
ANZIAM J. 56(2015), 317–358
doi:10.1017/S1446181115000085

KELVIN–HELMHOLTZ CREEPING FLOW AT THE
INTERFACE BETWEEN TWO VISCOUS FLUIDS

LAWRENCE K. FORBES) 1, RHYS A. PAUL1, MICHAEL J. CHEN1,2 and
DAVID E. HORSLEY1

(Received 18 October, 2013; revised 18 March, 2015)

Abstract

The Kelvin–Helmholtz flow is a shearing instability that occurs at the interface between
two fluids moving with different speeds. Here, the two fluids are each of finite
depth, but are highly viscous. Consequently, their motion is caused by the horizontal
speeds of the two walls above and below each fluid layer. The motion of the fluids
is assumed to be governed by the Stokes approximation for slow viscous flow, and
the fluid motion is thus responsible for movement of the interface between them. A
linearized solution is presented, from which the decay rate and the group speed of
the wave system may be obtained. The nonlinear equations are solved using a novel
spectral representation for the streamfunctions in each of the two fluid layers, and the
exact boundary conditions are applied at the unknown interface location. Results are
presented for the wave profiles, and the behaviour of the curvature of the interface is
discussed. These results are compared to the Boussinesq–Stokes approximation which
is also solved by a novel spectral technique, and agreement between the results supports
the numerical calculations.
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1. Introduction

Kelvin–Helmholtz flow is a classical problem of fluid mechanics. Traditionally, it
occurs when two inviscid fluids, subject to the downward acceleration of gravity, flow
past each other in horizontal layers and with different speeds. The interface between
the fluids is then subject to shearing instabilities, so that any small perturbation to an
otherwise horizontal interface grows rapidly in time. If the disturbance is periodic in
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318 L. K. Forbes et al. [2]

the horizontal direction, then it may be expressed as a Fourier series in space with
time-dependent coefficients, and it is well known that higher Fourier modes grow with
time more rapidly than the lower ones. This is discussed in detail in the texts by
Chandrasekhar [5, p. 485] and Drazin and Reid [8]. This classical analysis is based
on a linearization of the equations of inviscid fluid mechanics, and assumes that the
disturbance to the interface remains small.

Linearized theory predicts that disturbances grow exponentially rapidly with time,
with a growth rate dependent on the difference in the two horizontal fluid speeds.
Such a rapid growth in the amplitude of the disturbance must eventually violate the
small-amplitude assumption on which linearization is predicated, so that nonlinear
effects become important in a finite time. Thus, a disturbance that starts out as a
pure sinusoid does not remain so for long, and may develop overhanging portions
resembling breaking waves. After some time, the interface can roll up into the famous
cat’s eyes spirals as illustrated in the album by Van Dyke [27, p. 85].

Since linear theory indicates that the higher Fourier modes grow most rapidly, it
is perhaps to be expected that the Fourier series for derivatives of the interface shape
may fail to converge within finite time. Indeed, Moore [20] presented an asymptotic
analysis for inviscid fluids that showed how the curvature of the interface becomes
infinite at a certain point, and estimated the critical time needed for this to occur.
Cowley et al. [7] also carried out an asymptotic study of the curvature singularity at
the interface in the Kelvin–Helmholtz flow. In their approach, time was considered as
a complex variable, and curvature singularities in the complex plane eventually moved
onto the real time axis at a finite value, so confirming Moore’s prediction of a finite-
time singularity in the interfacial curvature.

In view of these observations, it is not surprising that the numerical computation of
the highly nonlinear interfacial shapes formed in the Kelvin–Helmholtz problem is a
difficult undertaking, at least with inviscid fluids. Numerical solutions of the inviscid
equations produce a periodic disturbance that grows for a time, but the algorithm then
fails, at a time slightly less than the critical time at which Moore [20] predicted a
curvature singularity. To overcome this, Krasny [17] introduced a type of vortex blob
method, in which the interface is effectively replaced with an interfacial zone of finite
width. He was able to continue the calculations beyond Moore’s critical time, and did
indeed achieve an interface that rolled up into spiral formations. In some sense, this
is believed to mimic the effects of the viscosity that would be encountered in a real
fluid, damping the curvature singularity and preventing its occurrence. Nevertheless,
Baker and Pham [2] subsequently demonstrated that different types of vortex blob
methods would produce somewhat different numerical interface behaviours, so that
the computed flow is not entirely independent of the numerical solution technique. In
spite of this, however, Tryggvason et al. [26] demonstrated that vortex blob approaches
can be made to agree fairly well with the results of full viscous simulation.

The role played by viscosity at the interface is subtle and intriguing. When the
fluids are miscible, the curvature singularity at the interface predicted by inviscid
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theory is replaced with a small patch of high vorticity, and this is responsible for the
interface turning over to form overhanging segments. This was demonstrated explicitly
by Forbes [11] in a numerical solution of the Rayleigh–Taylor instability, in which a
heavier fluid lay above a less dense one. In that problem, it was found that the vorticity
was essentially zero nearly everywhere, except at the precise times and places at which
the inviscid model predicted a curvature singularity, where there was instead a small
intense region of high vorticity. A similar conclusion was obtained by Chen and Forbes
[6] for the Kelvin–Helmholtz instability in miscible fluids. Those authors first solved
the inviscid problem, using a smoothing algorithm to control the growth of the higher
Fourier modes in their solution, and monitored the locations of the maximum and
minimum curvatures at the interface for different times. These two locations become
closer as time progresses, eventually coalescing to form the curvature singularity in
the inviscid case. In their viscous solution, this was the time and location of the small
intense patch of vorticity that caused the overturning of the interface. Tauber et al.
[25] studied the viscous planar Kelvin–Helmholtz problem, but for the immiscible
case in which there was a sharp interface separating two fluids of different densities
and viscosities. Their finite-difference technique produced interfaces with long fingers
of fluid penetrating into the other layer, in cases when the surface tension was large.
Similar long fingers were obtained by Li et al. [19] for fluids of equal density and with
zero gravity, and Shadloo and Yildiz [23] observed similar profiles for large density
differences, using a smooth-particle hydrodynamics code.

The inviscid problem represents one extreme of modelling for the Kelvin–
Helmholtz problem, and ignores the effects of fluid viscosity altogether. The opposite
case is the Stokes flow approximation [22], in which each of the two fluids is
considered to be so viscous that the inertial and convective terms in the Navier–Stokes
momentum equations may be disregarded. The motion of each fluid is then governed
by the Stokes equations and the incompressibility condition. This is a linear system of
partial differential equations and, therefore, as in the purely inviscid case, exact forms
of the solution variables can be written down for each fluid. However, the problem is
nonlinear overall, since the location of the interface is unknown a priori. The problem
has been considered by Pozrikidis [22], who used an integral-equation formulation
with a Green function to satisfy the equations in each fluid exactly. This leads to
an equation to be solved at the interface only, and this is integrated forward in time.
Results were presented for equal fluid densities and long fingers of interpenetrating
fluids were observed at the interface.

Since the field equations in the case of Stokes flow are linear, spectral methods
may also be brought to bear on this problem. They offer the possible advantages
that they are computationally fast and permit difficult quantities, such as curvature of
the interface, to be calculated with high accuracy, since exact differentiation of the
assumed form of the solution is possible. In addition, spectral techniques can ensure
conservation of key quantities such as mass over long times, in a manner that is not
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always easy to ensure in other numerical techniques. Forbes et al. [13] developed a
novel spectral method for solving interfacial flow problems in purely inviscid fluids
and, since then, the technique has been used successfully in a variety of applications,
such as a study of the Faraday oscillations in vertically shaken containers of fluid [16].
Somewhat similar spectral methods have also been used by Faltinsen and Timokha
[10], but the one proposed by Forbes et al. [13] additionally derives certain identities
between quantities at the interface, so that an accurate solution may be obtained only
using standard integration routines.

A key aim of the present paper is to extend the spectral method of Forbes et al. [13]
to the case of creeping viscous flows with an interface, in which the flow of each fluid is
described by the Stokes equation. The governing equations are outlined in Section 2,
and the full linearized solution is given in Section 3. The new spectral method is
developed in Section 4 for the nonlinear problem, and the results of computation are
presented in Section 5. We have found that even for highly viscous flows, ignoring
the nonlinear convection terms in the governing equations (as is the case in the Stokes
approximation) still allows curvature singularities to develop at the interface. This is
controlled here by a very sparse use of Lanczos smoothing [15]. As a comparison,
a Boussinesq approximation to this Stokes flow problem is developed in Section 6.
Here, the exact interface is replaced by an approximate zone in which the density
varies smoothly from one fluid region to the other, and a new spectral method is
used to solve this problem. It now permits the interfacial zone to form overhanging
sections, since it is no longer limited by a curvature singularity; instead, portions
of high vorticity are formed near the overhanging regions. The agreement between
these approximate results and those of the full problem in Section 5, at least at early
times, lends strong support to the viability of the results. A summary and discussion
in Section 7 concludes the paper.

2. The Stokes-flow model

Consider a system of two incompressible viscous fluids, separated by a sharp
horizontal interface lying along the x-axis of a Cartesian coordinate system. Upper
fluid 2 has constant density ρ2 and is bounded above by a rigid wall at height y = H2.
Lower fluid 1 has density ρ1 and lies in the vertical layer −H1 < y < 0. The upper
wall moves horizontally with some speed c2, and the bottom wall at y = −H1 moves
at speed c1. An initial periodic disturbance is now made to the system, such that the
interface between the fluids adopts some periodic profile, y = η(x, t), with wavelength λ
and initial amplitude ε. In the Stokes-flow hypothesis [22], the inertial and convective
terms in the Navier–Stokes equations of viscous fluid flow are considered small, so
that

1
ρ j
∇p j = −gj + ν j∇

2q j (2.1)

becomes the governing momentum equation in each fluid layer j = 1, 2. Here, g is
the downward acceleration of gravity in the negative y-direction and j denotes the
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Figure 1. A sketch of the dimensionless flow problem for the viscous Kelvin–Helmholtz problem. The
interface is taken from an actual solution with D = 0.97, F1 = 0.1, F2 = −0.1, R1 = R2 = 1, h1 = h2 = 1
and surface-tension parameter σ = 0.008. The initial perturbation was sinusoidal with amplitude ε = 0.4,
and the nonlinear solution is shown at time t = 24.

unit vector up the vertical y-axis. The pressures are p j and the velocity vectors are
represented as q j = u ji + v jj, where u j and v j are the components in the horizontal and
vertical directions, respectively. The viscosities in the two layers are ν j for j = 1, 2.

At this point, dimensionless variables are introduced, which will be used throughout
the remainder of the paper. The length scale is chosen to be λ/(2π) based on
the wavelength λ of the periodic disturbance, and an appropriate scale for speed is√
λg/(2π). The time is therefore nondimensionalized by reference to the quantity√
λ/(2πg). The densities are referenced to the density ρ1 of the fluid in lower layer

1, and the scale for pressure is then ρ1gλ/(2π). A sketch of the dimensionless problem
is presented in Figure 1.

The solution is, therefore, dependent on the eight dimensionless parameters

D =
ρ2

ρ1
, F j = c j

√
2π
gλ
, R j = ν j

2π
λ

√
2π
gλ
,

h j =
2πH j

λ
, j = 1, 2.

The first of these is the density ratio of the upper to the lower fluids and, for Kelvin–
Helmholtz flow, D < 1. The next two quantities F1 and F2 are Froude numbers in the
two fluid layers, and give a measure of the dimensionless horizontal flow speed at the
lower and upper walls, respectively. The two constants R1 and R2 may be thought of
as inverse Reynolds numbers in each fluid layer, and they represent the dimensionless
viscosity of each fluid; for Stokes flow, R1 and R2 are considered to be large. The
dimensionless depths of the lower and upper fluid layers are h1 and h2, respectively.
Finally, provision is made in this study for the inclusion of surface tension, and this
will be represented by the dimensionless coefficient σ.
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In each fluid, the incompressibility conditions are expressed as

∂u j

∂x
+
∂v j

∂y
= 0, j = 1, 2 (2.2)

with u j and v j denoting the horizontal and vertical components of the two fluid
velocity vectors, respectively. In the lower fluid 1, the two components of the Stokes
momentum equation (2.1) in dimensionless form are

∂p1

∂x
= R1∇

2u1,
∂p1

∂y
= −1 + R1∇

2v1, −h1 < y < η(x, t) (2.3)

and, in the upper fluid 2, the Stokes equations become

1
D
∂p2

∂x
= R2∇

2u2,
1
D
∂p2

∂y
= −1 + R2∇

2v2, η(x, t) < y < h2. (2.4)

Here, y = η(x, t) is the equation for the location of the interface between the fluids.
Each fluid must obey the kinematic condition that it is not free to cross its own

interface. This leads to the two boundary conditions

v j =
∂η

∂t
+ u j

∂η

∂x
, j = 1, 2, on y = η(x, t). (2.5)

Since the two fluids are both viscous, the no-slip boundary condition at the interface
also requires the continuity of both the horizontal and vertical velocity components, so
that

u1 = u2, v1 = v2 on y = η(x, t). (2.6)

For viscous fluids, there is also a vector dynamic boundary condition at the interface,
which requires the continuity of both the tangential and normal stress components.
Further details are given in Batchelor [4, p. 150]. The tangential dynamic condition
takes the form

DR2

[(
∂v2

∂y
−
∂u2

∂x

)
ηx +

1
2

(
∂u2

∂y
+
∂v2

∂x

)
(1 − η2

x)
]

= R1

[(
∂v1

∂y
−
∂u1

∂x

)
ηx +

1
2

(
∂u1

∂y
+
∂v1

∂x

)
(1 − η2

x)
]

(2.7)

on y = η(x, t). The continuity of normal stress at the interface involves the fluid
pressures, and becomes

p2(1 + η2
x) − 2DR2

[
∂u2

∂x
η2

x −

(
∂u2

∂y
+
∂v2

∂x

)
ηx +

∂v2

∂y

]
= p1(1 + η2

x) − 2R1

[
∂u1

∂x
η2

x −

(
∂u1

∂y
+
∂v1

∂x

)
ηx +

∂v1

∂y

]
+σ

ηxx

[1 + η2
x]1/2 on y = η(x, t). (2.8)
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The last term in equation (2.8) corresponds to the effects of surface tension on the
interface.

The two incompressibility conditions (2.2) may now be satisfied identically by
making use of streamfunctions ψ1 and ψ2 in the lower and upper fluids, respectively.
In each fluid,

u j =
∂ψ j

∂y
, v j = −

∂ψ j

∂x
, j = 1, 2 (2.9)

as discussed in Batchelor [4, p. 76]. Substituting these relations (2.9) into the Stokes
equations (2.3) and (2.4) yields the well-known biharmonic equations

∇4ψ j =
∂4ψ j

∂x4 + 2
∂4ψ j

∂x2∂y2 +
∂4ψ j

∂y4 = 0, j = 1, 2. (2.10)

A discussion of these equations is given by Ockendon and Ockendon [21, p. 55].
To begin, it is necessary to consider an exact solution of these governing equations

(2.10) and boundary conditions (2.5)–(2.8), in the case of purely horizontal flow in
which η(x, t) = 0. After a little algebra, it is evident that the appropriate horizontal
flows are given by the choices

ψ1(y) = F1y +
DR2(F2 − F1)

2(h2R1 + h1DR2)
(y + h1)2,

ψ2(y) = F2y +
R1(F2 − F1)

2(h2R1 + h1DR2)
(y − h2)2. (2.11)

The first streamfunction ψ1 in this system (2.11) satisfies the requirement that u1 = F1

and v1 = 0 at the lower wall y = −h1, with the two velocity components obtained from
equation (2.9), and the second streamfunction similarly satisfies u2 = F2 and v2 = 0 at
the upper wall y = h2. On the horizontal interface η = 0, the two functions in (2.11)
obey the no-slip conditions (2.6) and the tangential dynamic condition (2.7), and each
is a solution of the biharmonic equations in the system (2.10).

It is now possible to construct the full spectral representation for the streamfunctions
in each of the two fluid layers, assuming a solution that is 2π-periodic in the horizontal
coordinate x. In the lower fluid 1, the required form satisfying the biharmonic equation
(2.10) is

ψ1(x, y, t) = F1y +
DR2(F2 − F1)

2(h2R1 + h1DR2)
(y + h1)2

+

N∑
n=1

[A1n(t)Z1n(y) + C1n(t)Z2n(y)] cos(nx)

+ [B1n(t)Z1n(y) + D1n(t)Z2n(y)] sin(nx), (2.12)

while the corresponding streamfunction in the upper fluid 2 is written as
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ψ2(x, y, t) = F2y +
R1(F2 − F1)

2(h2R1 + h1DR2)
(y − h2)2

+

N∑
n=1

[A2n(t)Z3n(y) + C2n(t)Z4n(y)] cos(nx)

+ [B2n(t)Z3n(y) + D2n(t)Z4n(y)] sin(nx). (2.13)

In these two expressions, the four intermediate functions are defined to be

Z1n =
sinh(n(y + h1)) − n(y + h1) cosh(n(y + h1))

cosh(nh1)
,

Z2n =
n(y + h1) sinh(n(y + h1))

cosh(nh1)
,

Z3n =
sinh(n(y − h2)) − n(y − h2) cosh(n(y − h2))

cosh(nh2)
,

Z4n =
n(y − h2) sinh(n(y − h2))

cosh(nh2)
.

(2.14)

These functions (2.14) are chosen to give periodic solutions to the two biharmonic
equations (2.10), and the constants in the denominators are to ensure that the
functions continue to take moderate values, even for large n and y, so that the
determination of the unknown Fourier coefficients in the two series (2.12) and (2.13)
remains a well-conditioned problem. In order to satisfy the requirements u1 = F1
and v1 = 0 at the lower wall y = −h1, the two conditions Z1n(−h1) = Z2n(−h1) = 0
and Z′1n(−h1) = Z′2n(−h1) = 0 have been imposed; similarly, Z3n(h2) = Z4n(h2) = 0 and
Z′3n(h2) = Z′4n(h2) = 0 are stipulated at the upper wall y = h2, so that the representation
(2.13) satisfies u2 = F2 and v2 = 0 there.

The velocity components in each fluid can be calculated from equation (2.9)
using straightforward differentiation of the two series (2.12) and (2.13). A spectral
representation for the pressure p1 in the lower fluid is then obtained from equations
(2.3) and, after some algebra, the result is

p1(x, y, t) = −y + 2R1

N∑
n=1

n2[−A1n(t)W1n(y) + C1n(t)W2n(y)] sin(nx)

+ n2[B1n(t)W1n(y) − D1n(t)W2n(y)] cos(nx). (2.15)

Similarly, the Stokes equations (2.4) in the upper fluid can be solved to give the
representation

p2(x, y, t) = −Dy + 2DR2

N∑
n=1

n2[−A2n(t)W3n(y) + C2n(t)W4n(y)] sin(nx)

+ n2[B2n(t)W3n(y) − D2n(t)W4n(y)] cos(nx) (2.16)

for the pressure in that upper layer. The four intermediate functions in these
expressions come from taking the appropriate derivatives of the quantities in the
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expressions (2.14), and are found to be

W1n =
cosh(n(y + h1))

cosh(nh1)
,

W2n =
sinh(n(y + h1))

cosh(nh1)
,

W3n =
cosh(n(y − h2))

cosh(nh2)
,

W4n =
sinh(n(y − h2))

cosh(nh2)
.

(2.17)

It follows from the Stokes equations (2.3), (2.4) and the continuity equations (2.2) that
the two pressures in equations (2.15) and (2.16) are solutions of Laplace’s equation,
and this is reflected in the forms of the functions in equations (2.17).

These expressions are essentially exact, at least in the limit N →∞, but, as yet, the
eight sets of coefficient functions A1n(t), A2n(t) and so on remain unknown. They must
be determined from the boundary conditions (2.5)–(2.8) at the interface.

3. The linearized solution

It is possible to develop a linearized solution to the governing equations in Section 2
using the initial perturbation amplitude ε as the small parameter. The appropriate
expansions are

u1(x, y, t) = U10(y) + εŨ1(x, y, t) + O(ε2),
v1(x, y, t) = εṼ1(x, y, t) + O(ε2),
u2(x, y, t) = U20(y) + εŨ2(x, y, t) + O(ε2),
v2(x, y, t) = εṼ2(x, y, t) + O(ε2),
p1(x, y, t) = −y + εP̃1(x, y, t) + O(ε2),
p2(x, y, t) = −Dy + εP̃2(x, y, t) + O(ε2),
η(x, t) = εη̃(x, t) + O(ε2).

(3.1)

The zeroth-order horizontal velocity components

U10(y) = F1 +
DR2(F2 − F1)

(h2R1 + h1DR2)
(y + h1),

U20(y) = F2 +
R1(F2 − F1)

(h2R1 + h1DR2)
(y − h2)

(3.2)

are obtained from differentiation of equations (2.11). For convenience, the surface
tension will be ignored, so that σ = 0.

These expansions in (3.1) are now substituted into the boundary conditions at the
interface, and only terms of first order in ε are retained. The first kinematic condition
in the system (2.5) linearizes to become

Ṽ1 = η̃t + U10(0)η̃x on y = 0, (3.3)
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and the two no-slip conditions (2.6) yield

U′10(0)η̃ + Ũ1 = U′20(0)η̃ + Ũ2,

Ṽ1 = Ṽ2 on y = 0. (3.4)

The linearized form of the tangential dynamic condition (2.7) is

DR2

[
∂Ũ2

∂y
+
∂Ṽ2

∂x

]
= R1

[
∂Ũ1

∂y
+
∂Ṽ1

∂x

]
on y = 0, (3.5)

and the normal dynamic condition (2.8) yields

−Dη̃ + P̃2 − 2DR2
∂Ṽ2

∂y
= −η̃ + P̃1 − 2R1

∂Ṽ1

∂y
on y = 0. (3.6)

The perturbation functions Ũ1, Ṽ1 and so on have series forms that can be derived
from equations (2.12)–(2.16). For example, the horizontal velocity components in
each fluid can be obtained by differentiating the streamfunctions (2.12) and (2.13) as
in equations (2.9). When they are evaluated at y = 0, as required in this linearized
solution, we get

Ũ1(x, y, t) = [Ã1n(t)Z′1n(y) + C̃1n(t)Z′2n(y)] cos(nx)
+ [B̃1n(t)Z′1n(y) + D̃1n(t)Z′2n(y)] sin(nx),

Ũ2(x, y, t) = [Ã2n(t)Z′3n(y) + C̃2n(t)Z′4n(y)] cos(nx)
+ [B̃2n(t)Z′3n(y) + D̃2n(t)Z′4n(y)] sin(nx),

and similarly for the other dependent variables. The perturbed interface elevation is
represented as

η̃(x, t) = G̃n(t) cos(nx) + H̃n(t) sin(nx).

The linearized boundary conditions (3.3)–(3.6) have both an odd and an even
component, and so they constitute a system of 10 equations for the 10 coefficient
functions Ã jn, B̃ jn, C̃ jn, D̃ jn, j = 1, 2, G̃n and H̃n.

The two linearized no-slip conditions (3.4) give the relations

Ã2n(t) = σ1Ã1n(t) + σ2C̃1n(t) − σ3G̃n(t),
B̃2n(t) = σ1B̃1n(t) + σ2D̃1n(t) − σ3H̃n(t),
C̃2n(t) = τ1Ã1n(t) + τ2C̃1n(t) + τ3G̃n(t),
D̃2n(t) = τ1B̃1n(t) + τ2D̃1n(t) + τ3H̃n(t)

(3.7)

between the unknown coefficients after considerable algebra. In these expressions, it
is convenient to introduce additional constants

σ1 =
Z1n(0)Z′4n(0) − Z′1n(0)Z4n(0)
Z3n(0)Z′4n(0) − Z′3n(0)Z4n(0)

,

σ2 =
Z2n(0)Z′4n(0) − Z′2n(0)Z4n(0)
Z3n(0)Z′4n(0) − Z′3n(0)Z4n(0)

,

σ3 =
Z4n(0)[U′10(0) − U′20(0)]

Z3n(0)Z′4n(0) − Z′3n(0)Z4n(0)
,

(3.8)
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in which the functions Z1n, U10 and so on are as defined in equations (2.14) and (3.2).
The remaining three constants τ1, τ2 and τ3 are identical to these, except that every
appearance of the function Z4n in the numerators of the expressions in (3.8) must be
replaced by Z3n, while the denominators remain unchanged. The linearized tangential
condition (3.5) yields the further two relations

C̃1n(t) = −ξ1Ã1n(t) + ξ2G̃n(t),
D̃1n(t) = −ξ1B̃1n(t) + ξ2H̃n(t),

(3.9)

in which two additional constants

ξ1 =
DR2[nh2σ1 + αn2τ1] + R1nh1

DR2[nh2σ2 + αn2τ2] − R1αn1
,

ξ2 =
DR2[nh2σ3 − αn2τ3]

DR2[nh2σ2 + αn2τ2] − R1αn1

(3.10)

have been introduced; these, in turn involve the constants

αn j = 1 + nh j tanh(nh j),
βn j = 1 − nh j tanh(nh j), j = 1, 2.

The linearized normal dynamic condition (3.6) next yields a relation between the
coefficients defining the two streamfunctions and those which describe the interface
shape. These relations are

η1Ã1n(t) = η2G̃n(t) − (1 − D)H̃n(t),
η1B̃1n(t) = (1 − D)G̃n(t) + η2H̃n(t),

(3.11)

and involve two further coefficients

η1 = 2DR2n2[−βn2(σ1 − σ2ξ1) + nh2(τ1 − τ2ξ1)]
+ 2R1n2[βn1 − nh1ξ1],

η2 = 2DR2n2[−βn2(σ3 − σ2ξ2) + nh2(−τ3 − τ2ξ2)]
− 2R1n3h1ξ2.

Finally, the linearized kinematic condition (3.3) gives two more conditions from its
even and odd components, and these are

n(1 − D)ρ1G̃n(t) − η1G̃′n(t) = nρ2H̃n(t),
n(1 − D)ρ1H̃n(t) − η1H̃′n(t) = −nρ2G̃n(t)

(3.12)

with further intermediate constants

ρ1 = −Z1n(0) + Z2n(0)ξ1,

ρ2 = Z1n(0)η2 + Z2n(0)(ξ2η1 − ξ1η2) + U10(0)η1.

In these expressions, the coefficients Ã1n and so on have been eliminated using
the previous relations (3.7)–(3.11). The two conditions in the system (3.12) are
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combined to form the following second-order ordinary differential equation with
constant coefficients:

η2
1G̃′′n (t) − 2nρ1(1 − D)η1G̃′n(t) + [n2ρ2

1(1 − D)2 + n2ρ2
2]G̃n(t) = 0. (3.13)

It immediately permits solutions of the exponential form

G̃n(t) = constant × eλt,

which yields the growth rate

λ =
n
η1

[ρ1(1 − D) ± iρ2]. (3.14)

Thus, the real part of this expression, nρ1(1 − D)/η1, determines the growth in the
amplitude of the disturbance and the quantity ρ2/η1, derived from the imaginary part,
gives the speed. The differential equation (3.13) then gives the two coefficients in the
linearized interface height to be

G̃n(t) = exp
(n(1 − D)ρ1t

η1

)[
G̃C cos

(nρ2t
η1

)
+ G̃S sin

(nρ2t
η1

)]
,

H̃n(t) = exp
(n(1 − D)ρ1t

η1

)[
G̃C sin

(nρ2t
η1

)
− G̃S cos

(nρ2t
η1

)]
,

in which G̃C and G̃S are arbitrary constants. The other coefficients may now be
obtained from these expressions, using (3.7)–(3.11).

The constants appearing in the expression (3.14) are complicated expressions that
must be evaluated numerically. In all the cases we have studied, it is observed that η1
and η2 are positive, but ρ1 and ρ2 are negative. As a result, the real part of (3.14) is
found to be negative when D < 1, so that the initial disturbance eventually decays; this
might be expected on purely physical grounds in the presence of high viscosity. For
D < 1, Pozrikidis [22] likewise argued that interfacial waves must decay over time as
energy is dissipated by viscosity.

4. The nonlinear spectral method

The technique presented here for the solution of the nonlinear equations in Section 2
is an extension of the method of Forbes et al. [13], which was developed for inviscid
free-surface problems. In that paper, two approaches were presented. The first
assumed simply that the interface η was a single-valued function of x, and a spectral
technique was developed on that basis. There was also a second approach, which those
authors referred to as an “extended” method, in which the interface was represented
using an arclength, so that overturning profiles could be accounted for. This second,
more general, approach is followed here. Forbes et al. [13] showed that the conditions
at the interface between two inviscid fluids lead to a mixed system of algebraic and
differential equations; they then converted this into one governed purely by differential
equations, by differentiating some of the interfacial conditions exactly with respect to
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time. This allowed the system of differential equations to be integrated forward in time,
using existing routines. While that same approach has been tried here, it turns out to be
simpler to use the undifferentiated boundary conditions directly, where possible. For
this viscous problem, this also avoids a considerable amount of algebraic manipulation
in the derivation of the algorithm. This new approach is described in this section.

Consider a single wavelength, which in dimensionless coordinates is located over
an interval of width 2π along the x-axis. Let s be the arclength along the interface,
which has some overall length LS (t) within a single wavelength. A time-independent
arclength ξ is now defined along the interface, by means of the relation

ξ =
2πs

LS (t)
. (4.1)

The Pythagorean definition of arclength then leads to the condition(
∂x
∂ξ

)2
+

(
∂y
∂ξ

)2
=

L2
S (t)

(2π)2 (4.2)

for the interface y = η(x, t), now represented in parametric form as (x(ξ, t), y(ξ, t)). As
yet, the surface length LS (t) is unknown. In terms of the arclength in equation (4.1),
the interface is represented as

x(ξ, t) = ξ +

N∑
n=1

Fn(t) cos(nξ) + Gn(t) sin(nξ),

y(ξ, t) = K0(t) +

N∑
n=1

Kn(t) cos(nξ) + Ln(t) sin(nξ).

(4.3)

As with the series representations (2.12)–(2.16) in Section 2, the Fourier sums (4.3)
have been truncated at some finite number N for numerical implementation, and the
expressions become exact as N →∞.

The arclength condition (4.2) is now analysed into its Fourier modes. The zeroth-
mode condition is obtained by substituting (4.3) directly into (4.2) and integrating over
the interval −π < ξ < π. After a little algebra, and using the orthogonality conditions
for the trigonometric functions [18, p. 482], the formula

LS (t) = 2π

√√√
1 +

1
2

N∑
n=1

n2[F2
n(t) + G2

n(t) + K2
n (t) + L2

n(t)] (4.4)

is obtained for the surface length of the interface along a wavelength.
As in Forbes et al. [13], the arclength condition (4.2) is differentiated with respect

to time, giving (
∂x
∂ξ

)(
∂2x
∂ξ∂t

)
+

(
∂y
∂ξ

)(
∂2y
∂ξ∂t

)
=

LS (t)L′S (t)
(2π)2 . (4.5)

The higher Fourier modes for the arclength condition are obtained by decomposing
equation (4.5) spectrally. The higher even modes result from multiplying (4.5) by
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cos(`ξ) and integrating over the interval ξ ∈ [−π, π], and the odd modes are obtained
after multiplication by basis functions sin(`ξ) and integrating over the same interval.
Here ` are integers and take values ` = 1, 2, . . . , N. The second-derivative terms in
(4.5) are evaluated exactly from the series (4.3) and, after some algebra, the even-
mode decomposition yields the system of differential equations

−

N∑
n=1

nXS C
`n F′n(t) +

N∑
n=1

nXCC
`n G′n(t) −

N∑
n=1

nYS C
`n K′n(t) +

N∑
n=1

nYCC
`n L′n(t) = 0, (4.6)

and the odd modes give

−

N∑
n=1

nXS S
`n F′n(t) +

N∑
n=1

nXCS
`n G′n(t) −

N∑
n=1

nYS S
`n K′n(t) +

N∑
n=1

nYCS
`n L′n(t) = 0 (4.7)

for ` = 1, 2, . . . , N. There are eight sets of intermediate quantities in these two
expressions, and they are given as follows:

XS C
`n (t) =

∫ π

−π

(
∂x
∂ξ

)
sin(nξ) cos(`ξ) dξ,

YS C
`n (t) =

∫ π

−π

(
∂y
∂ξ

)
sin(nξ) cos(`ξ) dξ

(4.8)

and so on. Each of these eight sets of quantities XAB
`n and YAB

`n is coded so that X
indicates that the first term in the integrand is ∂x/∂ξ and Y corresponds to ∂y/∂ξ.
The first superscript A is either S or C, representing the fact that the second term is
either sin(nξ) or cos(nξ), and the second superscript B is also either S or C, similarly
indicating whether the third term contains sin(`ξ) or cos(`ξ).

The chain rule of calculus is now used to re-write the two kinematic conditions (2.5)
parametrically in terms of the coordinates (x(ξ, t), y(ξ, t)) along the interface. Further
details are given by Forbes et al. [13]. The two conditions take the forms

v1(ξ, t)
∂x
∂ξ

=
∂y
∂t
∂x
∂ξ
−
∂y
∂ξ

∂x
∂t

+ u1(ξ, t)
∂y
∂ξ
,

v2(ξ, t)
∂x
∂ξ

=
∂y
∂t
∂x
∂ξ
−
∂y
∂ξ

∂x
∂t

+ u2(ξ, t)
∂y
∂ξ
.

(4.9)

For the first kinematic condition in (4.9), the zeroth Fourier mode is obtained simply
by integrating the equation over a period. The series (2.12) is truncated after the Nth
term and differentiated using equation (2.9) to give series representations for u1 and
v1, and these are evaluated at the interface. It follows from integration by parts that∫ π

−π

v1(ξ, t)
∂x
∂ξ

dξ =

∫ π

−π

u1(ξ, t)
∂y
∂ξ

dξ,

so that the zeroth-mode contribution from the first kinematic condition reduces to∫ π

−π

∂y
∂t
∂x
∂ξ

dξ =

∫ π

−π

∂x
∂t
∂y
∂ξ

dξ.
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Substituting (4.3) into this relation finally gives the result

K′0(t) =
d
dt

{1
2

N∑
n=1

n[Fn(t)Ln(t) −Gn(t)Kn(t)]
}
. (4.10)

This result is now integrated with respect to time to yield

K0(t) = K0(0) +
1
2

N∑
n=1

n[Fn(t)Ln(t) −Gn(t)Kn(t)]

−
1
2

N∑
n=1

n[Fn(0)Ln(0) −Gn(0)Kn(0)]. (4.11)

The contributions for the even and odd higher-order modes from the first kinematic
condition in (4.9) are obtained by multiplying by cos(`ξ) and sin(`ξ), respectively, for
` = 1, 2, . . . , N and integrating over a period. The quantity K′0(t) is eliminated using
equation (4.10), and the even component gives

N∑
n=1

[1
2

n`πG`(t)Ln(t) − YCC
`n

]
F′n(t) −

[1
2

n`πG`(t)Kn(t) − YS C
`n

]
G′n(t)

−

[1
2

n`πG`(t)Gn(t) − XCC
`n

]
K′n(t) +

[1
2

n`πG`(t)Fn(t) + XS C
`n

]
L′n(t)

= −`

∫ π

−π

ψ1 sin(`ξ) dξ, (4.12)

in which the intermediate quantities are those given in equation (4.8). Similarly, the
odd components in the first kinematic condition yield

N∑
n=1

[1
2

n`πF`(t)Ln(t) +YCS
`n

]
F′n(t) −

[1
2

n`πF`(t)Kn(t) − YS S
`n

]
G′n(t)

−

[1
2

n`πF`(t)Gn(t) + XCS
`n

]
K′n(t) +

[1
2

n`πF`(t)Fn(t) − XS S
`n

]
L′n(t)

= −`

∫ π

−π

ψ1 cos(`ξ) dξ. (4.13)

Equations (4.6), (4.7), (4.12) and (4.13) constitute a system of 4N ordinary
differential equations in time, for the 4N quantities Fn(t), Gn(t), Kn(t) and Ln(t).
Assuming that all the variables are known at time level tk, we use Euler’s method
to integrate this system of differential equations to the next time level tk+1 = tk + ∆t.
From the values of these four sets of coefficients, the shape of the interface (x(ξ, t),
y(ξ, t)) is now constructed at the new time level tk+1 using equations (4.11) and (4.3).

The coefficients defining the two streamfunctions in the representations (2.12) and
(2.13) are now determined at the new time level tk+1. With the shape of the interface
now known at this time level, the remaining boundary conditions (2.6)–(2.8) are linear
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in the velocity components and pressure at the interface, and so the coefficients can
be obtained simply by solving a linear matrix system of equations at the new time
step. These equations are obtained by Fourier decomposition of the remaining four
boundary conditions.

It is straightforward to show that the second kinematic condition in the system
(4.9) is redundant, and so can be ignored in favour of the two no-slip boundary
conditions (2.6). The first of these is written as u1 − u2 = 0 on the interface, and
the representations (2.12), (2.13) and (4.3) are substituted into this equation. The
even Fourier modes are then obtained by multiplying by basis functions cos(`ξ) for
` = 1, 2, . . . , N and integrating over the interval [−π, π]. This gives a system of
algebraic equations in the form

N∑
n=1

[CU1A
`n A1n(t) + CU1B

`n B1n(t) + CU1C
`n C1n(t) + CU1D

`n D1n(t)]

− [CU2A
`n A2n(t) + CU2B

`n B2n(t) + CU2C
`n C2n(t) + CU2D

`n D2n(t)]

=
π(F2 − F1)(R1 − DR2)

(h2R1 + h1DR2)
K`(t) (4.14)

at the new time level t = tk+1. Similarly, the odd Fourier modes are obtained after
multiplication by the basis functions sin(`ξ) and integration, and give rise to the system

N∑
n=1

[S U1A
`n A1n(t) + S U1B

`n B1n(t) + S U1C
`n C1n(t) + S U1D

`n D1n(t)]

− [S U2A
`n A2n(t) + S U2B

`n B2n(t) + S U2C
`n C2n(t) + S U2D

`n D2n(t)]

=
π(F2 − F1)(R1 − DR2)

(h2R1 + h1DR2)
L`(t). (4.15)

In these two sets of expressions, intermediate quantities

CU1A
`n (t) =

∫ π

−π

Z′1n(y) cos(nx) cos(`ξ) dξ,

CU1B
`n (t) =

∫ π

−π

Z′1n(y) sin(nx) cos(`ξ) dξ,

CU1C
`n (t) =

∫ π

−π

Z′2n(y) cos(nx) cos(`ξ) dξ,

CU1D
`n (t) =

∫ π

−π

Z′2n(y) sin(nx) cos(`ξ) dξ

(4.16)

have been defined for convenience, and the quantities Z1n and so on are defined
in (2.14). The further intermediate terms CU2A

`n and CU2B
`n are identical to CU1A

`n
and CU1B

`n , respectively, in equation (4.16) except that Z′1n must be replaced by
Z′3n. Similarly, CU2C

`n and CU2D
`n are obtained from CU1C

`n and CU1D
`n by replacing Z′2n

with Z′4n. The quantity S U1A
`n is derived from CU1A

`n by replacing cos(`ξ) with sin(`ξ) in
the integrand, and so on for the other similar terms.
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The second of the no-slip conditions (2.6) is written as v1 − v2 = 0 and also
subjected to Fourier analysis. The even modes give rise to a system of algebraic
equations

N∑
n=1

[CV1A
`n A1n(t) −CV1B

`n B1n(t) + CV1C
`n C1n(t) −CV1D

`n D1n(t)

−CV2A
`n A2n(t) + CV2B

`n B2n(t) −CV2C
`n C2n(t) + CV2D

`n D2n(t)]
= 0, (4.17)

and the odd modes likewise lead to a further system of equations in the form

N∑
n=1

[S V1A
`n A1n(t) − S V1B

`n B1n(t) + S V1C
`n C1n(t) − S V1D

`n D1n(t)

− S V2A
`n A2n(t) + S V2B

`n B2n(t) − S V2C
`n C2n(t) + S V2D

`n D2n(t)]
= 0, ` = 1, 2, . . . ,N. (4.18)

Again, a number of intermediate quantities have been defined in these expressions, as
integrals involving the known interface shape (x(ξ, t), y(ξ, t)) at the new time level tk+1.
The first of these are

CV1A
`n (t) = n

∫ π

−π

Z1n(y) sin(nx) cos(`ξ) dξ,

CV1B
`n (t) = n

∫ π

−π

Z1n(y) cos(nx) cos(`ξ) dξ,

CV1C
`n (t) = n

∫ π

−π

Z2n(y) sin(nx) cos(`ξ) dξ,

CV1D
`n (t) = n

∫ π

−π

Z2n(y) cos(nx) cos(`ξ) dξ.

(4.19)

As previously, CV2A
`n and CV2B

`n are obtained from CV1A
`n and CV1B

`n , respectively, by
replacing Z1n with Z3n, and the quantities CV2C

`n and CV2D
`n are derived from CV1C

`n and
CV1D
`n , respectively, by substituting Z4n in place of Z2n. Finally, the odd terms S V1A

`n
and so on are the same as the even terms CV1A

`n and so on, except that cos(`ξ) must be
replaced by sin(`ξ) in the integrands of these expressions.

In the arclength variable ξ, the tangential dynamic condition (2.7) at the interface
takes the form

DR2[−2xξyξu2X + 1
2 (x2

ξ − y2
ξ)(u2Y + v2X)] = R1[−2xξyξu1X + 1

2 (x2
ξ − y2

ξ)(u1Y + v1X)],

in which the functions u1X and u1Y represent the derivatives of the velocity component
u1(x, y, t) with respect to x and y, respectively, holding the other variables constant,
and then evaluated at the interface (x(ξ, t), y(ξ, t)), and similarly for the other velocity
components. The velocity components and their derivatives in this relation are
obtained from the series representations (2.12) and (2.13) by differentiation, following
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equations (2.9). The resulting expression is again subject to Fourier analysis, in both its
even and odd components. After some algebra, the even components of the tangential
dynamic condition give a system of equations of the form

R1

N∑
n=1

[T 1AC
`n A1n(t) + T 1BC

`n B1n(t) + T 1CC
`n C1n(t) + T 1DC

`n D1n(t)]

= DR2

N∑
n=1

[T 2AC
`n A2n(t) + T 2BC

`n B2n(t) + T 2CC
`n C2n(t) + T 2DC

`n D2n(t)], (4.20)

and the odd Fourier modes give the corresponding system of equations

R1

N∑
n=1

[T 1AS
`n A1n(t) + T 1BS

`n B1n(t) + T 1CS
`n C1n(t) + T 1DS

`n D1n(t)]

= DR2

N∑
n=1

[T 2AS
`n A2n(t) + T 2BS

`n B2n(t) + T 2CS
`n C2n(t) + T 2DS

`n D2n(t)]. (4.21)

There are again further intermediate quantities in these expressions, and the first two
of these are

T 1AC
`n (t) =

∫ π

−π

[
2nxξyξZ′1n(y) sin(nx) +

1
2

(x2
ξ − y2

ξ){Z
′′
1n(y)

+ n2Z1n(y)} cos(nx)
]

cos(`ξ) dξ,

T 1BC
`n (t) =

∫ π

−π

[
−2nxξyξZ′1n(y) cos(nx) +

1
2

(x2
ξ − y2

ξ){Z
′′
1n(y)

+ n2Z1n(y)} sin(nx)
]

cos(`ξ) dξ.

(4.22)

The functions T 1CC
`n and T 1DC

`n are next obtained from these two functions (4.22)
by replacing the function Z1n with Z2n everywhere. Similarly, T 2AC

`n and T 2BC
`n are

obtained from (4.22) by replacing Z1n with Z3n, and T 2CC
`n and T 2DC

`n result by
substituting the function Z4n. The intermediate quantities T 1AS

`n and so on, in
which the symbol S appears in the superscript, are derived from these by replacing
the even basis functions cos(`ξ) with the corresponding odd functions sin(`ξ).

Finally, the normal dynamic condition (2.8) at the interface may be written as

p2
L2

S (t)
(2π)2 + 2DR2[(x2

ξ − y2
ξ)u2X + xξyξ(u2Y + v2X)]

= p1
L2

S (t)
(2π)2 + 2R1[(x2

ξ − y2
ξ)u1X + xξyξ(u1Y + v1X)]

+
2πσ
LS (t)

(xξyξξ − yξxξξ)

in terms of the scaled arclength variable ξ. Here, σ is the surface-tension coefficient
and LS (t) is the length of the interface over one period, for which an expression is
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derived in equation (4.4). This relation is now subject to Fourier decomposition, as
before, in both its even and odd Fourier modes. The even components yield a relation
of the form

2R1

N∑
n=1

[N1AC
`n A1n(t) + N1BC

`n B1n(t) + N1CC
`n C1n(t) + N1DC

`n D1n(t)]

− 2DR2

N∑
n=1

[N2AC
`n A2n(t) + N2BC

`n B2n(t) + N2CC
`n C2n(t) + N2DC

`n D2n(t)]

= −(D − 1)
L2

S (t)
(2π)2 πK`(t) −

2πσ
LS (t)

∫ π

−π

(xξyξξ − yξxξξ) cos(`ξ) dξ, (4.23)

while the odd components give

2R1

N∑
n=1

[N1AS
`n A1n(t) + N1BS

`n B1n(t) + N1CS
`n C1n(t) + N1DS

`n D1n(t)]

− 2DR2

N∑
n=1

[N2AS
`n A2n(t) + N2BS

`n B2n(t) + N2CS
`n C2n(t) + N2DS

`n D2n(t)]

= −(D − 1)
L2

S (t)
(2π)2 πL`(t) −

2πσ
LS (t)

∫ π

−π

(xξyξξ − yξxξξ) sin(`ξ) dξ. (4.24)

The two equations (4.23) and (4.24) again involve a number of intermediate products,
defined as integrals, similar to (4.22) used for the tangential stress condition. The first
two are

N1AC
`n (t) =

∫ π

−π

[
−n(x2

ξ − y2
ξ)Z
′
1n(y) sin(nx) − n2 L2

S (t)
(2π)2 W1n(y) sin(nx)

+ xξyξ(Z′′1n(y) + n2Z1n(y)) cos(nx)
]

cos(`ξ) dξ,

N1BC
`n (t) =

∫ π

−π

[
n(x2

ξ − y2
ξ)Z
′
1n(y) cos(nx) + n2 L2

S (t)
(2π)2 W1n(y) cos(nx)

+ xξyξ(Z′′1n(y) + n2Z1n(y)) sin(nx)
]

cos(`ξ) dξ.

(4.25)

The next two intermediate functions N1CC
`n and N1DC

`n are obtained from the quantities
in (4.25) by replacing all occurrences of the function Z1n with Z2n and W1n with −W2n.
Then N2AC

`n and N2BC
`n are created from (4.25) by replacing Z1n and W1n with Z3n and

W3n, respectively, while N2CC
`n and N2DC

`n are generated from (4.25) by replacing Z1n
and W1n with Z4n and −W4n, respectively. Finally, quantities with an S superscript,
such as N1AS

`n , are obtained from the corresponding term with a C superscript, such as
N1AC
`n , by replacing cos(`ξ) in the integrand with sin(`ξ).
The eight sets of coefficients A1n, B1n, C1n, D1n, A2n, B2n, C2n and D2n are now

calculated at the new time level tk+1 by solving the system of 8N linear algebraic
equations (4.14), (4.15), (4.17), (4.18), (4.20), (4.21), (4.23) and (4.24). The
coefficients of this matrix equation involve the intermediate quantities (4.16), (4.19),
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(4.22) and (4.25), and these integral terms were evaluated using Gaussian quadrature
over an interfacial grid of 401 points, using the routine written by von Winckel [28].
(The previous intermediate functions in equations (4.8) were evaluated using the same
quadrature routine.)

Since the integration of the arclength equation and first kinematic equation was
done simply using Euler’s method, a large number of time steps was needed in order
to maintain accuracy. This was accomplished in the algorithm using two nested loops;
the inner loop typically took 1000 time steps and was embedded in an outer loop of
about 30 steps. This enabled the output to be generated only at the 30 times of interest.
In addition, we found that the interface could develop small numerical instabilities,
which were visible as oscillations on the wave profile, with wavenumber equal to that
of the highest Fourier mode, N, included in the computation. This is a well-known
numerical difficulty in the computation of the Kelvin–Helmholtz instability, and has
been discussed widely in the literature. To overcome this difficulty, Krasny [17]
introduced a type of vortex blob method, in which the sharp interface was effectively
smudged over a region of finite width. This technique has received considerable
attention, and Baker and Pham [2] considered several approaches of this type, and
showed that they did, in fact, somehow alter the evolution of the unstable flow. Chen
and Forbes [6] used a five-point difference formula to smooth the interface in their
calculation, and Forbes and Cosgrove [14] penalized the higher Fourier modes using
apodization in their investigation of a Kelvin–Helmholtz type instability in cylindrical
geometry. In the present algorithm, we have applied a sensitive smoothing approach to
the interface, and only in about 30 steps of the outer time loop in our method. The idea
is based on Lanczos smoothing, as discussed in the text by Hamming [15, p. 535]. The
Fourier-series representations for the functions x(ξ, t) and y(ξ, t) in equations (4.3) at
some spatial point ξ j are replaced with their spatial average over some narrow interval,
ξ j − σL < ξ < ξ j + σL, about the point of interest. A straightforward calculation then
shows that this is equivalent to replacing the coefficients Fn, Gn Kn and Ln in equations
(4.3) by their present values multiplied by sin(nσL)/(nσL), n = 1, 2, . . . , N. This is
particularly easy to implement and, with σL ≈ 0.05, can remove many of the spurious
instabilities in the wave profile. It must, however, be admitted candidly that this
smoothing process does change the results to some extent, a feature which it shares in
common with other techniques such as the vortex blob method [2]. To monitor errors,
therefore, the residuals of the arclength equation (4.2), the two no-slip conditions (2.6)
and the tangential and normal dynamic conditions at the interface are plotted, and
their deviation from zero is noted. This helps to guide the choice of the Lanczos
parameter σL.

Some comments on the initial conditions are appropriate. In order to be consistent
with the linearized solution in Section 3 and results reported in the literature, it is
desirable to start the solution with the pure cosine profile

η(x, 0) = ε cos(nM x), (4.26)

in which the integer nM gives the desired mode of the perturbation to the interface, and
ε is its amplitude. From the arclength condition (4.2) and the desired profile (4.26), it
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follows that the total initial interface length is

LS (0) =

∫ π

−π

√
1 + ε2n2

M sin2(nMξ) dξ.

This is, in fact, a complete elliptic integral of the second kind (see Abramowitz and
Stegun [1, p. 590]), but here it is evaluated using von Winckel’s Gaussian quadrature
routine [28]. A simple Euler method approach is used to solve the differential equation

dx
dξ

=
LS (0)

2π
√

1 + ε2n2
M sin2(nM x)

(4.27)

to get x(ξ, 0). The relation (4.27) coupled with (4.26) then gives the desired initial
cosine profile for the wave; this is Fourier analysed to provide starting values for the
coefficients Fn(0), Gn(0), Kn(0) and Ln(0). Initial values for the coefficients A1n(0),
and so on, are then constructed from these using the relations in Section 3 obtained
from the linearized solution.

The algorithm is found to give good accuracy with about N = 31 Fourier
coefficients, and using 401 mesh points in each period, over the interval ξ ∈ [−π, π].
As Euler’s method has been used to advance the differential equations (4.6), (4.7),
(4.12) and (4.13) from one numerical time level to the next, we have taken a large
overall number of steps to ensure accuracy. Typically about 30 000 time steps are used,
with two embedded loops so as to enable smoothing, analysis of the results and error
checking, as outlined above. In such cases, the routine takes several hours run time on
a moderate-sized personal computer, using MATLAB, and so is not overly demanding
in its use of resources.

5. Presentation of results

5.1. Results with equal densities D = 1 To begin this presentation of results, the
new spectral method described in Section 4 has been run for the case of equal fluid
densities, D = 1. This permits some comparison with the results of Pozrikidis [22],
who refers to this simple case as shear-driven flow. The fluid viscosities (inverse
Reynolds numbers) are set to be equal, R1 = R2 = 1, the fluid depths in each layer
are also equal, h1 = h2 = 1, and the speeds are anti-symmetric, with F1 = 1, F2 = −1.
The linearized solution in Section 3 is then neutrally stable, so that equation (3.14)
gives a zero exponent. A small value of surface tension, σ = 0.001, was chosen
with the intention of suppressing small wiggles in the solution profile, although, in
fact, the result is not noticeably different if surface tension is set to zero in this case.
However, the Lanczos smoothing parameter was chosen to be σL = 0.07, since trial
and error indicated that this was the largest value that could be chosen so that the
results would not be affected, but that numerical wiggles in the wave profile would
largely be eliminated.

The wave profile for this case is shown in Figure 2(a) and the curvature in
Figure 2(b), for the three different times t = 0.1, 1 and 2.3. As time progresses,
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(a)

(b)

Figure 2. Nonlinear (a) interface shapes and (b) curvatures obtained for equal densities D = 1, with speeds
F1 = 1, F2 = −1, viscosities R1 = R2 = 1 and fluid depths h1 = h2 = 1. The surface-tension parameter is
σ = 0.001 and the Lanczos smoothing parameter is σL = 0.07. The initial amplitude was ε = 0.4. Results
are shown for the three times t = 0.1 (dashed line), t = 1 (blue online) and t = 2.3 (red online). (Colour
available online.)

the wave profiles in Figure 2(a) lean progressively to the left, and their amplitude
decreases very slightly due primarily to the effects of the fluid viscosity. Thus, the
largest profile sketched with a dashed line corresponds to t = 0.1, the middle profile
represents t = 1 and the most distorted one is taken from a solution with t = 2.3. At
later times, the solution algorithm of Section 4 gave rise to an 8N × 8N matrix for the
Fourier coefficients that was too ill-conditioned to invert, and the method consequently
failed. This will be discussed in more detail in this paper. The solution was started
from a pure cosine shape, as in equation (4.26), with amplitude ε = 0.4, and the results
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in Figure 2 were generated with N = 31 Fourier coefficients and 401 spatial points
per wavelength, since this was found to be sufficient to guarantee solutions that are
independent of these numerical details. For ease of viewing, two wavelengths have
been shown in Figure 2. As the wave evolves in time, it leans to the left and develops
a very narrow overhanging portion near the neutral height y = 0. A second region of
high curvature also forms on the back of the wave.

One of the advantages of the new spectral algorithm outlined in Section 4 is
that quantities involving derivatives of the wave profile can be evaluated with high
accuracy, since exact differentiation of the series (4.3) is able to be carried out easily.
From the work of Moore [20] in the purely inviscid Kelvin–Helmholtz problem, it is
to be expected that the curvature is of primary interest, and it may be calculated from
the well-known formula

Curvature =
ηxx

[1 + η2
x]3/2 (5.1)

given in Kreyszig [18, p. 400]. When this is represented in terms of the arclength
parameter ξ in equation (4.1), it becomes

Curvature =
xξyξξ − yξxξξ
[x2
ξ + y2

ξ]
3/2

, (5.2)

and this may be evaluated to high accuracy from the series representations in the
spectral method.

The interfacial curvature for this case is shown in Figure 2(b) for the same three
times as presented in Figure 2(a). At the earliest time t = 0.1, the curvature is drawn
with a dashed line and it is very accurately predicted by simply the second derivative of
the initial wave profile (4.26) with respect to x, as would be expected from a linearized
solution. However, by the intermediate time t = 1, the curvature has developed a
distinctly nonlinear profile, with a steep gradient at about x = −π/2. At the last time
shown, t = 2.3, the curvature has developed a very large double peak at this value of
x and, in fact, the algorithm fails to yield solutions for larger times. A smaller double
peak in curvature appears to be forming at about x = π/2, on the back of the wave now
sloping to the left at this value of time.

The behaviour of the curvature in Figure 2(b) is very reminiscent indeed of its
behaviour in the purely inviscid case, as shown by Chen and Forbes [6], for example.
In spite of the large viscosities assumed in the Stokes equations (2.3) and (2.4), it
is nevertheless the case that the curvature grows rapidly at what was originally the
inflection point on the left-hand side of the wave. As time increases, that portion of the
wave steepens to the extent that it overhangs slightly, at which time the numerical
results strongly suggest that a curvature singularity is formed, analogously to the
Moore singularity [20] formed at finite time for the purely inviscid Kelvin–Helmholtz
instability.

In order to gain an appreciation of how the wave evolves in time, a perspective-
type diagram is given in Figure 3, in which the time axis points away from the viewer.
Initially, the wave is a pure cosine of amplitude ε = 0.4, and the other parameters

https://doi.org/10.1017/S1446181115000085 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000085


340 L. K. Forbes et al. [24]

Figure 3. Nonlinear interface shapes for 23 times t = 0.1, 0.2, . . . , 2.3, for equal densities D = 1, speeds
F1 = 1, F2 = −1, viscosities R1 = R2 = 1 and fluid depths h1 = h2 = 1. The surface-tension parameter is
σ = 0.001 and the Lanczos smoothing parameter is σL = 0.07. The initial amplitude was ε = 0.4.

are the same as in Figure 2. Again, the solution is shown over two wave periods
−3π < x < π for ease of viewing. As time progresses, the interface can clearly be seen
to tip towards the left, eventually developing a narrow overhanging region on the left-
hand side. The development of the small ridge on the right-hand side of the wave,
at about the neutral height y = 0, can also be seen, and this gives rise to the smaller
secondary curvature spike in Figure 2(b).

It is well known that the full Kelvin–Helmholtz instability can give rise to
pronounced overhanging portions at the interface, leading to the development of
cat’s eyes spirals. In the Stokes approximation (2.1), Pozrikidis [22] also obtained
long finger-like intrusions of each fluid into the other. In the results presented in
Figures 2 and 3, however, such intrusions were not observed, due to the formation of
apparent curvature singularities midway down the overturning portion of the interface.
Nevertheless, strongly overturning interfaces may be generated, by increasing the
amount of smoothing applied to the interface. This is illustrated in Figure 4, which
has been obtained with precisely the same parameters as for Figure 2, except that
the Lanczos smoothing parameter has now been increased to σL = 0.2. Recall from
Section 4 that Lanczos smoothing is only applied very sparingly in this algorithm, in
an outer loop rather than at every time step. However, even such a minor increase in
the level of interface smoothing can have major effects upon the solution.

From Figure 4(a), it may be seen that simply increasing the Lanczos parameter to
σL = 0.2 now permits the solution to be continued to much later times, well beyond
that at which the apparent curvature singularity had been formed in Figure 2. Two
interfaces are presented in Figure 4(a); the larger amplitude profile corresponds to
time t = 1, and is the same as the profile in Figure 2(a) obtained at the same time,
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(a)

(b)

Figure 4. Nonlinear (a) interface shapes and (b) curvatures obtained for equal densities D = 1, with speeds
F1 = 1, F2 = −1, viscosities R1 = R2 = 1 and fluid depths h1 = h2 = 1. The surface-tension parameter is
σ = 0 and the Lanczos smoothing parameter is increased to σL = 0.2. The initial amplitude was ε = 0.4.
Results are shown at the two times t = 1 (blue online) and t = 6.8 (thick; red online). (Colour available
online.)

but the strongly distorted profile, sketched with a thicker line, was produced at time
t = 6.8. It possesses a well-developed overhanging portion, and also contains sections
where the slope of the interface changes abruptly.

The curvature corresponding to this interface at the increased value σL = 0.2 is
displayed in Figure 4(b). The result for time t = 1 is included in the diagram, but
is almost completely overshadowed by that at the later time t = 6.8, sketched with a
thicker line. It shows extremely large spikes in curvature, located roughly at each of
the two ends of the overturned portion of the wave, where there is a sharp corner in
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Figure 5. Nonlinear interface shapes for 34 times t = 0.2, 0.4, . . . , 6.8, for equal densities D = 1, speeds
F1 = 1, F2 = −1, viscosities R1 = R2 = 1 and fluid depths h1 = h2 = 1. The surface-tension parameter is
σ = 0 and the Lanczos smoothing parameter is increased to σL = 0.2. The initial amplitude was ε = 0.4.

the profile. Figure 4(b) demonstrates the accuracy that is available from this semi-
numerical spectral technique.

A perspective-type diagram of the evolution of the interface, with this increased
Lanczos parameter σL = 0.2, is presented in Figure 5. Solutions are shown at
34 different times, from t = 0.2 until t = 6.8, and they illustrate how the initial
cosine profile leans to the left and then forms the strongly overhanging portions with
interpenetrating fingers of fluid. The development of a small secondary ridge on the
back of the wave is also visible in this diagram.

The solution profiles and curvature shown in Figures 4 and 5 are broadly similar to
those obtained at other parameter values. As an example, Figure 6 presents a solution
at the slower fluid speeds F1 = 0.1 and F2 = −0.1 and zero surface tension, while the
other parameters are maintained at their previous values. The result is quite similar
to that shown in Figure 4(a), except that the evolution of the interface occurs over a
much longer time. Thus, the profile sketched with a dashed line in Figure 6 shows
the interface at time t = 2, and it is almost indistinguishable from the initial cosine
shape (4.26) at t = 0 (with nM = 1). The middle curve drawn with a solid line shows
the interface at time t = 30, when it has clearly distorted to the left. In this diagram,
the Lanczos smoothing parameter has again been set to σL = 0.2, and this permits the
interface at the last time t = 76 to distort heavily to the left, as shown with the thick
solid line in the diagram. It has again developed pronounced overhanging portions in
the profile, with regions of very high curvature at each end of the overhanging portion.

5.2. Asymptotic theory for equal densities D = 1 The development of apparent
curvature singularities, as illustrated in Figure 4, has not been reported previously
and is a surprising outcome. Accordingly, it is important to understand the origins
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Figure 6. Nonlinear interface shapes obtained for equal densities D = 1, with speeds F1 = 0.1, F2 = −0.1,
viscosities R1 = R2 = 1 and fluid depths h1 = h2 = 1. The surface-tension parameter is σ = 0 and the
Lanczos smoothing parameter is σL = 0.2. The initial amplitude was ε = 0.4. Results are shown at the
three times t = 2 (dashed line), t = 30 (solid; blue online) and t = 76 (thick; red online). (Colour available
online.)

of such behaviour. It is now shown here that curvature singularity is an inevitable
consequence of the shear-driven nature of these flows, and this can be demonstrated
for the degenerate case D = 1 in closed form.

Set D = 1 and the viscosities equal, R1 = R2, and, to simplify the algebra, also
take the depths and speeds to be equal, so that h1 = h2 and F1 = −F2. Then the
streamfunctions (2.11) both reduce to

ψ1(y) = ψ2(y) = −
F1

2h1
(y2 + h2

1).

This is a pure Couette flow, and it follows from equation (2.9) that the velocity is
purely horizontal with components u = −F1y/h1 and v = 0, as expected.

Now consider the initial wave profile (4.26) represented parametrically in the form

(x(0), y(0)) = (X, ε cos(nMX)). (5.3)

If the flow is regarded as purely Couette with the velocity remaining horizontal, then
it follows that the wave profile (5.3) evolves in time to become

(x(t), y(t)) =

(
X − εt

F1

h1
cos(nMX), ε cos(nMX)

)
(5.4)

in terms of the spatial parameter X. The curvature (5.1) is again expressed
parametrically, and takes the form

Curvature =
xXyXX − yX xXX

[x2
X + y2

X]3/2
, (5.5)
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analogously to equation (5.2). We now take the parametrized waveform (5.4) and
substitute into the formula (5.5) for the curvature. This yields the result

Curvature = −
εnM cos(nMX)

[(1 + pM(X)F1t/h1)2 + p2
M(X)]3/2

, (5.6)

in which it is convenient to define the function
pM(X) = εnM sin(nMX).

This formula (5.6) has some fascinating consequences. Since the time t increases
continuously, there is a point on the wave profile (5.4) and a time for which

t = −
h1

F1 pM(X)
.

When this occurs, the curvature will become

−
cos(nMX)

ε2n2
M sin3(nMX)

at that particular point. It follows at once from this result that there are points (near the
crests and troughs of the wave profile) for which the curvature may become arbitrarily
large at appropriate times. This shows that curvature singularities of the type seen
in this paper are a natural consequence of fluid shear. Furthermore, it gives strong
confirmation of the accuracy of our new algorithm in Section 4, which is able to predict
such behaviour accurately.

The predictions of this asymptotic solution are shown in Figure 7, for the same
parameter values as in Figure 4, and at the same two times t = 1 and t = 6.8. In
Figure 7(a), the interface is presented at these two times, and is calculated from
equation (5.4). It compares reasonably well with the numerically obtained interface
in Figure 4(a), except that its amplitude is not subject to the same level of decay with
time as in Figure 4(a). This decay was mostly caused, of course, by the inclusion of the
Lanczos smoothing parameter, which had to be set at the rather high value σL = 0.2
so that solutions could be generated at the later time t = 6.8. As mentioned in the
discussion of Figure 4, this does have a significant effect on the numerical solution,
and is responsible for the decay in Figure 4(a). By contrast, there is no possible
deterioration of the wave in Figure 7, because it has been assumed in this asymptotic
approach that the flow remains horizontal, and the evolution of the wave is, therefore,
purely the result of shear.

The curvature for this same case, computed from the asymptotic formula (5.6), is
shown in Figure 7(b) at time t = 6.8. Here, although equation (5.6) predicts essentially
infinite curvature at certain points, the result is shown only on the same vertical scale
as in Figure 4(b) so as to facilitate comparison. There is clearly very good agreement
between Figures 4(b) and 7(b), particularly with respect to the location and timing of
the occurrences of the singularities, although the strength of the peaks in Figure 4(b)
has deteriorated somewhat, again because of the inclusion of the Lanczos smoothing in
that numerical solution. Nevertheless, the fact that the numerical scheme in Section 4
can calculate the curvature with such precision under such difficult circumstances
represents a strong endorsement of this new algorithm.
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(a)

(b)

Figure 7. Nonlinear (a) interface shapes and (b) curvatures obtained for equal densities D = 1, with speeds
F1 = 1, F2 = −1, viscosities R1 = R2 = 1 and fluid depths h1 = h2 = 1. The initial amplitude was ε = 0.4,
and results obtained from the asymptotic solution in Section 5.2 are shown at the two times t = 1 (blue
online in part (a)) and t = 6.8 (thick; red online). (Colour available online.)

5.3. Results with two dissimilar fluids When the densities, viscosities and so
on are no longer equal, no major qualitative change is observed in the solutions,
although the wave profiles lose their symmetry about the neutral height y = 0. Two
final examples are now given, to conclude this presentation of results. The first is
displayed in Figure 8, for unequal densities D = 0.97 and unequal viscosities R1 = 1.2,
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Figure 8. Nonlinear interface shapes obtained for density ratio D = 0.97, with speeds F1 = 1, F2 = −1
and viscosities R1 = 1.2, R2 = 1. Here, the lower fluid is deeper, and h1 = 2, h2 = 1. The surface tension
is σ = 0 and the Lanczos smoothing parameter is set to σL = 0.15. The initial amplitude was ε = 0.4.
Results are shown at the three times t = 0.2 (dashed line), t = 2 (solid; blue line) and t = 4.2 (thick; red
line). (Colour available online.)

R2 = 1. Surface tension has been set to zero, but now the lower fluid 1 is twice the
depth of the upper fluid 2, so that h1 = 2, h2 = 1. The two Froude numbers are F1 = 1,
F2 = −1, and the linearized solution of Section 3 sets the growth rate in equation (3.14)
to be λ = −0.0019 ± 0.2607i. Thus, linearization predicts a weakly decaying wave, as
a consequence of the viscosity and unequal densities.

The wave profile is shown at time t = 0.2, where it is drawn with a dashed line; it is
almost indistinguishable from the cosinusoidal initial condition (4.26) with amplitude
ε = 0.4. The later profile at time t = 2 has leaned to the left, and the solution at the
final time t = 4.2, drawn with a thicker line, is strongly distorted. In addition, it has
clearly developed points of very high curvature and, with N = 31 Fourier coefficients
and the value σL = 0.15 of the Lanczos smoothing parameter assumed here, this last
solution is the largest time for which reliable solutions could be obtained. As discussed
above, wave profiles can be computed for larger times, and be displaying considerably
more distortion by increasing the Lanczos parameter σL, but that is not pursued further
here. Nevertheless, overturning portions in the profile at time t = 4.2 are visible in the
diagram. The waves are no longer symmetrical about the central line y = 0 and, in
particular, the crests move strongly to the left while the troughs remain almost in the
same location throughout the evolution of the solution.

The converse situation is shown in Figure 9, since in these diagrams the upper fluid
is the deeper of the two with h1 = 1 and h2 = 2. The other parameters are the same as
for Figure 8. At a first glance, the wave profile in Figure 9(a) looks something like that
in Figure 8 but tipped upside down, since the crests are now narrower than the troughs.
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(a)

(b)

Figure 9. Nonlinear (a) interface shapes and (b) curvatures obtained for density ratio D = 0.97 with speeds
F1 = 1, F2 = −1 and viscosities R1 = 1.2, R2 = 1. Here, the upper fluid is deeper, and h1 = 1, h2 = 2. The
surface tension is σ = 0 and the Lanczos smoothing parameter is set to σL = 0.15. The initial amplitude
was ε = 0.4. Results are shown at the three times t = 0.2 (dashed line), t = 2 (solid; blue online) and
t = 3.6 (thick; red online).

Solutions are again shown at times t = 0.2 (dashed line) and t = 2 (solid line), but now
the algorithm with Lanczos parameter σL = 0.15 would not progress past time t = 3.6,
and so this is the last time shown in Figure 9(a), drawn with a thicker solid line. In
this case, the crests stay nearly in the same position as the solution develops and the
troughs move to the right, although this again gives a narrow overhanging section in
the wave profile at the last time t = 3.6.
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Figure 10. A comparison of the maximum wave height for the wave as a function of time, for the linearized
solution (dashed; blue online) and the nonlinear solution (solid; red online) (Colour available online). The
density ratio is D = 0.8, the speeds are F1 = 0.1, F2 = −0.1 and the viscosities are R1 = 1.2, R2 = 1. Here,
the lower fluid is deeper, and h1 = 2, h2 = 1. The surface tension is σ = 0 and the Lanczos smoothing
parameter is set to σL = 0.1. The initial amplitude was ε = 0.1.

The curvatures for these three times are presented in Figure 9(b). At the earliest
time t = 0.2, sketched with a dashed line, the curvature is closely approximated by the
second derivative of the initial profile (4.26), as expected from the linearized solution,
but by time t = 2 nonlinear effects are strongly in evidence, as the solution contains
long almost flat sections interrupted by narrow S-shaped portions. At the last time
t = 3.6, the curvature has developed large spikes at about x = 0, towards the top of
the wave profile there. These curvature spikes are strongly reminiscent of the Moore
curvature singularity encountered in purely inviscid Kelvin–Helmholtz flows [20], and
they further indicate that the wave profile does indeed overturn slightly. As with
Figure 4(a), solutions can be obtained in this case, too, at later times and exhibiting far
stronger overturning fingers, by increasing the value of the Lanczos parameter σL, but
that is not pursued further here.

A comparison of the maximum wave heights with time is given in Figure 10, for
the linearized solution of Section 3 and the nonlinear case in Section 4. This figure
is analogous to those presented by Pozrikidis [22], and it similarly shows the natural
logarithm of the maximum wave height yMAX divided by the initial maximum value
ε. Here, the parameters are chosen to give a strong difference in the properties of
the two fluids, so that the density ratio is D = 0.8, the fluid viscosities are R1 = 1.2,
R2 = 1 and the depths are also dissimilar with h1 = 2, h2 = 1. A wave of smaller initial
amplitude ε = 0.1 has been chosen, and the focus is on the earlier times 0 < t < 10.
For this case, we found it necessary to set the Lanczos parameter σL = 0.1 in order
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to overcome the ill-conditioning of the problem. The linearized solution has a decay
rate calculated from equation (3.14) to be <{λ} = −0.0139, and this is precisely the
slope of the dashed line in Figure 10, as expected; its decay is the result of the fluid
viscosities. The nonlinear result is shown with a solid line and, although its slope at
t = 0 agrees well with the linearized value, it must be acknowledged again that the
inclusion of the Lanczos parameter σL has a significant additional damping effect on
the wave, as discussed previously. Consequently, the nonlinear curve soon develops a
larger more negative slope, reflecting the influence of Lanczos damping. Very similar
results to Figure 10 are produced for all the other cases studied in this investigation.

6. Boussinesq–Stokes approximation

In the Boussinesq approximation, it is assumed that the density ρ of the fluid is
a smoothly varying function so that, necessarily, the true interface that is subject to
conditions (2.5)–(2.8) is simply ignored. Instead, the density varies continuously from
the value ρ = 1 at the lower wall z = −h1 to ρ = D at the upper wall z = h2, in these
dimensionless variables. The density is expressed in the form ρ = 1 + ρ̄, and it is
assumed that the perturbation variable ρ̄ remains small. In the present application,
ρ̄→ 0 as y→ −h1 and ρ̄→ −(1 − D) as y→ h2, with a continuous but rapidly varying
section in the region corresponding to the location of the interface. The governing
equations are, therefore,

∇p = −(1 + ρ̄)j + R∇2q, (6.1)

replacing equations (2.3) and (2.4), along with the usual incompressibility condition
(2.2). There is also a transport equation

∂ρ̄

∂t
+ q · ∇ρ̄ = K∇2ρ̄ (6.2)

for the density perturbation function ρ̄, in which the constant K is a diffusion
coefficient. Physically, it can be regarded as a Prandtl number, or in some
circumstances as a thermal diffusion coefficient as discussed in Forbes [12].

The solution of the equations (6.1) and (6.2) is accomplished using the spectral
representations

u(x, y, t) =
1

(h2 + h1)
[F2(y + h1) − F1(y − h2)]

+

M∑
m=1

N∑
n=1

b′mn(y)[Amn(t) cos(nx) + Bmn(t) sin(nx)], (6.3)

v(x, y, t) =

M∑
m=1

N∑
n=1

nbmn(y)[Amn(t) sin(nx) − Bmn(t) cos(nx)] (6.4)

for the two velocity components. These may be derived from a streamfunction ψ,
which is not given here in the interests of space, and they satisfy the incompressibility
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condition (2.2) identically. It follows, by taking the vector curl of the Boussinesq–
Stokes momentum equation (6.1), that the density perturbation function ρ̄ is related to
the streamfunction ψ through a vorticity equation of the form

∂ρ̄

∂x
= −R∇4ψ. (6.5)

This results in the spectral representation

∂ρ̄

∂x
= −R

M∑
m=1

N∑
n=1

[b(4)
mn(y) − 2n2b′′mn(y) + n4bmn(y)]

× [Amn(t) cos(nx) + Bmn(t) sin(nx)]. (6.6)

In this novel spectral solution of the approximate Boussinesq–Stokes model (6.1)–
(6.2), we choose the basis functions bmn(y) to satisfy the fourth-order differential
equation

b(4)
mn(y) − 2n2b′′mn(y) + n4bmn(y) = sin

(mπ(y + h1)
h2 + h1

)
(6.7)

along with the four boundary conditions

bmn(−h1) = 0, bmn(h2) = 0,
b′mn(−h1) = 0, b′mn(h2) = 0,

in order to obey the no-slip conditions at the two walls. After some algebra, this results
in the choice

bmn(y) =
(mπ)/(h2 + h1)

C4
mn[sinh2 n(h2 + h1) − n2(h2 + h1)2]
× {(y + h1) sinh n(y − h2)[sinh n(h2 + h1) + cos(mπ)n(h2 + h1)]
− (y − h2) sinh n(y + h1)[n(h2 + h1) + cos(mπ) sinh n(h2 + h1)]}

+
1

C4
mn

sin
(mπ(y + h1)

h2 + h1

)
, (6.8)

where auxiliary constants

C2
mn = n2 +

( mπ
h2 + h1

)2
(6.9)

have been defined for convenience. In view of this choice (6.8), the appropriate
representation for the density perturbation function is obtained from equation (6.6)
to be

ρ̄(x, y, t) = −(1 − D)
( y + h1

h2 + h1

)
+

M∑
m=1

Bm0(t) sin
(mπ(y + h1)

h2 + h1

)
−R

M∑
m=1

N∑
n=1

1
n

sin
(mπ(y + h1)

h2 + h1

)
[Amn(t) sin(nx) − Bmn(t) cos(nx)].

(6.10)
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The coefficients Amn(t) and Bmn(t) in the representations (6.3)–(6.10) are obtained
from the density-transport equation (6.2) after Fourier decomposition. This leads to
the systems of ordinary differential equations

B′k0(t) = −KBk0(t)
( kπ
h2 + h1

)2

−
1

π(h2 + h1)

∫ h2

−h1

∫ π

−π

(
u
∂ρ̄

∂x
+ v

∂ρ̄

∂y

)
sin

(kπ(y + h1)
h2 + h1

)
dx dy,

k = 1, 2, . . . ,M, (6.11)

and

A′k`(t) = −KC2
k`Ak`(t)

+
2`

π(h2 + h1)R

∫ h2

−h1

∫ π

−π

(
u
∂ρ̄

∂x
+ v

∂ρ̄

∂y

)
sin

(kπ(y + h1)
h2 + h1

)
sin(`x) dx dy,

k = 1, 2, . . . ,M, ` = 1, 2, . . . ,N. (6.12)

The equations for the derivatives B′k`(t) are the same as for (6.12), except that every
appearance of Ak` is replaced by Bk` and sin(`x) in the integrand is replaced with
−cos(`x).

Initial conditions are chosen to be consistent with those adopted in the linearized
solution of Section 3 and the corresponding nonlinear profile (4.26). Accordingly, the
initial perturbation density function is taken to be

ρ̄(x, y, 0) =

0 if − h1 < y < ε cos(nM x),
−(1 − D) if ε cos(nM x) < y < h2.

(6.13)

This initial density profile (6.13) is similarly subject to Fourier decomposition, to yield
starting values Bk0(0), Ak`(0) and Bk`(0) for the differential equations (6.11) and (6.12).
These involve certain integrals, which are evaluated using the Gaussian quadrature
routine of von Winckel [28]. The quadratures in the differential equations (6.11)
and (6.12) are evaluated in the same manner at each time step. Finally, this system
of M(2N + 1) differential equations is integrated forward in time using the adaptive
Runge–Kutta–Fehlberg routine ode45 provided by MATLAB.

Figure 11 shows profiles of the density perturbation function ρ̄ computed from the
spectral representation (6.10) starting from the initial condition (6.13) with amplitude
ε = 0.4 at the first mode nM = 1. In the upper portion of each diagram (blue online), the
density function has the value ρ̄ = −0.03 and the lower portion (red online) represents
ρ̄ = 0. The mottled appearance of this lower section is caused by very small amplitude
waves resulting from Gibbs’ phenomenon [18, p. 510], and is of no consequence.
There is a narrow interfacial region, across which the density function changes rapidly
but smoothly between these two values. The three diagrams show the development of
the Boussinesq–Stokes solution at the three times t = 10, 20 and 30, and the interfacial
zone forms a steepening front on the left-hand side, eventually overhanging at about
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(a) (b)

(c)

Figure 11. Density profiles computed using the Boussinesq–Stokes approximation, for times (a) t = 10,
(b) t = 20 and (c) t = 30. The density ratio is D = 0.97, with speeds F1 = 0.1, F2 = −0.1 and viscosity
parameter R = 1. The two fluid depths are equal, with h1 = h2 = 1, and the diffusion coefficient is
K = 10−4. The initial amplitude was ε = 0.4. The heavy dashed line is the interface computed from
the Stokes model of Section 4 with R1 = R2 = 1 and Lanczos smoothing parameter σL = 0.15. (Colour
available online.)

time t = 30. The heavy dashed line in each of these three pictures is the location
of the interface computed for the same parameter values from the representation
(4.3) in Section 4. At the earliest time t = 10, it lies almost precisely in the midst
of the interfacial zone predicted by the Boussinesq–Stokes approximation. As time
progresses, however, the exact interface (4.3) is not as free to form overhanging
portions as the simpler Boussinesq–Stokes approximation, but, instead, begins to
develop regions of very high curvature. Consequently, the two sets of results differ
slightly in the region of the front at later times. The Lanczos smoothing parameter was
taken to be σL = 0.15 for the calculation of the interface, but checking confirmed that
this had no significant effect on the interface profile at these three times shown.

For interest, the predictions of the Boussinesq–Stokes approximation at the much
later time t = 60 are shown in Figure 12. Curvature singularities in the exact interface
have prevented the solution of Section 4 from continuing to this late time, and so there
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Figure 12. Density profile computed using the Boussinesq–Stokes approximation at time t = 60. The
parameter values are the same as for Figure 11.

Figure 13. Curvatures for the three interfaces shown in Figure 11, at the times t = 10 (thin blue line),
t = 20 (heavy black dashed line) and t = 30 (thick solid red line). (Colour available online.)

is no comparison possible between the two in Figure 12. The severely overhanging
interface in Figure 12 is qualitatively similar to those presented by Pozrikidis [22].

The curvatures of the three interfacial profiles sketched with heavy dashed lines in
Figure 11 are shown in Figure 13 at the same three times, t = 10, 20 and 30. Again
it is found that at certain points along the interfacial profile, the curvature develops
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(a) (b)

(c)

Figure 14. Vorticity profiles computed using the Boussinesq–Stokes approximation, for times (a) t = 10,
(b) t = 20 and (c) t = 30. The density ratio is D = 0.97, with speeds F1 = 0.1, F2 = −0.1 and viscosity
parameter R = 1. The two fluid depths are equal, with h1 = h2 = 1, and the diffusion coefficient is
K = 10−4. The initial amplitude was ε = 0.4. The heavy dashed line is the interface computed from the
Stokes model of Section 4. The heavy (red) solid line is the density contour ρ̄ = −0.015 that most nearly
represents the interface location for the Boussinesq–Stokes approximation. (Colour available online.)

large spikes as encountered previously in Figures 2, 4 and 9. Evidently, the curvature
becomes singular at some finite time, analogous to the situation described by Moore
[20] in the purely inviscid Kelvin–Helmholtz flow, and these singularities ultimately
render the Stokes theory invalid beyond that critical time.

To conclude this comparison with Boussinesq–Stokes theory, it is of interest to
consider the vorticity function ζ = ∂v/∂x − ∂u/∂y. This is calculated in spectral form
from the representations (6.3) and (6.4), and is illustrated in Figure 14 for the same
three times, t = 10, 20 and 30 and the same parameter values as in Figure 11. In
these three diagrams, contours of the function ζ are shown and, in each case, there
are two additional curves overlaid on the picture. One of these is a thick solid line,
and represents the location of the density contour ρ̄ = −(D − 1)/2 = −0.015. This is
the median value of the perturbation density function, and so serves as a proxy for the
location of the interface, as calculated by the Boussinesq–Stokes approximation. The
other curve is indicated with a heavy dashed line and is the exact interface location
calculated from the Stokes model in Section 4; this is the same set of curves as
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Figure 15. Vorticity profile computed using the Boussinesq–Stokes approximation at time t = 60. The
parameter values are the same as for Figure 14. The heavy (red) solid line is the density contour
ρ̄ = −0.015 that most closely represents the interface location for the Boussinesq–Stokes approximation.
(Colour available online.)

plotted in Figure 11. As seen previously, there is a very close agreement between
the two curves at early times, but they differ near the developing front by the later time
t = 30. Most noticeably, a strong patch of vorticity is predicted by the approximate
Boussinesq–Stokes theory to develop near the location of the front, and this is evident
in Figure 14(a)–(c). It is ultimately responsible for the overturning of the front in
this theory; by contrast, the exact interface is ultimately limited by the formation of
curvature singularities, and these have been illustrated in Figure 13.

As a final point of interest, the vorticity contours computed from the Boussinesq–
Stokes theory at the later time t = 60 are shown in Figure 15. Additionally, the
median density contour ρ̄ = −0.015 has been overlaid on the figure, as an indication
of the shape of the interfacial zone, and has been extracted from the results shown in
Figure 12. The strong patch of vorticity that accompanies the overturning interface in
this approximation is still visible, although its intensity has dissipated, relative to the
earlier times shown in Figure 14.

7. Discussion and conclusion

This paper has presented a novel spectral method for computing the large-amplitude
disturbances to an interface between two very viscous fluids governed by the Stokes-
flow approximation. In addition, the full linearized solution has been developed.
The original intention here was to devise a computational method that represented
a straightforward extension of the extended approach of Forbes et al. [13] to new
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situations involving the Stokes flow. That approach made use of the arclength method,
as in Section 4, and then converted all the interfacial boundary conditions into ordinary
differential equations for the Fourier coefficients by an exact differentiation of the
Fourier expressions at the interface with respect to time. While this philosophy is
highly successful for purely inviscid fluids in which Bernoulli’s equation allows the
pressure at the interface to be calculated directly from the fluid velocity, in the present
viscous application it turns out to be significantly less successful. Not only is it
complicated to implement, but, more importantly, it gives rise to a poorly conditioned
numerical problem.

Accordingly, the new algorithm of Section 4 derives ordinary differential equations
for the Fourier coefficients describing the wave profile as in the inviscid method of
Forbes et al. [13]. However, it then solves purely algebraic equations for the Fourier
coefficients of the representations for the streamfunctions and pressures in each fluid.
The method is fast and accurate, and allows sensitive quantities, such as the curvature
of the interface, to be calculated extremely accurately. Possibly, the weakest feature
of the method is that it uses simple Euler time stepping to advance the ordinary
differential equations in time. This could be replaced with a more sophisticated
quadrature, but at a highly increased computational cost, possibly involving iteration
at each time step. Here, we found it easier to maintain accuracy simply by using a
large number of time steps, and this has been implemented in a scheme that involves
two embedded loops.

Our numerical results give strong support to the suggestion that even for Stokes
flow of highly viscous fluids, the interface may develop singularities within finite
time. This is already known to be possible in other geometries, and Siegel [24] has
shown that bubbles in straining viscous flow become elongated, and may eventually
form cusp singularities at their pointed ends within finite time. Similarly, Eggers and
Villermaux [9] surveyed singularities that may form in the pinch-off of fluid jets.
However, the present work also suggests that planar singularities closely analogous
to Moore’s curvature singularity [20] may occur for periodic waves, and in about the
same location as for the inviscid Kelvin–Helmholtz instability, namely, at the point
where the linearized approximation has an inflection point in the profile.

Forbes [11] demonstrated numerically that the role of viscosity is to replace
Moore’s curvature singularity [20] at the interface of inviscid fluids with a small
region of high vorticity, giving rise in time to overturning of the interface. However,
the results of the present paper may also suggest that viscosity alone may not be
responsible for creating the small patch of high vorticity, but, instead, viscosity
combined with inertial terms and a finite-thickness interfacial zone may account
for this effect. Indeed, in the approximate Boussinesq–Stokes theory developed in
Section 6, it has been demonstrated that replacing the exact interface with a smooth
interfacial zone permits a strongly overhanging portion to develop in the wave profile.
In the exact formulation of Section 4, it has also been shown that introducing a small
degree of smoothing in the Fourier domain, using the Lanczos philosophy in which an
interface location at a point is replaced by its average over a small region centred at
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this point, can allow the evolution of the interface to continue past the critical time of
singularity formation and permit the formation of overhanging fingers. While Lanczos
smoothing does not appreciably alter the solution for early times, it must be admitted
that it does change the interface at later times, and in that respect it is similar to the
vortex blob methods introduced by Krasny [17] and others, designed specifically to
permit inviscid interfaces to continue evolving after the critical time, and to overturn.
It is even possible that the boundary-integral approach of Pozrikidis [22], for example,
may implicitly encode a similar damping mechanism, as the exact integrals along the
interface are eventually discretized in the final algorithm.

A new asymptotic theory has been presented in Section 5.2, and it shows how the
curvature singularities encountered in this paper are the result of shearing in the flow.
Thus, it seems possible that curvature singularities may be a feature of time-dependent
free-surface flows of both inviscid fluids [20] and highly viscous fluids. Indeed, Barnea
and Taitel [3] provided a detailed discussion of the highly nonintuitive fact that very
viscous Kelvin–Helmholtz flows behave surprisingly similarly to completely inviscid
ones. Crucially, the Stokes approximation (2.1) ignores the nonlinear convection terms
in the full Navier–Stokes system, and these may also have a key role in suppressing
curvature singularities at the interface.
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