
/ . Austral. Math. Soc. Ser. B 37(1996), 474^89
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Abstract

In this article we study the dilation equation f(x) = £ A
 chf(2x — h) in ^?2(K) using a

wavelet approach. We see that the structure of Multiresolution Analysis adapts very well
to the study of scaling functions. The equation is reduced to an equation in a subspace of
-Sf2(R) of much lower resolution. This simpler equation is then "wavelet transformed" to
obtain a discrete dilation equation. In particular we study the case of compactly supported
solutions and we see that conditions for the existence of solutions are given by convergence
of infinite products of matrices. These matrices are of the type obtained by Daubechies,
and, when the analyzing wavelet is the Haar wavelet, they are exactly the same.

1. Introduction

In the last years, wavelets have had a strong impact on all the areas of signal processing,
particularly in speech, seismic and image processing. An explosion of algorithms
which take advantage of their localization properties has appeared in the engineering
literature.

One of the advantages of this new tool is the diversity of different wavelet bases
that can be constructed. This feature is used, for example, in signal compression
with the concept of wavelet packets [3,4], where one can choose from an infinity of
different collection of wavelet bases the one that is best adapted to the signal to be
coded.

The building block of all these constructions is a solution of a dilation equation of
the type f{t) = J^k ckf(2t — k). Such a solution, a scaling function, will generate a
wavelet basis. For each set of coefficients Q , a different wavelet basis with different
properties is obtained.

This equation has recently been studied using Fourier analysis methods [8] and
direct methods [10, 16]. In the first case, the periodic function m{6) = Ylk c*e'*8 is
used to build the solution. In the second case, the construction of the solution uses
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[2] Wavelet transform of the dilation equation 475

the equation itself. As an example, the "cascade algorithm" obtained by Daubechies
allows one to construct compactly supported solutions directly from the coefficients
of the dilation equation.

In this paper we adopt a different approach. We fix a Multiresolution Analysis (MA)
in Ji?2(K) with its associated wavelet basis, and we use this rich structure to analyze
the dilation equation. The decomposition provided by the MA is very adequate for
the study of scaling functions.

When analyzing a function using wavelet methods one can obtain approximations
of the function at different levels of resolution. In the particular case that the function
under study is a solution of a dilation equation, we observe that higher levels of
resolution of the solution can be obtained from lower ones. This allows us to reduce
the problem to solve the equation in a much simpler subspace.

This analysis is also carried over to the wavelet transform domain, where we obtain
dual relations for the coefficients in the Multiresolution Analysis chosen. Here, the
equation is transformed into a discrete dilation equation. This is particularly relevant
when we study compactly supported solutions. In this case, the problem is reduced
to one of finding an eigenvector of eigenvalue 1 of a matrix whose entries depend on
the coefficients of both dilation equations, the one corresponding to the fixed MA and
the one under study. The condition for j£f2 -convergence of the solutions is shown to
depend on the convergence of infinite products of two matrices. Similar conditions
of convergence have been obtained before by Daubechies [6] and Daubechies and
Lagarias [10] using direct methods. It is interesting however, that in the Daubechies
case the finite products give the values of an approximation to the solution. In our
case, the same products produce the coefficients of the solution, in the wavelet basis,
at the level of resolution given by the length of the product.

These products of matrices have now attracted a lot of attention and have occurred
in different contexts (see [9], [12], [2], [1], [18], [11], [16]), and revived the concept
of Joint Spectral Radius for two matrices introduced much earlier by Rota and Strang
in [17].

2. Wavelets and multiresolution analysis

The concept of Multiresolution Analysis is due to Mallat and Meyer and creates
the framework for the study of wavelets (see [13], [14], [15], [6]). In this section we
introduce some notation and state some known results which we will need later. A
comprehensive treatment can be found, for example, in the book by Daubechies [7].

Throughout the whole paper, we are going to consider a fixed Multiresolution
Analysis(MA) which we will denote (cp, \jj, d), where cp, iff G j£f2(R) andd e
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satisfy

=J2dh<p(2x-h), (1)
h

= Y,(-l)"dh+i<p(2x + h), (2)
h

= 2 , (3)

and the families [<p(x — Jt)}tez and [if/(x — k)]kej are orthonormal.
If we call

is{(x) = 2 i / 2 f ( 2 j x - k ) k j e l

and Vy = span{^/, k 6 Z} j' € Z,

then the subspaces Vy satisfy

Vj C Vj+U

+00

* = - o o

Vy<=»/(2x)e V;+1,

Vy «=>• f(x -2~Jk) € Vj.

Let Wj = span{^/ , i t e Z ) . Then W, = V/ in V;+1 and V,-+, = V, © Wj. The space
2 can be decomposed as

= Vr © Wr
+ V r e Z ,

where

Define /y to be the orthogonal projection onto Vj, and <2y the orthogonal projection
onto Wj. If for each / e i f 2((R) we call fj = Pj{f) and gj = Qj(f), then each of
the sequences {/;} and {gj} define / uniquely in Jf2 and we have

f. &Xf and fj = T gr in if2.
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3. Dilation equation and multiresolution analysis

In this section we study the dilation equation using our fixed MA. If c e £2(1) we
want to find solutions (scaling functions) for the equation

/(*) = £ > / ( 2 x - A), (4)
h

where

^2 ^ (5)

This is a usual assumption. Let us therefore look at the interplay between the MA and
the dilation equation in "time-domain". For this, if T : J?2(R) —> ^f2(K) is the
operator

(Tf) (x) =
h

then

Therefore, if [cn] is in i\(I), T is a bounded linear operator in ^f2(K). Note that
scaling functions are fixed points of T and the dilation equation becomes Tf = f.
By the properties of an MA we also have that T V, c V,+, and T Wj c Wj+i for j > 0.

Note that if / is any function in j£f2, Pi(f) = Pi(fj), £ < j - Hence if one knows
the projection of / onto V}, one automatically knows the projection onto any Ve with
£<}•

If in addition / is a solution of the dilation equation, then the next proposition states
that the projection at some level of resolution can be obtained from the projection at
lower resolution.

PROPOSITION 3.1. If f satisfies the dilation equation (4), then

(2x-h) and

(6)
2 h )

for all j > 1.
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PROOF. Since {^} are an orthonormal basis of Vt, we have

/,_,(2JC - h) = Y, (f f(u)<pr\u)du\ <pi-\2x - h).

Changing the summation indexes, making an appropriate change of variables, and
using

<pe
k(x -h) = <pe

2Ch+k(x) and <pe
k~

l(x) = j . <pe
k ( | ) ,

we obtain

(7)

On the other hand, since / , e V},

= E
and therefore, if / satisfies the dilation equation f(x) = ^2h chf(2x — h), we have

//(*> = E f E c * f f&-h)<Pl<J)dt)<p>(x),
s V h J /

= Ec" (E
which by (7) yields the desired result.

The equation for gj is obtained similarly.

Inductively, formulae (6) yield

fj(x)= Y^chl...chjf0(Vx-Tj

gj(x) = 5 3 chl ... chjg0 (2'x - Tj(h)),

where Xj{h) = £/= 1 2i~'hi.
An interesting corollary of Proposition 3.1 is the following result.
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COROLLARY 3.1. If f ^ 0 is a scaling function, then f can not be orthogonal to any
Vj of any MA.

The last proposition (as well as its corresponding one in the next section) is the key
to our method, since if / is a scaling function, we are able to determine / (by means
of finding all its projections) just by finding its projection onto some V}.

Thus, by the recursive character of Proposition 3.1, in order to find solutions of (4)
it is enough to find the projections of that solution on Vo a much smaller space. The
next theorem tells us which condition the projection on Vo> of the solution of (4) has
to satisfy.

THEOREM 3.1. If f is an Sf2scaling function of (4) then f0 = Pof e Vo and g0 =
Qof € Wo satisfy

PoTfo = /o and

T"g0 converges in
n>0

Conversely, ifh 6 Vo satisfies

(i) h is a solution of (P0T - I)h = 0, and (8)

(ii) the function g = Q0Th is such that £n>0 T
ng converges in J£f2(l), (9)

then f = h + ^ n > 0 T"g is a scaling function of {A).

PROOF. From Proposition 3.1 we know that if / is a scaling function of (4), then
fj = Tfj.x and gj = Tgj_{ for j > 1. If j = 1, then

Tfo = / . = /o + go-

This says that P0Tf0 = f0 or equivalently, (P0T - I)f0 = 0 in _£?2(K).
Now since i?2(K) = Vo © ® t £ 0 Wk, we can write / as / = /„ + £ t > 0 & and

then by (6), f = fo + £*>0 T
kg0 and hence £ A Tkg0 converges in Jf2.

Conversely, if we assume now that h e Vo satisfies (8) and (9) and define / =
h + E*>o T"8, we see that

n>0

But
Th =

Thus

n>0

Note also that / = limn_+0O T"h (in J^f2).
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The above theorem shows that in order to solve the dilation equation, it is enough
to solve the equation P0Th = h in the subspace Vo of some MA, a much simpler
subspace. To be more precise, if we define the subspaces

H = [heV0: P0Th = h],

S = {s € Vo : Q0Ts € U]

of Vo, where U C Wo is defined by

n = \

then we have that / is a solution of the dilation equation (1) if and only / belongs to
HHS.

Hence, in order to solve the dilation equation, we need to find the intersection of
two subspaces of Vo.

The condition that defines H can be expressed in terms of its coefficients in Vo,
that is,

P0Th = h, heV0 (10)

is equivalent to

Th-h±V0 h€V0 or {Th-h,<pk)=0 V k. (11)

If we set hk = (h, <pk) then from (11) we obtain

k

and finally, if we call Rkj = (T<pk, cpj) k, j 6 2, we obtain that

h € H if and only if ^^2,hkRkj = hs {hk\ e £2-
k

It is not clear, however, if it is possible to find a good characterization of the
elements of S, not even in the compactly supported case, which we shall analyze later.

4. Dilation equation and wavelet transform

Let us now look at the wavelet-transform domain. Consider the MA (cp, \fr, d), and
the coefficients of / in the basis of V, and Wj respectively {a{}k^i and {bJ

k}kei, that is,

al = {fVk) J,ke1 and

bi ( f r ) j k Z

https://doi.org/10.1017/S033427000001081X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000001081X


[8] Wavelet transform of the dilation equation 481

Then

/= E w,
k.jelxZ

J^ai<pt in-£?2(K) and
kel

keZ

The double sequence {b[} is sometimes referred to as the wavelet transform or the
coefficients of / with respect to the MA {<p, \jr, d).

We will now see how the properties of the preceding section are translated into
properties of the coefficients of / . The following result, due to Mallat, shows how
from the coefficients of / in Vj+\ one can obtain the coefficients of / in any Vk, k < j .

PROPOSITION 4.1 (Mallat). Let f e Jz?2(K) and (y, f, d) be an MA. For each j in I,
the coefficients of f in V, and Wj can be obtained from the coefficients of f in Vj+i

and the coefficients [dk] through the formulae

h h

Therefore all the coefficients of / in Vt and Wt for I < j can be obtained from the
ones in VJ+l and the coefficients {dk}.

PROOF. Since <p is a scaling function of (1), it follows that

<pt = —^ / du(p^u,h and \l/t = -
h h

On calculating the coefficients {a{} and {b{} for / € j£f2(R) as in (12) and using (14),
we obtain immediately the desired formulae.

In addition, since V,+1 = V, © Wj we have also that

To see this note that

Using fj = ^2k a[ip'k and gj = ^2k b'^l, together with (14) and the orthogonality of
the sets <pJ

k and \j/k, yields the desired result.
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This shows that the coefficients a[ of / in VJ+1 can be obtained from the coefficients
of / in Vj and Wj. In general, no such relation holds for the coefficients b[ of / in
Wj. However, if / is a solution to the dilation equation, we can improve the previous
result.

Let / be an arbitrary solution of (4). Our first observation, when we look at the
wavelet transform of / , is that its coefficients at higher resolution can be obtained
from the ones at lower resolution starting at resolution (Vo). In other words, the
constraint (4) forces / to satisfy a kind of converse of Proposition 4.1.

PROPOSITION 4.2. / / / e j£?2 is a solution of the dilation equation

then for each j > 1 the coefficients of f in Vj and Wj can be obtained from the
coefficients of f in V,_i and Wj_x and the coefficients {ck} through the formulae

ai = 75 ! > < * - * V* V / > 1 ,

* (15)

and also

with T,(X) = 15^2'-'x,.

PROOF. Using the fact that / satisfies the dilation equation and applying several
changes of variables in the integrals, we obtain the equalities:

K = </. fl) = J f(x)2lifr&x - k)dx

C" f / W 2

h J

= J2 / .C>*"k-V-*h-
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The equation for a[ is obtained the same way, and recursively one gets (16).

This proposition is the discrete version of Proposition 3.1, since it shows that if /
is a solution of the dilation equation, we are able to determine / - that is, to know its
wavelet transform - just by knowing its coefficients at some level V,, j >0 and then
applying (13) and (15) to obtain the coefficients at level I < j and I > j respectively.

Combining these equations, we have that if / is a solution of the dilation equation
(4), then its coefficients in V, and Wj for nonnegative j have to satisfy a condition
that involves the coefficients [ck] and {dk}.

COROLLARY 4.1. If f is a solution of (4), then V/ > 0

h,s h,s

Taking j = 0, and setting a\ = xk, we get that

h+s, (18)
h,s

and changing variables in the double sum, we obtain

where r, = ^ dscl+s is the crosscorrelation between the coefficients of the two dila-
s

tion equations. This is the equivalent to condition (8) in the transform domain.
Equation (19) represents a discrete dilation equation in ^(JL) associated with the

wavelet transform (dk). To be precise, (19) represents the wavelet transform of (4).
We call any solution of this equation a scaling sequence.

Define H, G : 12{T) - • i2(l) by

(Hx)k = \ J2 dschxlk-h+s, (20)

- ' v * e £ 2 ( Z ) . (21)

We then have that x e liiJL) is a scaling sequence if and only if Hx = x. That is, x
is an eigensequence of eigenvalue 1.

The next result is the transform domain version of Theorem 3.1.

THEOREM 4.1. / / / is a ̂ -solution of (4) then {a°(f)}k is a scaling sequence of (19)
and {b'k(f)}jk, j > 0 is an £2 sequence. Conversely, ifx° e ti(T) satisfies
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(i) Hx° = x°, that is x° is a scaling sequence o/(19), and (22)
(ii) the sequence y° = Gx° is such that J2j>0 £ * I ?/ I2 < +°° (23)

(where yJ
k = ^ J ^ c h y J

k : ^ , h j > l , k e Z ) .

then f = Y.k xk<Pk + £,>o £ * y'k^i is an &2-solution of {A),

PROOF. By the previous remarks, if / is a jSf2-solution of (4) then a°(f) is a scaling
sequence of (19).

For the converse we appeal to Theorem 3.1. Assume x° satisfies (22) and (23) and
let y° — Gx°. Define the functions h G Vo and g 6 Wo by

h{t) = £ » ( / - *), g(t) = £>
k k

Then on one side

(Th, <p°k) = ^ Q ( / i ( 2 f - I), <p(t - k))

e,s

and since <p satisfies the dilation equation (1) and by orthonormality of {<p[}, we obtain

(Th, cp°k) - J2 c<-d' xs<V(?t - t - s ) , <p(2t -2k- r)>
t,s,r

t.s.r

Thus Th and h share the same coefficients on Vo, that is, PoTh = h.
On the other hand

(Th, f°> = £ > *,V(2r -t-s), irit - k)),

and now, by the orthonormality of { /̂} and (2),

(Th, f°k) = ] T ( - l ) r ct dr+l x°(<p(2t -l-s), cp(2t -2k + r))

Cs,r

l,r

Hence Q0Th = g.
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Since g e Wo, we have TJg e Wj with coefficients y'k. To see this we calculate
them inductively.

(Tjg, tl) = - I),

This property shows, in particular that Tlg JL Tsg for I ^ s and therefore that

2

vl I < +00.

We therefore have proved that the function h satisfies (8) and (9) of Theorem 3.1.
Then

is an J^f2-solution of (4).

Therefore, the £2-solutions of (19) give all the j£?2 scaling functions. Notice also
that the coefficients of the discrete dilation equation depend on the Multiresolution
Analysis used. The role of the coefficients (ds) in (19) can be seen from (18), which
gives

E Y *e*-*H* J-
Hence, since J2 ds = 2, the expression in brackets represents a weight-average of the
consecutive values of x.

4.1. Compactly supported solutions Let us analyze the case of compactly sup-
ported solutions. We assume now that our function (p of the analyzing MA is also
compactly supported. Let the coefficients of the dilation equations [ck], {dk} be finite
sequences, that is, c = c0,..., cN, and d = d0,..., dM, with N and M odd positive
integers.

These assumptions imply that supp(̂ >) c [0, M] and that if / is a compactly
supported scaling function, supp(/) c [0, N]. Furthermore, the coefficients {ak(f)}
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of / i n the basis {<p°} of Vo are zero for k $ {—(M — 1 ) , . . . , N — l], and the coefficients
{*>*(/)} of / in the basis {^°} of Wo are zero for k $ {-^-, ...,N + ^j±-l}.
(This is straightforward as / has compact support, satisfies (4) with a finite sequence
ck and the coefficients in Vo satisfy (19).) This says that, when looking for compactly
supported solutions, we only have to find one set of M + N — 1 coefficients. That is,
by Theorem 4.1 we need to solve

\ J2 H *-I+>XI f o r k€{-(M-l),...,N-l] (24)
s I

and then define

H>xt for ke\-^T^'--N + ^T^~l\ (25)

Define now L = N + M — l,a = (a0,..., Q;L-I ) and yS = (/60, • • •, PL-\) by

ak=xk_(M_i) and pk = yk-Mfi. (26)

Now (24) and (4.1) can be written in matrix form. For this define the L x L matrices
As for s = 0 , . . . , M with entries

as
u =

If we call

then (24) and (4.1) become Ha = a and fi — Ga. Notice that the entries of the matrix
H can be written as hij = \r2l-j-M where r, = ^ dsc,+s is the crosscorrelation
between the coefficients of the two dilation equations.

By (5), the columns of As for s — 0 , . . . , M add up to 1. Therefore the vector
( l , l , . . . , l ) i s a n eigenvector of eigenvalue 1 of / / ' , which implies that (24) always
has a solution.

In the Haar case (M = 1, d0 = dx = 1) the matrices Ao and Ax turn out to be the
matrices obtained by Daubechies in [10], and

A1) and G = \(AX

So far we have obtained that in order to solve (4) we need to solve Ha = a, a e RL.
The vector a will represent the coefficients in the basis of Vo of the projection of the
solution on Vo and fi = Ga the coefficients in the basis of Wo of the projection of the
solution on Wo.
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In order to find the coefficients of the projection of the solution in Wj, j > 1, we
use (15), that is, we define inductively

(27)

Since we start with a vector with L components at level 0, at level j we will have 2j L
coefficients. Note that applying (27) doubles the number of coefficients at each step.
Let us call

Observe that due to (26) we have the relations a[ = xJ
k_(M_x), fiJ

k = yJ
k_*L=i a t e a c n

level j > 0.
We see now that (27) admits a matrix form. For a fixed j > 0 let us split the 2'L

coefficients @Q, ... fi'2iL_x in the following way.
Let k be an integer, k € {0, 1 , . . . , 2J — 1}. If we collect in a vector Wj(k) the L

coefficients

that have indices with remainder fc(mod 2s), then the function Wj: {0, . . . , 2'—1}-> RL

incorporates all the information at level j . Note that w0 is only defined at {0} and
wo(O) = p. We can see from (27) that for k € {0, . . . , 2i+l - 1},

\ - 1 } ,

where Bo = /tM_!/V^and fi, = AM/V2.
If A: e {0, . . . , 2J+1 - 1} and its binary expansion is k = J ^ , )t,2', A:, e {0, 1}, then

wJ+i(k) = B^flt, •••Bkjw0.

That is, the 2-'+l L coefficients at level j +1 are all the products of length j + l applied
to wo = fi.

It is interesting to notice that the entries of the matrices As depend only on the
coefficients {ck} of the dilation equation and not on the MA chosen. Hence the
coefficients {/}/} depend on {dk} only through fi = Get.

These products of matrices have been obtained by Daubechies [6], [10] in the study
of the dilation equation and also by Micchelli and Prautzsch [16] in the framework of
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subdivision schemes. In the analysis of the convergence of these products the concept
of joint spectral radius for two matrices, introduced by Rota and Strang in [17] plays
an important role. See [9], [1], [18], [12], [11], [5] for results in that direction.

If we start the iteration described above with a rather than with 8, then at each step
we obtain the coefficients {a(} of the projection of the scaling function in V}, that is
we define

vo = a and vj+l(k) = B^B^ • • • Bkjv0,

k,2', k, € {0, 1}.
r=0

We want to point out here that the matrices AM-\ and AM involved in the compu-
tation of the coefficients have the last ~^- rows equal to zero. As a consequence it is
enough to consider only M — 1 + V'N coefficients at level j , that is,

for ty, x'_(M_X),..., x'VN_v and

for Wj, y i ^ . - . - . ^ + a - . . , .

In Daubechies' work, the products of length j of the matrices give the values of an
approximation of the scaling function when applied to an appropriate vector. Here the
same products when applied to a different vector yield the coefficients of the scaling
function at level j for some chosen MA. In the Haar case both interpretations in some
sense agree, since in that case we have that

fj(x)=2%x](f),

where [x] denotes the integer part of x.
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