi is the joint limit term expressed in Eq. (4),
QLi is the joint limit term expressed in Eq. (5),
G is a magnifying ratio (G > 1) for the joint limit terms QUi and QLi. The function in Eq. (2) is

divided by G, in order to prevent the joint discomfort function from having extremely high values, when
compared with the other cost functions [1].

For each joint, they evaluate its discomfort by two facts: (a) joint discomfort decreases when a seg-
ment gets close to its neutral position; (b) joint discomfort rapidly increases when a segment gets close
to its limits [1]. Based on searched literature, its performance has not been evaluated by experiment data.
Therefore, in this research, the performance of the joint discomfort function is evaluated by extracted
experiment data, before being combined with another cost function.

1.2.3. Joint displacement
The joint displacement evaluates the angular displacement of each joint. In some research, the joint
displacement is calculated from the neutral position [1, 20], while, in other research, it is calculated
from the initial position (i.e., the starting posture of the current analyzed motion or the end posture of
a previous motion if a continuous motion is analyzed) [23]. When calculated from the initial position,
the joint displacement is proportional to the energy expenditure of the motion from initial posture to
final posture [23], which estimates the effect of the initial posture to the final posture. Therefore, in this
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research, joint displacement is calculated from initial posture. A commonly used formulation of the joint
displacement function is shown in Eq. (6) [26].

fdisplace (q) =
n∑

i=1

ωi · (�qi,norm
i )2 (6)

�qi,norm
i = qi − qi

i

qu
i − qL

i

(7)

where qi
i is the initial value of ith joint angle (unit: degree or rad),

ωi is the joint weight of the ith joint angle (with no unit).
�qi,norm

i is the normalized value of the ith joint angle, based on the initial joint angle value (shown in
Eq. (7) [1]). Therefore, it has no unit.

Zou et al. determined the weights in joint displacement function by means of inverse optimization
[26]. Their joint displacement function is validated in whole-body reaching tasks and predicts reasonably
accurate body postures [26]. However, when the torso is fixed, the accuracy of the determined joint angle
values turns out to be low, which exhibits that the joint displacement function is not feasible for all types
of reaching tasks. Further analysis needs to be conducted on its performance.

Therefore, in this research, we focus on the reaching tasks without motion of torso. Selected single
objective functions (the joint displacement function and joint discomfort function) were initially com-
bined with AIK method, respectively. Then, we examined the accuracy of the body postures, predicted by
the joint displacement function [26] and the joint discomfort function [21]. Then, we comprehensively
combined the selected single objective functions together, proposing a new bi-criterion objective func-
tion. We have also validated the accuracy of this proposed bi-criterion objective function and studied
the effect of the weight of joint discomfort, on the accuracy of predicted joint angle.

2. Kinematic model
In order to combine the AIK method with an optimization model (i.e., adding objective functions to
the AIK method), a rigid-segmental model of the right upper limb of human beings is established in
MATLAB, according to the body segment parameters exhibited in a publication of Dumas et al. [27].
A human body model should consist of a kinematic structure and motion equations. In this paper, the
established kinematic structure is made up with segmental vectors (vectors which represent the length
and orientation of each segment) (Fig. 2(a)), where each vector represents a body segment. Once the
position of the right shoulder joint centre (X6) is given, the positions of the right elbow joint centre (X7)
and right second fingertip (X8) can be calculated as Eq. (8).

Xi = X6 +
∑i−1

j=6
Vj (i = 7, 8) (8)

Segmental vectors are motivated by joint angles. In this model, each joint has an index as illustrated
in Fig. 2(a). For example, the joint index for the right shoulder joint is 6 (Fig. 2(b)). For an arbitrary
joint with a joint index i, joint angles are defined by global-frame-based ZYZ sequence. To be specific,
the rotation of each joint is divided into three rotations. In the first rotation, an angle αi, 4 is performed
around the z-axis, where i is the joint index. In the second rotation, an angle αi, 2 is performed around the
y-axis of the global coordinate system. Finally, in the third rotation, an angle αi, 3 is performed around
the z-axis of the global coordinate system again. Thus, the rotation matrix of an arbitrary joint i (Ri) can
be deduced as Eq. (9a), which is equivalent to Euler’s ZYZ sequence.

Rj = Rz(αi,3) · Ry(αi,2) · Rz(αi,4) (9a)

where Ry and Rz represent basic rotation matrices, around y and z axes, respectively.
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Figure 2. The kinematic structure applied in this paper: (a) anatomical meaning of involved segmental
vectors and anatomical nodes; (b) Kinematic structure of the established human body model, as well as
the involved joint angle notations.

The basic rotation matrices around y and z axes, with an arbitrary rotational angle α, Ry (α) and
Rz (α), can be calculated as Eqs. (9b) and (9c).

Ry(α) =
⎛
⎝ cos α 0 sin α

0 1 0
− sin α 0 cos α

⎞
⎠ (9b)

Rz(α) =
⎛
⎝ cos α − sin α 0

sin α cos α 0
0 0 1

⎞
⎠ (9c)

Based on this adjusted notation for joint angles, an adjustment has been made to the storage of the
joint angles. In previous research, all the joint angles are stored as a vector, which can make it difficult
for users to match the index of a joint angle with its anatomical meaning. As Fig 2(d) shows, in this
research, all the joint angles are stored in a matrix, where the first index is the joint notation, and the
second index is the axis notation. In order to make the index easy to remember, the axis indices 1, 2,
and 3 are matched with the x, y, and z axes of the global coordinate system, respectively.

Since there are two rotational angles around the z axis, the first rotational angle αι,4 is stored in the
fourth column. In this way, for the upper limb posture determination, which is discussed in this paper,
α6,2, α6,3, α6,4, and α7,2 are right shoulder flexion/extension, right shoulder abduction/adduction, right
shoulder rotation and right elbow flexion/extension. If the right clavicle (V5) is set as the reference, then
the orientations of right upper arm (V6) and right forearm (V7) can be calculated as Eqs. (10a) and (10b).

V6 = R6 V6
(0) (10a)

V7 = R6 R7 V7
(0) (10b)

where V6
(0) and V7

(0) are initial orientations of right upper arm and right forearm, in the neutral standing
posture, respectively. (For the right elbow (X7), α7, 3 = α7, 4 = 0. If we substitute this into Eq. (9c), we can
get the result that Rz (α7, 3) = Rz (α7, 4) = I (In this paper, I represents the identity matrix.) Therefore,
by means of substituting this result into Eq. (9a), R7 = Ry (α7, 2).)
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Figure 3. Workflow of the developed method (The notation S, E and H notes the shoulder joint centre,
elbow joint centre and the third finger tip of right hand, respectively, while T represents the position of
the target point.).

Then, by means of substituting Eqs. (10a) and (10b) into Eq. (8c), the positions of the right elbow (X7)
and right fingertip (X8) can be calculated as Eqs. (11a) and (11b), which is equivalent to the conventions
established by Denavit and Hartenberg [13].

X7 = X6 + R6 V6
(0) (11a)

X8 = X6 + R6 V6
(0) + R6 R7 V7

(0) (11b)

3. Methodology
This section introduces how we combine the AIK method with body posture optimization, analyze
present objective functions, and develop a bi-criterion objective function. The combination between
AIK method and body posture optimization is an important target of this research, which is expected
to combine the solving efficiency of AIK methods with the accuracy of body posture optimization. The
other target of this research is to develop an objective function with comprehensive physical meaning,
attempting to have a deeper view on the mechanism of the determination of human body posture.

3.1. Analytic inverse kinematic method
Molla and Boulic proposed a singularity-free AIK method, named as Middle Rotation Axis (MRA),
which can be formalized into three steps: (i) Determine the elbow flexion; (ii) Bring the end-joint (wrist)
to the target position; (iii) Determine the mid-joint (elbow) position by satisfying the shoulder joint limit
and wrist joint limit [19].

In this research, as shown in Fig. 3, the MRA-AIK method is achieved by four steps. The first step
solves the elbow flexion angle, as illustrated by Tolani et al. [15]. Once the target point position is given,
then the value of the elbow flexion angle will be purely dependent on the distance between the shoulder
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Figure 4. Equation and schematics of the first three steps.

joint center and the target point [15]. Similar with previous research [15, 18, 19], in this paper, Cosine
Law is applied to calculate the elbow flexion angle (α7, 2), as described in Eq. (12a) (in Fig. 4).

Next, the shoulder abduction/adduction angle (α6, 3) is solved in step 2, according to Eq. (12.2) (in
Fig. 4), where x6 and y6 are the x and y coordinates of the shoulder joint position X6, respectively; while
xt and yt are the x and y coordinates of the target point position T. After this step, the upper arm, the
lower arm, and the target point will be moved into the same plane.

The shoulder flexion angle (α6, 2) is solved in step 3, according to Eq. (12.3) (in Fig. 4), where dt’ and
dt are vectors pointing from the right shoulder joint centre (X6) to the 2nd right fingertip (X8) (determined
in step 2) and the target point position T, respectively. This step moves the fingertip to the target point.

The swivel angle φ is activated in the 4th step), in order to calculate the rotation matrix of the entire
upper limb in the 4th step. A function RERT (e, φ) is define in Eq. (12.6) (shown in Fig. 5), according
to Euler’s Rotation Theorem [28]. In Eq. (12.6), “I” represents the identity matrix. [e]∗ represents an
operation, which transfer an arbitrary unit vector e to a matrix [e]∗, as expressed in Eq (12.7) (shown in
Fig. 5). The prime symbol (’) represents transfer matrix.

When the swivel angle φ increases from 0 to φlim degree (φlim represents the upper limit value of the
swivel angle φ; as shown in the pseudocode in Fig. 6), the shoulder flexion angle (α6, 2) and shoulder
abduction angle (α6, 3) are calculated by Eqs. (12.8) and (12.9) (shown in Fig. 5), respectively. Then, the
shoulder rotation angle α6, 4 (marked as τ in the pseudocode) increases from 0 to τlim degree, until the
2nd right fingertip reaches the target position. The criterion is set as that y8 must be larger than yt (when
the 2nd right fingertip crosses the target point, from the right to the left).
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Figure 5. Schematic, pseudocode and equations of the fourth step.

Eventually, for each value of the swivel angle φ, the value of the objective function fobj will be cal-
culated by substituting the determined set of joint positions (X) and joint angles (α) (as shown in the
pseudocode of Fig. 5).

3.2. Body posture optimization (BPO)
3.2.1. Variable and constraints
An improved upper limb posture determination method is then developed by merging body posture
optimization into the third step of MAR-AIK method (noted as “step 4” in Fig. 3, since the second step
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Figure 6. Definition of the swing angles of the shoulder joint (X, Y and Z (on the right bottom) indi-
cate the coordinates of the global coordinate system, while Xj, Yj and Zj indicate the coordinates of the
shoulder joint coordinate system for the shoulder joint limit model) (refs. [31, 30]).

of the AIK method is divided into two sub-steps). Based on MAR, the optimization variable for reaching
tasks is deduced from a set of joint angles (shoulder adduction, shoulder flexion, shoulder rotation and
elbow extension) to only one variable, the swivel angle φ.

Two constraints are applied in this optimization problem. The first one is the shoulder joint limit. In
this research, the shoulder joint limit model proposed by Grassia [29] is applied. Grassia proposed an
exponent map (swing and twist angles) as shown in Fig. 6, where the z axis points the neutral direction
of the range of shoulder joint limit [29]. In this research, the neutral direction is determined based on
the parameters provided by Engin and Chen [30]. The x axis is inside a vertical plane and perpendicular
to the z axis, while the y axis is perpendicular to both the x axis and y axis [29].

To be specific, if we mark the three element-vectors, in the x, y, and z directions of the shoulder joint
coordinate system, as esx, esy, and esz, respectively; then, esx = (0, 0, 1)T, esy = (0, -1, 0)T, esz = (1, 0, 0)T

(here “T” represent the transferring operation for matrices). Then, if we mark the three element-vectors,
in the x, y and z directions of the joint limit coordinate system, as ejx, ejy, and ejz, respectively; then the
three axis directions of the joint limit coordinate system (XjYjZj, shown in Fig. 6) can be calculated by
Eqs. (13a), (13b), and (13c), where φn and θ n are two orientation angles indicating the neutral direction
of the shoulder joint (Zj), defined by Engin and Chen [30], with values of 59 degree and 21 degrees,
respectively.

ejx = Rz( − φn) Ry(θn) esx (13a)

ejy = Rz( − φn) Ry(θn) esy (13b)

ejz = Rz( − φn) Ry(θn) esz (13c)

The vector d is in the direction of the upper arm, with a scale equal to the swing angle value (The
swing angle is defined as shown by the hollow arrow in Fig. 6. In this research, the unit of the shoulder
swing is degree.) [29]. Then the vector d is projected on the xj –yj plane (The origin o is the center of
shoulder joint.). (To be specific, if we name the projective vector of vector d, on the coordinate direction
Zj, as vector dz, and define the projective vector of vector d, on the xj –yj plane, as vector dxy, then
dxy can be calculated as dxy = d – dz .) sx and sy are the two components of the projection, which are
defined as two components of the shoulder swing angle. The shoulder twist (i.e., shoulder rotation) is
then described as a rotation angle around the vector d. in this way, the shoulder joint limit is modelled
as two parts: swing limit and twist limit. The swing limit proposed by Grassia is shown by Eq. (14).
When the shoulder swing is inside its limit, the value of function f will be negative [29].

f (sx, sy) = (sx/rx)
2 + (sy/ry)

2 − 1 (14)

rx and ry describe the maximum values of sx and sy. Typical values of rx and ry are 95 degree and 31
degrees, respectively [31]. However, in this research, it is found that, when ry = 31 degree, the possible
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range of shoulder rotation will not cover all the experimental values in [16]. Therefore, ry is increase to
60 degrees. The twist limit is modelled as the upper and lower limit of shoulder rotation [29]. According
to the publication of Marler et al. [1], in this research, the upper and lower limit of shoulder rotation are
set as 130 degree and 0 degree, respectively, where internal rotation is positive.

Another constraint is also added, which is that the swivel angle φ cannot go beyond 120 degrees. The
reason for adding this constraint is that, based on the definition of the swivel angle (as shown in Fig. 2),
a swivel angle larger than 120 degree is obviously unnatural. It is worth to point out that the distance
constraint [1], which requires the end-effector to reach the target point, is satisfied by the first two steps
of the AIK method (from step 1 to step 3 of the Fig. 3, the second step of the AIK method is divided into
two sub-steps in Fig. 3). Therefore, this constraint is no longer involved in the optimization problem.

3.2.2. Combination between MRA-AIK and BPO
As shown in Fig. 3, the optimization module is merged to the fourth step of the MRA-AIK method. In
the fourth step, the swivel angle is increased from 0 to 120 degree, with a step of 1 degree. For each
swivel angle value, it will be initially examined that whether the upper arm is inside the shoulder joint
limit which was proposed by Grassia [29]. If the upper arm is inside the shoulder limit, the objective
function value will be calculated. (The inputs of this developed method are the target point position
and initial upper limb posture. The initial upper limb posture data will be utilized when the objective
function is the joint displacement function.)

The swivel angle value, corresponding to the minimum objective function value, will be output. Then,
the joint angles will be re-calculated, based on the value of the swivel angle. These re-calculated upper
limb joint angle values will enable the calculation of the positions of upper limb joint centers will be
calculated, and the construction and plotting of the determined upper limb postures.

3.3. Simulation of previous objective functions
The feasibilities of applying the joint displacement function and joint discomfort function as the objec-
tive function are primarily judged, with the experimental results of Admiraal et al. [16], whose extracted
data has also been utilized by Kashi et al. [23]. Nine subjects are involved in the experiment of Admiraal
et al. while five target points are set up, thus twenty couples of initial and final target points are studied.

Admiraal et al quantified human arm postures by the rotational angle of shoulder. In this simulation,
measured shoulder rotation values are plotted, versus those shoulder rotation values, predicted by apply-
ing the joint discomfort function and joint displacement function, respectively. In each plot, a straight
blue line, with a slope equal to one, is plotted, which indicates “measured value = predicted value.”

Joint weights of joint displacement function are cited from the publication of Zou et al. [26], while the
joint discomfort function is cited from the publication of Marler et al. [21]. The delta potential energy
function is not involved since it will always lead to the smallest swivel angle value.

3.4. Proposed bi-criterion objective function
Further simulation was conducted on the joint discomfort function, joint displacement function, and
delta potential energy function, for the five target points selected in the experiment of Admiraal et al.
[16]. Since joint discomfort curves are “well-shaped” (changes rapidly on the “wall” of these “well”,
but slightly on the “bottom” of these “well”, as shown in Section 4), a bi-criterion objective function
(f discomf-displace) has been proposed by adding joint discomfort and joint displacement together (shown in
(15)), where α is a coefficient.

fdiscomf −displace = α · fdiscomf + fdisplace (15)

Then, on the “wall” of these “well,” the value of this new objective function will be dependent on
joint discomfort, while, on the bottom of these “well,” the value of this new objective function will be
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mainly determined by joint displacement. Therefore, by means of this, the predicted shoulder rotation
value, for each couple of initial target point and final target point, will be limited into a relatively small
range, and become more accurate.

3.5 Linear regression and suboptimal coefficient value
For an ideal IK method, for each couple of initial target point and final target point, the determined
shoulder rotation value (ζpredicted) should be equal to the measured shoulder rotation value (ζmeasured) (i.e.,
ζpredicted = ζmeasured), which is a linear relation. Therefore, linear regression is applied to estimate the
accuracy of the shoulder rotation values, determined by the developed AIK method. Shoulder rotation
value residuals (ζresidual) are calculated as the difference between the measured values (ζmeasured) and linear
regression values (ζregression) (shown in Eq. (16)). A residual analysis is then conducted by plotting the
average residual values, among the 9 subjects, involved in the experiment of Admiraal et al. [16], in
order to compare the performance of the bi-criterion objective function and joint discomfort function,
based on the developed AIK method. Coefficient of determination (R2) (shown in Eq. (10b) [32]) is also
calculated to quantify the accuracy of the shoulder rotation values, determined by the developed AIK
method.

ζresidual = ζmeasured − ζregression (16)

where ζmeasured is the measured value (unit: degree).
ζregression is the linear regression value (unit: degree).

R2 = 1 − RSS

TSS
(17)

where RSS is the sum of squares of residuals (ζresidual);
TSS is the total sum of the squares of linear regression values (ζregression).

In Eq. (15), if α keeps increasing, then f discomf-displace will eventually become equivalent to f discomf . On
the contrary, if α becomes zero, then f discomf-displace will become f displace. Based on the research of Admiraal
et al, body postures are determined by the final target point position and the initial body posture together
[16]. However, the minimization of the joint discomfort function does not reflect the effect of the initial
body posture. Therefore, theoretically, when α keeps increasing, the accuracy of predicted shoulder
rotation values will not keep increasing but start decreasing at a certain point. In this way, R2 can be
regarded as a function of coefficient α, as shown in Eq. (18), whose domain is from zero to positive
infinite. Furthermore, theoretically, a suboptimal value of α (αopt) exists between zero and infinite.

R2 = R2(α) (18)

A pilot search is initially conducted. The starting value of α is set to be 10−14, by the best guess. Then
the coefficient value is magnified/divided by 100, and α values of 10−16 and 10−12 are attempted. A step
of 4 is set for the power number of α. Then a golden section search [33] is applied in the interval (0.0001,
10,000), to find out the suboptimal coefficient value (αopt).

4. Results and discussion
This section shows the comparison between the shoulder rotation values, determined by the joint dis-
comfort function, joint displacement function, and proposed bi-criterion objective function, respectively,
and the shoulder rotation values measured by Admiraal et al. [16]. The simulation result of the joint dis-
comfort function, joint displacement function, and delta potential energy function is also shown in this
section.

https://doi.org/10.1017/S0263574722000789 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000789


Robotica 4133

Figure 7. Change of joint displacement, joint discomfort and delta potential energy versus swivel angle,
within joint limit.

4.1. Simulation on previous cost functions
Figure 7 shows the value of joint discomfort, joint displacement, and delta potential energy, changing
with the swivel angle, within joint limit, which provides further accordance for the combination of the
joint discomfort function and joint displacement function (as discussed in Section 3.3). The five target
points are cited from the publication of Admiraal et al. [16]. For the joint displacement function and
delta potential energy function, the initial posture in this simulation is neutral standing.

As shown in Fig. 7, joint discomfort curves are “well-shaped.” Therefore, by adding the joint dis-
comfort function to the joint displacement function, the predicted shoulder rotation value is expected to
be limited in a more accurate range.
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Figure 8. Extracted shoulder rotation values [16] versus the shoulder rotation values, predicted by
proposed bi-criterion objective function, for different coefficient values.

4.2. Proposed bi-criterion objective function
Figure 8 plots the measured shoulder rotation values [16] versus the shoulder rotation values, determined
by applying proposed objective function with different coefficient values. The measured shoulder rota-
tion angle values, used as the vertical coordinate of each subfigure in Fig. 8, were extracted from a
previous publication of Admiraal et al. [16]. The same data group (measured shoulder rotation angle
values) is also used in Fig. 9.

Figure 8(a) shows the performance of the joint displacement function. (The proposed bi-criterion
objective function is equal to the joint displacement function when the coefficient value is zero.) As
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Figure 9. Measured shoulder rotation values (ζmeasured), versus the determined values (ζpredicted).
(a)”Previous AIK method 1” (selecting the smallest swivel angle value within the shoulder joint limit);
(b)”Previous AIK method 2” (selecting the middle swivel angle value within the shoulder joint limit);
(c) the developed AIK method with the joint discomfort function; (d) the developed AIK method with the
proposed bi-criterion objective function and the suboptimal coefficient value (when the coefficient (α)
equals to 7.7).

shown in Fig. 8(a), the majority of the data points spread in a triangular area, which shows that there
is no obvious relation between the predicted shoulder rotation values and measured values. This result
is different from the result of Zou et al. In the research of Zou et al., the joint displacement function
predicts reasonable body postures [26]. This phenomenon indicates that an IK method, validated by
whole-body reaching motion, is possible to be inaccurate when the torso is fixed.

It is shown that, as the value of the coefficient of the joint discomfort function increases, data points
gradually gathered into several columns. This phenomenon is caused by the fact that the joint discom-
fort function does not consider the effect of the initial posture, while the joint displacement function
considers it. When the effect of the initial posture is neglected, the measured shoulder rotation values,
with different starting target points, will be matched with the same predicted value. Therefore, when the
coefficient of the joint discomfort function increases, data points with the same final target point will
become closer and closer.

It is also exhibited that, generally, data points get more and more close to the straight blue line,
whose slope is one. This blue line indicates the position where the measured value is equal to the pre-
dicted value. Therefore, this phenomenon shows that, by adding the joint discomfort function to the joint
displacement function, the accuracy is increased indeed.
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Figure 10. The coefficient of determination values of all the nine subjects, changing with the value of
α. (a) Result of the pilot search; (b) result of the golden section search.

4.3. Suboptimal coefficient value
Figure 10 shows the accuracy of the predicted shoulder rotation values (evaluated by the coefficient of
determination), changing by the value of α. As discussed in Section 3.6, the search of the optimal value
of α consists of two phases – pilot search and golden section search. Figure 10(a) shows the result of
the pilot search. As shown in Fig. 10(a), when the value of α increased from 10–16 to 104, the R2 value
increases first, and then starts decreasing, which agrees with our hypothesis in Section 3, and also limits
the optimal value of α into the range between 0.0001 and 10,000. Figure 10(b) shows the result of the
golden section search. Based on the golden section search, the optimal α value for the subject 1, 6, 7, 8,
and 9 is 13; the optimal α value for the subject 2 is 3; while the optimal value of α, for the subject 3, 4,
and 5, is 1. Therefore, the global optimal value of α is determined as the weighted average, which is 7.7.
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Table II. Coefficient of determination (R2) of the shoulder rotation values, determined by the previous
AIK methods and the developed AIK method (with the proposed bi-criterion objective function (with
optimal coefficient value (αopt)) and the joint discomfort function (fdiscomf), respectively).

R2 R2 R2 R2

Subject (Previous AIK method I)∗ (Previous AIK method II)∗∗ (fdiscomf) (αopt)
1 0.1663 0.3492 0.8050 0.8636
2 0.1770 0.3523 0.7719 0.8375
3 0.1252 0.5283 0.7326 0.8144
4 0.0783 0.4860 0.6888 0.8011
5 0.0588 0.3496 0.8200 0.8793
6 0.0568 0.3294 0.8573 0.9292
7 0.0400 0.3403 0.8777 0.8866
8 0.0118 0.2271 0.8798 0.9070
9 0.0264 0.2127 0.8847 0.9146

Mean value 0.0823 0.3528 0.8131 0.8704
∗Selecting the smallest swivel angle value within the shoulder joint limit.∗∗Selecting the middle value of the swivel angle within the shoulder joint limit.

4.4. Performance of the finalized function
This subsection exhibits the performance of the developed AIK method, as well as compares its per-
formance with that of the previous AIK methods. Figure 9 plots the measured shoulder rotation values
(ζmeasured) versus the values (ζpredicted), determined by different AIK methods. Subplots (a) and (b) show
the results of previous AIK methods. “Previous AIK method 1” refers to the AIK method selecting the
smallest swivel angle value, within the shoulder joint limit; while the “previous AIK method 2” refers to
the AIK method selecting the middle swivel angle value, within the shoulder joint limit. (This notifica-
tion of previous AIK methods also works in Table II and Fig. 11.) Subplots (c) and (d) show the results
of the developed AIK method, with the joint discomfort function and proposed bi-criterion function
(when the coefficient (α) equals to 7.7), respectively.

Table II compares the coefficient of determination (R2) values of the determined shoulder rotation
values, determined by previous AIK methods and the developed AIK method, with the joint discomfort
function and the proposed bi-criterion objective function. However, the coefficient of determination
(R2) value cannot fully represent the relation that the determine shoulder rotation value (ζpredicted) should
be equal to the measured shoulder rotation value (ζmeasured) (ζpredicted = ζmeasured) (e.g., the slope of the
regression line is not considered.). Therefore, a residual analysis is conducted as an addition. Figure 11
shows the result of the residual analysis, which plots the absolute residual values (|ζresidual|). The red color
indicates that the corresponding residual value is positive, while the blue color indicates that is negative.

4.4.1. Comparison between previous AIK methods
As shown in Fig. 9, the data points in Fig. 9(a) gather in three columns, which does not show a correlation
between the measured shoulder rotation values and the shoulder rotation values determined by selecting
the lowest swivel angle value, within the shoulder joint limit. On the contrary, the shoulder rotation
values determined by the second previous AIK method (selecting the middle value of the swivel angle,
within the shoulder joint limit) shows a rough correlation with the measured shoulder rotation values.
(As shown in Fig. 9(b), the data points determined by “previous AIK method 2” gather in five columns,
which roughly spread around the straight line with a slope of one.)

This difference between the performances of previous AIK methods is also quantified by the coef-
ficient of determination (R2) value. As shown in Table II, the R2 value of the result of the “previous
AIK method 2” (0.3528) is 228.7 percentage higher than that of the “previous AIK method 1” (0.0823).
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Figure 11. Residual analysis for the previous AIK methods and the developed AIK method. (a)”Previous
AIK method 1” (selecting the smallest swivel angle value within the shoulder joint limit); (b)”Previous
AIK method 2” (selecting the middle swivel angle value within the shoulder joint limit); (c) the devel-
oped AIK method with the joint discomfort function; (d) the developed AIK method with the proposed
bi-criterion objective function and the suboptimal coefficient value (when the coefficient (α) equals to
7.7).

When it comes to the residual analysis, as shown in Fig. 11, the maximum residual of the “previous AIK
method 2” (around 24 degrees, shown in Fig. 11(b)) is lower than that of the “previous AIK method 1”
(around 27 degrees, shown in Fig. 11(a)), which also exhibits that accuracy of the “previous AIK method
2” is higher than the “previous AIK method 1.” Therefore, based on the comparison above, the “previous
AIK method 2” (selecting the middle value of the swivel angle within the shoulder joint limit) is set as
a standard to evaluate the performance of the developed AIK method (i.e., the developed AIK method
is compared with the “previous AIK method 2” in Subsection 4.4.2.).

4.4.2. Comparison between the developed AIK method and previous AIK methods
Figure 9(a) and (b) exhibit the determined results of the developed AIK method, with the joint discomfort
function and the proposed bi-criterion function, respectively. Compared with the “previous AIK method
2” (Fig. 9(b)), almost all the data points, determined by the developed AIK method, with both the joint
discomfort function (Fig. 9(c)) and the proposed bi-criterion function (Fig. 9(d)) locate under the straight
line with a slope of one. Moreover, the top of each column of data points, in Fig. 11(c) and (d), is either
on or close to the straight line with a slope of one, which shows that the tendency of the determined
result of the developed AIK method is very close to the relation that “ζpredicted = ζmeasured.”
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This increase of the accuracy is also shown by the coefficient of determination (R2) (Table II). As
shown in Table II, with the joint discomfort function, the developed AIK method determined shoulder
rotation values with an R2 value of 0.8131, which is 130.5 percent higher that of the “previous AIK
method 2” (0.3528). Moreover, the developed AIK method, with the proposed bi-criterion function
(with the suboptimal coefficient value), determined shoulder rotation values with an R2 value of 0.8704,
which is 146.7 percent higher than the “previous AIK method 2.” When it comes to the residual analysis,
the maximum residual of the developed AIK method, with the joint discomfort function, is around
15 degree (shown in Fig. 11(c)); while the maximum residual with the proposed bi-criterion function is
around 10 degree (shown in Fig. 11(a)). Compared with the “previous AIK method 2” (whose maximum
residual is about 24 degree), the maximum residual values of the developed AIK method, with the
joint discomfort function and the proposed bi-criterion function, decrease by approximately 37.5% and
58.3%, respectively. This result shows that, by means of combining the previous AIK method with
a body posture optimization module, the accuracy of the MRA-AIK method, in the determination of
upper limb postures, is obviously improved.

4.4.3. Comparison within the developed AIK method
As shown in Table II, for all the nine subjects, the proposed objective function with the suboptimal
coefficient value (which is 7.7) determines more accurate shoulder rotation values. To be specific, the
average coefficient of determination (R2) value, corresponding to the proposed objective function is
0.8704, increasing by 0.0573 (7%) from the R2 value corresponding to the joint discomfort function.
It is also shown that, compared with the joint discomfort function, the proposed bi-criterion objective
function decreases the inaccuracy of the prediction at final target 5. These two phenomena show that, by
means of combining the joint discomfort function and the joint displacement function, as well as search-
ing the suboptimal coefficient value for the proposed bi-criterion objective function, the performance of
the developed AIK method is further improved.

It is also shown that, for the proposed bi-criterion objective function with the suboptimal coefficient
value, data points spread into seven columns; while the data points determined with the joint discomfort
function gather in 4 columns. This comparison also shows the advantage of the proposed bi-criterion
objective function and the searched suboptimal coefficient value. However, since the proposed objective
function involves the joint displacement function, it considers the effect of initial postures and should the-
oretically have 20 columns in the “measured value - predicted value” plot. Thus, the proposed objective
function still has potential to be improved.

5. Summary and conclusions
This paper shows the development of an improved AIK method, based on the MRA (Middle Rotation
Axis) AIK method and previous body-posture optimization methods. To summarize, this research has
four major contributions as listed below.

1. This research combines the MRA-AIK method with body posture optimization, which increased
the accuracy of the MRA-AIK method, in the determination of the human upper limb postures
during tasks. By means of this combination, the shoulder joint limit model works as a con-
straint of the body posture optimization problem, which simplified the optimization procedure.
Therefore, this combination is also expected to increase the computational efficiency, compared
with previous body posture optimization methods.

2. Based on the developed AIK method, an innovative objective function is proposed by combining
the joint discomfort function and the joint displacement function. We initially examined the per-
formance of the joint displacement function. Although the joint displacement function predicts
reasonable body postures for whole-body reaching tasks, result shows that it does not predict
accurate body postures when the torso is fixed.
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Based on the developed AIK method, the joint discomfort function predicts reasonable upper
limb postures for reaching tasks. However, since it does not reflect the effects of the initial body
postures, a bi-criterion objective function is proposed by adding the joint discomfort function
and joint displacement function. Compared with previous bi-criterion and multiple objective
functions, it is clear to see how the different components work together, in the proposed bi-
criterion objective function, which makes our bi-criterion objective function mathematically
comprehensive.

Results show that the accuracy of the proposed objective function is satisfactory and higher
than both the joint discomfort function and joint displacement function, which not only convinces
the performance of the developed AIK method (In the reaching tasks with the fingertip being the
end-effector), but also adds to the reliability of the assumption that the natural human body
posture is determined by minimizing both the discomfort and energy cost.

3. A systematic approach is applied to determine the coefficient value. This approach is also appli-
cable for any other objective function with two components. In this approach, the coefficient of
determination (R2) is selected to quantify the accuracy of the result of optimization. The deter-
mination of the suboptimal value of the coefficient (α) is based on previous published data. The
larger data scale we have, the more accurate value of α will we determine. Golden section search
is applied to determine the suboptimal value of the coefficient. The program can also be further
improved, in order to automatically search for the optimal coefficient value.

4. In order to implement this developed AIK method, a simplified human body model is estab-
lished in MATLAB, which provides users with higher flexibility. In this model, an adjusted data
structure is applied for joint angles, which is more systematic and comprehensive than previous
data structure. Although the developed AIK method is established on this human body model,
the model itself is independent from the developed AIK method. Therefore, although the devel-
oped AIK method is so far only able to determine joint angles of the upper limb, a human body
model is still established with all the body segments. Future research can continue to improve
the developed AIK method and make it able to determine all the joint angles.

Limitations of the developed AIK method are described as follows.
Initially, although the combination between the MRA-AIK method and BPO is supposed to

achieve higher computational efficiency, this hypothesis needs to be validated by further research.
Secondly, for the determination of the suboptimal coefficient value (αopt), R2 cannot represent
the relation that the determined values should be equal to the measured values. Therefore, other
quantities should be applied to replace R2 in future research, such as the residual. Another limita-
tion of the currently developed AIK method is that the movement of the wrist joint is omitted in
the current stage of the developed AIK method. Therefore, the currently developed AIK method
is not applicable in those cases when the hand orientation is constrained or limited (for exam-
ple, when the hand orientation is affected by the geometry of the target or any barrier(s) in the
working environment).

In addition, this research only focuses on the reaching task conducted by fingertips, when
the torso fixed. Therefore, the suboptimal value of α, determined in this research, will probably
change for other tasks. More research is supposed to be conducted on different tasks in the future.
Moreover, since the upper limb strength depends on the upper limb posture, the weight of the
load in hand can also impact the upper limb posture. In this paper, only the upper limb posture
without a load in hand is discussed. The determination of the upper limb posture with load should
be investigated in future research, while the suboptimal value of the coefficient is supposed to be
impacted by the weight of the load.
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