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Abstract In this paper, we establish suitable characterisations for a pair of functions (W (x), H(x)) on
a bounded, connected domain Ω ⊂ Rn in order to have the following Hardy inequality:

∫
Ω
W (x)|∇u|2Adx ≥

∫
Ω
|∇d|2AH(x)|u|2dx, u ∈ C1

0 (Ω),

where d(x) is a suitable quasi-norm (gauge), |ξ|2A = 〈A(x)ξ, ξ〉 for ξ ∈ Rn and A(x) is an n ×n symmetric,
uniformly positive definite matrix defined on a bounded domain Ω ⊂ Rn. We also give its Lp analogue.
As a consequence, we present examples for a standard Laplacian on Rn, Baouendi–Grushin operator,
and sub-Laplacians on the Heisenberg group, the Engel group and the Cartan group. Those kind of
characterisations for a pair of functions (W (x), H(x)) are obtained also for the Rellich inequality. These
results answer the open problems of Ghoussoub-Moradifam [16].

Keywords: Hardy inequality; Rellich inequality; Bessel pairs; stratified Lie group
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1. Introduction

In the work [17], Ghoussoub and Moradifam gave necessary and sufficient conditions for
a Bessel pair of positive radial functions W (x ) and H (x ) on a ball B of radius R in Rn,
so that one has the Hardy inequality for all functions u ∈ C∞

0 (B):∫
B

W (x)|∇u|2dx ≥
∫
B

H(x)|u|2dx,
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2 M. Ruzhansky and B. Sabitbek

and the Hardy–Rellich inequality for all functions u ∈ C∞
0 (B):∫

B

W (x)|∆u|2dx ≥
∫
B

H(x)|∇u|2dx+ (n− 1)

∫
B

(
W (x)

|x|2
− Wr(|x|)

|x|

)
|∇u|2dx.

The characterisation of pairs of functions W (x ) and H (x ) made a very interesting
connection between Hardy type inequalities and the oscillatory behaviour of ordinary
differential equations. Choosing suitable Bessel pairs (W (x),H(x)) allows one to improve,
extend, and unify many results about Hardy and Hardy–Rellich inequalities that were
established by Caffarelli et al. [11], Brezis and Vazquez [10], Wang and Willem [35],
Adimurthi et al. [1], and other authors. In the book [16], Ghoussoub and Moradifam
posed two questions:

• Develop suitable characterisations for a pair of functions (W (x),H(x)) in order
to have the following inequality:∫

Ω

W (x)|∇u|2Adx ≥
∫
Ω

H(x)|u|2dx, u ∈ C1
0 (Ω),

where |ξ|2A = 〈A(x)ξ, ξ〉 for ξ ∈ Rn and A(x ) is an n ×n symmetric, uniformly
positive definite matrix defined on a bounded domain Ω ⊂ Rn.

• Determine a necessary and sufficient condition for a Bessel pair (W (x),H(x)) in
order to the Rellich inequality to hold:∫

Ω

W (x)|∆u|2dx ≥
∫
Ω

H(x)|u|2dx, u ∈ C∞
0 (Ω).

The aim of this paper is to give suitable characterisations for a Bessel pair of positive
radial functions W (x ) and H (x ) for Hardy and Rellich inequalities on a bounded, con-
nected domain Ω ⊂ Rn that answers the open problems of Ghoussoub-Moradifam [16].
We prove Hardy and Rellich inequalities expressing conditions for Bessel pairs in terms
of ordinary differential equations associated with the positive weight functions W (x )
and H (x ). Our approach relies on the first and second order Picone identities. This sug-
gested approach seems very effective, allowing us to recover almost all well-known Hardy
and Rellich type inequalities. It is also an extension of the method of Allegretto-Huang
[3, Theorem 2.1], by adding the positive weight function W (x ). A similar approach was
used by the authors [26] to establish Hardy and Rellich type inequalities for general (real-
valued) vector fields with boundary terms. Recently, in [12], Cazacu called this method
(but without the function W (x )) as the Method of Super-solutions in Hardy and Rellich
inequalities that was adopted from Davies [14].
This characterisation of Bessel pairs builds an interesting bridge between Hardy

(Rellich) type inequalities and ordinary differential equations. In particular, we can
extend and improve many results for Hardy and Rellich type inequalities. Let us briefly
recall several types of Hardy inequalities that can be recovered:

I. The classical Hardy inequality for n ≥ 3 on a bounded domain Ω ⊂ Rn asserts that

∫
Ω

|∇u|2dx ≥
(
n− 2

2

)2 ∫
Ω

|u|2

|x|2
dx, u ∈ C1

0 (Ω),
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Hardy and Rellich inequalities 3

where the constant is optimal and not attained. This version of Hardy inequality
was investigated by many authors see [14, 18, 20, 27] and the references therein.

II. The geometric Hardy inequality for any bounded convex domain Ω ⊂ Rn with
smooth boundary asserts that∫

Ω

|∇u|2dx ≥ 1

4

∫
Ω

|u|2

δ2(x)
dx, u ∈ C1

0 (Ω),

where δ(x) := dist(x, ∂Ω) is the Euclidean distance to boundary ∂Ω and the con-
stant is also optimal and not attained. There is a number of studies related to this
subject, see e.g. [4–6, 14, 20, 22, 31].

III. The multipolar Hardy inequality on a bounded domain Ω ⊂ Rn asserts that:∫
Ω

|∇u|2dx ≥ C
k∑

i=1

∫
Ω

|u|2

|x− ai|2
dx, u ∈ C1

0 (Ω),

where k is the number of poles. This type of inequalities was studied by Felli-
Terracini [15], Bosi-Dolbeault-Esteban [9] and Cacazu-Zuazua [13].

In this study, we have established the following significant results:
1. Hardy inequality with Bessel pairs: For 1 < p < Q, we demonstrate that the

Hardy inequality: ∫
Ω

W (x)|∇u|pAdx ≥
∫
Ω

|∇d|pAH(x)|u|pdx,

holds true for all complex-valued functions u ∈ C1
0 (Ω), provided that the positive

functions W (x ) and H (x ) satisfy the following conditions:∫ ∞

r0

sQ−1H(s)ds < ∞, and φ(r) = 2

∫ ∞

r

sQ−1H(s)ds < ∞ for r ≥ r0,

∫ ∞

r0

(
φ(s)

sQ−1W (s)

) 1
p−1

ds ≤ 1

2(p− 1)
for some r0 > 0, (1.1)

where d(x ) is a quasi-norm (see Theorem 2.1).
2. Rellich inequality with Bessel pairs: For 1 < p < n, we have established that

the Rellich inequality: ∫
Ω

W (x)|∆|u||pdx ≥
∫
Ω

H(x)|u|pdx,

is proven to hold for all complex-valued functions u ∈ C2
0 (Ω). The necessary condition

for this is the existence of a positive function v ∈ C2(Ω) satisfying:

∆(W (x)|∆v|p−2∆v) ≥ H(x)vp−1,
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4 M. Ruzhansky and B. Sabitbek

with the positive functions W (x ) and H (x ) being such that −∆v > 0 almost everywhere
in Ω (see Theorem 3.1).
This paper is organised as follows: Section 2 begins by presenting present our main

result regarding the weighted Hardy inequality, as detailed in Theorem 2.1. We discuss
the preliminaries, focusing on the existence of non-negative solutions to the quasilinear
second-order differential equation. This discussion is crucial as it lays the foundation for
understanding the characterisation of Bessel pairs W (x ) and H (x ). Also, we provide
examples in various settings, including the Euclidean Space, Heisenberg group, Engel
group, and Cartan group. In § 3, we prove the weighted Rellich inequality by establishing
the necessary and sufficient conditions for the Bessel pair W (x ) and H (x ). Moreover,
some particular cases are discussed.

2. Hardy inequalities with Bessel pairs

Let Ω ⊂ Rn be a bounded domain with smooth boundary. Define

Lp,Af = −
n∑

i,j=1

∂

∂xj

(
aij(x)|∇f |p−2

A

∂f

∂xj

)
, (2.1)

and

|∇f |2A =
n∑

i,j=1

aij(x)
∂f

∂xi

∂f

∂xj
,

where A(x) = (aij(x)) is an n ×n symmetric, uniformly positive definite matrix with
smooth coefficients defined on Ω.
Let Φp be a constant multiple of the fundamental solution (e.g. [7, 21]) for Lp,A that

solves the equation:

Lp,AΦp(x) = 0, x 6= 0.

From Φp, we are able to define the quasi-norm:

d(x) :=

{
Φp(x)

p−1
p−Q , for x 6= 0,

0, for x = 0,
(2.2)

where Q is the appropriate homogeneous dimension and 1 < p < Q.
Define

ΨLA
(x) := |∇d|2A(x), (2.3)

for x 6=0. The function ΨLA
(x) can be calculated for the explicit form of the quasi-norm

d(x ). For example:

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 19:18:31, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Hardy and Rellich inequalities 5

• In the Euclidean setting, when LA = ∆ is the standard Laplace operator, then
Ψ∆(x) = 1.

• In the Heisenberg group, when LA = LH is the sub-Laplacian and the quasi-norm
(L-gauge) dH(x), then ΨLH(x) = |x′|2d−2

H .
• For Baouendi–Grushin operator, when LA = Lγ is the Baouendi–Grushin oper-
ator and dγ(x) is associated the quasi-norm, then ΨLγ (x) = |ξ|2γd−2γ

γ where

x = (ξ, ζ) ∈ Rk × Rl and γ > 0.

In the stratified Lie groups, we shall remark that the function ΨLA
(x) is δλ-

homogeneous degree of zero and translation invariant (i.e. ΨL(α ◦ x, α ◦ y) = ΨL(x, y)
for x, y ∈ G with x 6= y). Furthermore, the function ΨLA

(x) is the kernel of mean volume
formulas (see more [8, Definition 5.5.1]).
The following theorem characterises the relation between W (x ) and H (x ) in order to

obtain the weighted Hardy inequality:

Theorem 2.1. Let Ω be a bounded domain in Rn. Let W(x) and H(x) be positive
radially symmetric functions. Let 1 < p < Q. Let d(x) be as in (2.2). Then, the inequality

∫
Ω

W (x)|∇u|pAdx ≥
∫
Ω

|∇d|pAH(x)|u|pdx, (2.4)

holds for all complex-valued functions u ∈ C1
0 (Ω) provided that the following conditions

hold: ∫ ∞

r0

sQ−1H(s)ds < ∞, and φ(r) = 2

∫ ∞

r

sQ−1H(s)ds < ∞ for r ≥ r0, (2.5)

∫ ∞

r0

(
φ(s)

sQ−1W (s)

) 1
p−1

ds ≤ 1

2(p− 1)
for some r0 > 0. (2.6)

Remark 2.2. Note that

• As usual, we denote W (x) = W (|x|) and H(x) = H(|x|). We fix the notation for
a positive function f(x) > 0 and a non-negative function f(x) ≥ 0.

• For p=2, Theorem 2.1 answers to the question posed by Ghoussoub-Moradifam
[16].

• For A(x) ≡ 1, Theorem 2.1 was established for general (real-valued) vector fields
with boundary terms by the authors [26] (see also [27–29, 33, 34]).

In order to prove Theorem 2.1, we need two ingredients:

(i) The non-negative solution of the following equation

n∑
i,j=1

∂

∂xj

(
W (|x|)|∇v|p−2

A aij(x)
∂v

∂xi

)
+ |∇d|pAH(|x|)vp−1 = 0, (2.7)
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6 M. Ruzhansky and B. Sabitbek

(ii) The (first-order) Picone identity with A(x ) which is an n ×n symmetric, uniformly
positive definite matrix defined on Ω. Lemma 2.4 is similar to the standard Picone
identity obtained by Allegretto-Huang [3] and the authors [26].

Let us start by transforming Equation (2.7) into a quasilinear second-order differential
equation:

(rQ−1W (r)|v′(r)|p−2v′(r))′ + rQ−1H(r)|v(r)|p−2v(r) = 0, (2.8)

here the notation ′ = ∂r denotes the derivative with respect to r, and we define r := d(x).
The next theorem provides an explicit existence criterion of positive solution for ordinary
differential Equation (2.8) which is proved by Agarwal-Bohner-Li [2, Theorem 4.6.13]:

Theorem 2.3. (Agarwal-Bohner-Li [2]). Let a : [r0,∞) → (0,∞) and b :
[r0,∞) → (0,∞) be continuous functions with b(r) 6= 0. Suppose that∫ ∞

r0

b(s)ds < ∞, and φ(r) = 2

∫ ∞

r

b(s)ds < ∞ for r ≥ r0.

Suppose further that

∫ ∞

r0

(
φ(s)

a(s)

) 1
p−1

ds ≤ 1

2(p− 1)
. (2.9)

Then, there exists a non-negative solution to the following equation:

(a(r)[y′(r)]p−1)′ + b(r)[y(r)]p−1 = 0 for r ≥ r0. (2.10)

This transformation is based on the premise that W (x ), H (x ), and v(x ) are positive
radially symmetric functions. Let us rewrite the first term of (2.7) in terms of the radial
derivative. First note that for i, j = 1, . . . , n, we have

∂r

∂xi
=

(
p− 1

p−Q

)
Φ

p−1
p−Q

−1

p
∂Φp

∂xi
, (2.11)

∂r

∂xj

∂r

∂xi
=

(
p− 1

p−Q

)2

Φ
2
p−1
p−Q

−2

p
∂Φp

∂xi

∂Φp

∂xj
, (2.12)

∂2r

∂xi∂xj
=

(
p− 1

p−Q

)
Φ

p−1
p−Q

−1

p
∂2Φp

∂xi∂xj
+

(p− 1)(Q− 1)

(p−Q)2
Φ

p−1
p−Q

−2

p
∂Φp

∂xi

∂Φp

∂xj
(2.13)

=

(
p− 1

p−Q

)
Φ

p−1
p−Q

−1

p
∂2Φp

∂xi∂xj
+

(
Q− 1

p− 1

)
Φ

− p−1
p−Q

p
∂r

∂xj

∂r

∂xi
.
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Then

∂v

∂xi
= v′

∂r

∂xi
, and

∂2v

∂xi∂xj
=

∂r

∂xi

∂r

∂xj
v′′ +

∂2r

∂xi∂xj
v′.

Since Φp = r
p−Q
p−1 , we thus have

|∇r|p−2
A =

(
p− 1

p−Q

)p−2

|∇Φp|p−2
A r

(Q−1)(p−2)
p−1 , (2.14)

|∇v|p−2
A = |∇r|p−2

A (v′)p−2, (2.15)

∂|∇v|p−2
A

∂xj
=

(Q− 1)(p− 2)

(p− 1)r
|∇r|p−2

A (v′)p−2 ∂r

∂xj
+ (p− 2)|∇r|p−2

A (v′)p−3v′′
∂r

∂xj
(2.16)

+

(
p− 1

p−Q

)p−2
∂|∇Φp|p−2

A

∂xj
r
(Q−1)(p−2)

p−1 (v′)p−2.

Using above expressions, a straightforward computation gives:

∂

∂xj

(
Waij(x)|∇v|p−2

A

∂v

∂xi

)
= Waij(x)|∇v|p−2

A

∂2v

∂xi∂xj

+ aij(x)|∇v|p−2
A

∂W

∂xj

∂v

∂xi
+W |∇v|p−2

A

∂aij(x)

∂xj

∂v

∂xi
+ aij(x)W

∂|∇v|p−2
A

∂xj

∂v

∂xi
,

= W |∇r|p−2
A (v′)p−2v′′ aij(x)

∂r

∂xi

∂r

∂xj︸ ︷︷ ︸
=|∇r|2

A

+

(
p− 1

p−Q

)
W |∇r|p−2

A (v′)p−1Φ
p−1
p−Q

−1

p

aij(x)
∂2Φp

∂xi∂xj

+

(
Q− 1

p− 1

)
W |∇r|p−2

A (v′)p−2Φ
− p−1

p−Q
p aij(x)

∂r

∂xi

∂r

∂xj︸ ︷︷ ︸
=|∇r|2

A

+|∇r|p−2
A (v′)p−1Wr aij(x)

∂r

∂xi

∂r

∂xj︸ ︷︷ ︸
=|∇r|2

A

+W |∇r|p−2
A (v′)p−2 ∂aij(x)

∂xj
v′

∂r

∂xi
+

(
p− 1

p−Q

)p−2

Wr
(Q−1)(p−2)

p−1 (v′)p−1aij(x)

∂|∇Φp|p−2
A

∂xj

∂r

∂xi

+
(Q− 1)(p− 2)

(p− 1)r
|∇r|p−2

A (v′)p−1 aij(x)
∂r

∂xi

∂r

∂xj︸ ︷︷ ︸
=|∇r|2

A

+(p− 2)W |∇r|p−2
A (v′)p−2v′′

aij(x)
∂r

∂xi

∂r

∂xj︸ ︷︷ ︸
=|∇r|2

A
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8 M. Ruzhansky and B. Sabitbek

where |∇r|2A =
∑n

i,j=1 ∂xir∂xj r. We assume there is the summation
∑n

i,j=1, to get:

= W |∇r|pA(v
′)p−2

(
(p− 1)v′′ +

(
Q− 1

r

)
1

p− 1
v′

+

(
p− 1

p−Q

)
Φ

p−1
p−Q

−1

p

|∇r|2A
aij(x)

∂2Φp

∂xi∂xj
v′


+ |∇r|pA(v

′)p−1Wr +W |∇r|p−2
A (v′)p−1 ∂aij

∂xj

∂r

∂xi
+

(
Q− 1

r

)
(
1− 1

p− 1

)
W |∇r|pA(v

′)p−1

+

(
p− 1

p−Q

)p−2

r
(Q−1)(p−2)

p−1 |∇Φp|p−2
A︸ ︷︷ ︸

=|∇r|p−2
A

W (v′)p−1aij(x)

|∇Φp|p−2
A

∂|∇Φp|p−2
A

∂xj

∂r

∂xi
.

Now, we apply Equation (2.11) for ∂r/∂xi

= W |∇r|pA(v
′)p−2

(
(p− 1)v′′ +

[
Q− 1

r
+

Wr

W

]
v′
)

+

(
p− 1

p−Q

)
W |∇r|p−2

A (v′)p−1Φ
p−1
p−Q

−1

p

× 1

|∇Φp|p−2
A

n∑
i,j=1

[
|∇Φp|p−2

A aij(x)
∂2Φp

∂xi∂xj
+ aij(x)

∂|∇Φp|p−2
A

∂xj

∂Φp

∂xi
+ |∇Φp|p−2

A

∂aij
∂xj

∂Φp

∂xi

]
︸ ︷︷ ︸

Lp,AΦp(x)=0

= W (r)|∇r|pA(v
′)p−2

(
(p− 1)v′′ +

[
Q− 1

r
+

Wr

W

]
v′
)
.

We conclude that (2.7) can be rewritten as:

W (r)|∇r|pA(v
′)p−2

(
(p− 1)v′′ +

[
Q− 1

r
+

Wr

W

]
v′
)
+ |∇r|pAH(r)vp−1 = 0, (2.17)

which means (rQ−1W (r)(v′(r))p−1)′ + rQ−1H(r)vp−1(r) = 0, which is (2.8).
The next key element in our analysis is the first-order Picone identity.

Lemma 2.4. Let Ω be a bounded domain in Rn. Let a complex-valued function u be
differentiable a.e. in Ω. Let 1 < p < ∞. Let a positive function v be differentiable in Ω.
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Define

R(u, v) = |∇u|pA − 〈A(x)∇
(

|u|p

vp−1

)
, |∇v|p−2

A ∇v〉, (2.18)

L(u, v) = |∇u|pA − p
|u|p−1

vp−1
|∇v|p−2

A 〈A(x)∇|u|,∇v〉+ (p− 1)
|u|p

vp
|∇v|pA, (2.19)

where |ξ|2A = 〈A(x)ξ, ξ〉. Then

L(u, v) = R(u, v) ≥ 0.

Moreover, L(u, v) = 0 a.e. in Ω if and only if u ≥ 0 and u= cv a.e. in Ω for some
constant c in each component of Ω.

Proof of Lemma 2.4. It is easy to show that R(u, v) = L(u, v) by the expansion of
R(u, v) as follows:

R(u, v) = |∇u|pA − 〈A(x)∇
(

|u|p

vp−1

)
, |∇v|p−2

A ∇v〉

= |∇u|pA − p
|u|p−1

vp−1
|∇v|p−2

A 〈A(x)∇|u|,∇v〉+ (p− 1)
|u|p

vp
|∇v|pA

= L(u, v).

Let u(x) = R(x) + iI(x), where R(x ) and I (x ) are the real and imaginary parts of u.
We can restrict to the set where u(x) 6= 0. Then, we have

(∇|u|)(x) = 1

|u|
(R(x)∇R(x) + I(x)∇I(x)). (2.20)

Since ∣∣∣∣ 1|u| (R∇R+ I∇I)

∣∣∣∣2
A

≤ |∇R|2A + |∇I|2A,

we get |∇|u||A ≤ |∇u|A a.e. in Ω (see [25, Theorem 2.1]).
Let us recall Young’s inequality where for real numbers a and b we have

pab ≤ ap + (p− 1)b
p

p−1 .

By taking a = |∇u|A and b = |u|p−1

vp−1 |∇v|p−1
A , we prove L(u, v) ≥ 0 in the following

way:

L(u, v) = |∇u|pA − p
|u|p−1

vp−1
|∇v|p−2

A 〈A(x)∇|u|,∇v〉+ (p− 1)
|u|p

vp
|∇v|pA
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10 M. Ruzhansky and B. Sabitbek

= |∇u|pA − p
|u|p−1

vp−1
|∇|u||A|∇v|p−1

A + (p− 1)
|u|p

vp
|∇v|pA

+ p
|u|p−1|∇v|p−2

A

vp−1
(|∇|u||A|∇v|A − 〈A(x)∇|u|,∇v〉)

≥ |∇u|pA − p
|u|p−1

vp−1
|∇u|A|∇v|p−1

A + (p− 1)
|u|p

vp
|∇v|pA

+ p
|u|p−1|∇v|p−2

A

vp−1
(|∇|u||A|∇v|A − 〈A(x)∇|u|,∇v〉)

≥ p
|u|p−1|∇v|p−2

A

vp−1
(|∇|u||A|∇v|A − 〈A(x)∇|u|,∇v〉) .

We will now show that |∇|u||A|∇v|A ≥ 〈A(x)∇|u|,∇v〉, which implies L(u, v) ≥ 0.
A direct computation gives

0 ≤ |∇|u| − b∇v|2A = 〈A(x)(∇|u| − b∇v),∇|u| − b∇v〉
= |∇|u||2A − 2b〈A(x)∇|u|,∇v〉+ b2|∇v|2A.

Setting b = |∇v|−2
A 〈A(x)∇|u|,∇v〉 and rearranging produces

|∇|u||A|∇v|A ≥ 〈A(x)∇|u|,∇v〉. (2.21)

Observe that L(u, v) = 0 if and only if

• equality holds for |∇|u||A ≤ |∇u|A when u ≥ 0;
• equality holds in (2.21) when u = cv for some constant c.

The proof is complete. �

Proof of Theorem 2.1. By Theorem 2.3, the conditions (2.5) and (2.6) provide the
existence of a non-negative solution to the following equation

∇ · (W (x)|∇v|p−2
A A(x)∇v) + |∇d|pA(x)H(x)vp−1 = 0. (2.22)

Then, we prove by applying properties of the (first-order) Picone identity, divergence
theorem and the Equation (2.22), respectively. We have

0 ≤
∫
Ω

W (x)R(u, v)dx

=

∫
Ω

W (x)|∇u|pAdx−
∫
Ω

W (x)〈A(x)∇
(

|u|p

vp−1

)
, |∇v|p−2

A ∇v〉dx

=

∫
Ω

W (x)|∇u|pA −
∫
Ω

|∇d|pAH(x)|u|pdx.

This proves Theorem 2.1. �
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Next, we will give examples for operators LA by taking different matrices A(x ).
Euclidean Space Rn: Let Ω = Rn. If we take A(x ) as an identity matrix, then

LA = −∆ is the standard Laplacian, Φ(x) = |x|2−n and d(x) = |x| with x ∈ Rn.

Corollary 2.5. Let Ω = Rn. Let W (|x|) and H(|x|) be positive radially symmetric
functions. Then the inequality∫

Rn
W (|x|)|∇u|2dx ≥

∫
Rn

H(|x|)|u|2dx (2.23)

holds for all complex-valued functions u ∈ C1
0 (Ω) provided that the following conditions

hold: ∫ ∞

r0

sn−1H(s)ds < ∞, and φ(r) = 2

∫ ∞

r

sn−1H(s)ds < ∞ for r ≥ r0, (2.24)

∫ ∞

r0

φ(s)

sn−1W (s)
ds ≤ 1

2
for some r0 > 0. (2.25)

The Heisenberg group H1: Let H1 := R2 × R be Heisenberg group with x =
(x1, x2, x3). We take

A(x) :=

 1 0 −x2
2

0 1
x1
2

−x2
2

x1
2

x21+x22
4

 .

Then, we have the following horizontal gradient

∇H := (∂x1 − x2

2
∂x3 , ∂x2 +

x1

2
∂x3),

and the sub-Laplacian is given by:

LH := ∆x1,x2
+

x2
1 + x2

2

4
∂2
x3

+ (x1∂x2 − x2∂x1)∂x3 .

The quasi-norm (L-gauge) is given by: dH(x) = ((x2
1 + x2

2)
2 + 16x2

3)
1
4 . Note that the

function ΨLH(x) could be explicitly calculated as follow:

ΨLH(x) = |∇HdH|2(x) = (X1dH)
2 + (X2dH)

2

= d−6
H [(x2

1 + x2
2)

2x2
1 − 8(x2

1 + x2
2)x1x2x3 + 16x2

1x
2
3]

+ d−6
H [(x2

1 + x2
2)

2x2
2 + 8(x2

1 + x2
2)x1x2x3 + 16x2

2x
2
3]

= d−6
H (x2

1 + x2
2)[(x

2
1 + x2

2)
2 + 16x2

3] = |x′|2d−2
H (x),

where |x′|2 = x2
1 + x2

2.
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12 M. Ruzhansky and B. Sabitbek

Corollary 2.6. Let Ω bounded domain in H1. Let W(x) and H(x) be positive radially
symmetric functions. Then, the inequality∫

Ω

W (x)|∇Hu|2dx ≥
∫
Ω

|∇HdH|2H(x)|u|2dx, (2.26)

holds for all complex-valued functions u ∈ C1
0 (Ω) provided that the following conditions

hold:∫ ∞

r0

sQ−1H(s)ds < ∞, and φ(r) = 2

∫ ∞

r

sQ−1H(s)ds < ∞ for r ≥ r0, (2.27)

∫ ∞

r0

φ(s)

sQ−1W (s)
ds ≤ 1

2
for some r0 > 0. (2.28)

Baouendi–Grushin operator: Let Ω be an open subset of Rn = Rk ×Rl and x ∈ Ω
with x = (ξ, ζ). For γ > 0, we take

A(x) :=

(
Ik 0

0 γ|ξ|γIl,

)
,

where Ik and Il are the identity matrices of size k and l, respectively. Then, we have the
following vector field ∇γ := (∇ξ, γ|ξ|γ∇ζ) and the Baouendi–Grushin operator

Lγ := −∆ξ − γ2|ξ|2γ∆ζ .

For x = (ξ, ζ) ∈ Rk × Rl, let dγ(x) = (|ξ|2γ + |ζ|2)1/2γ .
As in the Heisenberg group, the function ΨLγ (x) could be explicitly calculated as

follow:

ΨLγ (x) = |∇γdγ |2(x) =
k∑

i=1

(∂ξidγ)
2 +

l∑
i=1

γ2|ξ|2γ(∂ζidγ)
2

= (|ξ|2γ + |ζ|2)
1
γ−2(|ξ|4γ + |ξ|2γ |ζ|2) = |ξ|2γ

d2γγ (x)
.

Corollary 2.7. Let Ω be an open subset of Rn = Rk × Rl and x ∈ Ω with x = (ξ, ζ).
Let W(x) and H(x) be positive radially symmetric functions. Then, the inequality:∫

Ω

W (x)|∇γu|2dx ≥
∫
Ω

|∇γdγ |2H(x)|u|2dx (2.29)

holds for all complex-valued functions u ∈ C1
0 (Ω) provided that the following conditions

hold:∫ ∞

r0

sQ−1H(s)ds < ∞, and φ(r) = 2

∫ ∞

r

sQ−1H(s)ds < ∞ for r ≥ r0, (2.30)
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∫ ∞

r0

φ(s)

sQ−1W (s)
ds ≤ 1

2
for some r0 > 0. (2.31)

The Engel group E: Let E := R2×R×R be the Engel group with x = (x1, x2, x3, x4).
We take

A(x) :=


1 0 −x2

2 −x3
2 +

x1x2
12

0 1
x1
2

x21
12

−x2
2

x1
2

x21+x22
4

x2
2

(x3
2 − x1x2

12

)
+

x31
24

−x3
2 +

x1x2
12

x21
12

x2
2

(x3
2 − x1x2

12

)
+

x31
24

(x3
2 − x1x2

12

)2
+

x41
144

 .

Then the horizontal gradient and sub-Laplacian are given by:

∇E := (X1, X2), and LE := X2
1 +X2

2 ,

where

X1 := ∂x1 − x2

2
∂x3 −

(x3

2
− x1x2

12

)
∂x4 , and X2 := ∂x2 +

x1

2
∂x3 +

x2
1

12
∂x4 .

Corollary 2.8. Let Ω be a bounded domain in E. Let W(x) and H(x) be positive
radially symmetric functions. Then the inequality∫

Ω

W (x)|∇Eu|2dx ≥
∫
Ω

|∇Ed|2H(x)|u|2dx (2.32)

holds for all complex-valued functions u ∈ C1
0 (Ω) provided that the following conditions

hold:∫ ∞

r0

sQ−1H(s)ds < ∞, and φ(r) = 2

∫ ∞

r

sQ−1H(s)ds < ∞ for r ≥ r0, (2.33)

∫ ∞

r0

φ(s)

sQ−1W (s)
ds ≤ 1

2
for some r0 > 0. (2.34)

The Cartan group B5: Let B5 := R2 × R × R2 be the Cartan group with x =
(x1, x2, x3, x4, x5). We take

A(x) :=



1 0 0 0 0

0 1 −x1
x21
2 x1x2

0 −x1 x2
1 −x31

2 −x2
1x2

0
x21
2 −x31

2

x41
4

x31x2
2

0 x1x2 −x2
1x2

x31x2
2 x2

1x
2
2


.
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14 M. Ruzhansky and B. Sabitbek

Then the horizontal gradient and sub-Laplacian are given by:

∇B5
:= (X1, X2), and LB5

:= X2
1 +X2

2 ,

where

X1 := ∂x1 and X2 := ∂x2 − x1∂x3 +
x2
1

2
∂x4 + x1x2∂x5.

Corollary 2.9. Let Ω be a bounded domain in B5. Let W(x) and H(x) be positive
radially symmetric functions. Then, the inequality∫

Ω

W (x)|∇B5
u|2dx ≥

∫
Ω

|∇B5
d|2H(x)|u|2dx, (2.35)

holds for all complex-valued functions u ∈ C1
0 (Ω) provided that the following conditions

hold:∫ ∞

r0

sQ−1H(s)ds < ∞, and φ(r) = 2

∫ ∞

r

sQ−1H(s)ds < ∞ for r ≥ r0, (2.36)

∫ ∞

r0

φ(s)

sQ−1W (s)
ds ≤ 1

2
for some r0 > 0. (2.37)

3. Rellich inequality with Bessel pairs

We conclude the paper by presenting a Rellich inequality involving Bessel pairs. This
result is derived as a byproduct of the second-order Picone type identity in conjunction
with the divergence theorem.

Theorem 3.1. Let Ω be a bounded domain in Rn. Let W ∈ C2(Ω) and H ∈ L1
loc(Ω)

be positive radially symmetric functions. Suppose that there exists a positive function
v ∈ C2(Ω) such that:

∆(W (x)|∆v|p−2∆v) ≥ H(x)vp−1, (3.1)

with −∆v > 0 a.e. in Ω. Then for all complex-valued functions u ∈ C2
0 (Ω), we have∫

Ω

W (x)|∆|u||pdx ≥
∫
Ω

H(x)|u|pdx, (3.2)

where 1 < p < n.

Remark 3.2. Note that the weighted Rellich type inequalities with boundary terms
for general (real-valued) vector fields were established by the authors with Suragan in
[26, 30, 32]. Also Goldstein–Kombe–Yerner in [19] proved the weighted Rellich inequality
in the setting of Carnot groups.
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Here we present the corollary for p=2 to the above theorem:

Corollary 3.3. Let Ω be a bounded domain in Rn. Let W ∈ C2(Ω) and H ∈ L1
loc(Ω)

be positive radially symmetric functions. Suppose that a positive function v ∈ C∞(Ω)
satisfies:

∆(W (x)∆v) ≥ H(x)v, (3.3)

with −∆v > 0 a.e. in Ω. Then for all complex-valued functions u ∈ C2
0 (Ω), we have∫

Ω

W (x)|∆|u||2dx ≥
∫
Ω

H(x)|u|2dx. (3.4)

In order to prove Theorem 3.1, we establish the (second-order) Picone type identity.

Lemma 3.4. Let Ω ⊂ Rn be open set. Let v be twice differentiable a.e. in Ω and
satisfying the conditions v> 0 and −∆v > 0 a.e. in Ω. Let a complex-valued function u
be twice differentiable a.e. in Ω. For p> 1 we define

R1(u, v) := |∆|u||p −∆

(
|u|p

vp−1

)
|∆v|p−2∆v, (3.5)

and

L1(u, v) :=|∆|u||p − p

(
|u|
v

)p−1

∆|u||∆v|p−2∆v (3.6)

+ (p− 1)

(
|u|
v

)p

|∆v|p − p(p− 1)
|u|p−2

vp−1
|∆v|p−2∆v

(
∇|u| − |u|

v
∇v

)2

.

Then, we have

L1(u, v) = R1(u, v) ≥ 0. (3.7)

Proof of Lemma 3.4. We show that R1(u, v) = L1(u, v) by a simple expansion of
R1(u, v) as follows:

∆

(
|u|p

vp−1

)
= p

|u|p−1

vp−1
∆|u| − (p− 1)

|u|p

vp
∆v + p(p− 1)

|u|p−2

vp−1

∣∣∣∣∇|u| − |u|
v
∇v

∣∣∣∣2 .
The rest of proof is to apply Young’s inequality, then we proceed as follows:

p
|u|p−1

vp−1
∆|u||∆v|p−2∆v ≤ |∆|u||p + (p− 1)

|u|p

vp
|∆v|p,

where p> 1. This gives,

L1(u, v) ≥ −p(p− 1)
|u|p−2

vp−1
|∆v|p−2∆v

(
∇|u| − |u|

v
∇v

)2

.

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 19:18:31, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


16 M. Ruzhansky and B. Sabitbek

It is easy to see that L1(u, v) ≥ 0 by observing the fact −∆v > 0. �

Proof of Theorem 3.1. We prove by using the (second-order) Picone type identity
and Green’s second identity as follows:

0 ≤
∫
Ω

W (x)R1(u, v)dx =

∫
Ω

W (x)|∆|u||pdx−
∫
Ω

|u|p

vp−1
∆(W (x)|∆v|p−2∆v)dx

≤
∫
Ω

W (x)|∆|u||pdx−
∫
Ω

H(x)|u|pdx,

using (3.1). This completes the proof. �

3.1. Several versions of Rellich type inequalities

Here by letting W ≡ 1 and v = |x|−
n−4
2 into (3.3), we obtain the function:

H(x) =
n2(n− 4)2

16
|x|−4,

and inserting to inequality (3.4), we have the following result:

Corollary 3.5. (Rellich inequality). Let n ≥ 5. Then for all complex-valued
functions u ∈ C∞

0 (Rn\{0}), we have

∫
Rn

|∆|u||2dx ≥ n2(n− 4)2

16

∫
Rn

|u|2

|x|4
dx. (3.8)

Corollary 3.6. Let n ≥ 3 and 2 − n
p < γ < n(p−1)

p . Then for all complex-valued

functions u ∈ C∞
0 (Rn\{0}), we have

∫
Rn

|x|γp|∆u|pdx ≥
(
n

p
− 2 + γ

)p(
n(p− 1)

p
− γ

)p ∫
Rn

|x|(γ−2)p|u|pdx. (3.9)

In the case γ= 0 and for 1 < p < n/2, we get

∫
Rn

|∆u|pdx ≥
(
n

p
− 2

)p(
n(p− 1)

p

)p ∫
Rn

|x|−2p|u|pdx. (3.10)

Remark 3.7. Note that the weighted Rellich inequality (3.9) is proved by Mitidieri
[23] and Lp-Rellich inequality (3.10) by Okazawa [24] with the optimal constants,
respectively.
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Proof of Corollary 3.6. Let us set

W = |x|γp, and v = |x|α, (3.11)

where α = −(n/p+ a− 2). By inserting to (3.1), we arrive at

∆(W |∆v|p−2∆v) = Cα,p,n,γ |x|α(p−1)+(γ−2)p,

where

Cα,p,n,γ := |α|p−1(α+ n− 2)p−1(αp− α− 2p+ 2 + γp)(αp− α− 2p+ γp+ n).

Now we put the value of α in the constant, then we get

H(x) =

(
n

p
− 2 + γ

)p(
n(p− 1)

p
− γ

)p

|x|(γ−2)p. (3.12)

The statement then follows from Theorem 3.1. �
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