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1. Introduction. About fifteen years ago I. M. Isaacs and S. D. Smith [9] gave
several character-theoretic characterizations of finite p-solvable groups G with /^-length
one, where p is a prime number. They proved that for a finite group G with a Sylow
p-subgroup P, the following four conditions (a)-(d) are equivalent.

(a) G is p-solvable of p-length one.
(b) Every irreducible complex representation in the principal p-block B0(G) of G

restricts irreducibly to the normalizer NG(P) of P in G.
(c) Every irreducible complex representation of degree prime to p in B0(G) restricts

irreducibly to NC(P).
(d) Every irreducible modular representation in B0(G) restricts irreducibly to

NG(P).
We generalized this to an arbitrary p-block B of a finite group G in our previous

paper [11]. As a matter of fact, we there gave character-theoretic characterizations of B
such that

(I) the defect group D of B is contained in the intersection of the kernels of all
irreducible modular representations in B.

The purpose of this note is to complement this in [11]. In order to describe it, we
need the following notation. Let F be an algebraically closed field of characteristic/? >0 ,
and B +*eB a p-block of a finite group G, that is, B is an indecomposable two-sided ideal
and a direct summand of the group algebra FG and eB is a centrally primitive idempotent
of FG such that B = eBFG = FGeB. We write J(R) for the Jacobson radical of a ring R.
We denote by Irr,(B) the set of all irreducible ordinary characters in B of height i. The
other notation is the same as in [11]. Recall the definitions of the notation NB and N%,
namely, NB and N% are respectively the intersections of the kernels of all irreducible
complex and modular representations in B. Now we can state our main result.

THEOREM (see [11, Theorem]). Let B**eB and b<^eb be respectively p-blocks of G
and N with defect group D which correspond through the Brauer correspondence, that is,
bG = B, where N = NG(D). Then the following conditions are equivalent to (l)-(7) in
[11, Theorem}.

(8) N;^N*B.
(9) N*b = N*BnN.
(10) The correspondence CT : 6 —» B given by o(x) = xeB for each x eb is an isomorph-

ism of F-algebras such that o(eb) = eB.
(II) J(B)" = B . J(b)"=J(b)"B = b . J(B)"=J(B)"b for any positive integer n and

eheB = eB.
(12) The correspondence a: Irr(fl)—* Irr(6) given by a(x) = XN ^ a bijection.
(13) The correspondence ar:Irro(fl)—»Irro(6) given by a(x) = XN is a bijection.
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(14) The correspondence a:Irr,(B)—»Irr,(Z>) given by a(x) = Xs ^ a bijection for all

(15) The correspondence /5:IBr(J3)—»IBr(6) given by /3(0) = <j>N is a bijection.
(16) J(FD)B <=J(B).
(17) J{FD)B = J(B) = B . J(FD).
(18) G = N.N*B = N.NB.
(19) Any simple FG-module in B has D as its vertex, and the FG-module {FD)G. eB

is completely reducible {semi-simple), where (FD)G is the induced FG-module from the
trivial FD-module FD.

(20) There exists a projective indecomposable FG-module P in B such that D c.
Ker(S) for any composition factor S of P.

(21) There exists a projective indecomposable FG-module P in B such that SN is
simple for any composition factor S of P, where SN is the restriction of S to FN.

We use the following notation as well. Let kf(B) = |Irr,(fi)| and l(B) = |IBr(#)|,
where \X\ denotes the number of elements in a set X. If H is a subgroup of G, XH

denotes the restriction of X to FH for an FG-module X and Y° denotes the induced
FG-module from an F//-module Y. For an FG-module X and a positive integer n, nX
denotes the direct sum X © . . . © X (n times). Let U and V be FG-modules. We write
(U, Vf and [U, Vf for HomFC(U, V) and dimF HomFG(U, V), respectively. For a
subgroup H of G, we write (U, K)g for Trg[(f/H, VH)H], where Trg is the trace map from
(UH, VH)H to (U, V)G (see [6, p. 87]). We write V \ U if V is (isomorphic to) a direct
summand of U. We write P(U) for the projective cover of U. We denote by FG the trivial
FG-module. For a subgroup H and g eG, Hs denotes g~lHg.

It is easy to see that our theorem implies the result of Isaacs and Smith [9] since
Afgo = OP'P{G). Moreover, a number of results now follow from our theorem.

COROLLARY 1. The results of Isaacs and Smith [9, Theorems 2 and 4] and Pahlings
[17, Theorem 5] follow from the theorem.

In [1], J. L. Alperin stated a conjecture relating the number l(B) and the number of
"weights" in B. For finite groups satisfying the conditions of the theorem here, Alperin's
conjecture holds.

COROLLARY 2. Keep the notation as in the theorem and assume that the theorem holds
for B. Then we have the following.

(i) k{B) = k(b), k,(B) = k,{b) for all i ^ 0 and l(B) = l(b).
(ii) (|G :N\, p) = 1, that is, D is a normal subgroup of a Sylow p-subgroup of G.
(iii) D is a Sylow p-subgroup of NB.
(iv) Alperin's conjecture for B in [1, p. 371] holds.

In his paper [13], K. Morita proved that J(FG) is principal as a right ideal and a left
ideal of FG if and only if G is p-solvable with cyclic Sylow p-subgroups. The next
corollary is a kind of a generalization of Morita's result to a block-theoretic form.

COROLLARY 3. The following conditions are equivalent for a p-block B of G with
defect group D.

(1) D is cyclic and D c N*B.
(2) J(B) = (x - 1)B = B(x - 1), where x is an element in D which has the maximal

order.
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2. Proof of the theorem. In order to prove our main result, we proceed by a
sequence of lemmas. In this section, (n) means the /ith condition in the theorem.

LEMMA 1. / / ( I ) holds then any simple FG-module in B has D as its vertex.

Proof. Easy by [5, Corollary 53.8 and Theorem 54.10].

LEMMA 2. / / ( I ) holds then we have the following.
(i) <f>N e IBr(fe) for any (j> e IBr(B).

(ii) XN 6 I""(6) for any x e Irr(B).
(iii) For any <f> e IBr(ft), there is some (p e IBr(B) with (f)N = 0.

Proof. These follow from [11, Theorem], Lemma 1, the Green correspondence, [4,
(59.9) Theorem] and Frobenius Reciprocity [6, III Theorem 2.5].

LEMMA 3. (1) implies that D is a Sylow p-subgroup of N*B; hence (1) implies (18) (so
that(\G:N\,p) = l).

Proof Because of the proof of (1)=^(5), (7) in [11, p. 152], it is enough to show
(\G:N\, p) = 1. This follows from (18) and [2, Proposition (3A)].

LEMMA 4. (1) implies (12) and (15).

Proof. Easy by Lemmas 2 and 3 and [11, Theorem].

LEMMA 5. / / ( I ) holds then eBeb = eheB = eB and eB = (1/\G:N\) £ geh, where
ge[C\N]

[G\N] is the set of all representatives of the right cosets of N in G.

Proof Fix any x e Irr(fi). By Lemma 3, we can write that [G\N] = {gu . . . , gm} c

KerGt), where m = \G:N\. As usual, let ex = (X(1)/\G\) E x(g)g (see [8, p. 274 and

(2.12) Theorem]). Let a = E £,-. Then

ex = Of(l)/|G|) £ ( 2 X(n)n)gi = (a/m)eXN

by Lemma 2(ii) and [8, p. 274]. Now, let (R, K, F) be a p-modular system, and let/B and
fb be the central primitive idempotents of the group algebras RG and RN which
correspond to B and b, respectively. Then, we get from [8, p. 275, (15.26) Theorem (a)
and (15.27) Theorem] and Lemma 4 that

!B= E ex = (a/m) 2 ev = (a/m)fb.
Xelrr(B) Velrr(fc)

LEMMA 6. // (1) holds then eBSc is a simple FG-module in B for any simple
FN-module S in b.

Proof. By Lemma 2(iii), SN = S for some simple FG-module 5 in B. Then, by
Lemma 1 and the Green correspondence, SG = S(BX for an FG-module X. So it is
enough to show eBX = 0. Assume eBX + 0. Take any simple submodule T of A' in B.
Then 0#(T, Tf c(T, SC)G = (TN, Sf. So TN = S by Lemma 2(i). Therefore T = S
since both of them are the Green correspondents of 5. Hence 2 ̂  [5, 5G]G = [SN, S]N =
[S, S]N, a contradiction.
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LEMMA 7 (Okuyama [15, Lemma 1]). Let B*-*eB be a p-block of G with defect group
D, and let S be a simple FG-module in B with vertex Q. Assume that (FO)G. eB is a
completely reducible FG-module. Then, for any indecomposable direct summand X of SD,
there is a subgroup A of D such that A is conjugate to Q in G and that X = {FA)D.

Proof. The proof here is completely due to Okuyama (see [15, Lemma 1]). Let
Y = (FD)G. eB, and let {5,, . . . , S,} be the set of all non-isomorphic simple FG-modules

/
in B. Since Y is completely reducible, we can write Y = @mjSj for integers m,. By

Frobenius Reciprocity, m, > 0 for all /. We may assume S = Su and let m = m,. Since 5 is
(2-projective, it follows from [6, II Theorem 3.8] that

Now let R be a subgroup of G such that R does not contain any G-conjugate of Q.
Clearly (Y, S)G = m(S, S)G. Assume that (Y, S ) c * 0 . Then 0 # (5, S)G; so that (5, S)G =
(S, S)G since 5 is simple. This means that 5 is fl-projective (see [6, II Theorem 3.8]), a
contradiction. Therefore

(Y,S)G = 0 ( * * )

for any subgroup R of G such that R does not contain any G-conjugate of Q. Since
5 \Y\ (FD)G, S | (Fe)G by Mackey Decomposition. Hence, by Mackey Decomposition and
Green's theorem [5, Corollary 52.5], there is an element geG such that X = {FA)D,
where A = Qg n D.

Thus it is enough to prove that A is conjugate to Q in G. By [6, II Lemma 2.5(i)],
[HomF(FD, SD)]C = HomF((FD)G, S) = HomF(Y, S) since 5 is in B. Let sd = {A), <& =
{D C\Ay | y e G} and W = HomF(FD, SD). Then we have from [6, II Lemma 3.5] that

(Y, S)G/(Y, S)G^(FD, SD)D/\ 2 (FD> 5o

Now, assume that A does not contain any G-conjugate of Q. Then (V, 5)G = 0 by
(* *); so that (FD, SD)g = 0 for all B e 38 from the above since (Y, S)G = (FD, SD)D by
Frobenius Reciprocity. Since Ae%, (FD, SD)A = 0. On the other hand, we have that
(FD, X)D ¥^0 by Frobenius Reciprocity and X \ SD and that X is /4-projective. Hence
{FD, SD)A^0 from [6, II Lemma 3.13], which is a contradiction.

Therefore A contains a G-conjugate of Q; so that \Q\^\A\ = \QS D D\^\Qg\ = \Q\.
This implies that A is conjugate to Q in G. This completes the proof of the lemma.

Proof of Theorem. In our previous paper [11], we have already proved that the
conditions (l)-(7) are all equivalent. Now, (9)=>(8) is trivial. Since DcN%, (8)4>(1) is
clear. We get (1)=>(12) and (1)=>(15) by Lemma 4. (1)=>(18) holds from Lemma 3.
(12)^(2), (15)=>(7), (15)=>(9), (13)=>(4), (18)=>(7), (14)=>(13) and (17) =>(16) are
all trivial. (1) <=> (16) is obtained from [12, Lemma 1] since D is a p-group. (10) =̂> (11)
is easy.

Assume (11). Then J(FD)eB=J(FD)eheB^J(FD)bB=J(b)B = J(B) since
J(FD)b=J{b) by [10, 3.3 Proposition]. Hence, we get (1) by [12, Lemma 1].

Assume (12). Then (1) holds from the above; so that (\G:N\, p) = 1 by Lemma 3.
Hence we get (14).
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Assume (19). Take any simple FG-module 5 in B, and let SD = © X,, where each Xt

is an indecomposable FD-module. Then, since (FD)C. eB is completely reducible, we have
from Lemma 7 that Xt = (FA)D for each i, where At is a subgroup of D and is conjugate to
the vertex of 5. So, by (19), Xt = FD for all i, which means D c Ker(S). This implies (1).

Assume (1). The latter part of (11) holds from Lemma 5. Thus, J(B)b =
J(FG)eBebFN = J(FG)eBFN = J(FG)eB=J(B). Similarly, b.J(B) = J(B). By [12,
Lemma 1], DcNB if and only if J(FD)eB cJ(B). Hence, by [10, 3.3, Proposition],
J(b)B = J(FD)bB = J(FD)eBbFG cJ(B)bFG c / (B) ; so that J{b)B<=b. J{B). Similarly,
B. J(b)c.J(B)b. Now, the following argument is due to Motose and Ninomiya [14,
Theorem 1]. Let {g,, . . . , gm) be a set of representatives of the right cosets of N in G

m m

such that g, = 1. Then FG = 0 giFN. Take any x e J(B); then we can write x = S g,y, for
/=i i=i

elements _y, e FN. Let 5 be any simple FN-module in b, and take any s e S. Then
m

Sc = ® (gi <8> FN S) and E g, <S> {yfi = (E g,y,) ® 5 = J C ® 5 = X ( 1 ® S) e xSc
 s J{B)eBSc.

i=i

Hence E g, <8> (y,f) = 0 since eBSG is simple by Lemma 6. Thus g, ®yj§ = 0 for all i. This
means y,eft5 = ehyjS = 0 for all i and for all simple FN-modules 5 in b. Hence _y,eft eJ(b)
for all i; so that xeb = eBxeb = Yl eBgj(yjeb)eeBFG. J(b) = B. J(b). Thus we have
J(B)eb^B .J(b); so that J(B)b ^B. J(b). Since the condition (1) is symmetric, we
similarly obtain b . /(fl) c.J(b)B. These imply (11).

Assume (1). Then (11) and (16) hold by the above. So (16) and [10, 3.3.
Proposition] imply J(B) = J(b)B = J(FD)bB <=J(FD)B <=J(B); so that J(B) = J(FD)B.
Similarly, J(B) = B. J(FD). So we get (17).

Assume (1). By Lemma 1, the first-half part of (19) holds. The following argument is
due to Motose and Ninomiya [14, Theorem 1]. From the above, (17) holds, so that
J(B) = B . J(FD). Hence

J(B)((FD)° . eB) = J(B)(eB . (FD)G) = J(B)(FD)C = J(B)(FG ®FD FD)

= J(B)FG®FDFD = B. J(FD)®FDFD = B®FD J(FD)FD = 0,

which implies that (FD)C. eB is completely reducible. Hence we obtain (19).
Assume (1). Then a is an F-algebra-homomorphism and o(eb) = eB by Lemma 5.

Suppose yeb and o(y) = 0. By Lemma 5, 0 = yeB = eBy = (Egi/m)eby = E (gi/m)y e

t>, <g> b) = FG ®FNb c FG, where {g,} and m are the same as in the proof of Lemma

5. Hence y = 0; so that a is a monomorphism. Now J(B) =J(b)B since (5) holds from the
above. Thus, by Lemma 2(i), P(S)N = P(SN) for any simple FG-module S in B. Thus
dinv fl = dinv fc from Lemma 4; so that a is an isomorphism, which means that we
have (10).

(1)^(20) is clear.
Assume (20). Let L be the intersection of the kernels of all composition factors of P.

Then L = N*B by [18, 3.2. Proposition (b) and 2.3. Definition] (see the results of H.
Pahlings [16, Proposition 1] and [17, Theorem 5 and Lemma in p. 245]). Hence DcNB

by (20), which means that (1) holds.
Therefore, we have proved that (l)-(20) are all equivalent.
(7)=>(21) is trivial.
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Assume (21). Then, for any composition factor 5 of P, we have D c Ker(S) by (21)
and [5, Theorem 53.9(i)] since D is normal in N. Hence, we obtain (20). This completes
the proof of the theorem.

3. Proofs of the corollaries.
Proof of Corollary 1. By [2, Proposition (3D)], N*B(I = OPiP(G). So the theorem, [5,

Lemma 59.6] and [7, Theorem 2.1] imply the corollary.

Proof of Corollary 2. (i) is clear by the theorem, (ii) and (iii) are proved in Lemma
3. So it is enough to claim (iv). Take any weight (Q, T) for G in B. Then, by [1, Lemma
1] and [4, (59.9) Theorem], the Green correspondent gT of T with respect to
(G, Q, NG(Q)) is a simple FG-module in B since (FD)C. eB is completely reducible by
(19) in the theorem. Thus Q is conjugate to D in G by (19) in the theorem since the
Green correspondence preserves vertices. So we may assume Q = D. On the other hand,
by [1, p. 372], l(b) equals the number of weights for G in B of the form (D, S). Therefore
we obtain (iv) since l(B) = l(b) by (i).

Proof of Corollary 3. Assume (1). Then we easily get (2) by (17) of the theorem
since J{FD) = (x-\)FD, where D = (x). Conversely, assume (2). Since J(B) is a
principal left and right ideal, B is a serial (Nakayama) algebra by the result of Morita [13,
Theorem 1]; so that D is cyclic. Then, by (2) and [12, Lemma 1], D c NB.

4. A remark. It is clear that p-blocks which satisfy the conditions in the theorem
are not nilpotent blocks in general (see [3] for nilpotent blocks). For example, let Bn be
the principal p-block of a finite p-solvable group of p-length one which is not a
p-nilpotent group. Then Bo is not nilpotent but satisfies the conditions in the theorem
from Corollary 1.

On the other hand, let p = 3 and G = SL(2,3). Then G has three 3-blocks, say, the
principal block, the non-principal block B of full defect and the block of defect zero.
Then B is a nilpotent block since G is 3-nilpotent (see [3, p. 118]). Now B has the unique
irreducible 3-modular representation L of degree 2 which is canonically given by SL(2, 3).
Hence the defect group of B is not contained in Ker(L), and Ker(L) = NB. This means
that nilpotent blocks do not satisfy the conditions in the theorem in general.
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