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Accurate reduced models of turbulence are desirable to facilitate the optimisation of
magnetic-confinement fusion reactor designs. As a first step towards higher-dimensional
turbulence applications, we use reservoir computing, a machine-learning (ML) archi-
tecture, to develop a closure model for a limiting case of electrostatic gyrokinetics. We
implement a pseudo-spectral Eulerian code to solve the one-dimensional Vlasov—Poisson
system on a basis of Fourier modes in configuration space and Hermite polynomials
in velocity space. When cast onto the Hermite basis, the Vlasov equation becomes an
infinitely coupled hierarchy of fluid moments, presenting a closure problem. We exploit
the locality of interactions in the Hermite representation to introduce an ML closure
model of the small-scale dynamics in velocity space. In the linear limit, when the kinetic
Fourier—-Hermite solver is augmented with the reservoir closure, the closure permits a
reduction of the velocity resolution, with a relative error within 2 % for the Hermite
moment where the reservoir closes the hierarchy. In the strongly nonlinear regime, the
ML closure model more accurately resolves the low-order Fourier and Hermite spec-
tra when compared with a naive closure by truncation and reduces the required velocity
resolution by a factor of 16.
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1. Introduction

One of the most important ongoing efforts in the pursuit of magnetic fusion energy
is the study of microturbulence (Yoshida et al. 2025). While magnetic-confinement
fusion plasmas are designed to be stable to macroscopic magnetohydrodynamic per-
turbations, the steep gradients in temperature and density that are present in all
current designs also drive small-scale instabilities. These instabilities drive sustained
turbulence, which then dominates the transport of particles, energy and momentum
in the plasma.

As the fusion industry turns its focus toward designing first-of-a-kind pilot plants,
optimising these designs to mitigate turbulent heat losses is an urgent objective.
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Significant progress in turbulence optimisation for tokamaks (Highcock et al. 2018)
and stellarators (Roberg-Clark et al. 2023; Kim et al. 2024) has been achieved.
However, the space of candidate magnetic equilibria remains vast, and high-
resolution turbulence simulations are computationally expensive. A unifying feature
of fluid (Kraichnan 1959; Kolmogorov 1991), magnetohydrodynamic (Goldreich &
Sridhar 1995) and gyrokinetic (Bandén Navarro et al. 2011) turbulence theory is
that free energy tends to cascade from large scales to small scales through local

interactions in phase space, and these cascades are well described by power laws.'
Therefore, models that can accurately calculate large-scale quantities, including spec-
tra and heat fluxes, without needing to resolve small scales, are both desirable and
plausible.

In the field of fluid turbulence modelling, two successful approaches to con-
structing reduced, lower-resolution models that capture large-scale behaviour
are Reynolds-averaged Navier-Stokes (Reynolds 1895) and large-eddy simulation
(Deardorff 1970). Large-eddy simulation also has been used to build reduced models
of gyrokinetic turbulence (Bafion Navarro et al. 2014). These formalisms acceler-
ate turbulence simulations by averaging over time and filtering out the small-scale
dynamics. Closure models provide another pathway to filter out the small scales
while retaining accurate large-scale statistics. In kinetic plasma physics, Hammett &
Perkins (1990) developed a landmark analytic linear closure for the low-frequency
response to small Langmuir oscillations.

An alternative method for building reduced models is to use data-driven, statistical
techniques like machine learning (ML) and Bayesian optimisation. In recent years,
the proliferation of ML models has led to advancements in pattern identification
and model construction for magnetic fusion. Some example applications include
improved prediction and avoidance of tokamak disruptions using the DECAF frame-
work (Piccione et al. 2020) and on the DIII-D tokamak (Rea et al. 2019; Fu et al.
2020), improved active-feedback plasma control systems with reinforcement learn-
ing (Degrave et al. 2022; Seo et al. 2024; Kerboua-Benlarbi et al. 2024), optimised
execution of gyrokinetic simulations with the PORTALS framework (Rodriguez-
Fernandez, Howard & Candy 2022) and accelerated, low-resolution turbulence
simulations (Greif, Jenko & Thuerey 2023; Castagna et al. 2024; Clavier et al.
2025). Data-driven, configuration space (Ma et al. 2020; Qin et al. 2023) and heat
flux (Ingelsten et al. 2024; Huang, Dong & Wang 2025) closure models of Landau
damping have also been developed.

In this paper, we choose to use the one-dimensional, collisionless Vlasov-Poisson
system as a test problem for implementing an ML closure in velocity space. This
system is the one-dimensional, electrostatic limit of the full five-dimensional gyroki-
netic system (Parker & Dellar 2015). It models dynamics parallel to the magnetic
field, and it contains a quadratic nonlinearity present in the full gyrokinetic system.
These features make the Vlasov-Poisson system a suitable foundation to assess the
future potential for a closure model to be developed for gyrokinetic turbulence.

In parallel velocity space, we use properties of the Hermite basis to cast the objec-
tive of reducing resolution requirements as a closure problem. The Hermite basis

IPower laws typically arise when a scale-local transfer of energy occurs, and a separation between energy
injection and dissipation scales exists. The relevance of scale locality to energy cascades in gyrokinetics has been
studied in detail by Barnes, Parra & Schekochihin (2011) and Teaca, Jenko & Told (2017). In some systems of
interest, inverse cascades occur, driving invariants from small scales to large scales. The theory of inverse cascades
has been developed for several two-dimensional systems (Hasegawa & Mima 1978; Plunk et al. 2010), yet an open
question remains about their applicability to the full five-dimensional gyrokinetic system.
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has been used extensively to solve problems in kinetic plasma dynamics (Armstrong
1967; Grant & Feix 1967; Joyce, Knorr & Meier 1971; Gibelli & Shizgal 2006;
Zocco & Schekochihin 2011; Loureiro, Schekochihin & Zocco 2013; Kanekar et al.
2015; Parker & Dellar 2015; Jorge, Ricci & Loureiro 2017; Adkins & Schekochihin
2018; Mandell, Dorland & Landreman 2018; Frei et al. 2023). In this work, we opt
to focus on velocity space because the Hermite basis naturally expresses the inter-
action between scales in velocity space as local interactions in a coupled hierarchy
of moments. This property of the moment formalism directly presents a single-term
target for a closure. Specifically, the interaction between resolved scales and unre-
solved scales in velocity space appears as a single unknown term in an equation in
this representation. In contrast, the spectral representation of configuration space
introduces some non-local interactions across scales, complicating the development
of a closure model. Additionally, the Hermite basis explicitly expresses conserva-
tion laws for particle number, momentum and energy as evolution equations for the
lowest-order moments. These properties allow us to develop a closure that preserves
the low-order conservation laws. More details on the closure problem are presented
in § 3.5.

We use reservoir computing, an ML architecture, to implement a spectral, proof-
of-concept, velocity-space closure for the moment hierarchy that maintains accurate
spectra and reduces resolution requirements. The reservoir computing model main-
tains an internal representation of the system state, which it evolves through a
directed graph with fixed weights. It then predicts the system state at time ¢ + 1 from
the state at time ¢ using a set of output weights trained by linear regression. Since
its concurrent development by Jaeger (2001) and Maass, Natschliger & Makram
(2002), reservoir computing has successfully been applied to the task of forecasting
the dynamics of low-dimensional chaotic systems (Lu ef a/. 2017; Pathak et al. 2018).
This ML paradigm is well suited to the task of modelling time-series data of physical
processes. In climate physics, Arcomano et a/. (2020) built a surrogate global atmo-
spheric forecast model with reservoir computing, and in plasma physics, Jalalvand
et al. (2022) used reservoir computing to analyse and classify Alfvén eigenmodes
using DIII-D diagnostics data. In comparison with several other recurrent neural
network architectures, reservoir computing has shown comparable ability to cap-
ture the statistics of chaotic systems, while requiring significantly less training time
(Vlachas et al. 2020). These results motivate our decision to use reservoir computing
for the closure model.

Some ML methods, including reservoir computing, are more challenging to inter-
pret than traditional physics models. Artificial neural network architectures are often
‘black boxes’ that generate layered, analytically intractable networks of nonlinear
activation functions. Gaining insightful intuition from these networks can be daunt-
ing. We mitigate this problem by constraining the ML portion of our simulations to
represent only the unresolved small scales, preserving analytic evolution equations
for large scales. Our methods are analogous to a large-eddy simulation approach for
phase space.

The paper has the following structure. In § 2, we present our test problem, the
normalised one-dimensional Vlasov-Poisson system. We then derive the projection
of the system onto the pseudo-spectral Fourier-Hermite basis in § 3. We present the
closure problem in § 3.5 and introduce our ML closure model in § 4 as a solution to
that problem. In § 5, we present our ML model’s predictions, and we conclude with
a summary and discussion in § 6.
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2. Vlasov-Poisson system

As our test problem, we study the dynamics of a one-dimensional, collisionless,
electrostatic hydrogen plasma. We focus on the electron dynamics, treating the ions
as a cold, neutralising background. The equations that describe this plasma are the
Vlasov-Poisson system (Vlasov 1968). The calculations in this paper use Gaussian
units. The Vlasov equation for electrons in one dimension is

of of eEof
—_ vV— — _ =
ot dz m, dv

0, (2.1)

where f(z, v, t) is the electron distribution function, e is the elementary charge and
m, is the mass of an electron. Term E(z, ) is the electric field, which we calculate
using Poisson’s equation:

i 4 E 00 (2.2)
- =4anp, =~ .
972 p 0z

where p(z, t) is the total electric charge density, including both ions and electrons,
and @ (z, 1) is the electric potential. For this quasi-neutral plasma with cold ions, we
can evaluate the charge density as

p(z, t)=e<n0—/dvf> , (2.3)

where n is the mean number density of both species.

Plasmas with near-Maxwellian velocity distributions are of particular interest for
magnetic fusion applications. Therefore, we separate the distribution function into a
Maxwellian mean and time-dependent perturbations:

fzv,t)=F@) +g(z, v, 1), (2.4)
where .
— @ - 71)2/21)’2‘,
Fo(v) = (Um) me (2.5)

is the one-dimensional Maxwellian velocity distribution for the electrons, and
g(z, v, t) is the fluctuating part of the distribution function. We have defined the
electron thermal speed as v, =+/T,/m,, where T, is the temperature of the elec-
trons in units of energy. The Vlasov equation supports longitudinal Langmuir waves,
whose dynamics occurs on time scales of the order of the plasma frequency:

4 2
Wpe = | 0 (2.6)
m,
The characteristic length scale for those oscillations is the Debye length:
Ap = L. 2.7
PN drnge? '

To support numerical integration of this system of equations, we normalise the
variables into dimensionless forms, denoted with primes:
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1 i / / 716 7 no ! ’
t= t', v=v., z=Apz, E= E', f=F+g=—(F,+g),
Wpe eip v,
Te 1 22 /
=ngep’, =@, F =—>=c" /dv’F =1.
p=mo ¢ M= i u

(2.8)

After dropping the primes for legibility, we can now write the model equations in
dimensionless form:

of 0 of

—_— — —FE—=0, 2.9

8t+v8z ov 2.9)
0E
—=1—/dvf. (2.10)
0z

Finally, after splitting the distribution function into its mean and fluctuating compo-
nents, we arrive at the normalised evolution equation for the fluctuating part of the
electron distribution function:

g~ 0g ag

— — EF,—E—==0, 2.11

8t+v8z+v M ov ( )
oF
—=—/dvg. (2.12)
0z

3. Pseudo-spectral methods

We solve the Vlasov-Poisson system (2.11)-(2.12) using an orthonormal spectral
basis by projecting the velocity-space dependence onto a Hermite polynomial basis
and the configuration-space dependence onto Fourier harmonics. We choose this
approach because pseudo-spectral methods are often more efficient than pure finite-
difference algorithms (Boyd 2000), and as mentioned in the introduction, there is an
extensive history of the application of the Fourier—Hermite basis to solve problems
in kinetic plasma physics.

3.1. Hermite moment formalism

To discretise velocity space, we impose a Hermite basis representation, using nota-
tion from Mandell et al. (2018). Including both the Maxwellian weight and the
normalisation factors, the Hermite basis expansion (¢™(v)) and projection (¢,,(v))
functions are

Hem(U) —2)2 Hem(v)
m —_— v m e , 31
®) «/2nm!e - () v m! G-1)
where dm
He, (v) = (= 1)"e" P e ™/ (3.2)

are the probabilists’ Hermite polynomials (Abramowitz & Stegun 1972). Note that
these functions are orthonormal,

/ dvfﬂm(v)%n’(v) = (Sm,m’a (33)
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and that the background Maxwellian is identical to the m = 0 basis element:
o 1
(p =
V2

This property makes the Hermite moment representation a natural choice for
near-Maxwellian velocity distributions. We project the fluctuating portion of the
distribution function onto the Hermite basis using

e 2 = Fy. (3.4)

oo

gz, v, 0= ¢"Gu(z, 1), Gm(z,t)E/ dvgng(z, v, 1). (3.5)
m=0 -

3.2. Vlasov equation in the Hermite basis

We seek an evolution equation for the amplitudes, G,,, of the Hermite expansion
functions. To derive this moment hierarchy, we project (2.11) onto the Hermite basis
term by term. The first term is the most straightforward:

~ 3¢ 9G,
dvg,, & = Zm 3.6
/oo YO s T o (36

We then project the linear ballistic term, v(dg/dz), onto the basis:

[}
=0

] ) — 9
pot =2 "G, = — Z («/m + L™t 4 «/m(p'"*l) G, (3.7)
dz 0z — 0z

m

where we used a recurrence relation for the Hermite basis functions to remove the
explicit dependence on v (Abramowitz & Stegun 1972):

m+ 1" =ve™ — Vme" . (3.3)
Applying the projection function to (3.7) and using (3.3) yields
*© dg 0
dvg, V=t = = (\/%Gm,1 +Vm T 1Gm+1> . (3.9)
oo b4 b4

The linear portion of the electric field drive term contains the m =1 expansion
function, so applying the projection function to this term yields

/dvgomvEFM:E/ dvgom(pleém,l. (3.10)

The final term to consider is the nonlinear term, —E(dg/dv). Combining a second
recurrence relation (Abramowitz & Stegun 1972),

d
d—Hem(v) =vHe,, (v) — He,,11 (v), (3.11)
v
with the definition of the Hermite basis functions ¢™ (3.1), presents a useful new
identity:
a m
—50 — —Jm+ L™, (3.12)
v
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The expansion of the nonlinear term in the Hermite basis is then
—Ea—g:—EzaﬂG =EY m+1¢""'G (3.13)
v — Ju " — " )
After projecting this term onto the basis,
f dvg,, (E Z ' + l(p'”/“Gm/) = Z ENm' + 18,041G
= E\/’%Gm—l ’

we can collect all of the terms to recover the general form of the equation for G,,:

G,
ot

(3.14)

3
3z <\/n_1Gm_1 +VmT 1Gm+1) Y ESmGy i+ ESpy=0.  (3.15)

3.3. Pseudo-spectral method in Fourier space

Next, we discretise space with a Fourier basis. The Fourier transform and inverse
Fourier transform operators for a spatial grid of N points are

1 ikz — ikz
Flel= 2 ge ™ FlG=) Gie™, (3.16)
z k

where the Fourier wavenumbers are given by k=2xj/N, with —N/2<j < N/2
and j € Z. The Fourier convolution theorem,

FLfel=)_ FGi, (3.17)
k/

transforms the nonlinear term into a coupled sum over all wavenumbers. This cou-
pling introduces additional computational overhead. We mitigate that problem by
using a pseudo-spectral method (Boyd 2000), evaluating the nonlinear term on the
original configuration space and projecting the result back onto the space of Fourier
wavenumbers. Applying the Fourier transform, (3.16), to (3.15) and then applying
the Fourier convolution theorem yields

a(;m,k
ot

ik (VG + N+ 1G1) + N/ [FEF (G ]
= _Ekgm,l- (318)

Simulating this collisionless system with finite resolution without using any regu-
larisation is numerically infeasible, as the dynamics can generate structures in phase
space at arbitrarily small scales (Parker & Dellar 2015; Loureiro ef al. 2016; Mandell
et al. 2024). To mitigate that effect, we introduce numerical regularisation through
hyperdiffusion (—v.k*) and hypercollision (—v,,m*) operators:

i <
Hmk_{O ifm<2

3.19
—vk* —v,m* ifm>2, (3.19)

where v, and v,, are parameters which control the strengths of the hyperdiffusion
and hypercollisions, respectively. Note that we do not apply this regularisation to
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the m= 0, 1 and 2 equations, as they encode conservation of particle number,
momentum and energy, respectively.

We solve the system for a finite number of moments M. Defining compact
notation for the nonlinear operator,

NIEL, G il = VmFIF 'E] - FUG,—14]l, (3.20)

and accounting for the special cases of the m =0, m =1 and m = M — 1 equations,
we have derived the projection of the Vlasov equation onto the Fourier-Hermite

basis:
0G
M kG =0, (3.21)
ot
oG
lk+1k<G0k+\/—sz>+N[Ek,GOk]+Ek—O (3.22)
aGl‘ﬂ
a k+k<\/_Gm 1k+\' G171+1k>+N[Eka m— lk]
= m,ka,ks 2\m <M — 1, (323)
oG
(,;W Y ikvM 1Gy2x +NIEy, Gy-zi]l = Hy—1xGr-14- (3.24)

3.4. Poisson’s equation in the Fourier—Hermite basis

To complete the system, we project Poisson’s equation onto the Fourier-Hermite
basis and solve for the electric field, E;. First, we solve for the charge density in the

Hermite basis:
——/dvg:—/dngOZ(pmez—Go. (3.25)

Next, we insert this expression for the normalised charge density into Poisson’s
equation (2.12) and apply the Fourier transform (3.16) to calculate the electric field
as a function of the m = 0 density moment in the Fourier-Hermite basis:

iGo,k
X .

We require that the k =0 mode is zero and stationary, corresponding to zero mean
electric field.

(3.26)

Ek:

3.5. The closure problem

A continuous representation formally requires an infinite number of Hermite
moments, but we must discretise the system with a finite number of moments, M.
Observe that in the Fourier-Hermite basis, the parallel streaming term in the con-
vective derivative, v(dg/dz), becomes ik(y/mG, i ++/m+1G, 1) for general
m. This term couples nearest neighbours in Hermite space and forms a hierarchy
of equations that must be closed. This closure problem is analogous to the classic
closure problem encountered when taking fluid moments of the kinetic equation
(2.1). The resulting fluid equations for density, momentum, energy and higher-order
moments exhibit coupling between moment m and moments m + 1 and m — 1. This
same feature occurs in the Hermite representation of velocity space, and from (3.5)
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FIGURE 1. Diagram of the reservoir computing closure model, integrated with the kinetic
moment solver.

and (3.1), the Hermite moment basis is obtained through a similar process of mul-
tiplying the distribution function by increasing powers of v via increasing orders of
the Hermite polynomials and then integrating over velocity space.

The simplest model of closure is by truncation, which we use in the direct numer-
ical solution (DNS) by omitting the G, term in the evolution equation for the
final moment, G, _; ;. Our objective is to introduce a dynamical closure model to
close the hierarchy at a moment number m =m,., m, < M — 1, while still achiev-
ing accurate predictions of the Fourier and Hermite spectra. We use a reservoir
recurrent neural network as the closure model, which we describe in more detail
in § 4.

4. Machine-learning closure: reservoir computing

Inspecting the evolution equation for G, ; (3.15) reveals that the coupling between
moment m and moment m + 1 only explicitly appears as a linear term in the equa-
tion, acting on each wavenumber k independently. As a result, we introduce a unique
and independent Hermite closure model for each k in the system, for a total of N,
reservoirs. We use methods similar to those of Pathak ef al. (2018) to design the
reservoirs.

Each reservoir is a network of D, nodes defined by a latent state vector r(t) €
RPr, where each element of r () represents the state of one node at time ¢. The
structure of the reservoir computing model is presented in figure 1. The connec-
tions between nodes are defined by a D, x D, sparse adjacency matrix, A, where
exactly k non-zero elements per row are initialised to random values drawn from
the uniform distribution on [0, 1] and scaled by the appropriate factors to set the
largest eigenvalue of A equal to a specified value, p,,. The magnitude of the largest
eigenvalue of a reservoir’s adjacency matrix has been demonstrated to significantly
impact the accuracy of the reservoir’s predictions (Jiang & Lai 2019). The runtime is
separated into two phases, training and prediction. In the training phase, the inputs
are derived from a high-resolution DNS. In the subsequent prediction phase, the
inputs are derived from a low-resolution simulation with the output of our reservoir
used to compute the closure. The input to a given reservoir at each time step is a
vector u,(t) of dimension 2w, where the elements of u are the real and imaginary
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parts of the final w Hermite moments before m..:

u(t) =[Gpwit —wWAD, Gy oyt — (W —=DAD), ..., Gp_1x(t — At)](.
4.1)

In both phases, the inputs form a diagonal in m and ¢ of Hermite moments, and this
structure is inspired by the phenomenon of linear Landau damping in the linearised
Vlasov-Poisson system, where energy cascades from low m to high m in time. The
input layer is a D, x 2w matrix W,,, with its elements drawn from the uniform
distribution on [—o, o], where o is a parameter. Critically, A and W,, remain fixed
after initialisation. Only the output layer, W,,,, is trained. The reservoir state vector
evolves with the equation

ri(t + At) =tanh[Ar,(t) + Wiu(t)], (4.2)

where the hyperbolic tangent activation function operates element-wise on the vector
argument.

The elements of the reservoir-to-output coupling, W,,, are parameters that must
be tuned to train the reservoir. We introduce a hyperparameter b to exclude
data from initial transients from the reservoir training process. This hyperparam-
eter serves as a buffer of time steps between the initialisation time and the data
assigned for training W,,. During the training phase, defined by the times ¢ where
bAr <t <T, the reservoir output is trained to approximate the closure moment,
G-

The most straightforward choice for the closure evaluation would be the linear
readout operation, W, ;. Empirically, that operation does not permit reservoirs
to predict the dynamics of several other nonlinear systems, including the Lorenz
system (Lu et al. 2017; Chattopadhyay, Hassanzadeh & Subramanian 2020; Pyle
et al. 2021), Kuramoto-Sivashinsky equation (Pathak ef al. 2018) and the global
atmospheric system (Arcomano et al. 2020). As Lu et al. (2017) and Pathak et al.
(2018) describe, the hyperbolic tangent operation in the evolution equation for
the reservoir state (4.2) introduces an odd-parity symmetry to the reservoir state
vector r. As in the Kuramoto-Sivashinsky equation and the Lorenz systems studied
by those authors, the quadratic nonlinear term in the Vlasov equation breaks odd-
parity symmetry. In other words, the general evolution equation for the Hermite
moments (3.18) is not invariant under the transformation G, ; — —G,,, while the
evolution equation for the reservoir state (4.2) is invariant under the transformations
u — —u and r — —r. Following the methods of Pathak et al. (2018) and explored
in more detail by Chattopadhyay et al. (2020) and Pyle et al. (2021), we resolve this
conflict by applying a symmetry-breaking transformation (r, — r/*) to the reservoir
latent state before readout:

rix(t), eveni

i) = {rfk(t), odd i.

Because the reservoir output, W, r*(¢), is a linear operation on r*, we can train
the weights of W, using linear regression and avoid the computational expense
of backpropagation. To mitigate potential overfitting, we introduce a regularisation
parameter, 8, in the method of Tikhonov-regularised linear regression. The training
problem is then to find the values of W, which minimise

(4.3)

T/At

D Gk (G AL = Wour (GADIP + Bl W[ (4.4)

J=b
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Explicitly, the closed-form solution that solves this linear regression problem is
Wou = G« R (RERST + 817, (4.5)

where G, is a 2 x (T /At — b) matrix consisting of the time series of the real
and imaginary parts of the closure moment, G, x, R} is a D, x (T /At — b) matrix
consisting of the time series of the modified state vector r(¢), R;" is the transpose
of R} and /s the identity matrix.

4.1. Closure integration

Once the weights of W, are trained, the algorithm switches to the prediction
phase, and the system does not evolve moments beyond m = m... Instead, the output
of the reservoir is fed back into the system of equations as a closure for the moment
hierarchy. To make the discussion more concrete, we introduce a time integration
operator D, such that D[G(#)] = G(t + At), where G(¢) is the M x N, matrix of
Fourier-Hermite amplitudes representing the state of the system at time ¢. Operator
D is a generic operator, and its implementation details are flexible. For the results
presented in this paper, we implement D using the Python libraries NumPy (Harris
et al. 2020) and SciPy (Virtanen et al. 2020) with the classic fourth-order explicit
Runge-Kutta method (RK4) and the third-order strong stability-preserving Runge-
Kutta method (SSPRK3) as detailed by Durran (2010).

When we introduce the closure models, the time integration becomes a two-step
process. For each wavenumber k, we use the time integration operator D to calculate
the resolved moments G,

Gm<m(-,k ([ + At) = D[Gmgm(; (t)]k- (46)
We then use a reservoir to predict the closure moment G, :
Gmc.k(t + At) = Woutrk*(t + At) (47)

4.2. Computational complexity

Though performance profiling metrics for numerical solutions of partial differen-
tial equations are highly dependent on computational hardware architectures and
algorithm implementation choices, we can calculate the computational complexity
of the DNS and the ML closure for the cases in this paper. Both methods have an
identical cost to evolve the lowest-order moments. Thus, we only report the cost of
evolving moments m, < m < M for the DNS and the closure moment m,. for the ML
method. While the time-integration operator D is generic, we will remove a layer of
abstraction by calculating the result for the SSPRK3 algorithm. For simplicity, we
will neglect the additional cost of operations on complex numbers relative to those
same operations on real numbers, with the understanding that this will underestimate
the cost of the DNS in comparison to the ML closure. The cost of transcendental
functions including tanh depends on instruction sets. This estimate treats them as
equivalent in cost to multiplication, with the understanding that this underestimates
the cost of updating the reservoir state. We also neglect the cost of memory access
and copy operations for both methods.

4.2.1. Complexity of DNS

First, let us introduce a new parameter M’ = M — m, that represents the additional
number of moments that the DNS must evolve (3.23) in comparison with the ML
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closure model. Our choice of time-integration operator, SSPRK3, is a three-stage
algorithm. Each stage includes an evaluation of the electric field, nonlinear term,
linear streaming term and hypercollisions. The electric field is calculated by (3.26).
The vector (i/k) can be stored in memory during initialisation, so the electric field
calculation requires N, multiplication operations. The nonlinear term is evaluated
with a pseudo-spectral method using (3.20). Using the O(N log N) scaling of the
fast Fourier transform algorithm (Cooley & Tukey 1965), the total computational
complexity of the nonlinear term is 3M’O(N; log N;). If the vector (ik) is also stored
during initialisation, then the linear streaming term requires 6 M’ N, operations. The
dissipation matrix in (3.19) can be stored, and the cost of the regularisation term
is 2M’Ny. Finally, we include the operations needed to combine the results of each
stage into the state of the system at the next time step. For SSPRK3, this requires
12M’N, operations. The total cost of DNS for each time step is then

COStDNS =3M,O(Nk log Nk) +20M/Nk + N.. (48)

4.2.2. Complexity of ML closure

The ML closure evaluation has two stages: updating the latent state of each reservoir
and evaluating the closure moment. There are a total of N, reservoirs. The state of
each reservoir, r;, updates at every time step using (4.2). This requires the sum
of two matrix-vector products. The product W,,u has a cost of 4D, w operations.
The other product Ar, involves a sparse matrix. Though the cost of this product
is implementation-specific, we will count operations on non-zero elements, resulting
in a cost of 2D,k operations, where x < D,. Then, the tanh operation is applied to
the sum of these products. The total cost of the reservoir update is then 2D, [k+
2w + 1]. The symmetry-breaking transformation (4.3) is applied to the state vector,
which requires D,/2 multiplication operations. Finally, each reservoir predicts a
Hermite closure using (4.7), which uses 4D, operations. The ML closure is linear
in k. In total, the cost of calculating the ML closure for each time step is then

Costy. = N, D, [8w + 4« + 13/2]. (4.9)

After eliminating the common factor of N, from the cost of the DNS and the
ML closure, we find that as N, increases, the dominant scaling for the DNS is
O(M'log N;). In contrast, the cost of the ML closure scales linearly with the size
of each reservoir D,. For sufficiently large (M’ log N;)/(D,w), the reservoir closure
will be faster than the DNS.

5. Closure results
5.1. Linearised Vlasov—Poisson

For our first test of the ML closure, we confirm that the model accurately solves
the linear limit of the Vlasov-Poisson system. First, we linearise the Vlasov equation
(2.11), dropping the nonlinear term:

dg | 9g

— 4+ v—+vEF,=0. 5.1

ot 0z " -1
In Fourier space, this allows us to restrict our focus to a single wavenumber, as the
coupling between wavenumbers occurs only in the nonlinear term. We simulate an
approximately steady-state solution by driving the system, as explored by Kanekar
et al. (2015). We inject energy into the m = 0 moment, and it cascades down to finer

https://doi.org/10.1017/50022377825100822 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825100822

Journal of Plasma Physics 13

Gy,

1000 2.0
800 15
600

S 1.0
400
05
200
0 0.0
0 25 50 75 100

t(wh)

pe
FIGURE 2. High-velocity-resolution (M = 1025) baseline time series of Hermite amplitudes for
the driven, linearised Vlasov—Poisson system. Energy is injected as a density perturbation in
the m = 0 Hermite moment and advects to higher moments through linear Landau damping. No
hypercollisional regularisation is applied to this example, and hundreds of Hermite moments

are required to prevent numerical reflection at the high-m boundary from impacting the low-m
spectrum.

scales through Landau damping. We incorporate these features into the projection
of this equation onto the Fourier—Hermite basis using the results of § 3:

0G 1
ot

+ik (Jn_sz_l,k F 1Gm+1,k) = X (O0mr — Edmrs (5.2)

where x (¢) is a forcing coefficient independently drawn at each time step from the
uniform distribution on [0, 1). The electric field E; is given by (3.26). The purpose of
this mechanism for energy injection is to achieve a statistical steady-state solution.
Our primary systems of interest exhibit nonlinear chaos and typically settle into
time-dependent steady states. While constant forcing would also achieve a steady-
state solution, a time-dependent forcing mechanism more closely resembles typical
problems encountered in plasmas. Other injection mechanisms, including driving the
m =2 moment or applying a stochastic external electric field, yield similar perfor-
mance for the closure model. Figure 2 depicts a high-resolution (M = 1025) baseline
simulation of (5.2) with k =0.4.

When no hypercollisional regularisation is applied, the cascade of free energy
numerically reflects at the high-m boundary. In the simulation in figure 2, this reflec-
tion occurs around ¢ = 80. This phenomenon always occurs at a finite time for
a given Hermite resolution (M), meaning that extending the duration of a sim-
ulation where the low-order moments are valid requires increasing the Hermite
resolution. Additionally, the rate at which energy advects from low m to high m
increases with Fourier wavenumber k& (Parker & Dellar 2015). Therefore, though
this linearised simulation with k = 0.4 is feasible with high velocity resolution, more
Hermite resolution would be required for a nonlinear simulation with moderate
spatial resolution. Some form of artificial dissipation is necessary for baseline sim-
ulations of higher-dimensional systems to be computationally feasible. We therefore
apply hypercollisional regularisation to the nonlinear form of the Vlasov-Poisson
system in §§ 5.2 and 5.3.
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FIGURE 3. Time-averaged Hermite spectra for the ML closure model compared with the high-
velocity-resolution (M = 1025) baseline, closure-by-truncation with three different coefficients
(vm) for hypercollisional regularisation and the theoretical m~!/? scaling. The ML closure
model shows strong agreement with the baseline simulation, while no value of v, produces
an accurate spectrum.

We then train a reservoir to predict the Hermite closure moment, G, x, where we
evaluate the closure at m. = 3. The choice of m. =3 is motivated by the tradition
of heat flux closures in fluid theory and our desire for a closure that allows the
conservation laws in the m € [0, 1, 2] equations to remain intact. One motivation
for a closure is to reduce the resolution required to achieve accurate simulations,
so we choose the lowest valid value for m.. We use the time series of the density,
momentum and temperature moments from the time window 15 <t < 25 as training
data. We find that a requirement is that enough time has passed to allow energy to
cascade into m =m,.. We report results training on data from the time window
15 <t <25, but the reservoir supports accurate spectra for other training windows
as well. Figure 3 depicts the excellent agreement between the low-order spectra
calculated by the high-resolution baseline and the ML closure model. The mean-
squared error in the ML closure spectrum is 2.25 x 107>. The ML closure shows
favourable performance in comparison with a naive closure by truncation, where no
hypercollisional regularisation is applied. It also outperforms a closure by truncation
where the hypercollisional term, —v,,m*G,, ;, is introduced to the right-hand side of
(5.2) to mitigate numerical reflection at the high-m boundary. As in (3.19), this term
is only applied for m > 2 to preserve the low-order conservation laws. For an initial
comparison, v,, is set to 2 x 102 to maintain finite dissipation at m. =3, where
vmm‘c‘ is of order one. For reference, we also compare with the theoretical scaling
G, ~m~"? (Zocco & Schekochihin 2011; Kanekar et al. 2015).

The reservoir hyperparameters used to construct the model are spectral radius
psp = 0.6, adjacency matrix degree of three, Tikhonov regularisation parameter
B =107, input scaling parameter o = 0.5 and six nodes in the reservoir. We found
these hyperparameters by comparing mean-squared errors in spectra. An unguided
scan led to a reduction in error from 1.75 x 107 to 2.26 x 1078, No systematic
optimisation was required, though some choices of parameters led to numerically
unstable time integration of (5.2). We used the same procedure to select the hyper-
parameters in both the weakly and strongly nonlinear cases presented in §§ 5.2 and
5.3, respectively. The spectral radius p,, of the adjacency matrix A must be set to
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psp < 1 for stability. The block-diagonal structure for W, that Vlachas et al. (2020)
used in their reservoir computing implementation yielded unstable predictions. We
speculate that this may be related to differences in requirements for complex-valued
data in comparison with real-valued data, but more analysis would be required to
confirm. For the strongly nonlinear case in § 5.3, using a reservoir smaller than 60
nodes or including the initial transient in the training set also led to unstable solu-
tions. The computational complexity for evaluating the ML closure is the same as
in (4.9), with N; = 1. The DNS cost for this case is 18 M’ + 1, after removing the
contributions of the nonlinear term and hypercollisions from (4.8).

5.2. Weakly nonlinear Vlasov—Poisson

Next, we reintroduce the nonlinear term, —E(dg/dv), which permits coupling
between wavenumbers. This coupling in Fourier space allows energy to flow across
spatial scales, in addition to the already-present energy cascade in velocity space.
This effect is subdominant at low amplitudes, but it becomes more significant as
amplitudes increase. We first examine the low-amplitude limit in this section before
proceeding to a high-amplitude case in § 5.3. In the low-amplitude limit, Landau
damping continues to be the dominant effect. Here, we solve an initial-value prob-
lem, where the initial condition is a cosine density perturbation with a Maxwellian
velocity component:

g(z, v, t =0) =€ cos(koz) Fy (v), (5.3)

where € is the initial amplitude of the perturbation normalised by the background
density and Maxwellian weight and k, is the wavenumber of the initial perturbation.
In the spectral domain, this initial condition has the convenient form

€

Guii=0= §8m,0 (5k,k0 + 8k,7k0) , (5.4)
collapsing the initial system state into a single non-zero value after applying the
reality condition. To explore the linear limit of the system, we choose € =0.001,
a 0.1 % density perturbation. We examine the ky = 0.4 case that Brunetti, Califano
& Pegoraro (2000) explored in their analysis, accounting for a factor of 10 differ-
ence in normalisations. With this low initial amplitude, we choose N, = 17 Fourier
wavenumbers, including the kK = 0 mode, anticipating that the dominant energy cas-
cade will be linear Landau damping. For the high-resolution simulations, we continue
to use M = 17 Hermite moments, including the m = 0 moment. The hypercollisional
regularisation coefficient is v,, =5 x 107>, and we set v, =0. This value of v,, is
chosen to maintain finite dissipation at the finest velocity scale in the simulation,
such that the magnitude of the coefficient of the hypercollisional term at that scale,
V(M — 1)* is of order one. As the Fourier spectrum in figure 6 shows, the flux
of energy to high & in this regime is small, so v, is not necessary. We set the size
of the spatial simulation domain to L = 57 so that 1/, is the largest wavelength
resolved in the system. Figure 4 presents a comparison between the baseline, high-
Hermite-resolution simulation, the ML closure model and the theoretical damping
rate. The time trace for the ML closure method begins at the end of the training
phase, t = 25. To calculate the damping rate, we use the complex root-finding algo-
rithm of Carpentier & Dos Santos (1982), implemented in the generalised dispersion
relation solver developed by Ivanov & Adkins (2023). These results demonstrate that
with a low initial amplitude, our baseline simulation converges to the expected lin-
ear Landau damping rate. Additionally, figure 4 demonstrates that the ML closure
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FIGURE 4. Comparison between baseline numerical solution, ML closure and theoretical damp-
ing rate of the Fourier—Hermite amplitude for an initial cosine density perturbation. The
low-amplitude perturbation shows strong agreement with the theoretical damping rate. When
augmented with the ML closure, the moment solver continues to capture the behaviour well at a
lower Hermite resolution of M = 4, as opposed to the M = 17 baseline.
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FIGURE 5. Hermite spectra of the high-velocity-resolution (M = 17) and truncated (M =4)
simulations and ML closure for the initial-value problem in figure 4. The spectra are averaged
over time and Fourier wavenumber. The ML closure model permits a low-resolution simulation
to accurately resolve the Hermite spectrum.

model preserves the frequency of the wave. Time traces of the m =1 and m =2
moments show similar performance and are presented in Appendix B.

In figure 5, we compare the ML closure model, with m.= 3, to both the high-
resolution (M =17) baseline and two low-resolution simulations without the ML
closure, i.e. closure by truncation. We also compare the Fourier spectra of these
simulations in figure 6. For this problem, we place an independent reservoir at each
wavenumber k and train it to learn a Hermite moment closure for that wavenum-
ber. The ML closure shows strong agreement with the high-resolution baseline, with
mean-squared errors of 1.26 x 10~** for the Hermite spectrum and 8.01 x 10~® for
the Fourier spectrum. It successfully captures the Hermite and Fourier spectra of
the system and confirms that its predictive capability continues to hold when a small,
but non-zero, flux of energy flows between wavenumbers. To create a low-resolution
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FIGURE 6. Fourier spectra of the simulations in figure 5. In this weakly nonlinear regime, the
majority of the energy remains in the boxscale mode. Each reduced Hermite resolution model
properly captures the rapid energy decay across k.

simulation without the ML closure, we truncate the moment hierarchy at m. =3 and
set G,,.+14 = 0 in the evolution equation for G, . As in § 5.1, we also compare to a
low-resolution simulation with increased hypercollisional regularisation, with v,, set
to 2 x 1072 to maintain finite dissipation at the finest resolved scales. An intuitive
explanation for the poor performance of the truncated simulations in figure 5 can be
described in relation to the general form of the evolution equation for this problem,
(3.18). The truncation process removes the G, term from the final moment equa-
tion in the truncated system, eliminating an effective energy sink from that moment.
Without access to the proper dissipation channel of smaller scales in velocity space,
the truncated system experiences some energy reflection and pile-up in its smallest
resolved scales in velocity. In contrast, the ML closure learns the pattern of dis-
sipation through Landau damping and serves as a better boundary condition than
truncation.

We find that the reservoir hyperparameters that result in the best closure perfor-
mance for this initial condition are spectral radius p,, = 0.6, Tikhonov regularisation
parameter 8 =10"" and T =25 normalised time units for training. For each
wavenumber, we set the reservoir input scaling parameter o to normalise the reser-
voir inputs by the time average of the Hermite amplitude at the moment before the
closure:

1
(1Gme—taeel)s

This preserves the dynamic range of the hyperbolic tangent nonlinear activation
function by mitigating the possibility of saturation to —1 or 1. Asin § 5.1, we set the
degree of the adjacency matrix to three. Finally, we choose a reservoir size of two
nodes per input value, totalling 12 nodes.

(5.5)

O =

5.3. Strongly nonlinear Vlasov—Poisson

Finally, we create an ML closure model for the strongly nonlinear regime of
the Vlasov-Poisson system. When the amplitude of the initial density perturbation
becomes significant relative to the background, the nonlinear term dominates over
the energy cascade in linear Landau damping. Figure 7 presents the numerical solu-
tion to the initial-value problem from § 5.2, with € increased to 0.18. When compared
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FIGURE 7. Simulated Fourier—-Hermite amplitude for a high-initial-amplitude (18 % of back-
ground) cosine density perturbation. The dynamics exhibits strongly nonlinear behaviour,
attenuating the damping of the mode. As in the low-amplitude case, the ML closure model
captures well the frequency and amplitude of the wave.

with figure 4, the behaviour at high amplitude deviates from the linear theory.
Additionally, a convergence study indicated that more Hermite moments (M = 65)
are necessary to accurately resolve the low-order spectrum than in the weakly non-
linear case. (For more detail on this, see Appendix A.) We set v, to 5x 1077,
following the procedure we used to determine the baseline hypercollisional regulari-
sation parameter for the linearised and weakly nonlinear cases. From the start of the
simulation until approximately =25, the mode damps at a faster rate than in the
linear theory. After the initial transient, the mode saturates to a steady state. When
the ML closure model is introduced, the lower-Hermite-resolution (M = 4) system
maintains an accurate frequency and slightly overdamps the amplitude. The training
phase for the ML closure model was set to 50 <t < 100 to avoid the most severe
initial transient behaviour, and the time trace for the ML closure begins at r = 100.

As in the previous section, figure 8 displays a comparison between the Hermite
spectra of the high-resolution baseline, the ML closure model and two truncated
low-resolution simulations, where one has an increased amount of hypercollisional
regularisation to account for the lower resolution. At this higher initial amplitude, the
Hermite spectrum of the baseline does not decrease monotonically, creating a more
challenging scenario for the reservoirs to model. At the same value of v,,, both the
truncated low-resolution simulation and the ML closure model accurately capture
the Hermite spectrum of the system at low m, but as figure 9 reveals, only the ML
closure model also agrees with the Fourier spectrum. Mean-squared errors in the ML
closure spectra are 3.66 x 1078 and 1.19 x 10~ for the Hermite and Fourier spec-
tra, respectively. The ML closure successfully captures both spectra of the system,
reducing the required velocity-space resolution by a factor of 16. We observe some
oscillatory behaviour in the Fourier spectrum of the ML closure, but our tests do not
identify a mechanism that causes this behaviour. We obtain the reservoir hyperpa-
rameters by the same method as in the previous section, adjusting them to 8 = 10°,
T =50 and 120 nodes in each reservoir. Other parameters remain the same.

A potentially surprising result is that the Hermite spectrum of the naively trun-
cated simulation is more accurate than its Fourier spectrum, despite the fact that the
truncation occurs in Hermite space. We intuit that this result is due to a pile-up of
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FIGURE 8. Hermite spectra of the high-velocity-resolution (M = 65) and truncated (M =4)
simulations and ML closure for the initial-value problem in figure 7 averaged over k and ¢. While
both the ML closure model and truncated simulation agree with the high-resolution DNS, the
ML closure model shows closer agreement.
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FIGURE 9. Fourier spectra of the simulations in figure 8. The ML closure resolves the wavenum-
ber spectrum more accurately than the truncated simulations, improving simulation accuracy at
low resolution in velocity space.

excess free energy at the closure moment, which then nonlinearly advects in Fourier
space. Adjusting the strength of the hypercollisions slightly improves the accuracy
of the Fourier spectrum, at the cost of overdamping the density and momentum
moments. An analysis of the flux of free energy in this system similar to the work
of Meyrand et al. (2019) may be used to investigate this result further, but that is
beyond the scope of this work.

6. Summary and conclusion

In this paper, we have used reservoir computing to present an ML, velocity-space
closure model for the hierarchy of Hermite moments in the one-dimensional Vlasov—
Poisson system. The closure model serves as a proof-of-principle that reservoir
computing can be used to reduce the simulation domain requirements for studying
plasma dynamics.
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A logical objective to pursue is to extend the closure to reduce the required res-
olution in the Fourier representation of position space. In practice, gyrokinetic
turbulence simulations commonly use significantly more resolution for configura-
tion space than they do for velocity space, in part because of the near-Maxwellian
nature of the velocity distributions. Therefore, a Fourier-space closure model would
potentially be more desirable than a velocity-space closure. However, the structure
of the nonlinear term poses a challenge to achieving that goal. In the Vlasov-Poisson
system, the coupling between resolved and unresolved scales in velocity space occurs
as a sum of nearest neighbours in Hermite space. This locality in the spectral domain
defines a clear, single closure term. In contrast, the convolution in the nonlinear term
establishes non-local interactions across scales in Fourier space. An ML closure for
Fourier space would require a different structure from the one developed for this
paper.

The eventual goal is to build closure models that can reduce the domain require-
ments for higher-dimensional turbulence simulations, including the full gyrokinetic
equation. A next step towards that goal would be to test this velocity-space closure
in that system. There has been recent interest in applying spectral formulations of
velocity space to gyrokinetic simulations, particularly with a Hermite basis used
for parallel velocity and a Laguerre polynomial basis for perpendicular velocity
(Jorge et al. 2017; Mandell et al. 2018; Hoffmann et al., 2023a,b; Frei et al.
2023, 2024). A successful implementation of an ML closure for Fourier-Hermite—
Laguerre codes, including Gyacomo (Hoffmann et al. 2023b) and GX (Mandell ez al.
2024), may improve their capabilities to resolve turbulence statistics with lower res-
olution requirements. Empirically, both codes calculate turbulent heat fluxes with
high accuracy using eight or fewer Laguerre modes, suggesting that future work on
ML closures should prioritise reductions in spatial and parallel velocity resolution
requirements.

An ideal closure model would have a compact, symbolic form from which physical
intuition can be derived. Significant recent progress towards interpretable, symbolic
closures has been achieved using sparse regression techniques (Cheng et al. 2023;
Donaghy & Germaschewski 2023; Ingelsten ef al. 2024). One challenge that these
algorithms face is the difficulty of finding symbolic closures that are not local in
space. The analytic closure derived by Hammett & Perkins (1990) for the linear
limit of the system in this paper is local in Fourier space, but it includes a non-local
Hilbert transform when expressed in configuration space. Closures for the nonlinear
form of this system or other systems of interest may also require information that
is non-local in configuration space, but local in a spectral representation. The ML
closure developed in this paper and by Huang et al. (2025) apply a Fourier represen-
tation to the data, providing the neural networks direct access to locality in spatial
scales, and the velocity-space closure in this paper is also local in Hermite space.
Though interpreting moment closures that use neural networks is more challenging
than closures derived by sparse regression techniques, future work may incorporate
feature importance identification methods like those formalised by Lundberg & Lee
(2017).
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Appendix A. Hermite resolution convergence

In § 5.3, we demonstrated that reservoir computing can be used to construct an
ML closure that reduces the number of moments required to capture the low-order
spectrum of the strongly nonlinear regime of the Vlasov-Poisson system by a factor
of 16. In figure 10, we present the convergence study that we used to determine the
high-resolution (M = 65) baseline for that case. The low-order moments represent
important physical quantities, including density, momentum and energy. Therefore,
accurately resolving those moments is a higher priority than resolving the fine-scale
structure in velocity space that the high-order moments capture. In figure 10, the
lowest Hermite resolution that captures the m =0 and m =1 density and momen-
tum moments within a factor of 2 is M =65, so that resolution was selected as
the baseline case. Figure 11 shows a root-mean-square error (RMSE) metric for
the low-order Hermite spectra at different Hermite resolutions, where we take the
M =513 spectrum as ground truth. Inaccuracy in the density and momentum
moments leads to increased RMSE for the M =17 and M =33 cases, and
subsequent errors converge exponentially, beginning with M = 65.

Hermite Spectra, {|Guxl*)rs

0 1 8 12 16
m

FIGURE 10. Convergence study of the Hermite spectra for the strongly nonlinear initial-value
problem from § 5.3. We solve (3.21)—(3.24) without the ML closure at increasing levels of
resolution in velocity space. We selected M = 65 moments for the high-resolution baseline case
in § 5.3, as that case is the first to show convergence in the density and momentum moments.
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RMSE((|Gpi|*) ks), m € [0,1,2, 3]

RMSE

10754

10°
M

FIGURE 11. Root-mean-square error in the low-order (m € [0, 1, 2, 3]) Hermite spectra at the
resolutions plotted in figure 10, as compared with the M = 513 case. The M =17 and M = 33
cases have similar errors, and exponential convergence occurs afterward.

Appendix B. Time evolution of low-order moments

Sections 5.2 and 5.3 demonstrate that the ML closure can capture spectra of
the Vlasov-Poisson system and that the time evolution of the density moment is
accurate. Figures 12-15 depict time traces of the m = 1 and m = 2 moments for the
cases in those sections. The ML closure resolves the frequencies of the oscillations
well. It also successfully captures the amplitude peaks soon after training ends, but
it fails to match many of the minima. At long times after training, the amplitudes
resulting from the ML closure begin to deviate slightly from the DNS amplitudes.
In the weakly nonlinear regime presented in figures 12 and 13, the ML closure
leads to a slightly lower amplitude at the end of the simulation for both the m =1
and m = 2 moments. In the strongly nonlinear regime in figure 14, the ML closure
trends towards a lower amplitude for m =1 than in the DNS baseline. However,
for m =2 in that regime, figure 15 shows that the ML closure trends towards a
slightly higher amplitude than the DNS. To quantitatively analyse this behaviour, we
report damping rates for the DNS and ML closure in table 1. Damping rates were
calculated by first extracting the local maxima from each time trace and then solving

|G 1.k, € = 0.001

— |Gkl
ML Closure

o
o
S
L=
o
(=
S
©
=1
=
o
S

FIGURE 12. Time trace of the m = 1 moment for the low-amplitude initial-value case in § 5.2.
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FIGURE 13. Time trace of the m = 2 moment for the low-amplitude initial-value case in § 5.2.

|G, € = 0.18

1011
1077
3
\o 1073 J |
£ I
21074 i
I |
i 10754 i: ' ! e
10754 —— DNS (v =5 x 10°7) I
1077 —== ML Closure
0 50 100 150 200
-1
t(wpe')

FIGURE 14. Time trace of the m = 1 moment for the high-amplitude initial-value case in § 5.3.
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FIGURE 15. Time trace of the m = 2 moment for the high-amplitude initial-value case in § 5.3.
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€ m DNS damping rate (wp.) ML closure damping rate (wpe)
0.001 1 —6.581 x 1072 —6.911 x 1072
0.001 2 —6.581 x 1072 —6.911 x 1072
0.18 1 —5.476 x 1073 —7.572 x 1073
0.18 2 —8.732 x 1073 —7.518 x 1073

TABLE 1. Damping rates calculated from the initial-value simulations in figures 12—15. Here,

€ is the amplitude of the initial cosine density perturbation and m is the Hermite moment

number. Damping rates were calculated by solving a linear regression problem for the natural
logarithm of the local maxima in each time series.

a linear regression problem for the natural logarithm of those maxima. An interesting
observation is that the m =1 and m = 2 results are identical for the low-amplitude
case. In contrast, in the high-amplitude case, the DNS has a faster damping rate
for m =2 than for m = 1. In the strongly nonlinear regime, the ML closure yields
similar damping rates for m = 1 and m = 2, but they diverge from the DNS damping
rates.
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