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This paper develops a test for homogeneity of the threshold parameter in threshold
regression models. The test has a natural interpretation from time series perspectives
and can also be applied to test for additional change points in the structural break
models. The limiting distribution of the test statistic is derived, and the finite sample
properties are studied in Monte Carlo simulations. We apply the new test to the
tipping point problem studied by Card, Mas, and Rothstein (2008, Quarterly Journal
of Economics 123, 177–218) and statistically justify that the location of the tipping
point varies across tracts.

1. INTRODUCTION

Threshold regression models have been widely used and studied in economics and
statistics. Most of the existing studies focus on estimating parameters in a given
threshold regression model and testing for the threshold effect. However, once tests
support the existence of the coefficient change, especially in the cross-sectional
threshold models, it is natural to ask whether all the agents share the same threshold
location. This paper answers this question by developing a homogeneity test of the
threshold parameter (i.e., a test of threshold constancy).

The test is motivated by the tipping point problem (e.g., Schelling, 1971), which
analyzes the phenomenon that the neighborhood’s white population substantially
decreases once the minority share exceeds a certain threshold. Card, Mas, and
Rothstein (2008) empirically study this phenomenon by considering the following
threshold regression model:

yi = β01 + δ011 [qi ≤ γ0]+ xᵀi β02 +ui (1)
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TESTING FOR THRESHOLD HOMOGENEITY 609

for tracts i = 1, . . . ,n, where the observed variables yi, qi, and xi denote the white
population change in a decade, the initial minority share, and other social char-
acteristics in the ith tract, respectively. The unknown parameters, (β01,β

ᵀ
02,δ01)

ᵀ

and γ0, denote the regression coefficients and the threshold, respectively. With
the model (1), when the tipping point feature exists, one may want to examine if
the tipping point is the same across tracts. In fact, Card et al. (2008) regress the
estimated γ0 on a measure of the white population’s attitude to the minority at the
aggregated level (more precisely at the city level) and find that the tipping point
highly varies across this measure. This finding raises the concern that γ0 may also
vary across tracts depending on some demographics and motivates our constant-
threshold test, the CT test, for the homogeneity of γ0.

More specifically, we develop a test for a constant threshold γ0 against nonpara-
metric alternatives (or any types of heterogeneous thresholds) with cross-sectional
data. In the event of rejection, therefore, one can resort to more flexible models
such as those studied by Lee et al. (2021) and Yu and Fan (2021) or apply the
method proposed by Miao, Su, and Wang (2020) if panel data are available. In this
sense, the new CT test can be used as a diagnostic tool for model specification
in the threshold regression setup. In the aforementioned tipping point application,
the CT test strongly rejects the null hypothesis of the constant threshold, implying
that the model (1) is insufficient to characterize the tipping point phenomenon. See
Section 5 for more details.

Our new test statistic builds on a weighted summation of the regression residuals
under the null hypothesis of a constant threshold, where the weights are designed
to yield a simple limit experiment as exploited by Nyblom (1989) and Elliott and
Müller (2007, 2014). By converting the weighted summation into a partial sum
process, we bridge the cross-sectional threshold model and the time series change-
point model in this testing problem. Hence, the CT test can also be applied to test
for any additional change points in the structural break models if we let qi be time
and γ0 the break date.

This paper speaks to both the threshold regression and the time series structural
break literature. The threshold model with a constant threshold has been exten-
sively investigated. See, among many others, Hansen (2000), Caner and Hansen
(2001), Seo and Linton (2007), Lee, Seo, and Shin (2011), Li and Ling (2012),
Yu (2012), Kourtellos, Stengos, and Tan (2016), Yu and Phillips (2018), Hidalgo,
Lee, and Seo (2019), and Miao et al. (2020). In addition, Seo and Linton (2007),
Lee et al. (2021), and Yu and Fan (2021) study the model where γ0 has an index
form that involves multiple covariates. This paper contributes to the literature by
providing a diagnostic method for constancy of the threshold.

When qi is time, our method essentially becomes the structural break model.
See, among many others, Bai, Lumsdaine, and Stock (1998), Bai and Perron
(1998), and Elliott and Müller (2007, 2014). Methods in these papers are typically
developed under the increasing domain asymptotics, and we also develop our test
under this classic framework. Alternatively, Jiang, Wang, and Yu (2018, 2020)
recently develop methods under the infill asymptotics. Casini and Perron (2021a,
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2021b, 2022) introduce the generalized Laplace estimation and inference and study
a continuous record asymptotic framework.

The rest of the paper is organized as follows. Section 2 constructs the new test
and shows the connection to the change-point problem in the time series setup.
Section 3 studies the asymptotic properties of the new test. Section 4 examines
its finite sample performance by Monte Carlo simulations. Section 5 revisits the
tipping point problem as an illustration. Section 6 concludes with some remarks.
All proofs are collected in the Appendix.

We use the following notations. Let →p denote convergence in probability, →d

convergence in distribution, and ⇒ weak convergence of stochastic processes as
the sample size n → ∞. Let =d denote equivalence in distribution. Let �a� denote
the biggest integer smaller than a, 1[A] the indicator function of a generic event A,
and ‖B‖ the euclidean norm of a vector or matrix B.

2. TESTING FOR A HOMOGENEOUS THRESHOLD

2.1. Setup

We consider the threshold regression model with a potentially heterogeneous
threshold parameter, which is given by

yi = xᵀi β0 + xᵀi δ01 [qi ≤ γ0i]+ui, (2)

for i = 1, . . . ,n. The variables (yi,x
ᵀ
i ,qi)

ᵀ ∈ R
1+k+1 are observed, but the thresh-

old parameter γ0i ∈ R and the regression coefficients θ0 = (β
ᵀ
0 ,δ

ᵀ
0 )ᵀ ∈ R

2k are
unknown. The threshold γ0i can be considered as a random variable or a constant.
Under the assumption of a homogeneous threshold, say γ0i = γ0 almost surely, the
model becomes the classic threshold regression model and all the parameters can
be consistently estimated by the standard profile least-squares method (e.g., Bai
and Perron, 1998; Hansen, 2000). Specifically, under the homogeneous threshold
restriction, we estimate γ0 by minimizing

n∑
i=1

(
yi − xᵀi β̂(γ )− xᵀi δ̂(γ )1 [qi ≤ γ ]

)2

in γ , where (β̂ᵀ(γ ),δ̂ᵀ(γ ))ᵀ are the least-squares estimators of ( 2) with a fixed γ .
Once γ̂ is obtained, we let θ̂ = (β̂ᵀ,δ̂ᵀ)ᵀ = (β̂ᵀ(γ̂ ),δ̂ᵀ(γ̂ ))ᵀ and write ûi = yi −
xᵀi β̂ − xᵀi δ̂1 [qi ≤ γ̂ ] as the residual.

The main interest of this paper is to test whether the threshold is constant across
entities or not. Let � be the space of γ0i, which is assumed to be compact and
strictly within the support of qi. The competing hypotheses are stated as{

H0 : P(γ0i = γ0) = 1 for some constant γ0 ∈ �,

H1 : P(γ0i = γ0) < 1 for any γ0 ∈ �.
(3)

Under the null hypothesis, there exists only one homogeneous threshold γ0 and
hence the model reduces to the classic threshold regression model as in (1).
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The alternative hypothesis in (3) states the negation of the null hypothesis and
encompasses many different cases. For example, the threshold varies across i,
where γ0i can be either a discrete or continuous random variable. The threshold
can be a nonconstant function of some random variables zi, such as γ0i = zᵀi γ for
some parameter γ , as in Lee et al. (2021) and Yu and Fan (2021).

It is worthy to note that the alternative hypothesis in (3) includes the case with
multiple thresholds that are the same for all i (cf. Bai and Perron (1998) in the
structural break model). For instance, assume that γ0i is i.i.d. and independent from
(qi,x

ᵀ
i ,ui)

ᵀ and let

γ0i =
{

γ0,1, with probability p0,

γ0,2, with probability 1−p0,
(4)

for some p0 ∈ (0,1). We define two random variables λi,1 = 1
[
γ0i = γ0,1

]−p0 and
λi,2 = 1

[
γ0i = γ0,2

]− (1−p0). Then,

1 [qi ≤ γ0i] = 1
[
qi ≤ γ0,1

]
1
[
γ0i = γ0,1

]+1
[
qi ≤ γ0,2

]
1
[
γ0i = γ0,2

]
= 1

[
qi ≤ γ0,1

](
p0 +λi,1

)+1
[
qi ≤ γ0,2

](
1−p0 +λi,2

)
and the threshold regression model in (2) can be rewritten as

yi = xᵀi β0 + xᵀi δ01
[
qi ≤ γ0,1

](
p0 +λi,1

)+ xᵀi δ01
[
qi ≤ γ0,2

](
1−p0 +λi,2

)+ui

= xᵀi β0 + xᵀi δ∗
0,11

[
qi ≤ γ0,1

]+ xᵀi δ∗
0,21

[
qi ≤ γ0,2

]+u∗
i , (5)

where δ∗
0,1 = δ0p0, δ∗

0,2 = δ0 (1−p0) = δ0 − δ∗
0,1, and

u∗
i = ui + xᵀi δ0

{
1
[
qi ≤ γ0,1

]
λi,1 +1

[
qi ≤ γ0,2

]
λi,2

}
.

It holds that E[u∗
i |xi,qi] = 0 since E[λi,1|xi,qi] = E[λi,2|xi,qi] = E[ui|xi,qi] = 0.

This example illustrates that the threshold regression model with a heteroge-
neous threshold as in (4) can be rewritten as the threshold regression model with
two homogeneous thresholds as in (5). In this regard, the alternative hypothesis in
(3) amounts to characterizing the scenario where additional coefficient changes
exist beyond the original change at γ0. We, hence, can construct a test for (3)
using the idea of Nyblom (1989) and Elliott and Müller (2007) in the change-
point problem, where we test for the existence of additional changes before or
after the location γ0. The true threshold γ0 is not given in the null hypothesis
in (3), so we need to consistently estimate it. The key merit of this approach is
that our test does not require to specify or estimate the alternative model, unlike
the likelihood-ratio tests (e.g., Andrews, 1993; Bai and Perron, 1998; Lee et al.,
2011).

2.2. Overview of the Test

Here, we summarize our test and heuristically present its statistic properties. The
formal derivations are postponed to Section 3. First, under the mild primitive
conditions given in Section 3.1, we can verify that the least-squares estimator γ̂ is
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consistent and asymptotically independent of θ̂ = (β̂ᵀ,δ̂ᵀ)ᵀ. Furthermore, it holds
that (e.g., equation (11) in Hansen (2000))

√
n

(
β̂ −β0

δ̂ − δ0

)
→d

(
�β

�δ

)
(6)

as n → ∞ for some k-dimensional normal random vectors �β and �δ .
Denote Q(·) as the quantile function of qi, and define the process Gn (r) =
n−1/2 ∑n

i=1 xîui1 [qi ≤ Q(r)]. Also define r0 such that γ0 = Q(r0). For r ∈ [0,1],
using the standard empirical process results (e.g., van der Vaart and Wellner, 1996;
Kosorok, 2008), we can obtain that

Gn (r) = 1√
n

n∑
i=1

xîui1 [qi ≤ Q(r)] (7)

= 1√
n

∑n

i=1
xiui1 [qi ≤ Q(r)]− 1

n

∑n

i=1
xix

ᵀ
i 1 [qi ≤ Q(r)]

√
n(β̂ −β0)

− 1

n

∑n

i=1
xix

ᵀ
i 1 [qi ≤ Q(r)]1 [qi ≤ Q(r0)]

√
n(̂δ − δ0)+op (1)

⇒ J (r)−E
[
xix

ᵀ
i 1 [qi ≤ Q(r)]

]
�β −E

[
xix

ᵀ
i 1 [qi ≤ min{Q(r),Q(r0)}]

]
�δ,

as n → ∞, where J(r) is a mean-zero Gaussian process1 defined on [0,1] and
�β and �δ are as in (6). Note that we use the quantile function Q(·) in the
definition of Gn (·) for the purpose of normalization, so that the process is defined
on [0,1].

If we further assume xi = 1 and qi is independent of ui, the limiting expression
in (7) can be simplified as

W1(r)− r�β −min{r,r0}�δ , (8)

where W1 (·) denotes the standard Wiener process defined on [0,1]. This is
essentially the limit experiment exploited by the classic structural break literature,
based on which Nyblom (1989) constructs the test statistic for an additional change
point. In general, however, the limit of Gn (·) in (7) is more complicated since the
process J(·) is not the standard Wiener process and the additional terms are not
necessarily linear in r. For this reason, it is not straightforward to construct a test
statistic directly based on (7).

We can recover the simple limit as in (8) by modifying Gn (r) into a weighted-
sum process. Define2

D(r) = E
[
xix

ᵀ
i |qi = Q(r)

]
,

V(r) = E
[
xix

ᵀ
i u2

i |qi = Q(r)
]

,

1See Lemma A.4 in Hansen (2000).
2The threshold regression literature typically uses qi = q as the index for presentation. We use the alternative
presentation so that D(·) and V (·) are defined on [0,1].
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and monotonically increasing functions

h(r) =
∫ r

τ

1

vᵀD(t)−1 V (t)D(t)−1 v
dt and g(r) = h(r)

h(1− τ)
(9)

for r ∈ [τ,1 − τ ] with some τ ∈ (0,1/2) and for any k × 1 vector v that satisfies
vᵀv = 1.3 Furthermore, let F(·) be the distribution function of qi and define the
k ×1 vector of weight

wi = √
h(1− τ)g(1)(F(qi))D(F(qi))

−1 v,

where g(1) (r) = ∂g(r)/∂r = {vᵀD(r)−1 V (r)D(r)−1 vh(1 − τ)}−1. The modified
process is then constructed as

Gn (s) = 1√
n

∑n

i=1
wᵀ

i xîui1
[
Q(τ ) ≤ qi ≤ Q(g−1 (s))

]
, (10)

for s ∈ [0,1], where g−1 (·) is the inverse function of g(·). Comparing Gn (·)
with Gn(·), the key difference is in twofold: the weight vector wi and the indi-
cator function. The intuition for constructing such Gn is better presented from a
time series structural break perspective, which is given in the next subsection.
Under the conditions given in Section 3.1, we can show that under the null
hypothesis,

Gn (s) ⇒ W1 (s)− s
√

h(1− τ)vᵀ�β −min{s,g(r0)}
√

h(1− τ)vᵀ�δ, (11)

for s ∈ [0,1], as n → ∞. See Lemma A.1 for a formal statement. Except for the
normalizing constant

√
h(1− τ), Gn now weakly converges to the simple limit as

in (8).
To construct a pivotal test statistic using Gn, we further define

G∗
n (s) =

{
G∗

1n (s), if s ≤ g(r0),

G∗
2n (s), otherwise,

(12)

where

G∗
1n (s) = 1√

g(r0)

{
Gn (s)− s

g(r0)
Gn(g(r0))

}
, (13)

G∗
2n (s) = 1√

1−g(r0)

{
(Gn (1)−Gn (s))− 1− s

1−g(r0)
(Gn (1)−Gn(g(r0)))

}
.

We suppose r0 ∈ (τ,1 − τ) so that we avoid the threshold γ0 = Q(r0) being close
to the boundary, and hence g(r0) ∈ (0,1) holds by construction. Then G∗

1n (·) and
G∗

2n (·) are, respectively, properly standardized, and both weakly converge to two
independent standard Brownian Bridge processes. Based on this observation, we

3The choice of v can be guided by the empirical context to reflect importance attached to different components of
the changing coefficients. In the tipping point application, for instance, we use v = (1,0, . . . ,0)ᵀ.
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construct the test statistic as

1

g(r0)

∫ g(r0)

0
G∗

1n (s)2 ds+ 1

1−g(r0)

∫ 1

g(r0)

G∗
2n (s)2 ds. (14)

As shown in Theorem 1 in Section 3, its limiting null distribution is free
of nuisance parameters because the break is only at s = g(r0). This limiting
distribution is also obtained by Elliott and Müller (2007) in the time series
structural break setup. Therefore, the critical values can be readily tabulated and no
further simulation or bootstrap is needed to conduct the test. Under the alternative
hypothesis, when the constant threshold assumption is violated, however, at least
one of G∗

1n (·) and G∗
2n (·) is not properly centered, and the test statistic diverges as

n → ∞ because of the nonzero drift. See Section 3 for details.

2.3. Interpretation from Time Series Perspectives

As discussed above, our test uses the idea of Nyblom (1989) and Elliott and Müller
(2007), which was originally developed in the time series context where qi is time
and the observations are obtained sequentially over time. In this subsection, we
reformulate the threshold regression into the change-point model and describe the
connection between our test with Nyblom (1989) and Elliott and Müller (2007).
Instead of deriving the limiting null distribution using the standard empirical
process theory (cf. Lee et al., 2011), we can construct a partial sum process in
our setup and obtain the identical limiting null distribution based on the traditional
stochastic process results. By doing so, we bridge the cross-sectional threshold
model and the time series change-point model in this testing problem. Furthermore,
viewing through the time series lens, we can provide a better intuition about how
to construct wi and g(·).

To this end, we first sort the observations according to the order of qi. By sorting
the random sample {qi}n

i=1 into the order statistics q[1:n] ≤ q[2:n] ≤ ·· · ≤ q[n:n] and
rearranging the observations according to the rank of qi, we denote the reordered
observations (yi,x

ᵀ
i )ᵀ associated with q[i:n] as (y[i:n],x

ᵀ
[i:n])

ᵀ, that is, (y[i:n],x
ᵀ
[i:n])

ᵀ =
(yj,x

ᵀ
j )ᵀ if q[i:n] = qj.4 These reordered statistics are called induced-order statistics

or concomitants (e.g., Bhattacharya, 1974; Sen, 1976; Yang, 1985). It gives a
natural ordering among the observations as in the time series structural break
models, which is the case when q[i:n] = qi = i is time. In what follows, we drop
“:n” in the subscripts for simplicity. The subscript [i] is reserved for the ith induced-
order statistics associated with the order statistic q[i:n].

In this setup, we can view the sorted uniform random variable F(q[i]) as “time.”
For the empirical distribution F̂n(·), F̂n(q[i]) = i/n, hence, resembles the equi-
spaced time on the unit interval from the perspective of structural break. In fact,
Lemma A.3 in the Appendix shows that the effect of replacing F(·) by F̂n(·) in

4We suppose qi is continuous, and the probability of seeing ties is thus negligible. In finite samples, we may simply
drop duplicate (i.e., tied) observations of qi.
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two key elements n−1/2 ∑n
i=1 xiui1 [qi ≤ Q(r)] = n−1/2 ∑n

i=1 xiui1 [F (qi) ≤ r] and
n−1 ∑n

i=1 xix
ᵀ
i 1 [qi ≤ Q(r)] = n−1 ∑n

i=1 xix
ᵀ
i 1 [F (qi) ≤ r] in (7) are asymptotically

negligible in the sense that

sup
r∈[0,1]

∥∥∥∥ 1√
n

∑n

i=1
xiui1 [qi ≤ Q(r)]− 1√

n

∑�rn�
i=1

x[i]u[i]

∥∥∥∥ = op (1) , (15)

sup
r∈[0,1]

∥∥∥∥1

n

∑n

i=1
xix

ᵀ
i 1 [qi ≤ Q(r)]− 1

n

∑�rn�
i=1

x[i]x
ᵀ
[i]

∥∥∥∥ = op (1) , (16)

where n−1/2 ∑�rn�
i=1 x[i]u[i] = n−1/2 ∑n

i=1 x[i]u[i]1[F̂n
(
q[i]

) ≤ r] = n−1/2 ∑n
i=1 xiui1

[F̂n (qi) ≤ r] and similarly for n−1 ∑�rn�
i=1 x[i]x

ᵀ
[i]. Therefore, it is asymptotically

equivalent to rewrite Gn (·) in (10) using the partial sum process of the induced-
order statistics and using F̂n(·) in place of F(·) for implementation.

Then, we can approximate Gn (·) by

1√
n

∑⌊
g−1(s)n

⌋
i=�τn�+1

√
h(1− τ)g(1)(i/n)vᵀD(i/n)−1x[i]̂u[i], (17)

and readily obtain its limit using the traditional stochastic process results from the
decomposition of (17) as

= 1√
n

∑⌊
g−1(s)n

⌋
i=�τn�+1

√
h(1− τ)g(1)(i/n)vᵀD(i/n)−1x[i]u[i]

− 1√
n

∑⌊
g−1(s)n

⌋
i=�τn�+1

√
h(1− τ)g(1)(i/n)vᵀD(i/n)−1x[i]x

ᵀ
[i](β̂ −β0)

− 1√
n

∑min{
⌊

g−1(s)n
⌋
,�r0n�}

i=�τn�+1

√
h(1− τ)g(1)(i/n)vᵀD(i/n)−1x[i]x

ᵀ
[i](̂δ − δ0)

⇒ √
h(1− τ)

∫ g−1(s)

g−1(0)

g(1)(t)vᵀD(t)−1 V (t)1/2 dWk (t) (18)

−√
h(1− τ)

∫ g−1(s)

g−1(0)

g(1)(t)dt · vᵀ�β (19)

−√
h(1− τ)

∫ min{g−1(s),r0}

g−1(0)

g(1)(t)dt · vᵀ�δ , (20)

where D(i/n)−1 asymptotically cancels out with E[x[i]x
ᵀ
[i]] by construction and Wk

is the k×1 vector standard Wiener process defined on [0,1]. Then, by the facts that

g(τ ) = 0 and
∫ g−1(s)

0 g(1)(t)dt = s, the terms in (19) and (20) become linear in s. To
standardize the first term in (18), we set g(1) (·) to be proportional to the inverse of
the local Fisher information, vᵀD(·)−1 V (·)D(·)−1 v. Then, the first term becomes
the standard Wiener process, and the limit of Gn (s) is obtained as (11). A formal
statement is given in Lemma A.7 in the Appendix.
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The merit of the partial sum process expression in (17) is now evident. First,
the observations above explain how we develop the specific forms of the weight
wi and the function g(·) in (10). Note that g : [τ,1−τ ] �→ [0,1] can be understood
as the normalized time. In the structural break literature, in comparison, qi is
time, and the functions D(·) and V(·) are, respectively, constant matrices D̄ and
V̄ under the piecewise stationarity assumption (e.g., Bai and Perron, 1998). Then
g(·) reduces to the identity function, and the weight wi becomes the constant
(vᵀD̄−1V̄D̄−1v(1 − 2τ))−1/2D̄−1v. Second, we can readily derive the weak limit
of Gn (·) using the traditional stochastic process results, which naturally bridges
the cross-sectional threshold model and the time series change-point model in
our testing problem. Therefore, based on the discussion about the alternative
hypothesis (3) in Section 2.1, the new test can also be applied to test for any
additional change points in the structural break models in time series. Third,
compared with (10), the partial sum process in (17) does not require to estimate
the distribution function F directly. Therefore, the implementation of our test,
as well as the derivation of its limiting distribution, becomes much simpler. For
such reasons, we study the asymptotics of our test using the partial sum process
expression in (17) in what follows.

3. ASYMPTOTIC PROPERTIES

3.1. Limiting Null Distribution

We first introduce some primitive conditions. Recall that we define r0 such that
γ0 = Q(r0) under the null hypothesis in (3).

Condition 1. 1. (xᵀi ,ui,qi)
ᵀ is i.i.d.

2. E[ui|xi,qi] = 0 almost surely.
3. qi has a continuous density function f such that, for all q, 0 < f (q) < C, for

some C < ∞.
4. δ0 = c0n−ε , for somec0 
= 0 andε ∈ (0,1/2);

(
cᵀ0 ,β

ᵀ
0

)ᵀ
belongs to some compact

subset of R2k.
5. r0 ∈ (τ,1− τ), for some τ ∈ (0,1/2).
6. D(r) and V(r) are well-defined matrix-valued functions that are positive

definite and continuously differentiable with bounded derivatives at all
r ∈ (0,1).

7. E
[
xix

ᵀ
i

]
> E

[
xix

ᵀ
i 1 [qi ≤ Q(r)]

]
> 0, for any r ∈ (0,1).

8. supq∈RE[||xiui||4|qi = q] < ∞ and supq∈RE[||xi||4|qi = q] < ∞.

Condition 1.1 assumes a random sample, which simplifies our analysis. Under
this condition, we can show that the induced-order statistic {x[i]u[i]}n

i=1 is a
martingale difference array (e.g., Lemma 2 in Sen (1976) and Lemma 3.2 in
Bhattacharya (1984)) and obtain the weak limit of the partial sum process. A
martingale difference array is typically assumed in the time series case, where qi is
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time and hence the observations are naturally sorted by qi. A general form of cross-
sectional dependence would break such a martingale property of the induced-order
statistic and substantially complicates the analysis. We leave this generalization for
future research. Note that, however, we can allow for some dependence structure
as long as the resulting induced-order statistic {x[i]u[i]}n

i=1 remains a martingale
difference array.

Condition 1.2 assumes a correctly specified model without endogeneity (cf.
Caner and Hansen, 2004; Kourtellos et al., 2016; Yu and Phillips, 2018). Condi-
tion 1.3 implies that the quantile function of qi is continuous and uniquely defined
for all i. Condition 1.4 adopts the widely used shrinking change size setup as in Bai
and Perron (1998) and Hansen (2000), under which θ̂ = (β̂ᵀ,δ̂ᵀ)ᵀ is

√
n-consistent

and asymptotically normal under the null hypothesis of constant threshold in (3).
A more precise notation should be δ0n in our shrinking size setup, but we still use
δ0 for notational simplicity. Condition 1.5 is to avoid the threshold being close
to the boundary so that there are infinitely many observations on both sides of the
threshold. This is commonly assumed in both the structural break and the threshold
regression literature. Condition 1.6 requires the moment function to be smooth
so that D(·) and V(·) are well defined. These two functions are usually treated
as constant matrices in the structural break literature (e.g., Li and Müller, 2009;
Elliott and Müller, 2014). However, they can be any continuous matrix-valued
functions here. Condition 1.7 is a full-rank condition, and Condition 1.8 bounds
the conditional moments.

Under Condition 1, we first derive the weak limit of a partial sum process based
on the induced-order statistics.

Lemma 1. Suppose Condition 1 holds. For Ĝn(r) = n−1/2 ∑�rn�
i=1 x[i]̂u[i], we have

Ĝn (·) ⇒ G(·) as n → ∞ under the null hypothesis in (3), where

G(r) =d

∫ r

0
V(t)1/2dWk (t)−

(∫ r

0
D(t)dt

)
�β −

(∫ min{r,r0}

0
D(t)dt

)
�δ, (21)

for r ∈ [0,1], �β and �δ are given in (6), and Wk(·) is the k × 1 vector standard
Wiener process defined on [0,1].

In view of (21), we cannot directly use Ĝn(r) to construct our test statistic
because the nonlinear functions V (·) and D(·) are nuisance objects that complicate
the asymptotic analysis. Moreover, the process Wk (·) and the normal variables
�β and �δ are correlated since they both depend on the limit of the summation
of xiui. The exact correlation structure also involves D(·) and V (·) and hence
can be complicated in general. Fortunately, the transformation (10) eliminates the
effect of V (·) and D(·), and the self-normalization in (13) eliminates �β and �δ

asymptotically under the null hypothesis. Then the test statistic (14) only involves
the modified process G∗

n (·) and becomes pivotal. We proceed to obtain its feasible
sample analog and study its asymptotic properties. To this end, we first estimate
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D(r) and V (r) as (e.g., Yang, 1985)

D̂(r) = 1

nbn

n∑
i=1

K

(
(i/n)− r

bn

)
x[i]x

ᵀ
[i], (22)

V̂ (r) = 1

nbn

n∑
i=1

K

(
(i/n)− r

bn

)
x[i]x

ᵀ
[i]̂u

2
[i], (23)

for some kernel function K(·) and some bandwidth bn, where û[i] denotes the
reordered regression residual ûi = yi − xᵀi β̂ − xᵀi δ̂1[qi ≤ γ̂ ] under the null hypoth-
esis. Given (22) and (23), the functions in (9) are estimated by

ĥ(r) = 1

n

�rn�∑
i=�τn�+1

1

vᵀD̂(i/n)−1 V̂ (i/n) D̂(i/n)−1 v
and ĝ(r) = ĥ(r)

ĥ(1− τ)
. (24)

Under the following conditions, we can verify that all these kernel estimators
are uniformly consistent. Note that these conditions are standard in the kernel
regression literature (e.g., Li and Racine, 2007), where the last rate restriction in
Condition 2.2 is from Yang (1981, Cor. 1).

Condition 2. 1. K(·) is Lipschitz continuous, continuously differentiable with
bounded derivative, and symmetric around zero, which satisfies

∫
K (t)dt=1,∫

tK (t)dt = 0, 0 <
∫

t2K(t)dt < ∞, limt→∞ |t|K(t) = 0, and limt→∞ t2

(∂K(t)/∂t) = 0.
2. bn → 0, nbn/ logn → ∞, and n1/4bn → ∞ as n → ∞.

The sample analog of Gn (s) in (10) is then given as

Ĝn (s) = 1√
n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

√
ĥ(1− τ )̂g(1)(i/n)vᵀD̂(i/n)−1 x[i]̂u[i], (25)

where ĝ(1)(i/n) = {vᵀD̂(i/n)−1 V̂ (i/n) D̂(i/n)−1 v̂h(1− τ)}−1, and ĝ−1(·) is com-
puted as the numerical inverse of ĝ(·). The following lemma establishes that Ĝn (·)
weakly converges to the simple limit expression as in (8).

Lemma 2. Suppose Conditions 1 and 2 hold. Then, for any v satisfying vᵀv = 1,
under the null hypothesis in (3),

(i) D̂(r), V̂(r), ĥ(r), and ĝ(r) are uniformly consistent on r ∈ [τ,1− τ ];
(ii) Ĝn (·) ⇒ G (·) as n → ∞, where

G (s) =d W1 (s)− svᵀ�h
β −min{s,g(r0)}vᵀ�h

δ, (26)

for s ∈ [0,1] with �h
β = √

h(1− τ)�β and �h
δ = √

h(1− τ)�δ .
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Lemma 2 implies that Ĝn (s) has a well-defined weak limit under the null
hypothesis. Similarly, the sample analog of G∗

n (s) in (12) is given by

Ĝ∗
n (s) =

{
Ĝ∗

1n (s), if s ≤ ĝ(̂r),

Ĝ∗
2n (s), otherwise,

(27)

where r̂ = F̂n(γ̂ ) = n−1 ∑n
i=1 1[qi ≤ γ̂ ],

Ĝ∗
1n (s) = 1√

ĝ(̂r)

{
Ĝn (s)− s

ĝ(̂r)
Ĝn(̂g(̂r))

}
,

Ĝ∗
2n (s) = 1√

1− ĝ(̂r)

{(
Ĝn (1)− Ĝn (s)

)− 1− s

1− ĝ(̂r)

(
Ĝn (1)− Ĝn(̂g(̂r))

)}
.

By the continuous mapping theorem and the consistency of ĝ(̂r) to g(r0), the �h
β

and �h
δ terms are canceled out asymptotically so that the weak limits of Ĝ∗

1n (s)
and Ĝ∗

2n (s) are free of nuisance terms. By construction, each of them behaves as
the independent standard Brownian bridge defined on [0,1] in the limit.

As in (14), we thus define the constant-threshold test statistic, or the CT test
statistic, as

CTn = 1

�̂g(̂r)n�
∑�̂g(̂r)n�

i=1
Ĝ∗

1n(i/n)2 + 1

n−�̂g(̂r)n�
∑n

i=�̂g(̂r)n�+1
Ĝ∗

2n(i/n)2 (28)

in a similar vein to Nyblom (1989) and Elliott and Müller (2007). Theorem 1
establishes that CTn converges to the integral of the squared Brownian bridges
under the null hypothesis of a constant threshold but diverges under the alternative
hypothesis.5

Theorem 1. Suppose Conditions 1 and 2 hold. Then, as n → ∞,

CTn →d

∫ 1

0
B2 (t)ᵀB2 (t)dt (29)

under the null hypothesis in (3), where B2 (t) is the 2 × 1 vector standard
Brownian bridge on [0,1]. However, CTn → ∞ in probability under the alternative
hypothesis in (3), where γ0i is i.i.d. and independent of (qi,x

ᵀ
i ,ui)

ᵀ.

The limiting distribution of CTn is pivotal under the null hypothesis of a constant
threshold. It does not depend on the choice of τ and v as long as the latter satisfies
vᵀv = 1. Therefore, we can easily simulate the critical values, which are covered by
Elliott and Müller (2007) as the special case with k = 1. We reproduce the results
in Table 1 for reference. The test for (3) is then conducted as a one-sided test that
rejects the null hypothesis if CTn is larger than the corresponding critical values.

5We focus on the alternative model such that the threshold is exogenous. More precisely, γ0i in (3) is i.i.d. and
independent of (qi,x

ᵀ
i ,ui)

ᵀ. Such an assumption does not change the null distribution of our test but substantially
simplifies the power analysis.
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Table 1. Simulated critical values of the CT test

P(
∫ 1

0 B2 (t)ᵀB2 (t)dt > cv) 0.800 0.850 0.900 0.925 0.950 0.975 0.990

cv 0.467 0.527 0.600 0.666 0.745 0.888 1.067

Note: Entries are based on 50,000 replications and 5,000 step approximations to the continuous-time
process.

Unlike the conventional quasi-likelihood ratio tests in threshold regression
models, the CT test only requires estimating the threshold regression model (2)
under the null hypothesis of a constant threshold. It can reject the null hypothesis
when the classic threshold regression model is mis-specified and hence can be
seen as a specification test. When the CT test rejects the null hypothesis, we can
conduct some sequential testing or model selection analysis to search for more
flexible specifications as discussed in the Introduction.

We summarize the steps to implement the CT test as follows:

Step 1 Under the constant threshold regression model, obtain the profile least-
squares estimators θ̂ and γ̂ .

Step 2 For each r ∈ {(�τn�+1)/n, (�τn�+2)/n, . . . ,�(1−τ)n�/n}, obtain the
kernel estimators D̂(r) and V̂(r) as in (22) and (23), and the estimators ĥ(r),
ĝ(r), and ĝ(1)(r) as in ( 24). Obtain ĝ−1 (·) by numerically inverting ĝ(·).

Step 3 Construct Ĝ∗
n (s) for s ∈ {1/n,2/n, . . . ,1} as (27).

Step 4 Compute the CTn statistic in (28) and conduct a one-sided test using the
critical values from Table 1.

3.2. Local Power Analysis

Theorem 1 derives the consistency of the CT test. To examine its local power
properties, we now consider the local alternative model given as

yi = xᵀi β0 + xᵀi δ01 [qi ≤ γ0]+ xᵀi {n−1/2α (qi)}+ui, (30)

where α (·) is some nonconstant k-dimensional bounded function that characterizes
the form of local deviation. Since α (·) is nonparametric in qi, (30) is very
general to cover many empirically relevant cases, including, for example, multiple
homogeneous thresholds (e.g., α (qi) = α01 [qi ≤ γ1] for some γ1 
= γ0 and a
nonzero finite k×1 vector α0) and a single heterogeneous threshold (e.g., α(qi) =
α01 [qi ≤ γi] for some random variable γi and a nonzero finite k ×1 vector α0) as
we discussed in Section 2.1.

Though appearing differently, (30) is essentially equivalent to the local alter-
native of (3). Recall that the alternative hypothesis is P(γ0i = γ0) < 1 for any
γ0 ∈ �. Hence, a genuine way of constructing the local alternative is to consider
P(γ0i = γ0) = 1−n−
, for some 
 > 0. To this end, we let
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γ ∗
0i =

{
γ0, with probability 1−n−(1/2−ε),

γ0 +�i, with probability n−(1/2−ε),
(31)

where �i is some random variable that describes the local deviation. We consider
�i > 0 without loss of generality. Now, define λ∗

i,1 = 1
[
γ ∗

0i = γ0
]− (1−n−(1/2−ε))

and λ∗
i,2 = 1

[
γ ∗

0i = γ0 +�i
]−n−(1/2−ε), which yield that

1
[
qi ≤ γ ∗

0i

] = 1 [qi ≤ γ0]1
[
γ ∗

0i = γ0
]+1 [qi ≤ γ0 +�i]1

[
γ ∗

0i = γ0 +�i
]

= 1 [qi ≤ γ0](1−n−(1/2−ε) +λ∗
i,1)+1 [qi ≤ γ0 +�i](n

−(1/2−ε) +λ∗
i,2).

We assume �i is i.i.d. with the distribution function F� and independent of
(qi,x

ᵀ
i ,ui)

ᵀ as in Theorem 1. We allow �i to be a constant. Recall δ0 = c0n−ε

for nonzero c0.
Then, the threshold regression model with (31) can be rewritten as (30) in the

following way:

yi = xᵀi β0 + xᵀi δ01
[
qi ≤ γ ∗

0i

]+ui

= xᵀi β0 + xᵀi δ01 [qi ≤ γ0]+ xᵀi δ0n−(1/2−ε)1 [γ0 < qi ≤ γ0 +�i]

+ xᵀi δ0
{
1 [qi ≤ γ0]λ∗

i,1 +1 [qi ≤ γ0 +�i]λ
∗
i,2

}+ui

= xᵀi β0 + xᵀi δ01 [qi ≤ γ0]+ xᵀi {n−1/2α (qi)}+u∗
i ,

where

α (q) = c0E [1 [γ0 < qi ≤ γ0 +�i] |xi,qi = q] (32)

=
{

c0 (1−F� (q−γ0)), if q > γ0

0, otherwise

and

u∗
i = ui + xᵀi δ0

{
1 [qi ≤ γ0]λ∗

i,1 +1 [qi ≤ γ0 +�i]λ
∗
i,2

}
+ xᵀi δ0n−(1/2−ε) {1 [γ0 < qi ≤ γ0 +�i]−E [1 [γ0 < qi ≤ γ0 +�i] |xi,qi]} .

Note thatE
[
u∗

i |xi,qi
] = 0 by construction and α (q) cannot be constant over q > γ0.

The shrinking magnitude of the local deviation in (30) is of the order n−1/2,
with which the CT test has a nontrivial asymptotic power (cf. Elliott, Müller, and
Watson, 2015). This local alternative is smaller in order than δ0 since δ0 = O(n−ε)

for some ε ∈ (0,1/2). Therefore, we can still obtain γ̂ − γ0 = Op
(
n−1+2ε

)
and

θ̂ − θ0 = Op
(
n−1/2

)
, where θ0 = (β

ᵀ
0 ,δ

ᵀ
0 )ᵀ. Furthermore, the kernel estimators are

still uniformly consistent on [τ,1 − τ ]. Theorem 2 derives the weak limit of CTn

under the local alternative model in (30).

Theorem 2. Suppose the conditions in Theorem 1 hold. Then, under the local
alternative in (30),

CTn →d

∫ 1

0
(B2 (t)+μ(t))ᵀ (B2 (t)+μ(t))dt,
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as n → ∞, where μ(t) = (μ1(t),μ2(t))ᵀ with

μ1(t) =
√

h(1− τ)

g(r0)

{∫ g−1(t)

τ

�v(s)ds− t

g(r0)

∫ r0

τ

�v(s)ds

}
,

μ2(t) =
√

h(1− τ)

1−g(r0)

{∫ 1−τ

g−1(t)
�v(s)ds− 1− t

1−g(r0)

∫ 1−τ

r0

�v(s)ds

}
,

and �v(·) = g(1)(·)vᵀα (Q(·)).

The local deviation n−1/2α (·) introduces a potentially nonzero drift func-
tion μ(·) to the standard Brownian bridge. For any given t ∈ (0,1), the scaled
integrand (B2 (t) + μ(t))ᵀ(B2 (t) + μ(t))/(t(1 − t)) has a noncentral chi-square
distribution with two degrees of freedom and the noncentrality parameter given by
μ(t)ᵀμ(t)/(t(1− t)) (e.g., Andrews, 1993, p. 842). As long as α(·) is nonconstant
either before or after the first break, at least one component of μ(·) is not uniformly
zero and then leads to a nontrivial local power.

Moreover, when α (·) is a k × 1 vector of constants, say α, we have �v(·) =
g(1)(·)vᵀα and it is readily verified that μ(t) = 0, for all t ∈ (0,1). In fact, in view
of (32), α (·) can be a constant only when F� is the step function that jumps from
zero to one at γ0, which corresponds to the null model. From this observation, we
can see that the CT test has a nontrivial asymptotic local power under (30) for any
nonconstant function α (·).

To better understand the drift function μ(·), we illustrate the case with two
thresholds. Assume that the local alternative model has a second threshold γ1 < γ0.
Accordingly, we let α (qi) = α01 [qi ≤ γ1] with some nonzero vector α0. Then,
μ2(t) is zero for t ∈ [g(r0),1). Denote γ1 = Q(r1) for some r1 ∈ [0,r0). In this
case, we can show that the weak limit in (26) has an additional drift term,√

h(1− τ)min{s,g(r1)}vᵀα0. This nonzero drift term cannot be removed by the
standardization in (13), and thus we have

μ1(t) =
√

h(1− τ)

g(r0)

(
min {t,g(r1)}− t

g(r1)

g(r0)

)
vᵀα0

over the region t ∈ (0,g(r0)) in the limit experiment, which yields nontrivial
powers. The optimal choice of v could be obtained by maximizing the local power
(cf. Andrews, 1993; Andrews and Ploberger, 1994). However, such a choice relies
on the unknown knowledge of α0 and more importantly, the specification that
α (qi) = α01 [qi ≤ γ1]. Therefore, the optimality under a general local alternative is
very challenging, which is beyond the scope of this paper. We leave this for future
research.
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4. MONTE CARLO EXPERIMENTS

This section examines the small sample performance of the CT test in (28). We
consider the following data generating processes (DGPs):

DGP-1 yi = xᵀi β0 + xᵀi δ01 [qi ≤ 0]+ui;

DGP-2 yi = xᵀi β0 + xᵀi δ01 [qi ≤ 0]+ xᵀi α(qi)+ui;

DGP-3 yi = xᵀi β0 + xᵀi δ0 (1 [qi ≤ 0]+1 [qi > 0.5])+ui,

where xi = (x1i,x2i)
ᵀ ∈ R

2 with the first element x1i = 1 and x2i is some scalar
random variable specified later. We set β0 = ι2 and consider δ0 = δι2 for δ ∈
{0.25,0.50,0.75,1.00}, where ι2 = (1,1)ᵀ. In DGP-2, we set α (q) = |q| ι2.

These DGPs correspond to each of the following three different threshold
specifications: (i) one single threshold at zero; (ii) one first threshold at zero and an
additional drift function α (·); and (iii) two thresholds at 0 and 0.5. In particular,
DGP-1 corresponds to the null hypothesis of the homogeneous threshold in (3).
DGP-2 corresponds to an alternative model as in (30), and DGP-3 corresponds
to the alternative model discussed in the end of Section 3.2. We set τ = 0.1 and
v = (v1,v2)

ᵀ to be proportional to (1,1/E
[
x2

2i

]
)ᵀ with vᵀv = 1.6 We use the rule-of-

thumb choice of the bandwidth bn = (1/12)1/2 n−1/5 and the Gaussian kernel. Other
choices of bandwidth, kernel, and τ are also implemented, which lead to negligible
changes. The sample sizes are n = 500, 1,000, and 1,500, and the significance level
is 5%. The results are based on 1,000 simulations.

For comparison, we also implement two existing methods. The first one is the
F(2|1) test proposed by Bai and Perron (1998), which is designed for testing one
against two structural breaks. Note that this test is developed for the time series
case with (piecewise) stationary data only, which corresponds to the case that
V (·) and D(·) are both constant matrices. To implement this test, one obtains
the sum of squared residuals SSR1 and SSR2, which are from the change-point
regression models with one and two breaks, respectively. The test statistic is
then constructed as Fn(2|1) = n(SSR1 − SSR2)/SSR1. We use their choice of the
parameter ε = 0.05n, which is the minimum number of observations between the
two breaks.

The second one is the model selection approach proposed by Gonzalo and
Pitarakis (2002). Specifically, Gonzalo and Pitarakis (2002) introduce the follow-
ing information criterion

ICn (m) = logSSRm + ϕn

n
k(m+1),

where m denotes the number of thresholds, SSRm is the sum of squared residuals
from the regression with m thresholds, and ϕn is some tuning parameter that
satisfies ϕn → ∞ and ϕn/n → 0. The number of thresholds is determined by
minimizing ICn (m) over m. To compare with the aforementioned tests for (3), we

6Results with v = (0,1)ᵀ are very similar and hence omitted.
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Table 2. Rejection probabilities when q and x are independent

DGP-1 DGP-2 DGP-3

δ n = 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500

CT test

0.25 0.03 0.05 0.05 0.72 1.00 1.00 0.24 0.50 0.66

0.50 0.03 0.05 0.05 0.94 1.00 1.00 0.70 0.96 1.00

0.75 0.03 0.05 0.05 0.97 1.00 1.00 0.92 1.00 1.00

1.00 0.04 0.05 0.05 0.94 1.00 1.00 0.94 1.00 1.00

F(2|1) test

0.25 0.01 0.01 0.01 1.00 1.00 1.00 0.15 0.50 0.76

0.50 0.01 0.01 0.01 1.00 1.00 1.00 0.86 1.00 1.00

0.75 0.01 0.01 0.02 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.00 0.01 0.01 1.00 1.00 1.00 1.00 1.00 1.00

BIC1

0.25 0.24 0.04 0.01 1.00 1.00 1.00 0.93 0.94 0.96

0.50 0.05 0.03 0.02 1.00 1.00 1.00 0.98 1.00 1.00

0.75 0.07 0.03 0.03 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.06 0.04 0.03 1.00 1.00 1.00 1.00 1.00 1.00

BIC3

0.25 0.97 0.74 0.34 1.00 1.00 1.00 1.00 1.00 1.00

0.50 0.04 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

0.75 0.00 0.00 0.00 0.99 1.00 1.00 1.00 1.00 1.00

1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Entries are rejection probabilities of the CT test, the F(2|1) test by Bai and Perron (1998), and
the model selection using the BIC by Gonzalo and Pitarakis (2002), based on 1,000 simulations. The
significance level is 5%. Data are generated from three DGPs with (qi,ui,x2i) ∼ iidN (0,I3).

count the mis-selection probability when m = 1 as the rejection probability. We
follow Gonzalo and Pitarakis (2002) to choose the Bayesian information criterion
(BIC) approach by setting ϕn = logn and 3logn, denoted by BIC1 and BIC3,
respectively, in Tables 2 and 3. The minimum number of observations between
the two thresholds is also chosen as 0.05n.

Table 2 reports the results under the i.i.d. case with (qi,ui,x2i) ∼ N (0,I3).
Several findings can be summarized as follows. First, since qi is independent
of other variables, re-ordering the data leads to the canonical structural break
model, in which time is deterministic. Thus, both the CT and the F(2|1) tests
should control size under the null hypothesis, as illustrated in the first three
columns. Second, the F(2|1) test is very conservative, whereas the CT test has
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Table 3. Rejection probabilities when q and x are dependent

DGP-1 DGP-2 DGP-3

δ n = 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500

CT test

0.25 0.03 0.03 0.04 0.25 0.50 0.80 0.09 0.12 0.23

0.50 0.04 0.03 0.05 0.35 0.74 0.93 0.28 0.53 0.69

0.75 0.04 0.05 0.05 0.50 0.83 0.97 0.50 0.81 0.95

1.00 0.05 0.04 0.04 0.56 0.85 0.96 0.72 0.97 1.00

F(2|1) test

0.25 0.11 0.16 0.17 1.00 1.00 1.00 0.19 0.36 0.55

0.50 0.11 0.16 0.15 0.99 1.00 1.00 0.56 0.93 0.99

0.75 0.10 0.14 0.14 0.98 1.00 1.00 0.91 1.00 1.00

1.00 0.10 0.13 0.14 1.00 1.00 1.00 0.99 1.00 1.00

BIC1

0.25 0.61 0.43 0.32 1.00 1.00 1.00 0.90 0.89 0.91

0.50 0.33 0.30 0.28 1.00 1.00 1.00 0.94 0.98 1.00

0.75 0.32 0.29 0.28 1.00 1.00 1.00 0.99 1.00 1.00

1.00 0.35 0.31 0.30 1.00 1.00 1.00 1.00 1.00 1.00

BIC3

0.25 0.99 0.96 0.86 0.90 1.00 1.00 1.00 1.00 1.00

0.50 0.59 0.07 0.00 0.69 1.00 1.00 1.00 0.98 0.98

0.75 0.02 0.00 0.00 0.55 0.99 1.00 0.98 0.99 1.00

1.00 0.00 0.00 0.00 0.61 1.00 1.00 0.99 1.00 1.00

Notes: Entries are rejection probabilities under the null hypothesis in (3) of the CT test, the F(2|1) test
by Bai and Perron (1998), the model selection using the BIC by Gonzalo and Pitarakis (2002). The
results are based on 1,000 simulations. The significance level is 5%. Data are generated from three
DGPs with qi ∼ iidN (0,1), x2i|qi = q ∼ iidN

(
0,1/(1+q2)

)
, and ui|x2i = x ∼ iidN (0,1+ x2).

approximately the correct size. The middle three columns show the rejection
probabilities under the alternative model with an additional drift function α (·). The
CT test and the F(2|1) test have similar powers. Third, the next three columns show
the powers under the alternative with two thresholds. This is the exact alternative
that the F(2|1) test is designed for, whereas our CT test still achieves comparable
powers. Fourth, the model selection based on BIC1 or BIC3 has good selection
probabilities. However, its performance is very sensitive to the choice of the tuning
parameter as we compare the results between BIC1 and BIC3. In particular, BIC3
uses a larger tuning parameter (i.e., heavier penalty) than BIC1, which leads to
substantially lower rejection probabilities. This feature is also seen in Table 3.
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In Table 3, we introduce some dependence between qi and xi, and conditional
heteroskedastic errors ui. In particular, we generate data from each DGP with
qi ∼ iidN (0,1), x2i|qi = q ∼ iidN

(
0,1/(1+q2)

)
, and ui|x2i = x ∼ iidN (0,1+x2).

Several findings can be summarized as follows. First, as expected, the CT test is
the only one that satisfies the size constraint under the null hypothesis. It also
has nontrivial powers under the alternative models, especially when δ and n are
large. Second, the F(2|1) test fails to control size since its asymptotic distribution is
contaminated by the rank-varying moments. Third, the mis-selection probabilities
from BIC1 are far from 5%. This issue can be alleviated by choosing a larger tuning
parameter as in BIC3, which again leads to severe under-rejections.

5. APPLICATION: TIPPING POINT AND SOCIAL SEGREGATION

Our motivating example is social segregation and the tipping point phenomenon.
Card et al. (2008) empirically examine the theory proposed by Schelling (1971)
that the white population substantially decreases once the minority share in a tract
exceeds a certain threshold, called the tipping point. In particular, they consider
the following threshold regression model:

yi = β01 + δ011 [qi ≤ γ0]+ xᵀi β02 +ui,

where, for tract i in a certain city, qi denotes the minority share in percentage
at the beginning of a certain decade, yi is the normalized white population
change in percentage within the decade, and xi includes six tract-level control
variables: unemployment rate, the logarithm of mean family income, the fractions
of single-unit, vacant, and renter-occupied housing units, and the fraction of public
transportation commuters. The data are collected from a variety of cities in three
periods: 1970–1980, 1980–1990, and 1990–2000. For most cities and all three
periods, they find that white population flows exhibit the tipping point behavior,
with the estimated tipping points γ0 ranging approximately from 5% to 20% across
cities.

We examine the hypothesis that the tipping point remains constant across
different tracts. Intuitively, such a null hypothesis can be easily rejected since some
social characteristics endogenously determine the tipping points. In particular,
Card et al. (2008) construct an index that measures white people’s attitude against
the minority and find that the level of the tipping point strongly depends on this
index. We want to formally test if the tipping point remains constant across tracts.

Table 4 shows the results of the CT test in (28) using the data in Chicago, Los
Angeles, New York City, and Washington D.C. in the decade 1980–1990. We
choose the rule-of-thumb bandwidth bn = (1/12)1/2n−1/5 and τ = 0.1 as in the
Monte Carlo experiments. We set v = (1,0, . . . ,0)ᵀ since only the constant term
involves a coefficient change. We also follow Card et al. (2008) to use the tracts in
which the initial minority share is between 5% and 60%. The small p-values of CT
suggest that a single constant threshold is insufficient for fully capturing the social
segregation behavior. Data from other cities and decades lead to similar results,
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Table 4. Tipping point estimation and testing results
(1980–1990)

City n γ̂ CT p-value

Chicago 688 6.94 0.000

Los Angeles 1,263 17.47 0.000

New York 315 16.08 0.000

Washington D.C. 719 15.54 0.000

Notes: Entries are sample sizes (n), the constant tipping point estimation
(γ̂ ), and the p-values of the CT test. Data are available from Card et al.
(2008).

which are, hence, not reported. These results suggest that we need to use a more
flexible form of threshold in the tipping point analysis.

6. CONCLUSION

This paper recasts the cross-sectional threshold problem into the time series
structural break problem. Under this new framework, we develop a test for
homogeneity of the threshold parameter as empirically motivated by the tipping
point problem.

Although we focus on the threshold homogeneity test in this paper, we can
apply the novel transformation idea to develop other tests. First, our transformation
allows us to convert other inference methods developed in the structural break
models into the threshold model setup, including inference about γ0 (e.g., Elliott
et al., 2015), δ0 (e.g., Andrews and Ploberger, 1994), and β0 (e.g., Elliott and
Müller, 2014). The inference on δ0 covers the test for threshold effect. Second,
although we do not allow for endogeneity in this paper, the partial sum process
and our test can still be constructed even when the model involves endogeneity as
long as the parameters can be consistently estimated using instruments. We leave
these questions for future research.

APPENDIX: Proofs

Throughout the proofs, we define r0 and r̂ as r0 = F(γ0) and r̂ = F̂n(γ̂ ), or equivalently
γ0 = Q(r0) and γ̂ = Q̂n(̂r). We let C denote a generic constant and denote hτ ≡ h(1− τ)

and ĥτ = ĥ(1− τ).

A.1. Proof of the Results in Section 2

We first prove (11).

Lemma A.1. Under Condition 1, (11) holds for s ∈ [0,1] as n → ∞.
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Proof of Lemma A.1. We first decompose (10) into

Gn (s)

= 1√
n

∑n

i=1
wᵀ

i xiui1
[
Q(τ ) ≤ qi ≤ Q(g−1 (s))

]
− 1

n

∑n

i=1
wᵀ

i xix
ᵀ
i 1

[
Q(τ ) ≤ qi ≤ Q(g−1 (s))

]{√
n(β̂ −β0)+1

[
qi ≤ Q(r0)

]√
n(̂δ − δ0)

}
− 1

n

∑n

i=1
wᵀ

i xix
ᵀ
i 1

[
Q(τ ) ≤ qi ≤ Q(g−1 (s))

]{
1[qi ≤ γ̂ ]−1

[
qi ≤ Q(r0)

]}√
n̂δ.

(A.1)

We can verify (11) from the limits of the first two terms, which can be obtained from, as
n → ∞,

GnA (s) ≡ 1√
n

∑n

i=1
wᵀ

i xiui1
[
Q(τ ) ≤ qi ≤ Q(g−1 (s))

]
⇒ W1 (s) ,

GnB (s) ≡ 1

n

∑n

i=1
wᵀ

i xix
ᵀ
i d01

[
Q(τ ) ≤ qi ≤ Q(g−1 (s))

]
→p svᵀd0h1/2

τ

uniformly over s ∈ [0,1] for any bounded k × 1 vector d0 and by the continuous mapping
theorem. For GnA (s), since it converges to a Gaussian process as in Lemma A.4 of Hansen
(2000), it suffices to show that, for any s ≤ s′, the covariance kernel is given as

Cov
[
GnA (s),GnA

(
s′

)]
= E

[(
wᵀ

i xiui
)2 1

[
Q(τ ) ≤ qi ≤ Q(g−1 (s))

]]
=

∫ g−1(s)

τ
hτE

⎡⎢⎣ vᵀD(F(qi))
−1 xix

ᵀ
i u2

i D(F(qi))
−1 v(

vᵀD(F(qi))
−1 V (F(qi))D(F(qi))

−1 vhτ

)2

∣∣∣∣∣∣∣F (qi) = r

⎤⎥⎦dr

=
∫ g−1(s)

τ
hτE

⎡⎢⎣ vᵀD(r)−1 V (r)D(r))−1 v(
vᵀD(r)−1 V (r)D(r)−1 vhτ

)2

∣∣∣∣∣∣∣qi = Q(r)

⎤⎥⎦dr

=
∫ g−1(s)

τ

1

vᵀD(r)−1 V (r)D(r)−1 vhτ

dr =
∫ g−1(s)

τ
g(1) (r)dr = s.

For GnB (s), for any s ∈ [0,1], we have

E [GnB (s)] = E

[
wᵀ

i xix
ᵀ
i d01

[
Q(τ ) ≤ qi ≤ Q(g−1 (s))

]]
= h1/2

τ

∫ g−1(s)

τ
E

[
vᵀD(F(qi))

−1 xix
ᵀ
i d0

vᵀD(F(qi))
−1 V (F(qi))D(F(qi))

−1 vhτ

∣∣∣∣∣F (qi) = r

]
dr

= h1/2
τ vᵀd0

∫ g−1(s)

τ

1

vᵀD(r)−1 V (r)D(r)−1 vhτ

dr = svᵀd0h1/2
τ .

Then, the pointwise convergence holds under the standard law of large numbers (LLN) and
the uniform convergence follows similarly from the proof of Lemma 1 in Hansen (1996).
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It remains to show that the last term in (A.1) is asymptotically negligible, which we
denote by ϒn(s). Suppose γ̂ > γ0. Then, we have

|ϒn(s)| ≤ sup
r∈[τ,1−τ ]

∥∥∥√
h(1−τ)g(1)(r)D(r)−1 v

∥∥∥∥∥∥∥1

n

∑n

i=1
xix

ᵀ
i {1 [qi ≤ γ̂ ] −1 [qi ≤ γ0]}

∥∥∥∥∥∥√
n̂δ

∥∥,

for any s ∈ [0,1], where 1
[
Q(τ ) ≤ qi ≤ Q(g−1 (s))

]
≤ 1. Thus,

|ϒn(s)| ≤ C

∥∥∥∥1

n

∑n

i=1
xix

ᵀ
i

∣∣1 [qi ≤ γ̂ ]−1
[
qi ≤ γ0

]∣∣∥∥∥∥∥∥√
n̂δ

∥∥,

for some 0 < C < ∞, because supr∈[τ,1−τ ] ||
√

h(1− τ)g(1)(r)D(r)−1 v|| < ∞ by Condi-
tion 1.6. Note that the bound does not depend on s. By Lemma A.12 in Hansen (2000) and
Condition 1.4, we have that ||√n̂δ|| ≤ ||√n(̂δ − δ0)|| + ||√nδ0|| = Op(1) + Op(n1/2−ε)

with ε ∈ (0,1/2). Let Eδn be the event that ||√n̂δ|| ≤ Cδn1/2−ε , for some 0 < Cδ < ∞,
and then P

(
Ec

δn

) ≤ ε, for any ε > 0, if n is sufficiently large. Now, let Eγ n be the event

that γ̂ ∈ (γ0 −Cγ n−1+2ε,γ0 +Cγ n−1+2ε), for some 0 < Cγ < ∞. Lemma A.9 in Hansen

(2000) yields that P
(

Ec
γ n

)
≤ ε, for any ε > 0, if n is sufficiently large. Then, for any η > 0

and any ε > 0, if n is sufficiently large,

P

(
sup

s∈[τ,1−τ ]
|ϒn(s)| > η

)
(A.2)

≤ P

({
sup

s∈[τ,1−τ ]
|ϒn(s)| > η

}
∩Eγ n ∩Eδn

)
+P

(
Ec

γ n

)
+P

(
Ec

δn
)

≤ η−1Cn1/2−ε
E

[∥∥xix
ᵀ
i

∣∣1 [qi ≤ γ̂ ]−1
[
qi ≤ γ0

]∣∣1
[
Eγ n

]∥∥]+2ε

≤ η−1Cn1/2−ε

∥∥∥∥∥sup
q∈R

E
[
xix

ᵀ
i |qi = q

]∥∥∥∥∥∣∣∣P(qi ≤ γ0 +Cγ n−1+2ε)−P(qi ≤ γ0)

∣∣∣+2ε

≤ η−1C′n−1/2+ε +2ε

≤ 3ε,

for some 0 < C′ < ∞. Note that the second inequality is by Markov’s inequality; the
fourth inequality is by Conditions 1.6, 1.8, and |P(qi ≤ γ0 + Cγ n−1+2ε)−P(qi ≤ γ0)| =
|F(γ0 + Cγ n−1+2ε) − F(γ0)| ≤ f (γ∗)Cγ n−1+2ε = O(n−1+2ε) for some γ∗ ∈ (γ0,γ0 +
Cγ n−1+2ε), where F(·) is continuous and f (γ∗) < ∞ by Condition 1.3. The argument for
γ̂ ≤ γ0 is identical, and hence we have sups∈[τ,1−τ ] |ϒn(s)| = op(1). The desired result
follows. �

We establish the convergence of the key partial sum processes in Section 2.3.

Lemma A.2. Suppose Condition 1 holds. Then, as n → ∞,

1√
n

∑�rn�
i=1

x[i]u[i] ⇒
∫ r

0
V(t)1/2dWk (t), (A.3)
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for r ∈ [0,1], and

sup
r∈[0,1]

∥∥∥∥1

n

∑�rn�
i=1

x[i]x
ᵀ
[i] −

∫ r

0
D(t)dt

∥∥∥∥ →p 0, (A.4)

where Wk(·) is the k ×1 vector standard Wiener process defined on [0,1].

Proof of Lemma A.2. We prove the first result (A.3) using Theorem 2 in Bhattacharya
(1974). By the Cramér–Wold device, it suffices to show that, for any k×1 nonzero vector v,

1√
n

�rn�∑
i=1

vᵀx[i]u[i] ⇒
∫ r

0

(
vᵀV(t)v

)1/2 dW1 (t) . (A.5)

Note that vᵀx[i]u[i] is a scalar random variable and is the induced-order statistics of vᵀxiui
associated with qi. We now check Conditions 1–3 in Bhattacharya (1974). Condition 1
requires qi to be continuous, which is implied by our Condition 1.3. For Condition 2, our
Conditions 1.2 and 1.8 imply that E[vᵀxiui|qi] = 0 almost surely and

sup
q∈R

E

[(
vᵀxiui

)4 |qi = q
]

≤ C sup
q∈R

E

[
‖xiui‖4 |qi = q

]
< ∞.

Condition 3 is directly implied by our Condition 1.6. In particular, the continuous differen-
tiability of V(·) implies that the function vᵀV(·)v is of bounded variation. Define

φV (r) =
∫ r

0
vᵀV(t)vdt.

By Theorem 2 in Bhattacharya (1974), we have

(nφV (1))−1/2
∑�rn�

i=1
vᵀx[i]u[i] ⇒ W1

(
φV (r)

φV (1)

)
. (A.6)

Then, (A.5) follows from the continuous mapping theorem and the fact that

φV (1)1/2W1

(
φV (r)

φV (1)

)
=d

∫ r

0
φV (t)1/2dW1(t).

For the second result (A.4), we let ξi = vᵀxix
ᵀ
i v and denote ξ[i] as the induced-order statistics

of ξi associated with q[i]. Define the processes

φnD(r) =
∫ F̂−1

n (r)

−∞
E[ξi|qi = q]dF̂n(q),

where F̂n(·) is the empirical distribution of qi, and

φD(r) =
∫ F−1(r)

−∞
E[ξi|qi = q]dF(q).

Conditions 1.6 and 1.8 imply that supq∈RE[ξi|qi = q] < ∞ and E[ξi|qi = q] is of bounded
variation. Therefore, supr∈[0,1] |φnD(r)−φD(r)| → 0 almost surely by integration by parts
and application of the Glivenko–Cantelli theorem (e.g., Lemma 2 in Bhattacharya (1974)).

By the triangular inequality, it suffices to show supr∈[0,1] |n−1 ∑�rn�
i=1 ξ[i] −φnD(r)| →p 0,
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which is done in a way analogous to (A.6) (e.g., page 1038 in Bhattacharya (1974)). The
desired result follows by the Cramér–Wold device. �

We now show the equivalence results in (15) and (16) in the following lemma, where

n−1/2 ∑�rn�
i=1 x[i]u[i] = n−1/2 ∑n

i=1 x[i]u[i]1[F̂n
(
q[i]

) ≤ r] = n−1/2 ∑n
i=1 xiui1[F̂n (qi) ≤

r] = n−1/2 ∑n
i=1 xiui1[qi ≤ Q̂n(r)]and similarly n−1 ∑�rn�

i=1 x[i]x
ᵀ
[i] = n−1 ∑n

i=1 xix
ᵀ
i 1[qi ≤

Q̂n(r)].

Lemma A.3. Under Condition 1,

sup
r∈[0,1]

∥∥∥∥ 1√
n

∑n

i=1
xiui

{
1[qi ≤ Q̂n(r)]−1[qi ≤ Q(r)]

}∥∥∥∥ = op (1) , (A.7)

sup
r∈[0,1]

∥∥∥∥1

n

∑n

i=1
xix

ᵀ
i

{
1[qi ≤ Q̂n(r)]−1[qi ≤ Q(r)]

}∥∥∥∥ = op (1) , (A.8)

where Q(·) and Q̂n (·) are quantile and empirical quantile functions of qi, respectively.

Proof of Lemma A.3. For the first result, we let Jn(γ ) = n−1/2 ∑n
i=1 xiui1 [qi ≤ γ ].

Lemma A.4 in Hansen (2000) yields that Jn(γ ) ⇒ J (γ ), where J (·) is a mean-zero
Gaussian process indexed by γ ∈ R with almost surely continuous sample paths. Using the
change of variables with γ = Q(r) and the fact that supr∈[η,1−η] |Q̂n (r)− Q(r) | = op (1)

for any constant η ∈ (0,1/2) by the Glivenko–Cantelli theorem, we obtain that

sup
r∈[η,1−η]

∥∥Jn(Q̂n(r))− Jn(Q(r))
∥∥ = op (1) .

For (A.7), therefore, it is sufficient to show that, for any ε > 0, we can pick η such that for
a sufficiently large n,

P

(
sup

r∈[0,η]

∥∥Jn(Q̂n(r))
∥∥ > ε

)
< ε and P

(
sup

r∈[0,η]
‖Jn(Q(r))‖ > ε

)
< ε, (A.9)

and the same results for r ∈ [1−η,1]. To establish the first one in (A.9), we use (A.3) to
obtain that

Jn(Q̂n(r)) = 1√
n

∑n

i=1
xiui1[F̂n(qi) ≤ r] = 1√

n

∑�rn�
i=1

x[i]u[i] ⇒
∫ r

0
V(t)1/2dWk (t),

for r ∈ [0,1], and hence

P

(
sup

r∈[0,η]

∥∥Jn(Q̂n(r))
∥∥ > ε

)
→ P

(
sup

r∈[0,η]

∥∥∥∥∫ r

0
V(t)1/2dWk (t)

∥∥∥∥ > ε

)
,

as n → ∞. However, since the process JQ (r) = ∫ r
0 V(t)1/2dWk (t) indexed by r satisfies

JQ (0) = 0 almost surely and has an almost surely continuous sample path, the above
probability can be smaller than ε if η is sufficiently small. The second one in (A.9) can
be similarly shown since Jn(Q(r)) ⇒ J (Q(r)) by Lemma A.4 in Hansen (2000), where
J (Q(0)) = 0 almost surely and has an almost surely continuous sample path as well. The
same results as (A.9) can be shown for r ∈ [1−η,1] symmetrically and hence omitted.
Therefore, (A.7) is established.
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For (A.8), note that n−1 ∑n
i=1 xix

ᵀ
i 1 [qi ≤ γ ] →p M(γ ) uniformly in γ ∈R by Lemma 1

of Hansen (1996), where M(γ ) is continuous in γ . The desired result can be shown by a
similar argument as in (A.7) using (A.4). �

A.2. Proofs of the Results in Section 3

Proof of Lemma A.1. Note that

Ĝn (r) = 1√
n

∑�rn�
i=1

x[i]u[i]

− 1

n

∑�rn�
i=1

x[i]x
ᵀ
[i]

{√
n(β̂ −β0)+1[F̂n(q[i]) ≤ r0]

√
n(̂δ − δ0)

}
− 1

n

∑�rn�
i=1

x[i]x
ᵀ
[i]

{
1
[
F(q[i]) ≤ r0

]−1[F̂n(q[i]) ≤ r0]
}√

n(̂δ − δ0)

− 1

n

∑�rn�
i=1

x[i]x
ᵀ
[i]

{
1[F̂n(q[i]) ≤ r̂]−1

[
F(q[i]) ≤ r0

]}√
n̂δ

≡ Gn1 (r)−Gn2 (r)−Gn3 (r)−Gn4 (r) ,

where the continuous mapping theorem yields

Gn1 (r) ⇒
∫ r

0
V(t)1/2dWk (t),

Gn2 (r) ⇒
(∫ r

0
D(t)dt

)
�β −

(∫ min{r,r0}
0

D(t)dt

)
�δ

from Lemma A.2 and (6), since 1[F̂n(q[i]) ≤ r0] = 1[i/n ≤ r0]. For the third term,
supr∈[0,1] ‖Gn3 (r)‖ = op(1) by (A.8) in Lemma A.3. Finally, for the last term,

‖Gn4 (r)‖ ≤
∥∥∥∥1

n

∑n

i=1
xix

ᵀ
i

∣∣1 [qi ≤ γ̂ ]−1
[
qi ≤ γ0

]∣∣∥∥∥∥∥∥√
n̂δ

∥∥,

for any r ∈ [0,1], where the inequality is because the summands are nonnegative. Note that
the bound does not depend on r. By Lemma A.12 in Hansen (2000) and Condition 1.4, we
have that ||√n̂δ|| ≤ ||√n(̂δ−δ0)||+ ||√nδ0|| = Op(1)+Op(n1/2−ε) with ε ∈ (0,1/2). Let
Eδn be the event that ||√n̂δ|| ≤ Cδn1/2−ε for some 0 < Cδ < ∞ and then P

(
Ec

δn

) ≤ ε for

any ε > 0 if n is sufficiently large. Let Eγ n be the event that γ̂ ∈ (γ0 − Cγ n−1+2ε,γ0 +
Cγ n−1+2ε), for some 0 < Cγ < ∞. Then, using the same argument in (A.2), for any η > 0
and any ε > 0, if n is sufficiently large,

P

(
sup

r∈[0,1]
‖Gn4 (r)‖ > η

)

≤ P

({
sup

r∈[0,1]
‖Gn4 (r)‖ > η

}
∩Eγ n ∩Eδn

)
+P

(
Ec

γ n

)
+P

(
Ec

δn
)

≤ η−1Cn1/2−ε
E

[∥∥xix
ᵀ
i

∣∣1 [qi ≤ γ̂ ]−1
[
qi ≤ γ0

]∣∣1
[
Eγ n

]∥∥]+2ε

≤ η−1C′n−1/2+ε +2ε

≤ 3ε,
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for some 0 < C,C′ < ∞, where the second inequality is by Markov’s inequality and by
Condition 1.4 with ε ∈ (0,1/2); the third inequality is by Conditions 1.3, 1 .6, and 1.8.
Hence,

sup
r∈[0,1]

‖Gn4 (r)‖ = op(1), (A.10)

and the desired result follows. �

Lemma A.4. Let

V̂0 (r) = 1

n

n∑
i=1

x[i]x
ᵀ
[i]u

2
[i]Ki (r) ,

where Ki(r) = b−1
n K((i/n − r)/bn). Under Conditions 1 and 2,supr∈[τ,1−τ ] ||V̂ (r) −

V̂0 (r) || = op (1).

Proof of Lemma A.4. For expositional simplicity, we only present the case with scalar
xi. As ûi = ui −xi(β̂ −β0)−xi (̂δ −δ0)1

[
qi ≤ γ0

]−xîδ
(
1 [qi ≤ γ̂ ]−1

[
qi ≤ γ0

])
, we have

∣∣∣V̂ (r)− V̂0 (r)
∣∣∣ =

∣∣∣∣∣∣1

n

n∑
i=1

x2
[i]

(̂
u[i] +u[i]

) (̂
u[i] −u[i]

)
Ki (r)

∣∣∣∣∣∣ (A.11)

≤ 1

n

n∑
i=1

∣∣∣x3
i (̂ui +ui)(β̂ −β0)Ki (r)

∣∣∣
+ 1

n

n∑
i=1

∣∣∣x3
i (̂ui +ui) (̂δ − δ0)1

[
qi ≤ γ0

]
Ki (r)

∣∣∣
+ 1

n

n∑
i=1

∣∣∣x3
i (̂ui +ui) δ̂

{(
1 [qi ≤ γ̂ ]−1

[
qi ≤ γ0

])}
Ki (r)

∣∣∣
≡ V1n(r)+V2n(r)+V3n(r).

Let Eθn be the event that θ̂ = (β̂ᵀ,δ̂ᵀ)ᵀ ∈ BCn−1/2(θ0) and Eγ n the event that γ̂ ∈
BCn−1+2ε (γ0) for some 0 < C < ∞, where Br(x) denotes a generic open ball centered at x

with radius r. Lemmas A.9 and A.12 in Hansen (2000) imply P(Ec
θn) ≤ ε and P

(
Ec

γ n

)
≤ ε

for any ε > 0 if C and n are large enough. Then, for any η > 0,

P

(
sup

r∈[τ,1−τ ]
|V1n(r)| > η

)

≤ P

({
sup

r∈[τ,1−τ ]
|V1n(r)| > η

}
∩Eγ n ∩Eθn

)
+P(Ec

γ n ∪Ec
θn)

≤ η−1 max
1≤i≤n

sup
r∈[0,1]

Ki (r)×E

[∣∣∣x3
i (̂ui +ui)(β̂ −β0)

∣∣∣ |Eθn

]
+2ε

≤ η−1 max
1≤i≤n

sup
r∈[0,1]

Ki (r)×
{

2E
[∣∣∣x3

i ui(β̂ −β0)

∣∣∣ |Eθn

]
+E

[∣∣∣x4
i (β̂ −β0)2

∣∣∣ |Eθn

]
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+E

[∣∣∣x4
i 1

[
qi ≤ γ0

]
(̂δ − δ0)(β̂ −β0)2

∣∣∣ |Eθn

]
+E

[∣∣∣x4
i δ̂(β̂ −β0)

(
1 [qi ≤ γ̂ ]−1

[
qi ≤ γ0

])∣∣∣ |Eγ n ∩Eθn

]}
+2ε

≤ Cη−1n−1/2b−1
n

(
2E

[∣∣∣x3
i ui

∣∣∣]+E

[∣∣∣x4
i

∣∣∣])+2ε

≤ 3ε

for sufficiently large n, where the second inequality is from Markov’s inequality; the
third inequality follows from the triangular inequality; the fourth inequality follows from
Condition 2.1 and the fact that 1 [·] ≤ 1; and the last inequality follows from Conditions 1.8
and 2.2. For V2n(r) and V3n(r), the same argument yields that supr∈[τ,1−τ ] |V2n(r)| = op(1)

and supr∈[τ,1−τ ] |V3n(r)| = op(1) as well because δ̂ = Op(n−ε) = op(1). Hence, the desired
result follows. �

Lemma A.5. Suppose Conditions 1 and 2 hold. Then, under the null hypothesis
in (3), supr∈[τ,1−τ ] ||D̂(r) − D(r) || = op (1), supr∈[τ,1−τ ] ||V̂ (r) − V (r) || = op (1),
supr∈[τ,1−τ ] |̂h(r)−h(r)| = op (1), and supr∈[τ,1−τ ] |̂g(r)−g(r)| = op (1).

Proof of Lemma A.5. We first prove the uniform consistency of V̂ (r), and the
uniform consistency of D̂(r) follows in the same way. By Lemma A.4, it suffices to show
supr∈[τ,1−τ ] ||V̂0 (r) − V (r) || = op(1). For expositional simplicity, we only present the
case with scalar xi. Denote fν as the density of νi = F(qi) and fx,u,ν as the joint density
of (xi,ui,νi). Note that

V (r) = E

[
x2

i u2
i |F(qi) = r

]
= 1

fν(r)

∫∫
x2u2fx,u,ν(x,u,r)dxdu,

where fν(r) = 1 since νi is standard uniform.
The triangular inequality yields

sup
r∈[τ,1−τ ]

∣∣∣V̂0 (r)−V (r)
∣∣∣ ≤ sup

r∈[τ,1−τ ]

∣∣∣E[V̂0 (r)]−V (r)
∣∣∣+ sup

r∈[τ,1−τ ]

∣∣∣V̂0 (r)−E[V̂0 (r)]
∣∣∣ ,

where the first item is op(1) as established in equations (12) and (13) and Lemma 1 in Yang
(1981). For the second term, let κn be some large truncation parameter to be chosen later,
satisfying κn → ∞ as n → ∞. Define

V̂κ (r) = 1

n

∑n

i=1
x2

[i]u
2
[i]Ki (r)1[x2

[i]u
2
[i] ≤ κn].

The triangular inequality gives that, for any η > 0,

P

(
sup

r∈[τ,1−τ ]

∣∣∣V̂0(r)−E[V̂0(r)]
∣∣∣ > η

)
≤ P

(
sup

r∈[τ,1−τ ]

∣∣∣V̂0 (r)− V̂κ (r)
∣∣∣ > η/3

)
(A.12)

+P

(
sup

r∈[τ,1−τ ]

∣∣∣E[V̂0 (r)]−E[V̂κ (r)]
∣∣∣ > η/3

)

+P

(
sup

r∈[τ,1−τ ]

∣∣V̂κ (r)−E[V̂κ (r)]
∣∣ > η/3

)
≡ Pn1 +Pn2 +Pn3.
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For Pn1, since supr∈[τ,1−τ ] |Ki(r)| < b−1
n C1, for some 0 < C1 < ∞, from Condition 2.1,

we have

E

[
sup

r∈[τ,1−τ ]

∣∣∣V̂0(r)− V̂κ (r)
∣∣∣] ≤ E

[
C1

nbn

∑n

i=1
x2

[i]u
2
[i]1[x2

[i]u
2
[i] > κn]

]
(A.13)

≤ b−1
n κ−1

n C1 sup
q∈R

E

[
x4

i u4
i |qi = q

]
≤ C1b−1

n κ−1
n ,

where we use Condition 1.8 and the fact that∫
|a|>κn

|a|FA(da) ≤ κ−1
n

∫
|a|>κn

|a|2 FA(da) ≤ κ−1
n E[A2]

for a generic random variable A ∼ FA. Therefore, Pn1 ≤ 3C1/(ηbnκn) by Markov’s
inequality. Similarly,

sup
r∈[τ,1−τ ]

∣∣∣E[V̂0 (r)]−E[V̂κ (r)]
∣∣∣ ≤ b−1

n κ−1
n C1 sup

q∈R
E

[
x4

i u4
i |qi = q

]
≤ C1b−1

n κ−1
n

and hence Pn2 ≤ 3C1/(ηbnκn) as well. For Pn3, Lemma A.6 verifies that Pn3 ≤
(η/3)−1C(logn/(nbn))1/2 for some 0 < C < ∞. Therefore, if we choose κn such
that κn = O((bn logn/n)−1/2), we have both Pn1 and Pn2 are also bounded by
(η/3)−1C(logn/(nbn))1/2. A possible choice of κn is κn = O(n4/5) or larger when

bn = O
(

n−1/5
)

. By combining these results, it follows that

P

(
sup

r∈[τ,1−τ ]

∣∣∣V̂0(r)−E[V̂0(r)]
∣∣∣ > η

)
≤ 9C

η

(
logn

nbn

)1/2
→ 0,

as n → ∞, where logn/(nbn) → 0 from Condition 2.2.
The uniform consistency of ĥ(r) readily follows since

ĥ(r)−h(r) = 1

n

�rn�∑
i=�τn�+1

D̂(i/n)2

V̂ (i/n)
−

∫ r

τ

D(t)2

V (t)
dt

= 1

n

�rn�∑
i=�τn�+1

{
D̂(i/n)2

V̂ (i/n)
− D(i/n)2

V (i/n)

}
+ 1

n

�rn�∑
i=�τn�+1

D(i/n)2

V (i/n)
−

∫ r

τ

D(t)2

V (t)
dt,

where the first term is uniformly op(1) by the uniform consistency of D̂(·) and V̂(·);
the second term is o(1) from the standard Riemann integral, which is guaranteed by
Condition 1.6. The uniform convergence of ĝ(r) follows from that of ĥ(r) and the continuous
mapping theorem. �

Lemma A.6. Under the same condition as in Lemma A.5, for any η > 0, Pn3 in (A.12)
satisfies that Pn3 ≤ (η/3)−1C(logn/(nbn))1/2, for some 0 < C < ∞.

Proof of Lemma A.6. Since [τ,1− τ ] is compact, we can find mn intervals centered
at r1, . . . ,rmn with length CS/mn that cover [τ,1− τ ] for some CS ∈ (0,∞). We denote these
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intervals by Ij, for j = 1, . . . ,mn, and choose mn later. The triangular inequality yields

sup
r∈[τ,1−τ ]

∣∣V̂κ (r)−E[V̂κ (r)]
∣∣ ≤ Tκ

1n +Tκ
2n +Tκ

3n,

where

Tκ
1n = max

1≤j≤mn
sup
r∈Ij

∣∣V̂κ (r)− V̂κ
(
rj

)∣∣,
Tκ

2n = max
1≤j≤mn

sup
r∈Ij

∣∣E[V̂κ (r)]−E[V̂κ
(
rj

)
]
∣∣,

Tκ
3n = max

1≤j≤mn

∣∣V̂κ
(
rj

)−E[V̂κ
(
rj

)
]
∣∣ .

We first bound Tκ
3n. Let

Zκ
n,i(r) = n−1

{
x2

[i]u
2
[i]Ki (r)1[x2

[i]u
2
[i] ≤ κn]−E

[
x2

[i]u
2
[i]Ki (r)1[x2

[i]u
2
[i] ≤ κn]

]}
,

and then

V̂κ (r)−E[V̂κ (r)] =
∑n

i=1
Zκ

n,i(r).

Recall that κn is some large truncation parameter satisfying κn → ∞ as n → ∞. Note
that, similarly to the one in (A.13), supr∈[τ,1−τ ] x2

[i]u
2
[i]Ki (r)1[x2

[i]u
2
[i] ≤ κn]is bounded by

C2κnb−1
n for some constant C2 ∈ (0,∞) and hence |Zκ

n,i(r)| ≤ 2C2κn/(nbn), for all i =
1, . . . ,n. Define ψn = (nbn logn)1/2/κn. Then, ψn|Zκ

n,i(r)| ≤ 2C2(logn/(nbn))1/2 ≤ 1/2

for all i when n is sufficiently large. Using the inequality exp(x) ≤ 1+ x+ x2 for |x| ≤ 1/2,
we have exp(ψn|Zκ

n,i(r)|) ≤ 1+ψn|Zκ
n,i(r)|+ψ2

n |Zκ
n,i(r)|2. Hence,

E[exp(ψn

∣∣∣Zκ
n,i(r)

∣∣∣)] ≤ 1+ψ2
nE

[
(Zκ

n,i(r))
2
]

≤ exp
(
ψ2

nE
[
(Zκ

n,i(r))
2
])

, (A.14)

since E[Zκ
n,i(r)] = 0 and 1 + x ≤ exp(x), for x ≥ 0. By Markov’s inequality, P(X > c) ≤

E[exp(Xa)]/exp(ac) holds for any nonnegative random variable X and positive constants a
and c. Then, we have, for some constant ηn to be specified later,

P
(∣∣V̂κ (r)−E[V̂κ (r)]

∣∣ > ηn
) = P

(
V̂κ (r)−E[V̂κ (r)] > ηn

)+P
(−V̂κ (r)+E[V̂κ (r)] > ηn

)
≤

E

[
exp

(
ψn

∑n

i=1
Zκ

n,i(r)
)]

+E

[
exp

(
−ψn

∑n

i=1
Zκ

n,i(r)
)]

exp(ψnηn)

≤ 2exp(−ψnηn)exp
(
ψ2

n

∑n

i=1
E

[
(Zκ

n,i(r))
2
])

≤ 2exp(−ψnηn)exp
(
ψ2

n C3κ
2
n /(nbn)

)
for some sequence ηn → 0 as n → ∞, where the second inequality is by (A.14) and the last
inequality is from∑n

i=1
E

[
(Zκ

n,i(r))
2
]

≤ n−2
∑n

i=1
E

[
x4

[i]u
4
[i]K

2
i (r)1[x2

[i]u
2
[i] ≤ κn]

]
≤ C3κ2

n (nbn)−1
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for some C3 ∈ (0,∞). This bound is independent of r given Condition 1.8, and hence it is
also the uniform bound, i.e.,

sup
r∈[τ,1−τ ]

P
(∣∣V̂κ (r)−E[V̂κ (r)]

∣∣ > ηn
) ≤ 2exp

(
−ψnηn +ψ2

n C3κ2
n/(nbn)

)
. (A.15)

Now, given κn, we need to choose ηn → 0 as fast as possible, and at the same time we
let ψnηn → ∞ at a rate that ensures (A.15) is summable. This is done by choosing ψn =
(nbn logn)1/2/κn and ηn = C∗ψ−1

n logn = C∗κn((logn)/(nbn))1/2 for some finite constant
C∗. This choice yields

−ψnηn +ψ2
n C3κ2

n/(nbn) = −C∗ logn+C3 logn = −(C∗ −C3) logn.

Therefore, by substituting this into (A.15), we have

P
(
Tκ

3n > ηn
) = P

(
max

1≤j≤mn

∣∣V̂κ
(
rj

)−E[V̂κ
(
rj

)
]
∣∣ > ηn

)
≤ mn sup

s∈[τ,1−τ ]
P

(∣∣V̂κ (r)−E[V̂κ (r)]
∣∣ > ηn

) ≤ 2
mn

nC∗−C4
.

Now, we can choose C∗ sufficiently large so that
∑∞

n=1
P

(
Tκ

3n > ηn
)

is summable, from
which we have

Tκ
3n = Oa.s. (ηn) = Oa.s.

(
(logn/(nbn))1/2

)
by the Borel–Cantelli lemma.

For Tκ
1n, if n is sufficiently large,

E
∣∣V̂κ (r)− V̂κ

(
rj

)∣∣ = E

[∣∣∣∣1

n

∑n

i=1
x2

[i]u
2
[i]

(
Ki (r)−Ki

(
rj

))
1[x2

[i]u
2
[i] ≤ κn]

∣∣∣∣]
≤ C4 (1−2τ)κn/

(
mnb2

n

)
for some constant C4 < ∞ given r ∈ Ij. This bound does not depend on j and hence Tκ

1n =
Oa.s.(κn/

(
mnb2

n

)
). The same argument yields that

∣∣E[V̂κ (r)]−E[V̂κ
(
rj

)
]
∣∣ ≤ E

[∣∣∣∣1

n

∑n

i=1
x2

[i]u
2
[i]

(
Ki (r)−Ki

(
rj

))
1[x2

[i]u
2
[i] ≤ κn]

∣∣∣∣]
≤ C4 (1−2τ)κn/

(
mnb2

n

)
,

which does not depend on j, and hence it gives the uniform bound Tκ
2n = O(κn/

(
mnb2

n

)
)

as well. Therefore, by choosing mn = (lognb3
n/n)−1/2κn, we have that Tκ

1n and Tκ
2n are

both the order of ((logn)/(nbn))1/2. By combining these results, it follows that Pn3 ≤
(η/3)−1C((logn)/(nbn))1/2 for some C ∈ (0,∞) by Markov’s inequality. �

Lemma A.7. Suppose Conditions 1 and 2 hold. For

G̃n (s) = 1√
n

∑⌊
g−1(s)n

⌋
i=�τn�+1

h1/2
τ g(1)(i/n)vᵀD(i/n)−1 x[i]̂u[i],

we have G̃n(·) ⇒ G(·) as n → ∞ under the null hypothesis in (3).
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Proof of Lemma A.7. We let π(·) ≡ h1/2
τ g(1)(·)vᵀD(·)−1. Similarly to the one in

Lemma 1, we decompose

G̃n(s) = 1√
n

∑⌊
g−1(s)n

⌋
i=�τn�+1

π(i/n)x[i]u[i] (A.16)

− 1

n

∑⌊
g−1(s)n

⌋
i=�τn�+1

π(i/n)x[i]x
ᵀ
[i]

√
n(β̂ −β0)

− 1

n

∑⌊
g−1(s)n

⌋
i=�τn�+1

π(i/n)x[i]x
ᵀ
[i]1[F̂n(q[i]) ≤ r0]

√
n(̂δ − δ0)

− 1

n

∑⌊
g−1(s)n

⌋
i=�τn�+1

π(i/n)x[i]x
ᵀ
[i]

{
1
[
F(q[i]) ≤ r0

]−1[F̂n(q[i]) ≤ r0]
}√

n(̂δ − δ0)

− 1

n

∑⌊
g−1(s)n

⌋
i=�τn�+1

π(i/n)x[i]x
ᵀ
[i]

{
1[F̂n(q[i]) ≤ r̂]−1

[
F(q[i]) ≤ r0

]}√
n̂δ

≡ A1n (s)−A2n (s)−A3n (s)−A4n(s)−A5n(s).

First, we derive the limit of A1n (s) by applying Corollary 29.14 in Davidson (1994).7

To this end, we let Un,i = h1/2
τ n−1/2g(1)(i/n)vᵀD(i/n)−1 x[i]u[i] and −→q = {qi}n

i=1, and
check Condition 29.6(a)–(f′) in the corollary. Condition (a) is satisfied since E

[
Un,i

] =
E[E

[
Un,i|−→q

]
] = 0 given our Conditions 1.1 and 1.2. Condition (b) is implied by our

Conditions 1.6 and 1.8 by setting cn,i = 1 in the corollary as seen by

sup
i/n∈[τ,1−τ ]

∥∥Un,i
∥∥

4 ≤ h1/2
τ√

n
sup

r∈[τ,1−τ ]

∥∥∥vᵀD(r)−1
∥∥∥

4
sup

r∈[τ,1−τ ]

∣∣∣g(1)(r)
∣∣∣

×
(

sup
q∈R

E

[
||xiui||4 |qi = q

])1/4

< ∞,

where ||·||p denotes the Lp-norm. Condition (c) is implied by the fact that {Un,i}n
i=1 is a

martingale difference array (see, e.g., Lemma 3.2 of Bhattacharya (1984)). Thus, the near-
epoch dependence (NED) condition is satisfied. Condition (d) holds by setting cn,i = 1

and Kn(t) =
⌊

g−1(t)n
⌋

, and from the fact that g−1 (·) is continuously differentiable.

Condition (e) is satisfied by setting cn,i = 1 since {Un,i}n
i=1 is independent conditional q(n)

almost surely (see, e.g., Lemma 3.1 of Bhattacharya (1984)). To satisfy Condition (f′), our
Condition 1.6 and Taylor expansion of V(·) at i

n yield that

E

[
x[i]x

ᵀ
[i]u

2
[i]

]
= E

[
E

[
xjx

ᵀ
j u2

j |qj = q[i]

]]
= E

[
V(F(q[i]))

]
= V(i/n)+E

[
∂V(ti)

∂t

(
F

(
q[i]

)− i/n
)]

= V(i/n)+O
(

n−1/2
)

, (A.17)

7Note that we cannot directly apply Theorem 2 in Bhattacharya (1974) to derive the limit of A1n (s) as
in the proof of Theorem 1. This is because the pre-ordered version of {g(1)(i/n)vᵀD(i/n)−1 x[i]u[i]}n

i=1 is
{g(1)(Ri/n)vᵀD(Ri/n)−1 xiui}n

i=1, which is no longer i.i.d. given the rank statistics Ri.
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where ti is between i/n = F̂n(q[i]) and F(q[i]) in the third equality. The last equality follows
from

sup
i/n∈[τ,1−τ ]

∥∥∥∥E[
∂V(ti)

∂t

(
F

(
q[i]

)− F̂n(q[i])
)]∥∥∥∥

≤ sup
t∈[τ,1−τ ]

∥∥∥∥∂V(t)

∂t

∥∥∥∥E
[

sup
t∈[τ,1−τ ]

∣∣F (t)− F̂n(t)
∣∣]

= O
(

n−1/2
)

,

which is from Donsker’s theorem and Condition 1.6. Then, we obtain that

E

[(∑Kn(s)

i=�τn�+1
Un,i

)2
]

= E

[∑Kn(s)

i=�τn�+1
U2

n,i

]
= hτ

n

∑⌊
g−1(s)n

⌋
i=�τn�+1

(
g(1)(i/n)

)2
vᵀD(i/n)−1

E

[
x[i]x

ᵀ
[i]u

2
[i]

]
D(i/n)−1 v

= hτ

n

∑⌊
g−1(s)n

⌋
i=�τn�+1

(
g(1)(i/n)

)2
vᵀD(i/n)−1 V(i/n)D(i/n)−1 v+O(n−1/2)

→ hτ

∫ g−1(s)

τ

(
g(1) (t)

)2
vᵀD(t)−1 V(t)D(t)−1 vdt

=
∫ g−1(s)

g−1(0)
g(1)(t)dt = s,

where the first equality is from the fact that {Un,i}n
i=1 is a martingale difference array; the

third equality is by (A.17); the second expression from the bottom is by Riemann integral
as n → ∞; and the last expression is by the definition of g(1) (·) and g−1(0) = τ . Therefore,

Davidson (1994, Cor. 29.14) implies that A1n (s) =
∑Kn(s)

i=�τn�+1
U2

n,i ⇒ W1(s), for s ∈ [0,1].

For A2n(s) and A3n(s), we apply Lemma A.2, Lemma A.12 in Hansen (2000), and the
continuous mapping theorem to obtain that

A2n (s) →p

(∫ g−1(s)

g−1(0)
g(1)(t)vᵀD(t)−1 D(t)dt

)
�βh1/2

τ = svᵀ�βh1/2
τ

and

A3n (s) →p

(∫ min(g−1(s),r0)

g−1(0)
g(1)(t)vᵀD(t)−1 D(t)dt

)
�δh1/2

τ = min{s,g(r0)}vᵀ�δh1/2
τ .

For A4n(s), since g−1(1) = 1− τ , we have

|A4n(s)| ≤ sup
r∈[τ,1−τ ]

‖π(r)‖
∥∥∥∥1

n

∑�(1−τ)n�
i=�τn�+1

xix
ᵀ
i

{
1 [F(qi) ≤ r0]−1[F̂n(qi) ≤ r0]

}∥∥∥∥∥∥√
n(̂δ − δ0)

∥∥,

and hence sups∈[0,1] |A4n(s)| = op(1) by (A.8) in Lemma A.3.
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Finally, for A5n(s), let Eδn be the event that ||√n̂δ|| ≤ Cδ for some 0 < Cδ < ∞ and
Eγ n be the event that γ̂ ∈ (γ0 −Cγ n−1+2ε,γ0 +Cγ n−1+2ε), for some 0 < Cγ < ∞. Then,
using the same argument in (A.2), for any η > 0 and ε > 0, if n is sufficiently large,

P

(
sup

s∈[0,1]
|A5n(s)| > η

)

≤ P

({
sup

s∈[0,1]
|A5n(s)| > η

}
∩Eγ n ∩Eδn

)
+2ε

≤ η−1Cn1/2−ε
E

[∥∥∥∥1

n

∑�(1−τ)n�
i=�τn�+1

π(i/n)x[i]x
ᵀ
[i]

{
1
[
q[i] ≤ γ̂

]−1
[
q[i] ≤ γ0

]}
1
[
Eγ n

]∥∥∥∥]
+2ε

≤ η−1Cn1/2−ε sup
r∈[τ,1−τ ]

‖π(r)‖E[∥∥xix
ᵀ
i |1 [qi ≤ γ̂ ]−1 [qi ≤ γ0]|1

[
Eγ n

]∥∥]+2ε

≤ η−1C′n−1/2+ε +2ε

≤ 3ε,

for some 0 < C,C′ < ∞, where the second inequality is by Markov’s inequality and the
fourth inequality is by Conditions 1 .3, 1.6, and 1.8. Thus, sups∈[0,1] |A5n(s)| = op(1). The
desired result follows by combining these results. �

Proof of Lemma 2. The first result follows from Lemma A.5. For the second result,
given Lemma A.7, it suffices to establish

sup
s∈[0,1]

∣∣Ĝn (s)− G̃n(s)
∣∣ = op(1).

We first consider the case with g−1(s) > ĝ−1(s). Let π(·) ≡ h1/2
τ g(1)(·)vᵀD(·)−1 and

π̂(·) ≡ ĥ1/2
τ ĝ(1)(·)vᵀD̂(·)−1. Note that, for any s ∈ [0,1],

Ĝn (s)− G̃n(s) = 1√
n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

π̂(i/n)x[i]̂u[i] − 1√
n

⌊
g−1(s)n

⌋∑
i=�τn�+1

π(i/n)x[i]̂u[i]

= 1√
n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

{π̂(i/n)−π(i/n)}x[i]̂u[i] + 1√
n

⌊̂
g−1(s)n

⌋∑
i=⌊

g−1(s)n
⌋+1

π(i/n)x[i]̂u[i]

≡ B1n (s)+B2n (s) .

For expositional simplicity, we only present the case with scalar xi.
For B1n (s), we write

B1n(s) = 1√
n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

{π̂(i/n)−π(i/n)}x[i]u[i]

+ 1√
n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

{π̂(i/n)−π(i/n)}x[i]
(̂
u[i] −u[i]

)
≡ B11n(s)+B12n(s). (A.18)
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We can verify sups∈[0,1] |B11n(s)| = op(1) from the argument in Chapter 2 of van der Vaart
and Wellner (1996), which we present in Lemma A.8. For B12n(s), define the event Eθn =
{θ̂ ∈ BCθ n−1/2(θ0)} for some 0 < Cθ < ∞. Lemma A.12 in Hansen (2000) implies that
P(Ec

θn) ≤ ε for any ε > 0 as n → ∞. Then, for any ε > 0, if n is large enough, we have

sup
s∈[0,1]

|B12n(s)|

≤ sup
r∈[τ,1−τ ]

|π̂(r)−π(r)| sup
r∈[τ,1−τ ]

1√
n

∣∣∣∣∣∣
�rn�∑

i=�τn�+1

x[i](̂u[i] −u[i])

∣∣∣∣∣∣
≤ op(1)

⎧⎨⎩ sup
r∈[τ,1−τ ]

1

n

�rn�∑
i=�τn�+1

x2
[i]|

√
n(β̂ −β0)|

+ sup
r∈[τ,1−τ ]

1

n

�rn�∑
i=�τn�+1

x2
[i]1

[
q(i) ≤ γ0

] |√n(̂δ − δ0)|

+ sup
r∈[τ,1−τ ]

1

n

�rn�∑
i=�τn�+1

x2
[i]

∣∣1[
q(i) ≤ γ0

]−1
[
q(i) ≤ γ̂

]∣∣ |√n̂δ|
⎫⎬⎭

= op(1),

where the second inequality is by Lemma A.5, and the last equality follows from Lemma A.2
and (A.10). Therefore, B1n(s) is uniformly op(1).

For B2n(s), we write

B2n(s) = 1√
n

⌊̂
g−1(s)n

⌋∑
i=⌊

g−1(s)n
⌋+1

π(i/n)x[i]u[i] + 1√
n

⌊̂
g−1(s)n

⌋∑
i=⌊

g−1(s)n
⌋+1

π(i/n)x[i]
(̂
u[i] −u[i]

)
≡ B21n(s)+B22n(s). (A.19)

For B21n(s), define the event Egn = {sups∈[0,1] |̂g−1(s) − g−1(s)| < η}, for some η > 0.
By Lemma A.5, P(Ec

gn) ≤ ε, for any ε > 0 and η > 0, as n → ∞. On the event Egn and
using the same argument as in proving Lemma A.7, we then have that for any given value
ĝ−1(s) = �(s),

sup
s∈[0,1]

|B21n(s)| ≤ sup
s∈[0,1]

sup
|�(s)−g−1(s)|<η

∣∣∣∣∣∣∣
1√
n

⌊
g−1(s)n

⌋∑
i=��(s)n�+1

π(i/n)x[i]u[i]

∣∣∣∣∣∣∣
⇒ sup

s∈[0,1]
sup

|�(s)−g−1(s)|<η

∣∣∣∣∣h1/2
τ

∫ g−1(s)

g−1(0)
g(1)(t)D(t)−1 V (t)1/2 dWk (t)

−h1/2
τ

∫ �(s)

g−1(0)
g(1)(t)D(t)−1 V (t)1/2 dWk (t)

∣∣∣∣∣
=d sup

s∈[0,1]
sup

|�(s)−g−1(s)|<η

|W1(s)−W1(g(�(s)))| .
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Then, we can choose η small enough to obtain that, for any ε > 0,

P

(
sup

s∈[0,1]
|B21n(s)| > ε

)
≤ P

({
sup

s∈[0,1]
|B21n(s)| > ε

}
∩Egn

)
+P(Ec

gn)

→ P

(
sup

s∈[0,1]
sup

|�(s)−g−1(s)|<η

|W1(s)−W1(g(�(s)))| > ε

)
+ ε

≤ ε−1
E

[
sup

s∈[0,1]
sup

|�(s)−g−1(s)|<η

|W1(s)−W1(g(�(s)))|
]

+ ε

≤ ε−1η1/2C + ε

≤ 2ε,

where the second inequality is by Markov’s inequality; the third inequality follows from
the continuity of g(·) and from the fact that E[sups∈[0,t] |W1(s)|] ≤ √

2t/π ; and the last
inequality holds with a sufficiently small η. For B22n(s), consider the same events Eθn and
Egnas above. Then, on these two events, using the same decomposition with the A2n (s),
A3n (s), and A4n(s) terms as in (A.16), we have that

sup
s∈[0,1]

|B22n(s)|

≤ sup
r∈[τ,1−τ ]

|π(r)| sup
s∈[0,1]

1√
n

⌊
g−1(s)n

⌋∑
i=⌊̂

g−1(s)n
⌋+1

∣∣x[i] (̂u[i] −u[i])
∣∣

≤ C sup
s∈[0,1]

1√
n

⌊
g−1(s)n

⌋∑
i=⌊(

g−1(s)−η
)
n
⌋+1

× x2
[i]

{|β̂ −β0|+ |̂δ − δ0|1[
q(i) ≤ γ0

]+ δ̂
∣∣1[

q(i) ≤ γ̂
]−1

[
q(i) ≤ γ0

]∣∣}
≤ C′ sup

s∈[0,1]

1

n

⌊
g−1(s)n

⌋∑
i=⌊(

g−1(s)−η
)
n
⌋+1

x2
[i]

→p C′ sup
s∈[0,1]

∫ g−1(s)

g−1(s)−η
D(t)dt

for some constant 0 < C,C′ < ∞, where the second inequality is from Condition 1.6; the
third inequality is from the fact that 1

[
q[i] ≤ γ

] ≤ 1 for any γ , the result in (A.10), and
by conditioning on the events Eθn and Egn; and the last convergence is from Lemma A.2.
By choosing a sufficiently small η, therefore, sups∈[0,1] |B22n(s)| = op(1). The proof for

g(s) ≤ ĝ−1(s) is identical and hence omitted. The desired result thus follows. �

Lemma A.8. Under the same condition as in Lemma 2, sups∈[0,1] |B11n(s)| = op(1),
where B11n(·) is defined in (A.18).

Proof of Lemma A.8. Note that, for each n, {x[i]u[i]}n
i=1 are independent conditional

on −→q = {qi}n
i=1 almost surely (Lemma 3.1 in Bhattacharya (1984)). We aim to use
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the empirical process argument for independent variables in van der Vaart and Wellner

(1996). To this end, we consider the class of functions π(·) = h1/2
τ g(1)(·)vᵀD(·)−1 and

the stochastic process

L
(π) =

∑

i=�τn�+1

Lni(π),

where Lni(π) = n−1/2π(i/n)x[i]u[i]. Define the semi-metric ρ(π1,π2) = supr∈[τ,1−τ ] |
π1(r)−π2(r)|. Then, the space of continuously differentiable functions defined on [τ,1−
τ ], denoted by C1[τ,1 − τ ], is totally bounded. We now apply Theorem 2.11.9 in van der
Vaart and Wellner (1996) by checking their conditions. (See also Theorem 3 in Bae, Jun, and
Levental (2010)) for a martingale difference array argument since {x[i]u[i]}n

i=1 also form a
martingale difference array by Lemma 3.2 in Bhattacharya (1984)).

First, we let their mn be �(1− τ)n� and theirF be C1[τ,1−τ ]. Set their envelope function
F as C̄ ||x|| for a large enough constant C̄. Then, their first condition is satisfied, as we write,
for any ε > 0,

�(1−τ)n�∑
i=�τn�+1

E

[
sup
π∈F

|Lni(π)|1

[
sup
π∈F

|Lni(π)| > ε

]∣∣∣∣∣−→q
]

≤
�(1−τ)n�∑
i=�τn�+1

E

[
sup
π∈F

|Lni(π)|2
∣∣∣∣∣−→q

]1/2

P

(
sup
π∈F

|Lni(π)| > ε

∣∣∣∣∣−→q
)1/2

≤ ε−4
�(1−τ)n�∑
i=�τn�+1

E

[
sup
π∈F

|Lni(π)|2
∣∣∣∣∣−→q

]1/2

E

[
sup
π∈F

|Lni(π)|4
∣∣∣∣∣−→q

]1/2

≤ C̄3n−3/2ε−4
�(1−τ)n�∑
i=�τn�+1

E

[∥∥x[i]u[i]
∥∥2

∣∣∣−→q ]1/2
E

[∥∥x[i]u[i]
∥∥4

∣∣∣−→q ]1/2

→ 0 a.s.,

as n → ∞, where the first two inequalities are from Cauchy–Schwarz inequality and the
third inequality is by substituting the envelope function C̄ ||x|| and from Condition 1.8.
Regarding their second condition, we have

sup
ρ(π,π1)≤εn

�(1−τ)n�∑
i=�τn�+1

E

[
(Lni(π)−Lni(π1))2 |−→q

]
≤ C̄2εnn−1

�(1−τ)n�∑
i=�τn�+1

E

[ ∣∣x[i]u[i]
∣∣2∣∣∣−→q ]

→ 0 a.s.

for every εn ↓ 0. Regarding their third condition, the smoothness of F is sufficient for
Corollary 2.7.2 in van der Vaart and Wellner (1996) by considering their d and α as both 1.
This is further sufficient for their uniform bracketing entropy condition. Thus, their Theorem
2.11.9 implies that conditional on −→q , the process Ln(·) is asymptotically tight, that is, for
any ε > 0, there exists some η such that if n is large enough,

P

(
sup

ρ(π1,π2)≤η

|Ln(π1)−Ln(π2)| > ε

∣∣∣∣∣−→q
)

≤ ε a.s. (A.20)
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Define Eπn = {ρ(π̂,π) ≤ ηn}, for ηn > 0, where π̂(·) = ĥ1/2
τ ĝ(1)(·)vᵀD̂(·)−1. Then, for

any ε > 0, we have

P

(
sup

s∈[0,1]
|B11n(s)| > ε

)

≤ E

[
P

({
sup

s∈[0,1]
|B11n(s)| > ε

}
∩Eπn

∣∣∣∣∣−→q
)]

+P
(
Ec

πn
)

≤ E

[
P

(
max

1≤
≤n
sup

ρ(π̂,π)≤η

|L
(π)−L
(π̂)| > ε

∣∣∣∣∣−→q
)]

+ ε

≤ E

⎡⎣ P

(
supρ(π̂,π)≤η |Ln(π)−Ln(π̂)| > ε

∣∣∣−→q )
1−max1≤
≤nP

(√

/nsupρ(π̂,π)≤η |L
(π)−L
(π̂)| > ε

∣∣∣−→q )
⎤⎦+ ε

≤ Cε.

The second inequality is from Lemma A.5 that implies P(Ec
πn) ≤ ε if n is large enough,

and from the law of iterated expectations. The third inequality is from the Ottaviani’s
inequality (e.g., A.1.1 in van der Vaart and Wellner (1996)) and the fact that {x[i]u[i]}n

i=1
are independent conditional on −→q . The last inequality is from (A.20) and the steps on page
227 in van der Vaart and Wellner (1996). In particular, for some 1 ≤ n0 ≤ n,

max
1≤
≤n

P

(√

/n sup

ρ(π̂,π)≤η

|L
(π)−L
(π̂)| > ε

∣∣∣∣∣−→q
)

≤ max

≤n0

P

(
n−1/2

∑n0

i=�τn�+1
C

∣∣∣∣x[i]u[i]
∣∣∣∣ > ε

∣∣∣−→q )
+ max

n0≤

P

(
sup

ρ(π̂,π)≤η

|L
(π)−L
(π̂)| > ε

∣∣∣∣∣−→q
)

≤ Cε a.s.,

where the second inequality follows from Markov’s inequality, (A.20), and setting a large
enough n0 satisfying n0 → ∞ and n0n−1/2 → 0. �

Proof of Theorem 1. We first prove (29) under the null hypothesis. To this end, define

Ĝ0∗
n (s) =

{
Ĝ∗

1n(s), if s ≤ g(r0),,

Ĝ∗
2n(s), otherwise,

which is different from Ĝ∗
n (·) only in the neighborhood of g(r0). Then, since the empirical

distribution function is uniformly consistent, Lemma A.5 yields ĝ(̂r) − g(r0) = op (1). It

yields that
∫ g(r0)+εn

g(r0)−εn
|Ĝ∗

n (t) − Ĝ0∗
n (t) |dt = op (1) for some εn → 0 with n → ∞, which

is implied by the fact that both sups∈[0,1] |Ĝ∗
n (s) | and sups∈[0,1] |Ĝ0∗

n (s) | are Op(1) given

Lemma 2. It follows that
∫ 1

0 |Ĝ∗
n (s)− Ĝ0∗

n (s) |ds = op (1).
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Note that, under the null hypothesis, Lemmas A.2, A.5, and the continuous mapping
theorem yield that

Ĝ∗
1n(s) ⇒ 1√

g(r0)

{
G (s)− s

g(r0)
G (g(r0))

}
=d

1√
g(r0)

{
W1 (s)− s

g(r0)
W1 (g(r0))

}
≡ G1(s), (A.21)

Ĝ∗
2n(s) ⇒ 1√

1−g(r0)

{
(G (1)−G (s))− 1− s

1−g(r0)
(G (1)−G (g(r0)))

}
=d

1√
1−g(r0)

{
(W1 (1)−W1 (s))− 1− s

1−g(r0)
(W1 (1)−W1 (g(r0)))

}
≡ G2(s).

(A.22)

Moreover, by change of variables with t = s/g(r0) and t = (1−s)/(1−g(r0)), respectively,
we have

1

g(r0)

∫ g(r0)

0
G1(s)2ds =d

1

g(r0)

∫ 1

0
{W1 (g(r0) t)− tW1 (g(r0))}2 dt

=d

∫ 1

0
{W1 (t)− tW1 (1)}2 dt

and

1

1−g(r0)

∫ 1

g(r0)
G2(s)2ds

=d
1

(1−g(r0))

∫ 1

0
{(W1 (1)−W1 (1− (1−g(r0)) t))− t (W1 (1)−W1 (g(r0)))}2 dt

=d
1

(1−g(r0))

∫ 1

0
{W1 ((1−g(r0)) t)− tW1 (1−g(r0))}2 dt

=d

∫ 1

0
{W1 (t)− tW1 (1)}2 dt.

Therefore, the limiting null distribution of CTn is obtained as

CTn = 1

g(r0)
× 1

n

∑�g(r0)n�
i=1

Ĝ∗
1n(i/n)2 + 1

1−g(r0)
× 1

n

∑n

i=�g(r0)n�+1
Ĝ∗

2n(i/n)2 +op(1)

→d
1

g(r0)

∫ g(r0)

0
G1(s)2ds+ 1

1−g(r0)

∫ 1

g(r0)
G2(s)2ds

=d

∫ 1

0
B2 (t)ᵀB2 (t)dt

where B2 (t) is the 2×1 standard Brownian bridge on [0,1].
We now examine the limit of CTn under the alternative. In this case, γ̂ (or r̂ = F̂n (γ̂ )) is

never consistent since γ0i (or r0i) is not equal to γ0 almost surely. Hence, the nonparametric
estimators that depend on γ̂ , V̂ (·), ĥ(·), and ĝ(·) are no longer consistent but still Op(1).
On the other hand, D̂(·) does not depend on γ̂ (or r̂), and hence it is still consistent under
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the alternative. For θ̂ = (β̂ᵀ,δ̂ᵀ)ᵀ, in addition, we can verify that

nε(θ̂ − θ0) = Op(1) (A.23)

for any given γ̂ (or r̂). To see this, denote Xi(γ ) = (xᵀi ,xᵀi 1 [qi < γ ])ᵀ and Xi(γi) =
(xᵀi ,xᵀi 1 [qi < γi])

ᵀ. Given γ̂ = γ , for any γ ,

nε
(
θ̂ − θ0

) = nε
(∑n

i=1
Xi(γ )Xi(γ )ᵀ

)−1 (∑n

i=1
Xi(γ )

{
yi −Xi(γ )ᵀθ0

})
=

(
1

n

∑n

i=1
Xi(γ )Xi(γ )ᵀ

)−1

×
(

nε

n

∑n

i=1
Xi(γ )ui + nε

n

∑n

i=1
Xi(γ )xᵀi δ0(1 [qi < γ ]−1 [qi < γi])

)
≡ �̂−1

n1

(
�̂n2 + �̂n3

)
.

Similarly to the one in Lemma 1 in Hansen (1996), we have �̂n1 →p �1 =E
[
Xi(γ )Xi(γ )ᵀ

]
,

which is positive definite by Condition 1 .7. For the numerator, since n1/2−ε�̂n2 = Op(1) by
the standard Central Limit Theorem, we have �̂n2 = Op(n−1/2+ε) = op(1) as ε ∈ (0,1/2)

in Condition 1.4. Furthermore, since δ0 = c0n−ε with c0 
= 0, we have �̂n3 = Op(1) at most
from Conditions 1.4, 5, and 7, although it can be op(1) under some special circumstances.

Let r[i] be the induced-order statistics of F̂n (γ0i) associated with q[i], and π̂(·) =
ĥ1/2
τ ĝ(1)(·)vᵀD̂(·)−1. We decompose

Ĝn (s) = 1√
n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

π̂ (i/n)x[i]u[i]

− 1

n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

π̂ (i/n)x[i]x
ᵀ
[i]{

√
n(β̂ −β0)+1 [i/n ≤ r̂]

√
n(̂δ − δ0)}

− 1

n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

π̂ (i/n)x[i]x
ᵀ
[i]

{
1 [i/n ≤ r̂]−1

[
i/n ≤ r[i]

]}√
nδ0

≡ Ĉ1n (s)− Ĉ2n (s)− Ĉ3n (s) ,

and denote their rescaled and demeaned terms as in (27) as

Ĝ∗
n (s) = Ĉ∗

1n (s)− Ĉ∗
2n (s)− Ĉ∗

3n (s) .

The first Ĉ∗
1n (s) term is Op(1) because Ĉ1n (s) = Op(1) given Lemma 1, where the

probability limits of ĥτ , ĝ(1)(·) are all still bounded and ĝ(̂r) →p ḡ ∈ (0,1), as n → ∞,
although ḡ is not necessarily the same as g(r0). For Ĉ∗

2n (s), since D̂(·) is still uniformly
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consistent, a similar argument as in Lemma A.7 implies that, for any s ∈ [τ,1− τ ],

1

n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

ĝ(1)(i/n)D̂(i/n)−1 x[i]x
ᵀ
[i] →p sIk,

1

n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

ĝ(1)(i/n)D̂(i/n)−1 x[i]x
ᵀ
[i]1 [i/n ≤ r̂] →p min {s,ḡ} Ik, (A.24)

as n → ∞, where Ik denotes the k × k identity matrix. If follows that

Ĉ2n (s) = (
s+op(1)

)√
nvᵀ(β̂ −β0)+ (

min {s,ḡ}+op (1)
)√

nvᵀ (̂δ − δ0) = Op

(
n1/2−ε

)
since θ̂ − θ0 = Op(n−ε) from (A.23). However, since Ĉ2n (s) is asymptotically piecewise
linear in s, the rescaling and demeaning procedure eliminates the leading term and hence

we have Ĉ∗
2n (s) = op

(
n1/2−ε

)
.

Lastly, for Ĉ∗
3n (s), we denote Fγ (·) as the CDF of γ0i and F̄γ (·) = 1 − Fγ (·) as its

survival function. We note that

1

n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

ĝ(1)(i/n)vᵀD̂(i/n)−1 x[i]x
ᵀ
[i]c01

[
i/n ≤ r[i]

]
= 1

n

n∑
i=1

ĝ(1)(F̂n (qi))v
ᵀD̂

(
F̂n (qi)

)−1
xix

ᵀ
i c01 [qi ≤ γ0i]1

[
τ ≤ F̂n (qi) ≤ ĝ−1 (s)

]
= 1

n

n∑
i=1

ĝ(1)(F̂n (qi))v
ᵀD̂

(
F̂n (qi)

)−1
xix

ᵀ
i c0F̄γ (qi)1

[
τ ≤ F̂n (qi) ≤ ĝ−1 (s)

]
+ 1

n

n∑
i=1

ĝ(1)(F̂n (qi))v
ᵀD̂

(
F̂n (qi)

)−1
xix

ᵀ
i c0

{
1 [qi ≤ γ0i]− F̄γ (qi)

}
1
[
τ ≤ F̂n (qi) ≤ ĝ−1 (s)

]
≡ H1n(s)+H2n(s).

For H1n (s), since D̂(·) is still uniformly consistent, a similar argument as in Lemma A.7
implies that

H1n(s) = 1

n

⌊̂
g−1(s)n

⌋∑
i=�τn�+1

ĝ(1)(i/n)vᵀD̂(i/n)−1 x[i]x
ᵀ
[i]c0F̄γ

(
F̂−1

n (i/n)
)

→p vᵀc0

∫ s

0
F̄γ

(
F−1

(
g̃−1(t)

))
dt ≡ H(s),

where g̃(·) denotes the probability limit of ĝ(·), which is still monotonically increasing by
construction. Recall that F̂−1

n (·) is the empirical quantile function of qi, which uniformly
converges to the true quantile function F−1 (·) over [τ,1 − τ ]. For H2n(s), since γ0i is

independent of (qi,x
ᵀ
i ,ui)

ᵀ, we have that E [H2n(s)] = 0. Similarly, E
[
H2n(s)2

]
= O(1/n)

since γ0i is i.i.d. and ||̂g(1)(F̂n (qi))D̂(F̂n (qi))
−1|| andE[ ||xi||4]are uniformly bounded. We

then have H2n(s) = op(1). Combining the results of H1n(s) and H2n(s) and using (A.24)
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yield that

n−1/2+ε Ĉ3n(s) →p

(
plimn→∞ĥ1/2

τ

)(
vᵀc0 min{s,ḡ}−H(s)

)
.

Given that F̄γ (·) is nonincreasing and nonconstant and that F (·) and g̃(·) are strictly

increasing, the integrand η̃ (·) ≡ F̄γ

(
F−1

(
g̃−1(·)

))
in H (·) is nonconstant on [0,1]. In

particular, η̃ (·) changes values on [0,ḡ] and/or (ḡ,1]. Consider that η̃ (·) is nonconstant
on [0,ḡ]. Then, H (s) = ∫ s

0 η̃ (t)dt is nonlinear by construction and cannot be equal to the

linear function sḡ−1H (ḡ) for all s ∈ [0,ḡ]. Therefore,
∫ ḡ

0

(
H(s)− sḡ−1H(ḡ)

)2
ds is strictly

positive. So, there exists some constant c > 0 such that

P

(
n−1+2ε

∣∣∣∣∣
∫ ĝ(̂r)

0
Ĉ∗

3n (s)2 ds

∣∣∣∣∣ > c

)

= P

(
n−1+2ε

∣∣∣∣∣
∫ ĝ(̂r)

0

(
1√
ĝ(̂r)

{
Ĉ3n(s)− s

ĝ(̂r)
Ĉ3n (̂g(̂r))

})2
ds

∣∣∣∣∣ > c

)

→ P

(
plimn→∞ĥτ

ḡ

∣∣∣∣∣
∫ ḡ

0

(
H(s)− s

ḡ
H(ḡ)

)2
ds

∣∣∣∣∣ > c

)
= 1,

as n → ∞. It follows that
∫ ĝ(̂r)

0 Ĉ∗
3n (s)2 ds > cn1−2ε → ∞ with probability approaching

to one. Therefore,
∫ ĝ(̂r)

0 Ĉ∗
3n (s)2 ds becomes the leading term in

∫ ĝ(̂r)
0 Ĝ∗

1n (s)2 ds, which
diverges with probability approaching to one. The same argument applies to the case when
η̃ (·) is nonconstant on (ḡ,1], which also yields that

∫ 1
ĝ(̂r) Ĉ∗

3n (s)2 ds → ∞ and hence

becomes the leading term in
∫ 1

ĝ(̂r) Ĝ∗
2n (s)2 ds. Therefore, at least one of

∫ ĝ(̂r)
0 Ĝ∗

1n (s)2 ds

and
∫ 1

ĝ(̂r) Ĝ∗
2n (s)2 ds diverges with probability approaching to one, yielding the consistency

of the test. �

Proof of Theorem 2. Under the local alternative, the error term is now defined
as ũi = ui + n−1/2xᵀi α (qi). However, Lemma A.5 in Hansen (2000) still implies

that n−1 ∑n
i=1 xĩui →p E [xiui], which yields γ̂ →p γ0. We can also show γ̂ − γ0 =

Op

(
n−1+2ε

)
by the same argument as Lemmas A.6–A.9 in Hansen (2000). We only

present the different part, which shows up in the proof of Lemma A.9. In particular, equation
(43) in Hansen (2000) now involves the following additional term:

Mα
n = 1

n

∑n

i=1
xix

ᵀ
i α (qi) .

Using Lemma A.2 and the argument in Lemma A.8 in Hansen (2000), for any constants η

and ε, there exists some large enough constants a and C such that

P

⎛⎝ sup
a

n−1+2ε ≤|γ−γ0|≤C

∣∣Mα
n
∣∣

n−1+2ε |γ −γ0| > η

⎞⎠ ≤ ε.
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Then, the rest of the argument follows from page 597 in Hansen (2000). Note that the
additional term n−1/2xᵀi α (qi) changes the asymptotic distribution of γ̂ but not the rate of

convergence. Therefore, Lemma A.12 in Hansen (2000) implies that θ̂ −θ0 = Op

(
n−1/2

)
.

Moreover, given these results, D̂(r), V̂ (r), ĥ(r), and ĝ(r) are still uniformly consistent on
r ∈ [τ,1−τ ] under the local alternative in (30), which is implied by the proof of Lemma A.4.

Now, given these consistency results, we have

Ĝn (r) = 1√
n

∑�rn�
i=1

x[i]u[i]

− 1

n

∑�rn�
i=1

x[i]x
ᵀ
[i]

{√
n(β̂ −β0)+1[F(q[i]) ≤ r0]

√
n(̂δ − δ0)

}
− 1

n

∑�rn�
i=1

x[i]x
ᵀ
[i]

{
1[F̂n(q[i]) ≤ r̂]−1

[
F(q[i]) ≤ r0

]}√
n̂δ

+ 1

n

∑�rn�
i=1

x[i]x
ᵀ
[i]α(q[i])

⇒ G(r)+
∫ r

0
D(r)α (Q(r))dr

similarly to the one in the proof of Lemma 1. Then, the continuous mapping theorem and
the same argument as in the proof of Lemma A.7 yield that Ĝn (·) ⇒ Gα (·), where

Gα (s) = W1 (s)− svᵀ�β −min{s,g(r0)}vᵀ�δ +h1/2
τ

∫ g−1(s)

g−1(0)
g(1)(t)vᵀα (Q(t))dt,

(A.25)

which includes an additional drift term than G (s). Recall that g−1(0) = τ and g−1(1) =
1− τ . Denoting �v(·) = g(1)(·)vᵀα (Q(·)), it follows that

1√
g(r0)

{
Gα (s)− s

g(r0)
Gα (g(r0))

}
=d G1(s)+ h1/2

τ√
g(r0)

{∫ g−1(s)

τ
�v(t)dt − s

g(r0)

∫ r0

τ
�v(t)dt

}
and

1√
1−g(r0)

{(
Gα (1)−Gα (s)

)− 1− s

1−g(r0)

(
Gα (1)−Gα (g(r0))

)}

=d G2(s)+ h1/2
τ√

1−g(r0)

{(∫ 1−τ

τ
�v(t)dt −

∫ g−1(s)

τ
�v(t)dt

)

− 1− s

1−g(r0)

(∫ 1−τ

τ
�v(t)dt −

∫ r0

τ
�v(t)dt

)}

=d G2(s)+ h1/2
τ√

1−g(r0)

{∫ 1−τ

g−1(s)
�v(t)dt − 1− s

1−g(r0)

∫ 1−τ

r0

�v(t)dt

}
instead of (A.21) and (A.22). Then, the desired result follows as in the proof of
Theorem 1. �
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