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Multiplicative dependence in linear
recurrence sequences

Attila Bérczes, Lajos Hajdu, Alina Ostafe , and Igor E. Shparlinski

Abstract. For a wide class of integer linear recurrence sequences (u(n))∞n=1 , we give an upper
bound on the number of s-tuples (n1 , . . . , ns) ∈ (Z ∩ [M + 1, M + N])s such that the corresponding
elements u(n1), . . . , u(ns) in the sequence are multiplicatively dependent.

1 Introduction

1.1 Motivation and set-up

Let u = (u(n))∞n=1 be an integer linear recurrence sequence of order d ≥ 1, that is, a
sequence of integers satisfying a relation of the form

u(n + d) = cd−1u(n + d − 1) + ⋯ + c0u(n), n = 1, 2, . . . ,

and not satisfying any shorter relation. In this case

f (X) = Xd − cd−1 Xn+d−1 − ⋯ − c0 ∈ Z[X]
is called the characteristic polynomial of u.

Recently there have been several works [3–6, 9–11, 13] investigating multiplicative
relations of the form

u(n1)k1 . . . u(ns)ks = 1.(1.1)

However, these papers consider certain special cases. The works [6, 11, 13] are limited
to the case of binary (that is, of order d = 2) linear recurrence sequences and also
assume that the exponents k1 , . . . , ks are fixed nonzero integers, while the papers [3, 4,
9, 10] concern specific sequences. Under these restrictions, the mentioned papers con-
tain several finiteness results. Finally, the recent work [5] concerns linear recurrence
sequences of arbitrary order—however, under a rather restrictive condition on the
coefficients c i defining the generating relation.

Here we are interested in the case of general sequences of arbitrary order
d ≥ 2 and also we do not fix the exponents k1 , . . . , ks . Thus, we study s-tuples
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2 A. Bérczes et al.

(u(n1), . . . , u(ns)), which are multiplicatively dependent (m.d.), where, as usual,
we say that the nonzero complex numbers γ1 , . . . , γs are m.d. if there exist integers
k1 , . . . , ks , not all zero, such that

γk1
1 . . . γks

s = 1.

However, instead of finiteness results, we give an upper bound on the density of such
s-tuples.

More precisely, for M ≥ 0 and N ≥ 1, we are interested in the following quantity

Ms(M , N) = ♯{(n1 , . . . , ns) ∈ (Z ∩ [M + 1, M + N])s ∶
u(n1), . . . , u(ns) are m.d.}.

To estimate Ms(M , N), we also study

M∗s (M , N) = ♯{(n1 , . . . , ns) ∈ (Z ∩ [M + 1, M + N])s ∶
u(n1), . . . , u(ns) are m.d. of maximal rank},

where the maximality of the rank for m.d. of (u(n1), . . . , u(ns)) means that no sub-
tuple is m.d. In particular, this implies that if one has a m.d. (1.1) of maximal rank,
then k1⋯ks ≠ 0.

We can then estimate Ms(M , N) via the inequality

Ms(M , N) ≤
s

∑
t=1

(s
t
)M∗t (M , N)N s−t .(1.2)

1.2 Notation

We recall that the notations U = O(V), U ≪ V , and V ≫ U are equivalent to
∣U ∣ ⩽ cV for some positive constant c, which throughout this work, may depend only
on the integer parameter s and the sequence u.

It is convenient to denote by logk x the k-fold iterated logarithm, that is, for x ≥ 1
we set

log1 x = log x and logk = logk−1 max{log x , 2}, k = 2, 3, . . . .

1.3 Main results

We say that the sequence u is non-degenerate if there are no roots of unity among
the ratios of distinct roots of f. We say that the sequence u has a dominant root, if its
characteristic polynomial f has a root λ with

∣λ∣ > max{∣μ∣ ∶ f (μ) = 0, μ ≠ λ}.

Furthermore, we say that u is simple if f has no multiple roots.

Theorem 1.1 Let u be a simple non-degenerate sequence of order d ≥ 2. For any fixed
s ≥ 1, uniformly over M ≥ 0, we have

M∗s (M , N) ≤ N s(1−1/(4d−3))+o(1) .
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Multiplicative dependence in recurrence sequences 3

Analyzing the proof of Theorem 1.1, one can see that for M = 0 we can drop o(1)
in the bound.

Remark 1.2 Considering s-tuples with n1 = n2 we see that

Ms(M , N) ≥ N s−1 .(1.3)

Therefore, it is impossible to derive a bound of the same type as in Theorem 1.1 for
Ms(M , N).

When M is (exponentially) large compared to N, we get the following bound, which
improves Theorem 1.1 for s < 4d − 3.

Theorem 1.3 Let u be a simple non-degenerate sequence of order d ≥ 2 with a
dominant root and let

M ≥ exp(N log3 N/ log2 N).

Then, for any fixed s ≥ 1, uniformly over M, we have

M∗s (M , N) ≤ N s−1+o(1) .

Remark 1.4 The condition on M in Theorem 1.3 is chosen to achieve the strongest
possible bound. Examining its proof one can see that for s < 4d − 3 one can also
improve Theorem 1.1 for M ≥ exp(N η) with any η > s/(4d − 3) (but only for
sequences with a dominant root).

From the definition of m.d. of maximal rank, we have M∗1 (M , N) = O(1), see
[1, Lemma 2.1]. Hence, we see from (1.2) that in applying Theorem 1.1 to bounding
Ms(M , N) the case of s = 2 becomes the bottleneck. Thus, we now investigate this
case separately.

Theorem 1.5 Let u be a simple non-degenerate sequence of order d ≥ 2 with an
irreducible characteristic polynomial having a dominant root. Uniformly over M ≥ 0,
we have

M∗2 (M , N) = N + O(1).

Since, as we have mentioned, M∗1 (M , N) = O(1), the bounds of Theorems 1.1
and 1.5 inserted in (1.2) imply that if u is a simple non-degenerate sequence of order
d ≥ 2 with an irreducible characteristic polynomial having a dominant root then

Ms(M , N) ≪ N s−3/(4d−3)+o(1) ,(1.4)

where the bottleneck comes from the bound on M∗3 (M , N). In fact in this bound the
condition of irreducibility can be dropped, see Remark 3.2 below.
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4 A. Bérczes et al.

If M ≥ exp(N log3 N/ log2 N), then using instead Theorem 1.3, one obtains the
upper bound

Ms(M , N) ≪ N s−1+o(1) ,

which matches the trivial lower bound (1.3).

Remark 1.6 Analyzing the proofs, one can easily see that the above results extend
without any changes to m.d. in s-tuples (u1(n1), . . . , us(ns)), of s (not necessary
distinct) linear recurrence sequences.

2 Preliminaries

2.1 Arithmetic properties of linear recurrence sequences

In this section, we collect various results about the arithmetic properties of a linear
recurrence sequence that we need for our main results. These include:
• a lower bound of square-free parts of elements in u,
• a bound for the number of elements in u that are S-units,
• various results on congruences with elements in u,
• a result on the finiteness of perfect powers in u.
Some of these are obtained under the condition that u has a dominant root.

We start with a lower bound of Stewart [17, Theorem 1] on the square-free part of
elements in a linear recurrence.

For any integer m, we define rad(m) to be the largest square-free factor of m.

Lemma 2.1 Let u be a simple non-degenerate sequence of order d ≥ 2 with a dominant
root. Then there exist constants C1 and C2, which are effectively computable only in terms
of u, such that if n ≥ C2, then

rad(u(n)) > nC1(log2 n)/ log3 n .

We also need the following upper bound from [15, Theorem 1 and Corollary] on
the number of terms of u composed out of primes from a given set. We note that
the condition of the exponential growth of the terms of u, assumed in [15], is now
known to hold for non-degenerate recurrence sequences, see [8, 14]. Hence, we have
the following result.

Lemma 2.2 Let u be a non-degenerate sequence of order d ≥ 2 and let S be an arbitrary
set of r primes. Then, for M ≥ 0, the number A(S; M , N) of terms u(M + 1), . . . ,
u(M + N), composed exclusively of primes from S, satisfies

A(S; M , N) ≪
⎧⎪⎪⎨⎪⎪⎩

rNM−1 log(N + M) for M ≥ 1,
r(log N)2 for M = 0.
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Multiplicative dependence in recurrence sequences 5

We now present two results regarding solutions to certain congruences with
elements in a linear recurrence sequence. We start with a result, which follows from
[15, Lemmas 2 and 3].

Lemma 2.3 Let u be a non-degenerate sequence of order d ≥ 2 and let m ≥ 1 be an
integer. Then we have

♯{n ∈ Z ∩ [M + 1, M + N] ∶ u(n) ≡ 0 (mod m)} ≪ N/ log m + 1.

The second bound that we need holds modulo primes and follows from
[2, Lemma 6]. In [2], it is formulated only for the interval [1, N], however the result
is uniform with respect to the sequence u and hence it holds uniformly with respect
to M, too.

Let Fp be the algebraic closure of the finite field Fp of p elements.

Lemma 2.4 Let u be a simple sequence of order d ≥ 2 and for a prime p let λ1 , . . . , λd
be the roots of the characteristic polynomial of u in Fp. We set 𝜚p = 1 if at least one root
λ1 , . . . , λd is zero and set

𝜚p = min
1≤i< j≤d

r i j ,

where r i j is the multiplicative order of λ i/λ j in Fp, otherwise. Then for any integers
M ≥ 0 and N ≥ 1, we have

♯{n ∈ Z ∩ [M + 1, M + N] ∶ u(n) ≡ 0 (mod p)} ≪ N(N−1 + 𝜚−1
p )1/(d−1) .

The following result is certainly well-known and is based on classical ideas of
Hooley [12], however for completeness we present a short proof.

Lemma 2.5 For R ≥ 2 we consider the set

W(R) = {p prime ∶ 𝜚p ≤ R}.

Then ♯W(R) ≪ R2/ log R.

Proof Write λ1 , . . . , λq for the distinct roots of the characteristic polynomial of u.
For R ≥ 2, let

Q(R) = ∏
ρ≤R

∏
1≤i< j≤q

NmK/Q(λρ
i − λρ

j ),

where NmK/Q is the norm from the splitting field K of f to Q. Note that Q(R) ≠ 0
because λ i/λ j is not a root of unity and since λ i and λ j are algebraic integers we also
have Q(R) ∈ Z.

Clearly, for any prime p which does not divide the constant coefficient of the
characteristic polynomial of u and with 𝜚p ≤ R, we have p ∣ Q(R), hence

♯W(R) ≤ ω(Q(R)) + O(1),

https://doi.org/10.4153/S0008439525000475 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000475


6 A. Bérczes et al.

where ω(k) is the number of prime divisors of an integer k ≥ 1. As clearly ω(k)! ≤ k,
by the Stirling formula we get

♯W(R) ≪ log Q(R)
log log Q(R) .

Since obviously log Q(R) ≪ R2, the result follows. ∎

Finally, we need a result on the finiteness of perfect powers in linear recurrence
sequences with a dominant root. The most general and convenient form for us, which
is built on several previous results in this direction, is given by of Bugeaud and Kaneko
[7, Theorem 1.1].

Lemma 2.6 Let u be a simple non-degenerate sequence of order d ≥ 2 with an irre-
ducible characteristic polynomial having a dominant root. Then the equation u(n) = mk

has only finitely many solutions in integer k ≥ 2, m ≠ 0, n ≥ 1.

2.2 Vertex covers

We need the following graph-theoretic result.

Lemma 2.7 Let G be a graph with vertex set V, having no isolated vertex. Put � = ♯V.
Then there exists V1 ⊆ V with ♯V1 ≤ �/2 such that for any v2 ∈ V2 = V/V1 there exists a
vertex v1 ∈ V1 which is a neighbor of v2.

Proof The statement must be well-known, but we give a simple proof. If G̃ is a
graph (without isolated vertices) obtained from G by omitting some edges, and the
statement is valid for G̃, then the statement is obviously valid for G. Let G̃ be a forest
graph (that is, a graph without cycles) obtained from G by omitting some edges, such
that the number of connected components of G and G̃ are the same. Then G̃ is a
bipartite graph, so the statement is clearly valid for it. Hence the result follows. ∎

3 Proofs

3.1 Proof of Theorem 1.1

Suppose that for some n1 , . . . , ns ∈ [M + 1, M + N] the terms u(n1), . . . , u(ns) are
m.d. of maximal rank, that is, we have (1.1) with some nonzero integers k1 , . . . , ks .

Choose a positive real number R ≥ 2 to be specified later, and let W(R) be as in
Lemma 2.5.

Write t for the number of indices i = 1, . . . , s for which u(n i) has a prime divisor
p i ∉ W(R), and let r = s − t for the number of indices i with u(n i) having all prime
divisors in W(R). Without loss of generality, we may assume that the corresponding
integers are n1 , . . . , nt , and nt+1 , . . . , ns , respectively.

By Lemmas 2.2 and 2.5, for M ≥ 1, the number K1 of such r-tuples (nt+1 , . . . , ns) ∈
[M + 1, M + N]r satisfies
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Multiplicative dependence in recurrence sequences 7

K1 ≪ (R2N log(N + M)
M log R

)
r

.(3.1)

If M = 0, then we have the bound

K1 ≪ (R2(log N)2

log R
)

r

.(3.2)

We assume that such an r-tuple (nt+1 , . . . , ns) is fixed.
Consider the t-tuples (n1 , . . . , nt) ∈ [M + 1, M + N]t . Recall that for any 1 ≤ i ≤ t,

there is a prime p i ∉ W(R) such that p i ∣ u(n i).
Define the graph G whose vertices are u(n1), . . . , u(nt), and connect the vertices

u(n i) and u(n j) precisely when gcd(u(n i), u(n j)) has a prime divisor outside
W(R). Observe that as u(n1), . . . , u(ns) are m.d. of maximal rank, G has no isolated
vertex. Thus, by Lemma 2.7, there exists a subset I of {1, . . . , t} with

m = ♯ I ≤ ⌊t/2⌋(3.3)

such that for any j with

j ∈ {n1 , . . . , nt}/I

the vertex u(n j) is connected with some u(n i) in G, for some i ∈ I.
Without loss of generality, we may assume that I = {1, . . . , m}. Trivially, the

number K2 of such m-tuples (n1 , . . . , nm) ∈ [M + 1, M + N]m satisfies

K2 ≪ N m .(3.4)

We now fix such an m-tuple. For � = t − m, we now count the number K3 of
the remaining �-tuples (nm+1 , . . . , nt) ∈ [M + 1, M + N]�. Since each u(n j) with
m + 1 ≤ j ≤ t has a common prime factor p ∉ W(R) with u(n i) for some 1 ≤ i ≤ m,
by Lemma 2.4 we obtain that n j comes from a set N of cardinality

♯N ≪ N (N−1 + 𝜚−1
p )1/(d−1) ≤ N (N−1 + R−1)1/(d−1) .

Thus we obtain

K3 ≤ (♯N)� ≪ (N (N−1 + R−1)1/(d−1))
t−m

.(3.5)

We consider now two cases based on M ≤ N log N or M > N log N .
If M ≤ N log N , then

M∗s (M , N) ≤ M∗s (0, 2N log N),

therefore we reduce to counting s-tuples in the interval [0, 2N log N]s .
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8 A. Bérczes et al.

Putting together the bounds (3.2), (3.4), and (3.5) (with N replaced by 2N log N),
for some non-negative integer t ≤ s and r = s − t, we obtain

M∗s (M , N) ≤ K1K2K3

≪ (R2(log N + log log N)2/ log R)r (N log N)m

(N log N (N−1 + R−1)1/(d−1))
t−m

≤ N t+o(1)R2r ((N−1 + R−1)1/(d−1))
t/2

,

(3.6)

where the last inequality comes from (3.3).
Letting R = N η with some 0 < η < 1/2, we obtain

M∗s (M , N) ≪ N t+2ηr−ηt/(2(d−1))+o(1) = N2ηs+(1−2η)t−ηt/(2(d−1))+o(1) .

Writing t = zs (and noting that 0 ≤ z ≤ 1), the exponent of the last term above
(omitting the expression o(1)) is given by

fη(z) = s
2(d − 1) ((2d − 4dη + 3η − 2)z + 4η(d − 1)) .

So taking

η = 2(d − 1)
4d − 3

,

(to make fη(z) a constant), we obtain

M∗s (M , N) ≪ N2ηs+o(1) = N s−s/(4d−3)+o(1) ,

which concludes this case.
If M > N log N , then the bound (3.1) becomes

K1 ≪ (R2/ log R)r .

Putting this together with (3.4) and (3.5), we obtain (3.6) without the (log N)2 factor,
that is,

M∗s (M , N) ≤ K1K2K3

≪ (R2/ log R)r N m (N (N−1 + R−1)1/(d−1))
t−m

≪ N t R2r ((N−1 + R−1)1/(d−1))
t/2

.

Using the same discussion and choice of η as above, we conclude the proof. ∎

Remark 3.1 Clearly in (3.6), we can replace t/2 with ⌈t/2⌉ but this does not change
the optimal choice of η and thus the final bound.
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Multiplicative dependence in recurrence sequences 9

3.2 Proof of Theorem 1.3

Let (n1 , . . . , ns) ∈ [M + 1, M + N]s such that u(n1), . . . , u(ns) is m.d. of maximal
rank, which implies that there exist integers k i ≠ 0, i = 1, . . . , s, such that (1.1) holds.
We can rewrite this relation as

∏
i∈I

u(n i)k i = ∏
j∈J

u(n j)k j , k i , k j > 0,(3.7)

where I ∪ J = {1, . . . , s}, I ≠ ∅, J ≠ ∅, I ∩ J = ∅. Let I = ♯ I and J = ♯J, and thus,
I + J = s.

Fix one of 2s − 2 possible choices of the sets I and J as above. Fix n i , i ∈ I, trivially
in O(N I) ways. Then, the square-free part rad(u(n i)) of u(n i) is fixed for each i ∈ I.

We may also assume that n i ≥ C2, i ∈ I, with C2 as in Lemma 2.1, since this
condition is violated only for O(N s−1) choices of (n1 , . . . , ns), which is admissible.
By Lemma 2.1, for n i ∈ [M + 1, M + N], one has

rad(u(n i)) > nc(log2 n i)/ log3 n i
i ≫ M c(log2 M)/ log3(M+N) .(3.8)

For i ∈ I, from (3.7) we see

rad(u(n i)) ∣ ∏
j∈J

u(n j).

This implies that there is a factorization rad(u(n i)) = d1⋯dJ such that for each
positive integer d� there exists j ∈ J such that d� ∣ u(n j). Let �, 1 ≤ � ≤ J, be such that
d� ≥ rad(u(n i))1/J , and

u(n j) ≡ 0(mod d�).(3.9)

From (3.8), we have

d� > M c0(log2 M)/ log3(M+N)(3.10)

with c0 = c/J ≥ c/s.
Using now Lemma 2.3, the inequality (3.10) and the fact that J ≤ s, the number of

n j ∈ [M + 1, M + N] satisfying the congruence (3.9) is

O (N/ log d� + 1) = O (N
log3(M + N)
log M log2 M

+ 1) .

Therefore, using the trivial bound N J−1 for the number of the remaining choices of n j
with j ∈ J, we obtain that the total number of n j ∈ [M + 1, M + N], j ∈ J, is

O (N J log3(M + N)
log M log2 M

+ N J−1) .

Thus we obtain that

M∗s (M , N) ≪ N s log3(M + N)
log M log2 M

+ N s−1 .

Choosing M ≥ exp(N log3 N/ log2 N), we conclude the proof.

https://doi.org/10.4153/S0008439525000475 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000475


10 A. Bérczes et al.

3.3 Proof of Theorem 1.5

Clearly for s = 2 we have to count integers M + 1 ≤ m, n ≤ M + N , with

u(m)a = u(n)b(3.11)

for some positive integers a and b, where without loss of generality we can assume that
gcd(a, b) = 1. We also notice that since the relation (3.11) is of maximal rank, neither
u(m) = ±1 nor u(n) = ±1 holds.

Since u has a dominant root, ∣u(n)∣ grows monotonically with n, provided that n
is large enough. Hence there are N + O(1) solutions (m, n) ∈ [M + 1, M + N]2 with
a = b = 1.

Now we count pairs (m, n) for which (3.11) holds with some (a, b) ≠ (1, 1).
We observe that if a > 1 then u(n) is the ath power and by Lemma 2.6 there are

O(1) such values of n. For b > 1 the argument also applies to m. Hence the total
contribution from such solutions, over all a, b > 1, is O(1).

If a > 1 and b = 1, then again we see that there are O(1) such values of n. From this
we easily derive that a = O(1), and hence we obtain O(1) possible values for m. So
the contribution of such solutions to (3.11) is also O(1) only.

The case of a = 1 and b > 1 is completely analogous, which concludes the proof.

Remark 3.2 We note that without the irreducibility condition of the characteristic
polynomial, that is, only under the condition of having a dominant root, we have
boundedness of k in Lemma 2.6, see the discussion in [7, Section 1]. Thus, the
above proof shows that in this case we have a version of Theorem 1.5 in the form
M∗2 (M , N) ≪ N and thus (1.4) holds only under this assumption.

4 Possible applications of our approach

Our approach works for many other integer sequences (a(n))∞n=1, provided the
following information is available:
(i) there are good bounds on the number of solutions to congruences a(n) ≡ 0

(mod q), 1 ≤ n ≤ N , in a broad range of positive integers q (or even just prime
q = p) and N;

(ii) there are good bounds (or known finiteness) on the number of perfect powers
among a(n), 1 ≤ n ≤ N .

For example, using results of [16], coupled with the finiteness result of Lemma 2.6,
one can estimate the number of multiplicatively dependent s-tuples from values of
linear recurrence sequences at polynomial values of the argument (u (F(n)))∞n=1,
where F ∈ Z[X].
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