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Abstract

Background. Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain
volumes in commonly reported regions including the amygdala and hippocampus, regions
associated with fear and memory processing. In the current study, we have conducted a voxel-
based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroima-
ging data from the ENIGMA-PGC PTSD working group.
Methods. T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309;
controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool).
We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter
(GM) and white matter (WM) volumes between PTSD patients and controls, performed
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subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical
variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results. PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant
effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008).
We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities
may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum
(pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in
patients (pcorrected = .001).
Conclusions. PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect
more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.

Introduction

Most individuals experience trauma at some time in their lives,
where 70% of respondents in the World Mental Health Survey
reported exposure to at least one traumatic event [1]. The lifetime
prevalence of posttraumatic stress disorder (PTSD) is estimated to
be 10% in the United States [2], where symptoms are characterized
as re-experiencing, hyperarousal, avoidance of trauma-related situ-
ations, negative cognition, and emotional numbing, which can last
for years after the event [3].

Brain structural abnormalities have been consistently associated
with PTSD, with recent structural neuroimaging meta-analyses
reporting smaller gray matter (GM) volumes within the frontal lobe,
hippocampus, anterior cingulate cortex (ACC), and insula in patients
with PTSD when compared to controls [4–9]. The PTSD working
group from the Enhancing Neuroimaging Genetics through Meta-
Analysis (ENIGMA)-Psychiatric Genomics Consortium (PGC)
(https://enigma.ini.usc.edu) has previously analyzed structural brain
differences between patients with PTSD and controls by pooling data
provided by research groups around theworld, using segmented brain
volumes derived by FreeSurfer (https://surfer.nmr.mgh.harvard.edu).
In a region-of-interest (ROI) approach, Logue et al. [10] analyzed eight
a priori subcortical structures comparing 794 patients with PTSD and
1074 controls and found that patients with PTSD had significantly
smaller hippocampal volumes compared to trauma-exposed
(TE) controls. Wang et al. [11] conducted a mega-analysis across
68 cortical regions comparing 1379 patients with PTSD and 2192
controls and revealed that patients with PTSD exhibited significantly
smaller GM volumes across the orbitofrontal region, superior tem-
poral gyrus, insula, lingual, and superior parietal gyri, and that these
regions were also negatively correlated with PTSD symptom severity.
However, Wang et al. used a control group comprising both TE- and
non-trauma-exposed (nTE) controls, which was noted as a limitation
in their study. Both Logue et al. [10] andWang et al. [11] did adjust for
sex, age, total intracranial volume (ICV), and scanner site. More
recently, ENIGMA-PTSD has published two studies: the first exam-
ined only the cerebellum and found significantly smaller GM and
white matter (WM) cerebellar volumes and cerebellar subregions in
patients with PTSD compared with controls [12], and the second
reported diminished cortical thickness associated with PTSD within
the prefrontal cortex, insula, occipital cortex, and cingulate cortex [13].

To complement the existing research, the current study used a
whole-brain voxel-based morphometry (VBM) approach to meta-
analysis. VBM methodologies are unconstrained by anatomical
boundaries and can observe differential effects at a voxel level,
while effects in ROI analyses are only observed at the level of the
predefined region. VBM analyses also encompass the whole brain

and include WM structures at the voxel level. VBM meta-analyses
typically involve pooling published peak coordinates, which repre-
sent the voxel location where the statistical effect is strongest. This
results in a loss of valuable information as nonsignificant data are
excluded. An alternative approach, used in the current study, is to
use whole-brain statistical maps that are produced at the end of the
VBM processing pipeline. Statistical maps contain the statistical
results for a given analysis (e.g., t-values from group comparisons)
at the voxel level across the whole brain, meaning data from all
voxels are included in the analysis rather than just peak values. This
methodology has previously been used to study PTSD by Bromis
et al. [4], where the authors combined statistical maps and peak
coordinates. This has demonstrated more accurate results in com-
parison to using peak coordinates [14]. However, there are practical
challenges in that statistical maps are not always made available by
authors, and if they are, different VBM processing parameters can
affect results [15].

To address these issues, we have developed the ENIGMA-VBM
tool [16]. The tool is designed for contributing sites to process their
data locally using a standardized VBM pipeline with automated
quality control checks. Sites share the resulting statistical maps,
containing group-level data, with the researchers conducting the
meta-analysis, thus addressing participant-level data privacy con-
cerns. In the current study, we have used the ENIGMA-VBM tool
to conduct the largest VBM meta-analysis in PTSD to date using
only whole-brain statistical maps.

Our main analysis compared total and regional GM and WM
volumes between patientswith PTSDand controls, wherewe expected
that patients would exhibit smaller regional volumeswithin the frontal
lobe, hippocampus, ACC, insula, cerebellum, and total GM volumes
compared with controls, consistent with previous literature [4–12]. In
exploratory analyses, we conducted subgroup investigations to com-
pare patients with PTSD with TE controls to try to disentangle the
effects of trauma exposure from PTSD-related structural brain abnor-
malities. We also compared controls with and without trauma expos-
ure to test the effects of trauma per se [4]. As the ENIGMA-PTSD
sample consisted of participants from military and civilian back-
grounds, we analyzed military- and civilian-recruited cohorts separ-
ately. This exploratory analysis aimed to examine whether underlying
sample characteristics may be associated with different brain regions,
as military populations experience more combat-related trauma [17,
18] and exhibit poorer treatment outcomes [19]. Previous evidence
suggests that combat trauma is related tomore severePTSDsymptoms
[17] and has a higher risk of lifetime PTSD with poorer psychosocial
outcomes [20]. This may be due to the extended duration of military
traumatic experiences as compared with more acute civilian trauma,
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such as motor vehicle accidents [21]. We also examined associations
between regional brain volumes in patients with PTSD and clinical
variables such as PTSD severity, depression severity, and childhood
trauma. In sensitivity analyses, we adjusted for sex due to higher
incidence rates of PTSD in females [22, 23] and sex differences in
traumatic experiences [24]. Finally, we performed several sensitivity
analyses to assess the robustness of our findings by varying VBM
processing parameters.

Methods

Cohorts and participants

Structural neuroimaging scans and clinical data were provided by
the ENIGMA-PGC PTSD working group for 36 cohorts from
28 sites, comprising 1309 patients with PTSD and 2198 controls.
Controls were both TE and nTE (Table 1). One site comprised
only TE and nTE controls. Most cohorts were adult samples,
except for two non-adult cohorts consisting of participants under
the age of 20. Cohorts consisted of military- and civilian-recruited
samples, and one sample of police officers (Table 2). Patients
were diagnosed according to the Diagnostic and Statistical Man-
ual of Mental Disorders (DSM)-IV or DSM-5 criteria using the
instruments listed in Table 2. Sites had obtained approval from
their local ethics committee and written informed consent from
study participants. Further study details and inclusion and exclu-
sion criteria can be found in Supplementary Tables S1 and S2 in
Supplement A.

Cohort-level image processing and analysis

TheENIGMA-VBMtool (https://sites.google.com/view/enigmavbm)
was developed for the ENIGMA consortium by the authors for
VBM case-control studies [16]. The tool processes T1-weighted
brain images for each cohort using the DARTEL (Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra)
[25] VBM processing pipeline in SPM12 (Statistical Parametric
Mapping; https://www.fil.ion.ucl.ac.uk/spm/) within MATLAB,
using a smoothing kernel of 8 mm and Jacobian modulated data,
controlling for age and total ICV. A detailed description of the tool
is available in Supplement B.

Sites provided T1-weighted brain imaging and clinical data for
participants. Scanner information and acquisitionmethods can be
found in Supplementary Table S3. Each cohort was processed
using the ENIGMA-VBM tool v1.076, which conducted GM and
WM voxel-wise statistical analysis comparing patients with con-
trols. For sites with multicenter data or multiple studies, we used
cohorts for VBM processing where participants were grouped
based on scanner model, where possible, to minimize the effects
of scanner model [26, 27], while ensuring there were sufficient
patients with PTSD and controls for analysis. As an example, the
cohorts ADNIDOD 1 and ADNIDOD 2 are from the same study
but have been processed as two cohorts to account for different
scanner models.

Group comparisons of regional brain volumes
The main analysis compared voxel-wise GM and WM volumes
between patients with PTSD and all controls (inclusive of TE and
nTE controls). Exploratory subgroupanalyses compared: (1) patients
with PTSD to TE controls; (2) TE to nTE controls; (3) patients with
PTSD to all controls frommilitary-recruited cohorts; and (4) patients
with PTSD to all controls from civilian-recruited cohorts. Sample

sizes for each analysis varied depending on data availability, such as
the trauma exposure, of the controls. All group comparisons were
adjusted for age and total ICV, as these variables account for themost
variance in segmented GM and WM data.

Associations between regional brain volumes and clinical
variables
The ENIGMA-VBM tool also conducted regression analyses to
examine the association between regional brain volumes and clin-
ical variables within the patient group. The regression analyses were
performed within each cohort prior to being pooled for meta-
analysis. This approach has greater statistical power than meta-
regression, which uses a mean value of the clinical variable for each
cohort.

We performed exploratory regression analyses to examine the
associations between regional brain volumes and the following
clinical covariates: PTSD severity, depression severity, childhood
trauma, alcohol use disorder, drug use disorder, and antidepres-
sant medication use. Alcohol use disorder, drug use disorder, and
antidepressant medication were coded as dichotomous variables.
PTSD severity, depression severity, and childhood trauma were
analyzed using the participant’s total score for each variable.
Further details regarding the treatment of the clinical variables
are reported in Supplement A. All regression analyses were
adjusted for age, ICV, and sex. Sex was included to adjust for
potential associations with the clinical variables, as it is well-
established that females are more likely to develop PTSD as
compared to males [28, 29], and sex has been associated with
PTSD comorbidities, including depression, alcohol use disorder,
and drug use disorder [30–32].

Sensitivity analysis
The tool performed several sensitivity analyses to test the robust-
ness of our findings against changes in VBMprocessing parameters
including: (1) different smoothing kernels of 2, 4, and 12 mm;
(2) different combinations of covariates of no interest (e.g., age
and sex, or no covariates); (3) proportional scaling of voxels, where
each voxel is scaled by the fraction of total ICV; and (4) using
nonmodulated data.

For each analysis, the resulting statistical map contained the
results for approximately 200,000 voxels, reflecting volumetric
group differences or regression coefficients at each voxel.

Meta-analysis across cohorts

The statistical maps were pooled across cohorts for meta-analysis
using the software Seed-based d-Mapping with Permutation of
Subject Images (SDM-PSI v6.22; https://www.sdmproject.com)
[33]. In summary, the SDM-PSI process involves the following
main steps: (1) statistical maps are converted to effect size maps
using standard formulae; (2) the mean of the voxel values is
calculated via random effects meta-analysis; and (3) a subject-
based permutation test is conducted to family-wise error (FWE)
correct for multiple comparisons using threshold-free cluster
enhancement (TFCE) with statistical thresholding (p < .025, voxel
extent ≥ 10).

Total GM and WM volumes were compared between patients
with PTSD and all controls using the unadjusted mean and stand-
ard deviation (SD) statistics at a cohort level as reported by the
ENIGMA-VBM tool. The statistics from each cohort were pooled
using an inverse-variance weighted random-effects model in
STATA (release 17).
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Table 1. Clinical and demographic characteristics for each cohort

Cohort

Sample, N Female, N (%) Age, mean (SD)

PTSD Controls TE controlsa nTE controlsa PTSD Controls TE controls nTE controls PTSD Controls TE controls nTE controls

ADNIDOD 1 50 61 60 0 0 (0.0) 1 (1.6) 1 (1.6) NA 67.8 (3.9) 69.3 (4.8) 69.5 (4.7) NA

ADNIDOD 2 17 31 31 0 0 (0.0) 0 (0.0) 0 (0.0) NA 67.9 (3.2) 69.7 (4.7) 69.7 (4.7) NA

AMC 37 37 37 0 16 (43.2) 18 (48.6) 0 (0.0) NA 40.2 (10.0) 39.6 (10.1) 39.6 (10.1) NA

Beijing 42 46 46 0 29 (69.0) 24 (52.2) 24 (52.2) NA 53.7 (7.9) 43.3 (9.7) 43.3 (9.7) NA

Columbia–3 53 36 36 0 34 (64.2) 24 (66.7) 24 (66.7) NA 36.4 (9.3) 35.0 (10.6) 35.0 (10.6) NA

Columbia–6 25 55 32 23 7 (28.0) 28 (50.9) 15 (46.9) 13 (56.5) 37.3 (13.6) 35.2 (12.1) 36.2 (12.3) 33.7 (12.0)

Duke 1 11 73 72 0 2 (18.2) 16 (21.9) 16 (22.2) NA 37.1 (9.1) 39.6 (9.4) 39.5 (9.5) NA

Duke 2 15 33 33 0 4 (26.7) 5 (15.2) 5 (15.2) NA 42.2 (11.4) 41.1 (9.3) 41.1 (9.3) NA

Duke 3 15 31 31 0 2 (13.3) 8 (25.8) 8 (25.8) NA 41.8 (9.2) 37.4 (11.4) 37.4 (11.4) NA

Duke 4 36 75 69 0 5 (13.9) 14 (18.7) 14 (20.3) NA 38.2 (9.6) 37.5 (10.3) 37.3 (10.3) NA

Emory 14 48 48 0 14 (100.0) 48 (100.0 48 (100.0) NA 42.1 (13.3) 40.0 (11.8) 40.0 (11.8) NA

INTRuST 1 72 147 118 26 16 (22.2) 71 (48.3) 57 (48.3) 13 (50.0) 37.0 (9.4) 32.0 (12.2) 33.2 (12.5) 26.2 (9.4)

INTRuST 2 31 94 80 10 8 (25.8) 41 (43.6) 33 (41.3) 4 (40.0) 44.6 (11.4) 37.3 (12.9) 36.8 (13.0) 41.4 (11.6)

Leiden 21 30 NA NA 18 (85.7) 26 (86.7) NA NA 15.9 (1.9) 14.7 (1.6) NA NA

LIMBIC-CENC 1 84 179 NA NA 18 (21.4) 30 (16.8) NA NA 44.8 (8.7) 44.6 (9.8) NA NA

LIMBIC-CENC 2 76 84 NA NA 7 (9.2) 8 (9.5) NA NA 34.7 (6.9) 33.2 (7.4) NA NA

LIMBIC-CENC 3 81 144 NA NA 9 (11.1) 19 (13.2) NA NA 39.8 (8.4) 39.1 (9.3) NA NA

McLean 1 50 26 20 5 50 (100.0) 26 (100.0) 20 (100.0) 5 (100.0) 35.1 (13.4) 33.5 (11.3) 34.0 (11.3) 30.4 (13.0)

McLean 2 22 74 35 39 13 (59.1) 39 (52.7) 19 (54.3) 20 (51.3) 35.6 (7.6) 33.7 (9.1) 33.7 (9.1) 33.7 (9.3)

Minnesota 12 50 50 0 2 (16.7) 3 (6.0) 3 (6.0) NA 38.6 (8.2) 43.9 (9.6) 43.9 (9.6) NA

Münster 21 26 NA NA 21 (100.0) 21 (80.8) NA NA 27.4 (7.0) 26.5 (7.4) NA NA

South Dakota 78 44 28 8 17 (21.8) 7 (15.9) 1 (3.6) 2 (25.0) 28.8 (7.1) 29.9 (6.9) 32.0 (6.2) 31.0 (6.2)

Stanford 30 50 45 5 6 (20.0) 17 (34.0) 14 (31.1) 3 (60.0) 31.4 (10.1) 32.6 (11. 8) 32.7 (11.6) 31.6 (14.6)

Toledo 15 63 63 0 7 (46.7) 29 (46.0) 29 (46.0) NA 40.9 (9.5) 34.3 (11.5) 34.3 (11.5) NA

UCTb NA 68 18 50 NA 68 (100.0) 18 (100.0) 50 (100.0) NA 26.7 (6.4) 27.2 (5.9) 26.5 (6.6)

UMC BETTER 55 52 NA NA 1 (1.8) 0 (0.0) NA NA 36.1 (9.8) 36.0 (10.2) NA NA

VA Minn DEFEND 27 82 82 0 1 (3.7) 3 (3.7) 3 (3.7) NA 32.0 (5.2) 32.5 (7.9) 32.5 (7.9) NA

VA Minn SATURN 55 62 62 0 0 (0.0) 10 (16.1) 10 (16.1) NA 30.9 (7.8) 34.3 (8.8) 34.3 (8.8) NA

VA Waco 59 31 31 0 6 (10.2) 2 (6.5) 2 (6.5) NA 39.4 (9.7) 42.5 (11.8) 42.5 (11.8) NA

VA West Haven 35 30 30 0 4 (11.4) 3 (10.0) 3 (10.0) NA 35.2 (9.3) 34.3 (10.2) 34.3 (10.2) NA

Vanderbilt 15 35 20 15 1 (6.7) 8 (22.9) 5 (25.0) 3 (20.0) 33.9 (4.7) 30.2 (4.2) 31.6 (3.9) 28.5 (4.0)
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Table 1. Continued

Cohort

Sample, N Female, N (%) Age, mean (SD)

PTSD Controls TE controlsa nTE controlsa PTSD Controls TE controls nTE controls PTSD Controls TE controls nTE controls

Washington 33 116 60 56 15 (45.5) 59 (50.9) 34 (56.7) 25 (44.6) 12.7 (2.7) 12.9 (2.7) 13.2 (2.7) 12.6 (2.6)

Western Ontario 59 39 2 36 44 (74.6) 25 (64.1) 0 (0.0) 24 (66.7) 38.5 (12.7) 33.5 (12.2) 35.0 (2.8) 33.74 (12.6)

Wisconsin-Madison 19 38 38 0 3 (15.8) 1 (2.6) 1 (3.6) NA 30.4 (6.2) 30.8 (6.7) 30.8 (6.7) NA

Wisconsin-Milwaukee 22 60 60 0 11 (50.0) 30 (50.0) 30 (50.0) NA 28.7 (8.2) 34.4 (10.9) 34.4 (10.9) NA

Yale 22 48 25 23 3 (13.6) 8 (16.7) 1 (4.0) 7 (30.4) 31.8 (6.9) 29.4 (8.2) 32.9 (8.5) 25.7 (6.0)

Total 1309 2198 1362 296 394 (30.1) 740 (33.7) 438 (32.2) 169 (57.1) 37.7 (13.2) 35.9 (13.8) 37.2 (14.3) 27.0 (11.5)

Abbreviations: nTE, non-trauma-exposed; PTSD, posttraumatic stress disorder; TE, trauma-exposed.
Note: For sites with multiple scanners, participants were grouped by a scanner model where possible to form processing cohorts.
aWhere the control subgroups do not add-up to the total number of controls, which is due to unspecified trauma exposure of the control participant.
bUCT did not have enough current patients with PTSD (<8) for the main analysis and was only included in the subgroup comparison between TE and nTE controls.
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In sensitivity analyses, we repeated the meta-analysis of the
main group comparison to exclude two non-adult cohorts, consist-
ing of participants under the age of 20, to test for changes to our
results. A further eight cohorts included participants who had been
diagnosed with moderate-to-severe traumatic brain injury (TBI),
and we similarly repeated the main group comparison, excluding
the affected participants (PTSD nTBI = 382, controls nTBI = 527)
from our meta-analysis. We used a parcel-based correlation ana-
lysis [34, 35] in R (version 4.3.1) to calculate Pearson’s correlation
coefficient to compare the spatial pattern of regional GM and WM
differences between a given sensitivity analysis and our main group
findings. Using a parcel-based approach mitigates the issue in
voxel-based correlations where adjacent voxels are not independ-
ent. Further details are reported in Supplement A.

Results

All effect size and statistical maps are available online (https://
neurovault.org/collections/QOAYXFZK/). The p values reported
below are FWE-corrected formultiple comparisons using TFCE for
the VBM analyses. The main findings are reported below, with full
results and figures reported in Supplement A. Cohort sample
characteristics are reported in Tables 1 and 2, and descriptive
statistics for the clinical variables are reported in Supplementary
Tables S4 and S5.

Group comparisons of regional brain volumes

PTSD versus controls
The main group comparison analyzed data from 35 cohorts com-
prising 1309 patients with PTSD and 2130 controls, inclusive of TE
and nTE controls. Patients exhibited smaller GM volumes in a large
cluster extending across the brain, encompassing the frontal and
temporal lobes, thalamus, and cerebellum (Figure 1; Supplementary
Table S6). Peak effects were observed in the left cerebellum (Hedges’
g = 0.22, pTFCE = .001, MNI [�4,�72,�10]) and right parahippo-
campus (Hedges’ g= 0.20, pTFCE= .001,MNI [22,�18,�24]). Patients
exhibited smaller WM volumes in a single cluster within the cerebel-
lum, with peak effects in the middle cerebellar peduncles (Hedges’
g = 0.14, pTFCE = .008, MNI [�16,�54,�38]) and left cerebellum
(Hedges’ g= 0.14, pTFCE= .009,MNI [�6,�54,�18]) (Supplementary
Table S6; Supplementary Figure S1). There were no regions where
brain volumes were greater in patients than in controls.

Patients with PTSD exhibited significantly lower total GM
volume (Hedges’ g = �0.18, 95% CI [�0.29,�0.08], p = .001)
(Supplementary Figure S2). There was no significant difference in
total WM volume between groups (Supplementary Figure S3).

Subgroup analyses
In comparing 912 patients with PTSD to 1342 TE controls, patients
exhibited smaller GM volumes in a similar spatial pattern to the
main finding, and greaterWM volumes within the corpus callosum
(Supplementary Table S7; Supplementary Figure S4). When com-
paring 416 TE and 250 nTE controls, there were no significant GM
or WM differences between groups.

In our analysis comparing patients with PTSD and controls
from 19 military-recruited cohorts, the results were similar to the
main findings, with patients exhibiting smaller GM volumes in a
cluster across the frontal and temporal lobes, and cerebellum, and
smaller WM volumes adjacent to the striatum (Supplementary
Table S8; Supplementary Figure S5). In a separate analysis of
13 civilian-recruited cohorts, patients exhibited less widespread

Table 2. Sample type and patient with PTSD symptom severity for each cohort

Cohort

PTSD

Sample typea
Diagnostic
instrument

Patient PTSD
severityb,

mean % (SD)

ADNIDOD 1 Military CAPS–4 43.0 (10.7)

ADNIDOD 2 Military CAPS–4 39.4 (7.5)

AMC Police CAPS–4 49.9 (10.2)

Beijing Civilian PCL–5 53.1 (13.0)

Columbia–3 Civilian CAPS–4 58.9 (11.4)

Columbia–6 Civilian CAPS–5 45.7 (11.6)

Duke 1 Military CAPS–4, CAPS–5 40.5 (18.3)

Duke 2 Military CAPS–4, CAPS–5 49.5 (18.2)

Duke 3 Military CAPS–4 47.2 (12.4)

Duke 4 Military CAPS–4 54.3 (14.6)

Emory Civilian CAPS–4 44.5 (10.1)

INTRuST 1 Military, Civilian PCL-C 63.5 (19.5)

INTRuST 2 Military, Civilian PCL-C 62.0 (16.9)

Leiden Civilian ADIS-C/P 40.7 (22.0)

LIMBIC-CENC 1 Military PCL–5 61.6 (12.8)

LIMBIC-CENC 2 Military PCL–5 64.0 (13.9)

LIMBIC-CENC 3 Military PCL–5 58.1 (12.7)

McLean 1 Civilian CAPS–5 64.2 (14.2)

McLean 2 Civilian CAPS–4 43.6 (13.5)

Minnesota Military CAPS–4 39.3 (8.2)

Münster Civilian SCID–4 46.0 (20.2)

South Dakota Military, Civilian PCL-M, PCL-C 55.6 (15.4)

Stanford Civilian CAPS–4 43.8 (13.9)

Toledo Military, Civilian CAPS–4 47.0 (11.6)

UCTc Civilian MINI NA

UMC BETTER Military, Civilian CAPS–4 52.0 (9.7)

VA Minn DEFEND Military CAPS–4 47.9 (17.7)

VA Minn SATURN Military CAPS–4 46.1 (13.1)

VA Waco Military PCL–5 70.0 (14.5)

VA West Haven Military CAPS–4 49.9 (11.4)

Vanderbilt Military CAPS–5 33.7 (5.7)

Washington Civilian CAPS–5 18.0 (4.3)

Western Ontario Civilian CAPS–4, CAPS–5 51.4 (10.4)

Wisconsin-Madison Military CAPS–4 47.8 (10.9)

Wisconsin-Milwaukee Civilian CAPS–5 35.8 (9.2)

Yale Military CAPS–4 36.8 (17.7)

Total 52.6 (17.0)

Abbreviations: nTE, non-trauma-exposed; PTSD, posttraumatic stress disorder; TE, trauma-
exposed.
Note: PTSD diagnosis and severity scales: CAPS-4/5 = Clinician-Administered PTSD Scale for
DSM-IV/DSM-5 [61, 62]; PCL-5/C/M = PTSD Checklist for DSM-5 (Civilian or Military version) [63];
ADIS-C = Anxiety Disorders Interview Schedule for Children [64]; SCID = Structured Clinical
Interview for DSM [65]; MINI = Mini International Neuropsychiatric Interview [66]; MPSS =
Modified PTSD Symptom Scale [67]; TSCC = Trauma Symptom Checklist for Children [68];
PDS = Posttraumatic Stress Diagnostic Scale [69].
aPTSD patients and controls were recruited from the same sample types.
bPTSD severity has been quantified as a percentage of the total score for visual comparison
across cohorts. Raw scores are available in Supplement A (Supplementary Table S4).
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effects, with smaller GM volumes in the parahippocampus and
cerebellum, and greater WM volumes within the corpus callosum
(Supplementary Table S9; Supplementary Figure S6).

Associations between regional brain volumes and clinical
variables in patients with PTSD

PTSD severity data were available for 35 cohorts (PTSD n = 1283).
A higher PTSD severity score was associated with smaller GM
volumes within the cerebellum, lingual gyrus, and superior frontal
gyrus, with a peak effect in the right cerebellum (Hedges’ g =�0.11,
pTFCE = .003, MNI [4,�48,�58]) (Figure 2A; Supplementary
Table S10).

Depression severity data were available for 30 cohorts (PTSD
n = 1023). Higher depression severity was associated with lower
GM volumes within the frontal, temporal, and cerebellar regions,
with a peak effect in the right superior frontal gyrus (Hedges’
g = �0.15, pTFCE = .001, MNI [14, 66, 6]) (Figure 2B;
Supplementary Table S11).

680 patients with PTSD had available data on alcohol use disorder
status, where 25.6%were identified as having an alcohol use disorder.
Alcohol use disorder was associated with lower GM volumes within
the cerebellum and temporal lobe, with a peak effect in the left
fusiform gyrus (Hedges’ g = �0.15, pTFCE = .001, MNI
[�34,�56,�6]) (Supplementary Table S12; Supplementary Fig
ure S7).

364 patients with PTSD had available data on antidepressant
medication, where 30.8% were identified as using antidepressant

medication. We observed smaller GM volumes associated with
antidepressant medication use in a small cluster within the left
temporal gyrus, with a peak effect in the left inferior temporal gyrus
(Hedges’ g = �0.17, pTFCE = .017, MNI [�60,�26,�18])
(Supplementary Table S13; Supplementary Figure S8).

There were no significant associations observed between GM
volumes and childhood trauma (PTSD n = 507) or drug use disorder
(PTSD n = 405). There were also no significant associations found
between WM volumes and any of the clinical variables.

Sensitivity analysis

The spatial pattern of effect sizes was similar to that of the main
findings for GM andWMwhen we excluded two nonadult cohorts
from the analysis (Pearson’s r > 0.9) (Supplementary Table S14;
Supplementary Figure S9). When we excluded participants with
moderate-to-severe TBI, the spatial pattern of effect sizes was also
similar to the main findings for GM and WM (Pearson’s r > 0.9)
(Supplementary Table S15; Supplementary Figure S10). However,
different WM clusters passed the significance threshold, where
patients with PTSD exhibited significantly greater WM volumes
within the corpus callosum. Patients still exhibited smaller WM
volumes in the cerebellum as in the main findings, but these effects
were no longer significant.

The results from the sensitivity analyses using different
VBM parameters are reported in Supplement A (Supplementary
Tables S16–S27; Supplementary Figures S11–S22). The correlation
coefficients comparing the effect size maps from the sensitivity

Figure 1. Patients with PTSD exhibited lower regional graymatter volume compared to controls throughout the brain as seen in the orange highlighted regions in the figure, with a
peak effect in the left cerebellum [�4,�72,-10] (see also Supplementary Table S6).
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analyses to that of the main group comparison are reported in
Supplementary Table S28. Using nonmodulated data effected the
biggest change to our results (Pearson’s r > 0.49), while controlling

for different covariates had a lesser effect on our results (Pearson’s
r > 0.76). Using different smoothing kernels were in good agree-
ment with our main result (Pearson’s r > 0.94).

Figure 2. The blue highlighted regions represent smaller gray matter volumes associated with: (A) higher PTSD severity scores, with the peak effect in the right cerebellum
[4,�48,�58]; and (B) higher depression severity scores, with the peak effect in the right superior frontal gyrus [14, 66, 6] (see also Supplementary Tables S12 and S13).
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Heterogeneity of the effect size

The extent of heterogeneity of the effect size was relatively low
across the analyses. The main group comparison had a mean I2 of
8.15% across all GM voxels and of 4.67% across all WM voxels
(Supplementary Figure S23). Heterogeneity is reported for each
analysis in the tables within Supplement A, expressed as themean I2

across all GM or WM voxels, and at the peak coordinates.

Discussion

Patients with PTSD exhibited smaller total GM volume than con-
trols and in regions widespread across the brain with a peak effect in
the cerebellum. Patients with PTSD had lowerWM volumes within
the cerebellum but exhibited no differences in total WM volume.
We observed similar findings in comparing patients with PTSD to
TE controls, but there were no differences between TE and nTE
controls. Military-recruited cohorts exhibited group differences in
similar GM regions as the main findings, while GM differences
appeared to be less widespread in civilian-recruited cohorts.
Regional GM volumes were negatively associated with PTSD sever-
ity, depression severity, alcohol use disorder, and antidepressant
medication within patients with PTSD.

Regional and total brain volumes

Our findings are largely consistent with existing meta-analyses that
found smaller total GM volumes in patients with PTSD compared
to controls [4–9], and with previous ENIGMA-PTSD FreeSurfer
studies [10, 11], with effects in similar regions including the frontal
lobe, cingulate cortex, hippocampus, and amygdala. However,
comparisons with ROI studies are provided cautiously given the
different methodologies of the present study relative to published
studies. Our analysis revealed similar regional volume differences
when we compared patients to TE controls, suggesting that these
regions could be related to PTSD itself, rather than being associated
with trauma exposure. This is further supported where we found no
significant differences between TE and nTE controls. However, the
smaller sample of nTE controls may have been underpowered to
detect subtle differences between the control subgroups.

We observed lower GM andWM volumes within the cerebellum
in patients, a finding not reported in previous VBM meta-analyses
[4–9]. From previous work, Serra-Blasco et al. [8] reported signifi-
cantly lower GM volumes in the cerebellum in patients with PTSD
when compared to those with anxiety disorders, suggesting that this
regional finding could be specific to PTSD. In ROI studies, the
cerebellum is rarely included as it has been historically associated
with motor control [36]. The disparities between the current study
and previous meta-analyses may be due to the increased power and
homogeneity within the VBM processing in the current study from
using the ENIGMA-VBM tool, or from differences in the sample
characteristics. Notably, prior meta-analyses included 50–80% of
samples from Europe and Asia [4–9], while fewer than 15% of
cohorts in the current study were from these regions. Our findings
are consistent with individual neuroimaging studies that have
reported smaller cerebellar volumes in patientswith PTSDcompared
with controls [37–39] and further complement the cerebellar mega-
analysis by ENIGMA-PTSD, which used a novel parcellation proto-
col to reveal smaller brain volumes within the cerebellum and its
substructures associated with PTSD [12]. Previous functional MRI
studies have also found evidence of resting-state dysfunction in the
cerebellum in patients with PTSD [40, 41] and cerebellar activation

in response to fear [42, 43]. The cerebellum is becoming an increas-
ingly important structure in PTSD [44], with rich connections to
regions that are often implicated in stress and trauma such as the
hypothalamus, hippocampus, and prefrontal cortex [45].

In examining only military-recruited cohorts, regional GM
differences between patients and controls appeared to be more
widespread compared to differences observed in civilian-recruited
cohorts. This may be driven by characteristics specific to military
populations, where previous work has reported lower cortical
thickness in veterans with and without PTSD [46] and smaller
GM volumes associated with longer military deployment in per-
sonnel without PTSD [47]. Our results highlight the importance of
considering sample characteristics in future neuroimaging studies
and may explain why our findings differ from previous work. For
instance, Bromis et al. [4], who similarly meta-analyzed statistical
maps, included mostly civilian studies with only 2 military-recruited
cohorts, while the current study consisted of 19 military-recruited
cohorts.

GM associations with clinical variables

PTSD severity was negatively associated with GM volumes in
posterior regions, including the cerebellum, consistent with indi-
vidual ROI studies [37–39], and the ENIGMA-PTSD cerebellar
mega-analysis [12]. However, our findings contrast with those
from a large meta-analysis by Xiao et al. [9] reported associations
with the ACC instead. This could be due to methodological
differences where the authors used a coordinate-based meta-
regression, while in the current study, the regression analysis
was conducted within each cohort prior to pooling the resulting
statistical maps, which was expected to increase statistical power
and sensitivity.

Depression severity was associated with smaller GM volumes in
both posterior and frontal regions of the brain. The latter finding
may be relevant to functionalMRI findings of decreased connectivity
within the frontal lobe in PTSD patients with depression [48, 49].
Alcohol use disorder was associated with smaller GM volumes,
mainly within the cerebellum, which contrasts with previous work
that found associationswith the ACC [50]. The negative associations
between symptom severity and regional brain volumes indicate that
structural abnormalities may exist on a continuum, where patients
with more severe symptoms may exhibit greater structural changes
within the brain. It is interesting to note that the cerebellum was
negatively associated with both depression severity and alcohol use
disorder, common comorbidities for PTSD [51, 52]. This suggests
that the cerebellum findings are specific to PTSD,with comorbidities
potentially affecting further morphological changes. Future work
is needed to determine the direction of effect and whether cerebellar
abnormalities represent vulnerability factors or consequences
of PTSD.

Sensitivity analyses

We found the significance of the GM results was generally consist-
ent across the sensitivity analyses, while the significance of theWM
findings was less robust. The use of nonmodulated data resulted in
the biggest difference in results, where findings were only moder-
ately correlated with the main results (r = 0.558), with a smaller
cluster of significant differences observed in the cerebellum. This
may be expected given modulated data has been reported as more
sensitive to identifying volumetric differences, while nonmodulated
data may be more sensitive to detecting changes in cerebral cortical
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thickness [53, 54]. We also compared findings using varying
smoothing kernel sizes of 2, 4, and 12 mm, where we observed
greater spatial extent of significant clusters in regional brain volume
differences with larger kernel sizes. In the current study, we have
used Pearson’s correlation to compare the spatial pattern of effect
sizes between analyses, but future studies investigating the reliabil-
ity of VBM parameters may consider using the intraclass correl-
ation instead [55, 56].

Limitations

The ENIGMA-VBM tool is designed to run locally at each site,
meaning analyses are prespecified, which means we did not exam-
ine the interaction between PTSD and sex. Greater consideration of
sex is required in future work [57], given the evidence for sex
differences in PTSD prevalence [22, 23], symptom presentation
[29, 32], and associated risk factors [58]. We were also unable to
consider the type or incidence of trauma exposure, or the age of
PTSD onset, as not all studies collected these data. It would be
beneficial if these variables could be included in future studies,
given the complexities surrounding the timing and experience of
trauma in relation to the onset and severity of PTSD [59]. The
majority of our studies were recruited in the United States, which
limits the generalizability of our results, particularly given differ-
ences in PTSD prevalence [60] and in the types of commonly
reported traumatic events [1] across countries. The current study
is based on cross-sectional data, making it unclear whether the
observed structural abnormalities represent vulnerability factors
for PTSD and/or are consequences of the illness, which can be
clarified with longitudinal studies.

We have conducted the largest PTSD meta-analysis to date using
whole-brain VBM statistical maps, further strengthened in the
homogeneity of the VBM processing pipeline via the ENIGMA-
VBM tool. The 3D effect size and statistical maps from the current
study are available online. Our results revealed that patients with
PTSD exhibited smaller GM volumes across the brain as compared
to controls and support the growing literature implicating the
cerebellum in PTSD.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1192/j.eurpsy.2025.10062.

Data availability statement. The 3D effect size maps and statistical maps are
available online: https://neurovault.org/collections/QOAYXFZK/.
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