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Abstract

The concept of interaction classes (iClasses) for multi-environment trial data was introduced
to address the problem of summarising variety performance across environments in the
presence of variety by environment interaction (VEI). The approach involves the fitting of a
factor analytic linear mixed model (FALMM), with the resultant estimates of factor loadings
being used to form groups of environments (iClasses) that discriminate varieties with
different patterns of VEI. It is then meaningful to summarise variety performance across
environments within iClasses. The iClass methodology was developed with respect to a
FALMM in which the genetic effects for different varieties were assumed independent. This
was done for pedagogical reasons but it was pointed out that the accuracy of variety selection
is greatly enhanced by considering the genetic relatedness of varieties, either via ancestral
or genomic information. The focus of the current paper is therefore to extend the iClass
approach for FALMMs which incorporate such information. In addition, a measure of
stability of variety performance across iClasses is defined. The utility of the approach for
variety selection is illustrated using a multi-environment trial dataset from the lentil breeding
programme operated by Agriculture Victoria.

Introduction

The analysis of multi-environment trial (MET) data is a fundamental and recurring task for
the selection of superior varieties in a plant breeding programme. Smith et al. (2005) provided
a comprehensive review of statistical methods for MET data and this still covers the most
popular methods currently used. The methods can be broadly classified into linear mixed
model (LMM) and biplot analyses. LMMs are a widely used class of statistical models that
include both fixed and random effects and accommodate a range of variance structures to
allow for heterogeneity and correlation. Early applications for MET data include Patterson
et al. (1977) and Patterson and Silvey (1980), who used LMMs that included main effects for
varieties and environments, and variety by environment interaction (VEI) effects. The
variance structures for random effects had simple component forms, commensurate with the
assumption of independent effects with homogeneous variance. Since the late 1990s, several
research groups have developed and recommended LMM that incorporate factor analytic
(FA) structures for the variety effects in different environments. This allows for a very general
pattern of genetic variance and covariance heterogeneity. Henceforth, this model will be
referred to as a factor analytic linear mixed model (FALMM). Key papers authored by
advocates of these models include Gogel et al. (1995), Piepho (1997, 1998a), Smith et al. (2001,
2021b), Burgueno et al. (2011) andMeyer (2009). Biplot approaches involve the application of
a singular value decomposition to a two-way table indexed by varieties and environments,
followed by a biplot graphical representation of the first two principal components. This
approach was popularised for MET data under the banner of Additive Main effects and
Multiplicative Interaction models (Gauch, 1992) and the most common current method of
this type is the GGE-biplot method (see, for example, Yan and Kang, 2002 and Yan
et al., 2023).

The analysis process for METs should be no different from any other data analysis in that it
should consist of two main activities. Lee et al. (2006) discuss this in detail and reference Lane
and Nelder (1982) when they state that ‘the first (activity) is model selection, which aims to find
parsimonious well-fitting models for the basic responses being measured, and the second is
model prediction, where the output from the primary analysis is used to derive summarising
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quantities of interest together with their uncertainties’. It is well
known that for the purposes of variety selection, a ‘well-fitting’
MET model must accommodate a range of sources of variation
associated with both genetic and non-genetic effects and field plot
errors. It is crucial that the model appropriately accommodates
VEI and that it allows inclusion of information on the genetic
relatedness of varieties, either via ancestral or genomic data (Oakey
et al., 2006, 2007). Non-genetic effects associated with exper-
imental designs should be included, and themodel should allow for
error variance heterogeneity between environments and spatial
correlation within environments. Accommodating all of these
sources appropriately in the model will improve the accuracy of
‘output from the primary analysis’. The FALMM, in particular the
model proposed by Smith et al. (2001) and extended for genetic
relatedness by Oakey et al. (2007), successfully achieves this aim.
This is, therefore, the model used in the current paper.

The output from the primary analysis must be summarised in a
manner that facilitates variety selection. In the presence of VEI, in
particular crossoverVEIwhich is synonymouswith changes in variety
rankings, it makes no sense to base selection on the standard concept
of variety main effects or some analogous measure of overall
performance across all environments in the MET. Instead, variety
performance needs to be summarised for ‘meaningful’ groups of
environments. Within the framework of a FALMM, Smith et al.
(2021b) addressed this using the fundamental parameters in the FA
model, namely the factor loadings, to form groups of environments.
Given that the factor loadings represent the latent environmental
covariates that are driving the VEI, these groups discriminate varieties
with differential responses and thence differential patterns of VEI.
They are therefore called interaction classes (iClasses). Smith et al.
(2021b) defined overall variety performance for each iClass by
averaging variety predictions across the associated environments.
This facilitates selection of the best varieties within each iClass so
addresses the ‘what wins where’ question, which has become a widely
used catchphrase in the biplot literature. This question should be
extended to include ‘ : : : and byhowmuch’ as it is important to have a
prediction of variety differences on the scale of the trait under
consideration, together with a measure of uncertainty. This is an
integral part of iClass overall performance which is reported in the
units of measurement (for example, t/ha for grain yield).

Smith et al. (2021b) developed the concept of iClasses within
the framework of FALMMs in which the genetic effects for
different varieties were assumed independent. They did this for
ease of demonstration but stressed that, in general, the analysis of
plant breeding METs will benefit greatly from the inclusion of
information on the genetic relatedness of varieties. This can be
achieved with the use of a relationship matrix which may be based
on ancestral (pedigree) or genomic (marker) information. In the
case of in-bred crops, the genetic effects in the FALMM are
partitioned into additive (with a variance structure that involves
the relationship matrix) and non-additive effects. As commented
by Oakey et al. (2006), such a partitioning means that ‘a single
analysis will allow both the selection of potential parents for future
breeding programmes using additive effects and promising
commercial lines combining both additive and non-additive
effects, i.e. the overall or total genetic effect’. The FALMM with
both additive and non-additive genetic effects involves two
separate FA models, one for each set of effects (see Oakey et al.,
2007; Beeck et al., 2010; Smith and Cullis, 2018; Tolhurst et al.,
2019). iClass methodology that can be applied in this setting is the
focus of the current paper. Parental selection involves a
straightforward application of the concepts in Smith et al.

(2021b) to the FA model for the additive effects alone, whereas
the selection of varieties based on total (additive plus non-additive)
effects requires an extension that incorporates both the additive
and non-additive FA models.

Many authors have noted that, in addition to knowing ‘what
wins where’, it is also important to characterise the stability of
variety performance across environments. A seminal review paper
is that of Lin et al. 1986, who noted that ‘the concept of stability is
by no means unambiguous’. They provided a helpful table that
summarised nine commonly used measures and highlighted the
differences in interpretations. Many of these methods are popular
today, the most widely used being associated with regressions of
the observed data for a variety of an environmental index defined
using the mean of all observations for the environment. Key
references for this type of measure are Finlay and Wilkinson
(1963), Eberhart and Russell (1966) and Digby (1979). Oman
(1991), Gogel et al. (1995) and Piepho (1997) considered mixed
model versions of this approach. Piepho (1998b) provided a
comprehensive review of stability measures (including those in Lin
et al. 1986) and showed how each relates to an underlying statistical
model. He made a pivotal point, namely that ‘Usefulness of any
measure of stability depends crucially on how well the underlying
model approximates the real data’. Of the commonly used stability
measures, arguably the best fitting model is the regression on the
environmental mean model. However, it is well known that this
rarely provides a ‘good approximation to the data’ since it typically
only explains a very small proportion of VEI. In contrast, the
FALMM routinely provides a good fit for MET data so is a prudent
choice ofmodel on which to build a stabilitymeasure. Based on this
model, Smith and Cullis (2018) proposed a stability measure that
has a similar flavour to the regression approaches but involves the
latent regression implicit in an FA model. Specifically, for each
variety, the stability measure is the root mean square deviation of
the predicted effects from the fitted values for the latent regression
associated with the first (most important) factor. The assumption
is that the estimated loadings for the first factor are all positive so it
represents the scale (non-crossover) component of VEI, and hence,
the deviations reflect crossover VEI. This measure is sub-optimal,
however, in the sense that it restricts attention to the first factor
only, so ignores the latent regressions on the higher-order factors
which typically account for a non-ignorable amount of VEI. In the
current paper, therefore, a stability measure is proposed that
captures the VEI associated with all the factors in the FALMM (or
as many as the breeder wishes to use) and has no requirement
about positive signs for the estimated loadings in the first factor.
The measure can be visualised in the interaction plots of Smith
et al. (2021b) which depict the overall performance of a small user-
defined set of varieties across iClasses. Due to the manner in which
iClasses are formed, there is a natural ordering on this plot, with
the major sources of VEI being contrasted across iClasses on
opposite sides of the plot. This allows a visual inspection of VEI, or
equivalently, stability of performance across iClasses, for the
nominated varieties. Stability is therefore indicated by the relative
magnitude of the peaks and troughs across the interaction plot. In
the current paper, a numerical measure that quantifies this form of
stability is developed. It is easily computed in conjunction with
iClass overall performance for all varieties in the MET dataset. As
such it may be useful as an additional trait for selection.

The main goals of this paper are to extend the iClass
methodology introduced in Smith et al. (2021b) for analyses that
include information on the genetic relatedness of varieties and
to present a new measure of stability of variety performance.
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The utility of the methods is demonstrated using a motivating
example from an Australian lentil breeding programme.

Materials and methods

The motivating example considered in this paper was provided by
the Agriculture Victoria lentil breeding programme. This
programme involves five stages of variety testing, labelled as L0,
L1, L2, L3 and L4. Using the techniques of Smith et al. (2021a), a
dataset was constructed to facilitate selections for stages L0, L1, L2
and L3 in 2023. In this paper, the analysis is conducted for this
entire dataset, but in the interests of brevity, the iClass
methodology is applied for one set of selections only. The L3
selections have been chosen for this purpose, partly because these
comprise the smallest number of varieties so the methodology is
most easily demonstrated and partly because these are the final
decisions prior to commercial release so have immediate
ramifications for both the breeding programme and growers.

Overall, the dataset contains 160 trials grown in 90 environ-
ments and a total of 10 356 unique varieties. In this paper a ‘trial’
refers to the physical collection of field plots onto which a valid
experimental design is imposed. An ‘environment’ is defined by the
geographic location and year of planting of a trial. Of the 90
environments in the MET dataset, 43 encompassed multiple trials
due to the presence of trials for different stages at the same location.
All trials in an environment were managed in the same way and
had the same plot dimensions. The number of varieties per trial
ranged from 36 to 2487 and the number of plots from 108 to 3024.
In 70 trials, partially replicated designs (Cullis et al., 2020) were
employed in which some varieties were tested without replication
(that is, a single plot for each) and others were tested using two
replicate plots. In the remaining trials, there was near complete
replication with either two or three replicates of most varieties.

The distribution of trials across stages and years is shown in
Table 1. Note that, prior to 2023, varieties in different stages of
testing were grown in separate trials, whereas in 2023, varieties
from stages L1, L2 and L3 were grown together in the same trial.
The inclusion of the L4 trials from 2018, 2019 and 2020 warrants
discussion. These were included in accordance with one of the key
philosophies of Smith et al. (2021a), namely to maximise the
amount of observed data for the varieties under consideration for
selection. The varieties impacted by the inclusion of the L4 trials
were five 2023 L3 varieties under consideration for commercial
release. Inclusion of the L4 trials provided an additional two years
of data for each of these varieties and between 22 and 26 additional
environments. It is acknowledged that the inclusion of these trials,
some of which were the smallest in the dataset with only 36
varieties, must be investigated in terms of any potential negative
impact on the estimation of genetic variance parameters. This is
fully explored in the Supplementary Material, Section 1, where it is
shown that the impact is likely to be negligible, with any associated
losses in the reliability of variety predictions being far outweighed
by the benefits of including the additional data. Supplementary
Material, Section 1 demonstrates the statistical benefits of
including the L4 trials. It should also be noted there are substantial
benefits in terms of grower confidence, since, in general, L4 trials
are grown in more locations than earlier stage trials and the
inclusion of the L4 trials in the current dataset provided an
additional 14 location/year combinations (environments) for
variety comparisons.

In the current paper, genetic relatedness is included in the
analysis via pedigree records on 11 330 varieties (that is, all varieties

with phenotypic data together with 974 ancestors). A numerator
relationship matrix (NRM), denoted by A, was created from these
pedigree records.

Statistical methods

The MET dataset is assumed to comprise p environments with nj
denoting the number of plots for environment j ¼ 1 . . . pð Þ. Let yj
denote the nj�vector of data for the jth environment and y denote
the n�vector of data combined across all environments in the
MET. Thus y ¼ ðy>1 ; y>2 ; . . . ; y>p Þ> and n ¼Pp

j¼1 nj. The LMM
for y can be written as

y ¼ Xτ þ Zgug þ Zpup þ e (1)

where τ is a vector of fixed effects with associated design matrix X;
ug is the vector of random genetic effects with associated design
matrix Zg ; up is a vector of random non-genetic (or peripheral)
effects with associated design matrix Zp and e ¼ ðe>1 ; e>2 ; . . . ; e>p Þ>
is the combined vector of errors from all environments. The vector
of fixed effects includes mean parameters for individual
environments. The vector of random peripheral effects includes
effects associated with the designs of individual trials within
environments. The variance matrix for up is typically given by

Gp ¼ �p
j¼1Gpj where Gp j ¼ var up j

� �
and up j is the vector of

peripheral effects for environment j.

Variance models for genetic effects

The random genetic effects, ug , comprise the variety effects nested
within environments (VE effects). In this paper, these effects are
partitioned into additive and non-additive genetic effects, so for
clarity ug will be referred to as the total VE effects. Ifm denotes the
total number of unique varieties across all environments, then the
vector ug has length mp. These are assumed to be ordered as
varieties within environments. The total VE effects can be
partitioned into additive and non-additive VE effects (ua and ue,
respectively) as follows:

ug ¼ ua þ ue (2)

where it is assumed that

var
ua
ue

� �
¼ Ga � Gr 0

0 Ge � Im

� �
(3)

Table 1. Multi-environment trial dataset for L0, L1, L2 and L3 stage selection
decisions in 2023: number of trials included from each stage and year. Note that,
prior to 2023, the entries in different stages were grown in separate trials,
whereas in 2023, the L1, L2 and L3 entries were grown together in the same trial

Year

Stage 2017 2018 2019 2020 2021 2022 2023

L0 2 2 2 1 2 2 2

L1 3 4 3 3 5 5 "
L2 6 6 7 7 10 10 14

L3 0 0 0 9 16 13 #
L4 0 12 10 4 0 0 0
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where Ga and Ge are p� p symmetric positive semi-definite
matrices that will be referred to as the between environment
additive and non-additive genetic variance matrices, respectively.
The matrix Gr is an m�m (known) relationship matrix which
may either be an NRM, denoted A, or a genomic relationship
matrix (GRM). Note that for notational simplicity, it is assumed
that pedigree and/or genomic information is available for all m
varieties. This is easily relaxed in practice. In the current paper, the
motivating example involves the use of pedigree information, so
the approach is developed in this context, in which case Gr ¼ A.
Note that A is often expanded to include both the varieties grown
in the MET together with their ancestors (that were not grown in
the MET). This may be done both to allow prediction of the
additive VE effects for the latter and also to exploit the sparsity it
induces in the inverse of the NRM. Either way, m is defined to
denote the number of varieties with pedigree information which
will therefore also be the number of rows and columns in A.
Finally, note that var ug

� 	 ¼ Ga � Aþ Ge � Im

FA models for VE effects
Given the partitioning of the total VE effects, a separate FA model
for each set of VE effects is allowed. Thus, a FA model of order ka,
denoted FAka, is assumed for the additive VE effects and an FAke
model is assumed for the non-additive VE effects. Note that the
orders of the two models, that is, ka and ke may (are likely to) be
different. The FA models for the VE effects can be written as

ua ¼ Λa � Imð Þfa þ δa ¼ βa þ δa (4)

ue ¼ Λe � Imð Þfe þ δe ¼ βe þ δe

where Λa is the p� ka matrix of environment loadings for the
individual additive factors; fa is the associated mka�vector of
variety scores (ordered as varieties within factors) and δa is the
mp�vector of additive lack of fit effects which are also known as
the additive specific VE (SVE) effects. The additive common VE
(CVE) effects are given by βa ¼ Λa � Imð Þfa. The FA model for
non-additive VE effects involves Λe, which is the p� ke matrix of
environment loadings for the individual non-additive factors; fe is
the associated mke�vector of variety scores and δe is the
mp�vector of non-additive SVE effects. The non-additive CVE
effects are given by βe ¼ Λe � Imð Þfe.

This then provides a model for the total VE effects of the form

ug ¼ Λa � Imð Þfa þ δa þ Λe � Imð Þfe þ δe
¼ βg þ δg

(5)

where βg ¼ βa þ βe and δg ¼ δa þ δe are defined to be the total
CVE and total SVE effects, respectively.

In the FA models, it is assumed that

var
f a
f e

� �
¼ Da � A 0

0 De � Im

� �
(6)

where Da and De are ka � ka and ke � ke symmetric positive
definite matrices that will be referred to as the additive and non-
additive factor score variance matrices, respectively. Additionally,
it is assumed that

var
δa
δe

� �
¼ Ψa � A 0

0 Ψe � Im

� �
(7)

where Ψa and Ψe are p� p diagonal matrices with elements
referred to as the additive and non-additive specific variances,
respectively.

The variance assumptions in equations (6) and (7) lead to

var
βa
βe

� �
¼ ΛaDaΛ

>
a � A 0

0 ΛeDeΛ
>
e � Im

� �
(8)

var
ua
ue

� �
¼ ΛaDaΛ

>
a þΨað Þ � A 0
0 ΛeDeΛ

>
e þΨeð Þ � Im

� �
(9)

so that the between environment additive and non-additive genetic
variance matrices are given by Ga ¼ ΛaDaΛ

>
a þΨa and

Ge ¼ ΛeDeΛ
>
e þΨe, respectively.

Smith et al. (2021b) discussed the need to apply constraints in
an FA model in order to ensure a unique solution. Their approach
is adopted here and the same form of constraints for both the
additive and non-additive FA models is imposed. Thus, it is
assumed that the additive factor scores are independent so that Da
is a diagonal (non-identity) matrix with elements dar (r ¼ 1 . . . ka),
and furthermore, these are written in decreasing order of
magnitude. It is also assumed that Λ>

a Λa is an identity matrix
(that is, the columns ofΛa are orthonormal vectors). Similarly, it is
assumed that the non-additive factor scores are independent so
that De is a diagonal (non-identity) matrix with elements des
(s ¼ 1 . . . ke) and these are written in decreasing order of
magnitude. It is also assumed that Λ>

e Λe is an identity matrix.
These constraints allow for a meaningful interpretation of loadings
and scores (Smith and Cullis, 2018; Smith et al., 2021b). The
constraints used for estimation will be discussed in the section
‘Model fitting and estimation’.

It is instructive to express the model for the total VE effects in
expanded form as follows: write Λa ¼ λa1 ; . . . ;λaka

h i
where λar is

the p�vector of environment loadings for additive factor r and
write fa ¼ ðf >a1 ; . . . ; f >aka Þ> where far is the m�vector of variety

scores for additive factor r. Analogous definitions are used for the
loadings and scores for the non-additive factors. The model in
equation (5) can then be written as

ug ¼ λa1 � Im
� 	

f a1 þ λa2 � Im
� 	

f a2 þ . . .þ λaka � Im
� �

faka þ

λe1 � Im
� 	

fe1 þ λe2 � Im
� 	

fe2 þ . . .þ λeke � Im
� �

feke þ δg (10)

which has the appearance of amultiple regression with k ¼ ka þ ke
terms in which the covariates are the loadings (λar and λes) and
there are separate slopes for individual varieties which are given by
the variety scores (far and fes).

The percentage of variance accounted for by each factor in the
overall model of equation (10) can be obtained using the results in the
Appendix. Thus the percentages of variance accounted for by additive
factor r (¼ 1 . . . ka) and non-additive factor s (¼ 1 . . . ke) are given by

Var ¼ 100� ādar=tr āGa þ Geð Þ

Ves ¼ 100� des=tr āGa þ Geð Þ (11)
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where ā is (typically) themean of the diagonal elements ofA for those
varieties that were grown in theMET or alternatively the subset under
consideration for selection. By definition, the additive factor score
variances are in decreasing order so that Va1 >Va2 > . . . >Vaka

.
Similarly, the non-additive factor score variances are in decreasing
order so that Ve1 >Ve2 > . . . >Veke

. However, the overall ordering of
factors (that is, across additive and non-additive) is data-dependent.

Variance models for errors

The reader is referred to the Supplementary Material, Section 2.

Model fitting and estimation

Every model in this paper was fitted using DWReml which is a
package within the R statistical software (R Core Team, 2022).
DWReml fits the LMM and estimates variance parameters using
residual maximum likelihood (REML) (Patterson and Thompson,
1971) and the average information algorithm and a supernodal
sparse linear solver. The models could also have been fitted using
the commercially available software ASReml-R (Butler et al., 2017).
The models required a NRM and this was created from pedigree
records using pedicure which is a package within the R statistical
software (R Core Team, 2022) that provides tools for pedigrees and
genetic marker matrices. Both DWReml and pedicure were
developed byDavid Butler and Brian Cullis. Beta versions are freely
available from Brian Cullis (bcullis@uow.edu.au) on request.

The FA variance models were fitted as in Smith and Cullis
(2018), that is, by splitting the VE effects into the CVE and SVE
effects, each with their own variance structure. Thus, for the
additive VE effects the two variance models were var βaÞð and
var δað Þ as given in equations (8) and (7). The two variance models
for the non-additive VE effects were var βeð Þ and var δeð Þ as given in
equations (8) and (7).

As discussed in Smith et al. (2021b), model fitting using the
constraints on loadings and factor score variances as outlined in
the section ‘FA models for VE effects’ is difficult and both
DWReml and ASReml-R (Butler et al., 2017) use simpler
constraints. These involve setting Da ¼ Ika and De ¼ Ike . Addi-
tionally, if ka > 1, then all the elements in the upper triangle of Λa
are set to zero. If ke > 1, the same constraints are applied to the non-
additive loadings. The original forms of the loading and score
variance matrices can be reconstructed using a rotation based on a
singular value decomposition of the associated loadingmatrix. The
reader is referred to Smith et al. (2021b) for full details.

Note that two separate rotations are conducted, corresponding
to the additive and non-additive factor models. This is to be
contrasted with the approach proposed in Smith and Cullis (2018)
in which the columns in the additive and non-additive loading
matrices are combined to form an overall matrix of loadings to
which a single rotation is applied. The authors claimed this
provides a ‘special FA form’ for the total VE effects. However, the
two models are not compatible, because the factor scores in the
additive model have a variance structure that involves a relation-
shipmatrix whereas the factor scores in the non-additive model are
independent. The single rotation then mixes the variance
structures in a manner that is both unclear and results in scores
that are correlated across factors. The separate rotations used in the
current paper ensure that the joint factor score variance matrix
remains as in equation (6), so that in terms of the regression
implicit in equation (10), the slopes (scores) for an individual
variety are independent (uncorrelated) across all k terms. This

allows for uncomplicated interpretations of the variety scores.
Furthermore, the use of two separate rotations is consistent with
the fundamental reason for the rotations, namely to move away
from the computationally convenient constraints imposed for
uniqueness. The constraints only apply within an individual FA
model so that two separate rotations are required, corresponding to
the additive and non-additive loading matrices. In this context, it is
helpful to consider that in the simplest case where each of the two-
factor models comprises a single factor, there is no need for any
rotation.

The model fit provides REML estimates of all variance
parameters and empirical best linear unbiased predictions
(EBLUPs) of all random effects.

Variety selection using interaction classes

In cases where the aim is selection based on additive effects alone,
the iClass approach of Smith et al. (2021b) can be directly applied
to the FA model for the additive VE effects. For example in the
analysis of data for inbred crops, such as lentils, there may be
interest in using the additive effects for the selection of potential
new parental lines. The iClass technique of Smith et al. (2021b)
applied to additive VE effects could also be used in cases where the
LMM does not include non-additive effects, such as the analysis of
out-crossing species.

The extension of Smith et al. (2021b) considered here relates to
the selection of superior varieties in terms of their total (additive
plus non-additive) VE effects. iClasses for this purpose can be
formed by first ordering all k ¼ ka þ ke factors in terms of their
percentage variance accounted for, namely using Var and Ves of
equation (11). As discussed in the section ‘FA models for VE
effects’, the factors are already in order of variance accounted for
within their respective FA models, but the ordering across additive
and non-additive factors may result in a mixing of the two types.
The factor loadings ordered in this way are denoted by λt
(t ¼ 1 . . . k). The corresponding vectors of factor scores are
denoted by ft .

At this point, it is instructive to clarify the logic behind the
iClass concept introduced in Smith et al. (2021b). The key is to use
the regression interpretation of an FA model for VE effects. In the
current paper in which there is a separate FAmodel for the additive
and non-additive VE effects, the regression interpretation stems
from equation (10). Using the notation just defined for indexing
factors across additive and non-additive terms, the fitted values
from this regression for variety i in environment j are given by

β̃gij ¼ λ̂1j f̃i1 þ λ̂2j f̃i2 þ . . . λ̂kj f̃ik (12)

where the hat symbol above a variance parameter indicates the
REML estimate of the parameter and the tilde symbol above a
random effect indicates the EBLUP of the effect. A visual
assessment of the contribution of an individual factor (term in
the regression) to the overall fitted value aids in the explanation of
iClasses. A hypothetical example comprising k ¼ 3 factors fitted to
p ¼ 9 environments is considered. Figure 1 shows, for three
varieties (v1, v2 and v3), the fitted values for each factor (that is,
λ̂tj f̃it) plotted against the covariate (the rotated estimated

environment loadings, λ̂tj for the factor). The slopes of the lines

are the EBLUPs of the variety scores (f̃1t; f̃2t and f̃3t) for the factor.
In this example, the first factor contains all positive estimated

loadings and it is clear from Figure 1a that there are no crossover

The Journal of Agricultural Science 5

https://doi.org/10.1017/S0021859625000085 Published online by Cambridge University Press

//doi.org/10.1017/S0021859625000085
mailto:bcullis@uow.edu.au
https://doi.org/10.1017/S0021859625000085


interactions of varieties for any environments. Thus in terms of the
fitted values for the first factor, variety v1 always ranks first,
followed by v2 then v3. The second and third factors are bi-polar,
with mixtures of positive and negative estimated loadings.
Figure 1b and c show that, for all environments that have the
same sign for the estimated loadings (either positive or negative),
there is no crossover interaction between varieties in terms of the

fitted values for the associated factor. Thus for the second factor
(see Figure 1b) variety v2 ranks first, v3 second and v1 last for all
environments with a positive estimated loading (e4 and e1) and
variety v1 ranks first, v3 second and v2 last for all environments
with negative loadings (the remainder). Clearly, the crossovers
(rank changes) occur at the origin (indicated by a dashed vertical
line). Thus for any pair of environments that differ in the signs of

Figure 1. Factor analytic regression model for hypothetical example: fitted values for three varieties (v1, v2 and v3) frommodel with three factors and nine environments. Fitted
values (represented as points) are plotted against estimated factor loadings for individual factors (panels (a), (b) and (c)). The slopes of the regression lines are the empirical best
linear unbiased predictions of factor scores for each variety. The residual maximum likelihood estimates of the (rotated) loadings are shown along the bottom axis, and the
associated environments are labelled along the top axis.
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their estimated loadings (so positive versus negative), there are
changes in variety rankings. These two, but dual, phenomenon
provide the motivation for using the signs of estimated loadings to
allocate environments into iClasses.

Specifically, as in Smith et al. (2021b), the REML estimates of
the (ordered) loadings are mapped to categorical variables which
reflect the signs of the estimates. Formally, for the tth factor
loading, the variable St is defined and has only two possible values
for environment j (j ¼ 1 . . . p):

Stj ¼ sign λ̂tj
� 	 ¼ “p” positiveð Þ if λ̂tj > 0

“n” negativeð Þ if λ̂tj < 0

(
(13)

iClasses are then formed from all possible combinations of the
values (‘p’ or ‘n’) of the categorical variables St . Thus, for example,
if the total number of additive and non-additive factors is k ¼ 3,
there is amaximumof 23 ¼ 8 possible iClasses with the set of labels
given byΩ ¼ fppp, ppn, pnp, pnn, npp, npn, nnp, nnng. Not all of
the iClasses may be present in the data. In the hypothetical
example, only four of the possible eight iClasses are present,
namely ppp (comprising environment e4), ppn (environment e1),
pnp (environments e2, e3 and e7) and pnn (environments e5, e6, e8
and e9). It is important to note that the ordering of the characters
that form the labels corresponds to the order of importance (in
terms of percentage variance accounted for) of the factors (across
both additive and non-additive factors).

Interaction classes: variety performance
Overall variety performance measures for individual iClasses
(iClassOP) can then be computed. The iClassOP for variety i in
iClass ω (ω 2 Ω) is given by

β̄giω ¼
X
j2ω

β̃gij=nω (14)

where nω is the number of environments in iClass ω and the sum is
taken over those environments. Using equation (12), the iClassOP
in equation (14) can be expressed as

β̄giω ¼
Xk
t¼1

λ̄tω f̃it (15)

where λ̄tω ¼Pj2ω λ̂tj=nω is the mean of the REML estimates of the
loadings for factor t for all environments in iClass ω.

The fact that β̃gij ¼
P

k
t¼1 λ̂tj f̃it , means that the only random

effects associated with the CVEs are the factor scores. This has
important implications for the model-based reliability of β̃gij . In
particular, for any given variety, this reliability is unaffected by the
presence or absence of that variety in the environment. In fact, if
k ¼ 1, the model-based reliabilities of β̃gij for variety i are identical
for all environments (j ¼ 1 . . . p) in theMET dataset. This has flow-
on implications for the reliabilities of iClassOP for any given
variety since they are therefore unaffected by the number of
environments (including zero) in which the variety is present in
that iClass.

Interaction classes: variety stability
Smith et al. (2021b) provided the framework for computing iClass
overall performance but did not explicitly discuss the concept of

stability of variety performance. Their interaction plot enables an
investigation of variety stability across iClasses but this is limited to
the small number of varieties that can be sensibly displayed on a
single plot and is purely a graphical tool. An explicit measure that
captures this stability is developed in this paper. The first step
involves the choice of iClasses across which stability is to be
investigated. This is determined by the breeder and may involve
exclusion of iClasses that do not align with their specific selection
criteria. The number of iClasses chosen for the stability measure
will be denoted by c and the associated number of environments by
p� � pð Þ. Stability is then investigated for variety i using a one-way
analysis of variance (AOV) of the β̃gij values for those

environments and with the ‘treatments’ being the c iClasses. In
the AOV table for variety i; the ‘Between treatment (iClass)’
degrees of freedom are c� 1 and the sum of squares is given by

SSBi
¼
Xc
ω¼1

nω β̄giω � β̄gi:
� �

2 ¼
Xc
ω¼1

nω
Xk
t¼1

f̃ it λ̄tω � λ̄t:
� 	 !

2

(16)

where β̄gi: ¼
P

c
ω¼1

P
j2ω β̃gij=p

�, which is the grand mean of the

CVEs, and λ̄t: ¼
P

c
ω¼1

P
j2ω λ̂tj=p�, which is the mean of all

loadings for a factor. The between treatment mean square, namely
SSBi

= c� 1ð Þ, then measures the variation in treatment means of
β̃gij (which by definition are the iClassOP), around the grand mean

of β̃gij . This provides a natural and meaningful measure of the
stability of the variety’s performance across relevant iClasses.
The ‘Within treatment (iClass)’ degrees of freedom are p� � c and
the sum of squares is given by

SSWi
¼
Xc
ω¼1

X
j2ω

β̃gij � β̄giω
� �

2 ¼
Xc
ω¼1

X
j2ω

Xk
t¼1

f̃ it λ̂tj � λ̄tω
� 	 !

2

(17)

TheAOVvariance ratio, namely SSBi= c� 1ð Þ =� ½SSWi
= p� � cð Þ
 �

,
measures the magnitude of variation in CVEs between environments
in different iClasses relative to that between environments in the same
iClass. As such, when considered collectively across varieties, the
variance ratios provide an indication of the effectiveness of the
grouping of environments encapsulated in iClass formation. To
eliminate issues in summarising variance ratios with large differences
in scale it is proposed to consider p�values obtained using the
approximation of an F-distribution on c� 1 and p� � c degrees of
freedom, since the p�values are bounded both above and below.

In this paper, the option of using only the first k� < k ordered
factors to form iClasses is considered. Note that, irrespective of the
number of factors used to define iClasses, all k factors are used to
form β̃gij and thence iClassOP (equation 15). The use of k� < k

factors may be necessary when high order models have been fitted
so that the use of all k factors to define iClasses may lead to poor
membership, that is, small values of nω. It may also lead to pairs of
iClasses in which differences in variety responses are not
sufficiently large to be of importance to the breeder. In such
cases, iClasses may be ‘merged’ or more generally only the first few
factors may be used to define the iClasses. Such decisions should be
driven by the breeder. The individual variety AOV described above
may aid in this decision, since the use of too few factors in defining
iClasses may lead to a preponderance of large p-values, suggesting
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that variation in CVEs between environments within an iClass is
too large compared with variation between environments in
different iClasses.

Results

The analysis commenced with the use of a LMM in which both Ga
and Ge was assumed to be diagonal matrices. This is analogous to
analysing each environment separately and is often used as a
baseline to establish appropriate models for the non-genetic effects
and errors prior to fitting themore complex FAmodels.Within the
baseline model, random effects for replicate blocks aligned with
columns were fitted for all correlation blocks (see Supplementary
Material, Section 2 for a definition), as were random effects for
rows and columns. Random effects for replicate blocks aligned
with rows within correlation blocks were fitted for 32 environ-
ments and random effects for correlation blocks were fitted for 57
environments. The only fixed effects fitted were environment main
effects. In terms of the spatial modelling of errors, separable
(column by row) autoregressive models of order one (denoted
AR1 × AR1) were used for all environments. The baseline model
was also important for establishing the relative magnitude of the
additive VE effects compared with non-additive. The percentage of
estimated genetic variance explained by the additive effects for
individual environments (see equation A2 in the Appendix), was
substantial, with amedian of 82 %. This information is of use in the
FAmodelling process in the sense of indicating that the order of FA
models will need to be higher for the additive VE effects compared
with non-additive.

The non-genetic and error models identified from the fit of the
baseline model were carried through (and re-estimated) to the
LMMs with FA forms forGa andGe. The models fitted comprised
FA models of increasing order from one to four for the additive
effects (so ka ¼ 1 . . . 4) and an FAmodel of order one for the non-
additive effects (so ke ¼ 1). A summary of the model fits is
provided in Table 2. This table includes all the FA models and the
baseline model with diagonal forms for Ga and Ge (model M2).
Model M1 was fitted in order to assess the impact of using
information on genetic relatedness. This model has a diagonal
form for Ge but there is no Ga. The residual log-likelihoods in
Table 2 are expressed as deviations from this model. The benefits
in using pedigree information are substantial, with an increase in
residual log-likelihood of 4089 (for an additional 90 variance
parameters) for model M2 over M1. The addition of genetic

covariances between environments is also clearly important, with
an increase in residual log-likelihood of 4279 for model M3 over
M2 (for an additional 180 variance parameters). Amongst the FA
models, the residual log-likelihoods increased as ka was increased,
as did the total variance accounted for. Use of the Akaike
Information Criteria (AIC) showed that of the models fitted, the
final model provided the best fit. The AIC values decline from
model M1 to M6 but the rate of decline slows dramatically as the
higher models are considered so it is clear that continuing to fit
higher-order models will result in smaller gains in terms of
goodness-of-fit. Care must be taken when using the AIC to
determine the order of FA model as there is a tendency for AIC to
keep favouring higher-order models, the upper limit of which is
the most general model, known as the unstructured (US) model.
A key issue is that the driver for the choice of FA model in a MET
context should be to maximise the reliability of variety
predictions rather than the goodness-of-fit of the model. Kelly
et al. (2007) showed in a series of simulations for datasets with 7
and 10 environments that FA models of order one or two were
generally the preferred model in terms of prediction reliability
compared with the US model, even for a number of datasets
where the underlying variance structure was generated from a US
model. The inferior performance of the US model was associated
with instability in variance parameter estimation, due mainly to
the large number of variance parameters. The implication is that
high order FA models that contain many variance parameters
may be similarly affected. This is an unresolved issue but, given
the complexity of the lentil dataset, a conservative position was
taken to cease the model fitting process at model M6, with ka ¼ 4
and ke ¼ 1. This has been chosen as the basis for demonstrating
the iClass methodology.

The first additive factor contained estimated loadings that all
had the same sign (a 90/0 split of positive and negative values) so
represents general yielding ability. The third and fourth additive
factors and the single non-additive factor contained approximately
equal mixtures of positive and negative values (splits of 38/52, 54/
36 and 48/42, respectively) so are termed ‘bi-polar’ and thence
represent contrasts between environments. The second additive
factor is of particular interest. The majority of estimated loadings
had the same sign (a 9/81 split of positive and negative) so the
negative loadings will add to the general yielding ability but the
contrast of positive and negative was found to have an important
biological explanation that was revealed using iClass interaction
plots (see later).

Table 2. Summary of model fits when factor analytic models of order ka and ke used for additive and non-additive (independent) variety effects, respectively. Note
that an order of zeromeans no factors were fitted so corresponds to a diagonal variance structure; themissing order for ka means that additive variety effects were not
included in the model. The residual log-likelihoods and Akaike Information Criteria are provided as differences from model M1. The number of genetic variance
parameters is given for each model. For all models with non-zero ka and ke, the final columns in the table show the percentage of additive genetic variance accounted
for by ka additive factors; percentage of non-additive genetic variance accounted for by ke ¼ 1 non-additive factor; percentage of total genetic variance accounted for
by all k ¼ ka þ ke factors

Genetic variance accounted for

Model ka ke Residual loglik AIC Genetic parameters VAFa VAFe VAFt

M1 0 0 0 90

M2 0 0 4089 −7995 180

M3 1 1 8368 −16 554 360 60.2 58.4 59.8

M4 2 1 9031 −17 879 449 80.1 23.5 71.8

M5 3 1 9278 −18 373 537 85.4 23.9 76.6

M6 4 1 9568 −18 954 624 88.3 23.6 79.4
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One of the aims of this analysis was the selection of L3 varieties
tested in 2023 for ultimate commercial use. This requires
consideration of the total of the additive and non-additive VE
effects. Formation of iClasses for this purpose first requires
ordering all five factors fitted in the model on the basis of the
percentage of total genetic variance they account for. Using
equation (11) and a value of a corresponding to the 125 L3
varieties, the percentage of total genetic variance accounted for by
all five factors was 79.4 %, with the individual additive factors
contributing 45.4, 20.7, 6.1 and 3.9 % and the non-additive factor
contributing 3.3%. Thus, in this analysis, the ordering corre-
sponded to additive factors one to four, followed by the single non-
additive factor. The use of all five factors results in 13 iClasses, with

labels and numbers of environments as given in the top half of
Table 3. Also considered here is the use of only the four most
important factors, which results in 8 iClasses as given in the bottom
half of Table 3. The process of forming these iClasses is
demonstrated in Table 4 which contains the rotated REML
estimates of the loadings for the four additive factors and the
REML estimates of the loadings for the single non-additive factor
for a subset of 23 environments. The environments were chosen to
cover all the iClasses formed using five factors, with two randomly
chosen environments within each iClass (apart from the final three
iClasses, each of which only contained one environment). This
illustrates the patterns of the signs of the REML estimates of the
loadings across factors which are used to define iClasses.

Table 3. Number of environments in each interaction class for classes based on all 5 factors (top half of table) and classes based on the first 4 factors in order of
percentage variance accounted for (bottom half of table)

pnnnn pnnnp pnnpn pnnpp pnpnn pnpnp pnppn pnppp ppnnn ppnpn pppnp ppppn ppppp

8 7 9 22 10 8 8 9 2 4 1 1 1

pnnn pnnp pnpn pnpp ppnn ppnp pppn pppp

15 31 18 17 2 4 1 2

Table 4. Summary of information used to define interaction classes for a subset of 23 environments: rotated residual maximum likelihood estimates of loadings
(�1000) for each factor, ordered on variance accounted for (additive factors 1, 2, 3 and 4, non-additive factor 1); interaction classes based on all five factors and first
four factors. The 23 environments cover all 13 interaction classes when five factors used, with two randomly chosen environments within each class (apart from the
final three classes, each of which only contained one environment)

Environment add1 add2 add3 add4 non-add1 iClass5 iClass4

KADINA17 18 −62 −77 −2 −39 pnnnn pnnn

MALLALA20 53 −39 −15 −145 −45 pnnnn pnnn

CURYO19 102 −139 −38 −11 174 pnnnp pnnn

HORSHAM23 57 −147 -20 −217 73 pnnnp pnnn

CURYO17 55 −100 −18 177 −29 pnnpn pnnp

SNOWTOWN18 28 −54 −30 48 −65 pnnpn pnnp

KONDININ23 30 −43 -87 176 135 pnnpp pnnp

MR21 69 −39 −76 10 4 pnnpp pnnp

KADINA18 25 −69 16 −24 −108 pnpnn pnpn

ML21 50 −46 2 −58 −22 pnpnn pnpn

MG21 33 −75 10 −148 92 pnpnp pnpn

SEALAKE23 33 −91 178 −5 122 pnpnp pnpn

CD22 50 −66 135 72 −83 pnppn pnpp

LM21 15 −42 55 32 −105 pnppn pnpp

AR22 225 −155 291 171 192 pnppp pnpp

GRASS PATCH18 30 −88 223 107 251 pnppp pnpp

ML22 268 208 −67 −175 −24 ppnnn ppnn

SN22 162 76 −56 −391 −44 ppnnn ppnn

BE22 292 183 −144 44 −18 ppnpn ppnp

SCADDAN19 15 10 −15 47 −92 ppnpn ppnp

HO22 274 94 49 −134 94 pppnp pppn

MH22 335 367 196 54 −210 ppppn pppp

CM22 113 53 20 125 90 ppppp pppp
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Recall that the estimated loadings for the second additive factor
showed an uneven split of 9 positive values against 81 negatives.
The estimated loadings for the first two additive factors are plotted
against each other in Figure 2 and the 9 environments with positive
loadings in the second factor have been labelled. The majority of
these correspond to environments in 2022 which was an
exceptionally wet year with conditions potentially leading to high
disease pressure. The breeder was concerned that there may have
been outbreaks of Botrytis Grey Mould (BGM) in these
environments. To investigate this, an iClass interaction plot was
constructed for three probe varieties, namely one variety (PBA
BOLT) that is known to be susceptible to BGM and two varieties
(ALB TERRIER and PBA JUMBO2) that are tolerant. The
resultant plot in Figure 3 clearly demonstrates the existence of high
levels of BGM in the iClasses corresponding to positive estimated
loadings in the second additive factor. Henceforth, these iClasses
will be termed ‘BGM iClasses’. The yield losses for the susceptible
probe variety for the BGM iClasses as shown in Figure 3 were
extreme (up to 3 t/ha). It was therefore recognised that the
associated trials had essentially become disease tolerance trials and
the breeder requested to exclude these results for the purposes of
selection for general yielding ability. There was no need to re-do
the analysis, however, as this can all be accommodated using
iClasses.

It is instructive to summarise the estimated genetic correlations
between environments on an iClass basis. Given that variety
iClassOP is based on the CVE effects, the estimated covariance
matrix which excludes the contributions from the specific
variances is considered. This can then be converted to a correlation
matrix. Figure 4a contains a heatmap of these estimated
correlations, summarised on the basis of interaction classes using
five factors. The most obvious feature of this heatmap is the low
genetic correlation between environments in BGM compared with
non-BGM iClasses. The heatmap also shows there are strong
correlations between all pairs of environments within an iClass. In

contrast, the means of the pairwise estimated correlations
involving environments in different iClasses are often quite low,
indicating crossover interaction (even within the non-BGM
iClasses). The analogous heatmap for iClasses based on the first
four factors only is given in Figure 4b. One may be tempted to use
these heatmaps to make the choice between using the first four or
all five factors when forming iClasses. On this basis, it may appear
that the use of interaction classes based on four factors might be
reasonable, with the mean within iClass correlations ranging from
0.72 up to 0.82 (compared with 0.78 up to 0.88 using interaction
classes based on five factors). However, it is important to recognise
that genetic correlations as a measure of VEI are based on all the
varieties in the dataset so may not be sufficiently specific for the
varieties under consideration for selection. This issue is discussed
further later.

In terms of variety selection, it is instructive to first consider the
variety scores since these reflect their responses to the environ-
mental covariates implied by the factor loadings. The aim of this
section is selection amongst the 125 L3 varieties grown in 2023.
Figure 5 plots the EBLUPs of the scores for the first additive factor
against the remaining factors for these varieties. The varieties
labelled in this figure correspond to six test lines (Test1 to Test6)
and five commercial lines originating from this breeding
programme. Of the latter, ALB TERRIER is the most recent
variety. Each of the commercial varieties appeared in at least 75
environments in the dataset and in every year. The other labelled

Figure 2. Rotated residual maximum likelihood estimates of loadings for first and
second additive factors. Environments with positive estimated loadings in the second
factor have been labelled.

Figure 3. Plot of interaction class overall performance (t/ha) for three varieties that
are probes for presence of the disease Botrytis Grey Mould. The variety PBA BOLT is a
susceptible variety, whereas ALB TERRIER and PBA JUMBO2 are tolerant varieties. The
number of environments in each iClass and their associated mean yield (t/ha) is given
along the top axis. The dashed horizontal lines are the grand means of the common
variety by environment effects across all environments for these varieties.
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variety (ExtChk) is an important new commercial variety
originating outside this breeding programme and whose parentage
was unavailable for the purposes of this analysis. It was only grown
in 14 environments in this dataset, all of which were in 2023. Given
the nature of the environment loadings for the first two additive
factors (as previously discussed) it is clear that varieties with large
positive scores for the first factor and large negative scores for the
second factor will likely yield well across a range of non-BGM
environments. Therefore the majority of labelled test lines and the
newer commercial variety look superior to the older commercial
varieties. Test3 and Test4 look particularly promising and Test1
may also be but via a different mechanism. The large response of
ExtChk to the last factor (the non-additive factor) is noteworthy
and will be discussed later. Similarly, the behaviour of the two
varieties ALB TERRIER and PBA HURRICANE XT (coloured red
on the plots) will be explored later.

Whilst the score plots are extremely helpful in flagging varieties
that have large responses to the factors, for the purposes of
selection the totality of all these responses is required. Therefore
the first step is to use the variety stability measure introduced in the
Statistical Methods section. This is calculated for iClasses defined
using all five factors and also using the first four only. It was of
interest to examine stability for the non-BGM iClasses only, so the
AOVs had either 8 levels for the treatment factor (when interaction
classes based on five factors used) or 4 levels (when interaction
classes based on four factors used). Figure 6 contains plots of the
key information from the AOVs for each variety, namely the grand
mean of the CVEs for non-BGM environments (on the y-axis), the
square root of the between iClass mean square (on the x-axis) and
the p-value for the ratio of the between to within iClass mean
square (colour of the points). It is important to recognise that,
because the CVEs are effects (not means), they are on the scale of
the trait being analysed (here t/ha) but can be positive or negative.
Thus, for example, a variety with a near zero CVE for an
environment has an ‘average’ yield in that environment, whilst a
variety with a large positive/negative CVE has above/below average
yields for the environment. An analogous interpretation therefore
follows through for both the grand means and iClassOP, each of

which involves a simple arithmetic averaging across environments.
Figure 6 only includes L3 varieties, which one would expect to have
above-average yields relative to the entire population of varieties
included in the MET. Thus all of the grand means are positive.

A clear distinction between the two panels in Figure 6 is that
when iClasses are defined using only the first four factors, many of
the p-values are greater than 0.05 so that the within iClass mean
square is arguably too large compared with the between iClass
mean square. When all five factors are used, the majority (88) of
p-values are less than 0.001. A full cross-tabulation of the p-values
for iClasses defined using four or five factors is provided in Table 5.
On the basis of this information it was decided to use iClasses based
on all five factors to make selection decisions for the 125 L3
varieties. Note that, for other decisions, for example for the L0, L1
or L2 varieties, the associated stability plots may reveal a different
story and it may be reasonable to use iClasses based on the first four
factors alone. Clearly, this would simplify selection as it is then only
necessary to examine four rather than eight iClasses. The key
message is that it is not necessary to use the same sets of iClasses for
all selection decisions. The stability plot in Figure 6a shows that
most of the test lines are less stable than the commercial varieties.
This is consistent with the change in the aims of the breeding
programme which have moved away from breeding for broad
adaptation to targeting specific environmental types. Also note that
the grand means on the y-axis in the stability plot provide a naive
measure of overall variety performance (in t/ha) across all
environments considered (in this case the 81 non-BGM
environments). Figure 6a shows that many of the test lines have
higher grand means than the commercial varieties. However, it is
not intended that these grandmeans be used as a trait for selection,
as they ignore VEI, but rather to assist in choosing varieties to
investigate thoroughly using interaction plots.

Both iClassOP and stability can be visually assessed in the
interaction plots introduced in Smith et al. (2021b) which display
iClassOP for a chosen set of varieties across iClasses. Two such
plots are given in Figure 7. As previously discussed, iClassOP for a
variety can be positive or negative. All the values in Figure 7 are
positive, indicating above-average yields for these varieties in all

Figure 4. Estimated genetic correlations for total common variety by environment effects for all pairs of environments summarised on an interaction class basis for (a) classes
based on all five factors and (b) classes based on first four factors. The value listed in each cell is the mean of all pairwise estimated correlations between environments in the
interaction class. The interaction class labels include the associated numbers of environments in parentheses. The colour scale corresponds to the mean values.
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iClasses. As an aid to interpretation, the mean of the environment
mean yields for each iClass is given on the top axis in the
interaction plots. Thus, absolute yields for a variety within an
iClass (within this MET) can be approximated by adding these
means to iClassOP.

Figure 7a contains three test lines that had high grand means
and varying levels of stability (as depicted in Figure 6a). The second
panel contains the commercial variety PBA HURRICANE XT,
which was released by the Agriculture Victoria lentil breeding
programme in 2014, and the new external commercial variety
which was released in 2023. To link the two panels, the commercial
variety ALB TERRIER (released in 2024 by the Agriculture
Victoria lentil breeding programme) is included on both. Figure 7a
shows that Test1 and Test3 out-yield ALB TERRIER in all iClasses.
Test3 yields particularly well, with an advantage of more than

0.2t/ha in three iClasses (pnnnp, pnnpp and pnppp). As expected
from the stability plot, Test2 is quite unstable, ranking near the
bottom of the four varieties in most iClasses, but ranking first or
second in three iClasses (pnpnp, pnppp and pnnnp). Figure 7b
shows that whilst the two varieties ExtChk and PBAHURRICANE
XT had similar grand means, they exhibit substantial crossover
VEI, with ExtChk ‘winning’ in all the iClasses with a ‘p’ as the final
character, and PBA HURRICANE XT winning elsewhere. A more
subtle, but equally important feature of Figure 7b is the comparison
of ALB TERRIER and PBA HURRICANE XT. To aid in
interpretation, the actual iClassOP values for these varieties are
provided in Table 6, together with the differences. Also given are
the factor scores. Recall that the factors, when ordered as in this
table, have decreasing variance accounted for so have decreasing
influence on CVEs and thence iClassOP. All iClasses under

Figure 5. Empirical best linear unbiased predictions of additive factor scores for the 125 L3 varieties grown in 2023. Varieties of interest have been labelled with their names and
two key varieties have been plotted in red. In each panel, the y-axis corresponds to the first factor and the x-axis to the second, third and fourth additive factors for (a), (b) and (c)
and the non-additive factor for (d).
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consideration have the same first two characters, ‘pn’ so that
varieties with large positive scores for the first additive factor and,
to a lesser extent, large negative scores for the second factor, will

yield well across most iClasses. Thus it would be expected that ALB
TERRIER, with a much higher score than PBA HURRICANE XT
for the first factor would have superior performance across most
iClasses. This is borne out on Figure 7b, but it is clear that the
magnitude of the superiority of ALB TERRIER changes
dramatically across iClasses, with essentially no difference between
the two varieties in the two iClasses on the far right of the graph.
This is due mainly to the differences in scores for additive factors
three and four, and to a lesser extent the non-additive factor (also
see Figure 5 in which PBAHURRICANEXT appears to the right of
ALB TERRIER on panels (b), (c) and (d)). The differences in
Table 6 and the score plots reveal that PBA HURRICANE XT
would be boosted relative to ALB TERRIER for iClasses with a ‘p’
as the third character, and even more so for iClasses with a ‘p’ as
third and fourth (and finally fifth) character. Thus moving from
left to right on Figure 7b, the factor scores suggest it would be
expected for ALB TERRIER to out-yield PBAHURRICANE XT by
a substantial amount in iClasses pnnnn and pnnnp, to a lesser
extent in iClasses pnnpn and pnnpp and also pnpnn and pnpnp.
Finally, in pnppn and pnppp, PBA HURRICANE XT has ‘caught
up’. This example clearly shows how iClassOP encapsulates and
combines all of the information in the factor scores.

Discussion

Smith et al. (2021b) addressed the key issue of variety selection in
the presence of VEI within the framework of a FALMM. They
developed their ‘iClass’ methodology for models in which the
genetic effects for different varieties were assumed independent. In
the current paper this has been extended for models that
incorporate information on the genetic relatedness of varieties.
Thus the variety effects in different environments are partitioned
into additive and non-additive, with a separate FA model for each
set of effects. This class of models is recommended, and widely
used in Australia, for annual selection decisions by plant breeding
programmes. In the example presented in this paper, genetic
relatedness was included in the LMM via pedigree information.
The resultant improvement in the goodness of fit of the model, as
assessed via the residual log-likelihood, was undeniably substantial.
Similar, or possibly greater gains, may result with the use of
genomic information. Either way, the key message is the
importance of using genetic relatedness to improve the accuracy
of variety selection. An associated issue is that when an appropriate
MET dataset is used for analysis (see later), the resultant
incompleteness in terms of varieties being grown in the trials
necessitates the use of genetic relatedness to provide links between
environments.

As in Smith et al. (2021b) it is stressed here that although the
iClass approach involves the formation of groups of environments
for the purpose of obtaining average (or overall) variety effects, it is
not a clustering of environments based on genetic correlations.
Given that genetic correlations reflect relationships between
environments based on all varieties, it is not uncommon for a
clustering on this basis to mask individual variety patterns of VEI.
Instead of focussing on the environments, the iClass approach
focusses attention on the actual subject of the selection decisions,
namely the varieties. Specifically, the iClasses are formed in such a
way that they discriminate varieties with different patterns of VEI.
This is achieved using the fact that when a factor is bi-polar, there is
crossover interaction of varieties (for the fitted values for that
factor) between the environments with positive estimated loadings
compared with negative. Hence the formation of iClasses using a

Figure 6. Stability across interaction classes (excluding those linked to the disease
Botrytis Grey Mould) for the 125 L3 varieties grown in 2023: interaction classes defined
using (a) all five factors and (b) first four factors. The y-axis in each plot is the grand
mean of the common variety by environment effects (for each variety) across
environments and the x-axis is the square root of the between interaction class mean
square from the one-way analysis of variance on those effects. Points are coloured
according to the p-value for the variance ratio from the analysis of variance. Varieties
of interest have been labelled with their names.
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concatenation across factors of the signs of the estimated loadings
for each environment.

An issue that is often raised is whether iClasses can be ascribed a
meaningful interpretation. Clearly, the labelling protocol is
designed to illustrate the contrasting groups of environments
(positive versus negative estimated loadings) for each factor used in
forming the iClasses. In the authors’ experience, breeders have
often been able to link iClasses to key environmental variables such
as disease prevalence and growing conditions. Current work
focusses on a formal statistical approach to achieve this, with the
ultimate aim of being able to assign a meaningful environmental
label to each iClass. In the interim, the complementary approach
based on probe genotypes (see Cooper and Fox, 1996, for example)
has been used successfully for iClass interpretation. This approach
can be regarded as a bioassay in which varieties with known
reactions to environmental factors are used to characterise the
environments in a MET. A key example in the current paper was
the use of probe varieties to detect the existence of the disease
BGM. Three varieties (one susceptible and two tolerant) were
visualised in an iClass interaction plot, and this led to the
conclusion that iClasses with a ‘p’ as the second character in their
label comprised environments with high levels of BGM. These
iClasses were therefore termed ‘BGM iClasses’ and the breeder
consequently requested to exclude them when making selection
decisions for grain yield as they provided more of an assessment of
tolerance rather than general yielding ability.

As alluded to above, another key requirement for variety
selection is the use of a suitable MET dataset. As discussed in Smith
et al. (2021a) the dataset should include all trials that provide data
on the selection history for the varieties under consideration for
selection. This typically leads to incomplete (not all varieties in all
trials) datasets with large numbers of environments that span
multiple years and stages of selection. In the example presented in
this paper, the MET dataset comprised 90 environments and
spanned 7 years. The analysis of these data, as conducted in this
paper, would have facilitated selection for four stages of selection
(L0, L1, L2 and L3) for varieties grown in 2023. In the current
paper, for reasons of brevity and clarity, only the L3 selection
decisions were fully explored. The key point here is that it is
unsatisfactory to ‘slice and dice’ datasets to achieve, for example, a

Figure 7. Plots of interaction class overall performance (t/ha) (excluding classes
linked to the disease Botrytis Grey Mould) for (a) four varieties comprising ALB
TERRIER and three test lines and (b) three varieties comprising ALB TERRIER and two
other commercial varieties. The number of environments in each interaction class
and their associated mean yield (t/ha) is given along the top axis. The dashed
horizontal lines are the grand means of the common variety by environment effects
for these varieties.

Table 5. Stability across interaction classes (excluding those linked to the
disease Botrytis Grey Mould) for the 125 L3 varieties grown in 2023: p-values of
variance ratios (ratio of between to within interaction class mean square) from
analyses of variance tabulated for interaction classes defined using first four
factors and all five factors

iClasses
using 5
factors

iClasses using 4 factors

< 0.001
0.001–
0.01

0.01–
0.05

0.05–
0.5 > 0.5 Total

< 0.001 4 7 10 67 0 88

0.001–
0.01

0 2 2 25 0 29

0.01–
0.05

0 0 0 6 0 6

0.05–0.5 0 0 0 2 0 2

> 0.5 0 0 0 0 0 0

Total 4 9 12 100 0 125
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complete dataset, or to reduce the size in order to avoid
computational difficulties associated with statistical software.
The latter may include both memory and time limitations.
Linked to this issue is the preponderance in the literature of two-
(or three-) stage analyses forMET data. It has long been established
that the one-stage analysis, as presented in this paper, is superior,
irrespective of any weighting scheme that may be proposed (Gogel,
1997; Gogel et al., 2018). Two-stage approaches were historically
necessary when individual plot data was not stored electronically
and when statistical software and/or computer hardware was
inadequate.

As in Smith et al. (2021b), the approach in this paper forms
groups of environments, called iClasses, on the basis of which
meaningful summaries of variety performance for the trait of
interest (assumed here to be yield) can be obtained. In Smith et al.
(2021b) the summary measure provided was overall yield level
(iClassOP) for each variety in each iClass. The iClass interaction
plot was introduced as a means of displaying this information,
thence allowing a comparison of varieties in terms of their
performance across iClasses. In the current paper, a measure of
stability of variety performance across iClasses has been proposed.
This quantifies the fluctuations in iClassOP as visualised on the
interaction plot. Stability was shown to be useful in its own right as
a means for choosing varieties of interest to explore in detail using
an interaction plot. Additionally, it was helpful for assessing the
appropriateness of using only a subset of the fitted factors (the
most important factors) to define iClasses. This was found to be
particularly important for the motivating example.

Conclusion

Variety selection in a plant breeding programme requires three key
statistical inputs, namely

• a MET dataset that comprises the entire selection history (or
as much as possible) of the current cohort of varieties

• a one-stage statistical analysis that accommodates incomplete
data, includes information on genetic relatedness and
encapsulates complex patterns of VEI

• meaningful summaries of variety predictions from the
analysis

The current paper addresses the final component within the
framework of datasets and a method of analysis (the FALMM) that

satisfy the first two components. The summaries relate to groups of
environments called iClasses, the definitions of which are derived
from the core parameters in the FALMM, namely the factor
loadings for environments. The summaries of variety performance
across iClasses provide growers and stakeholders not only with
information about ‘what wins where’, but also about the actual
yield advantage (in t/ha, for example) of the winners. This can have
significant impact on the economics of variety choice.
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Appendix: Percentage variances associated with total
VE effects

It is often of interest to compute various quantities as percentages
of total (additive plus non-additive) genetic variance. For example,
the additive genetic variance for an environment as a percentage of
total genetic variance for the environment and the variance
accounted for by individual terms in the factor analytic models as a
percentage of the total genetic variance.

In order to compute these percentages, it is instructive to
consider the variance structure for individual varieties so first
define ug ið Þ ¼ ðugi1 ; ugi2 ; . . . ; ugipÞ> to be the p� 1 vector of total
VE effects for variety i. Then note that

var ug ið Þ
� �

¼ aiiGa þ Ge (A1)

where aii is the ith diagonal element of the relationship matrix
(either NRM or GRM). Equation (A1) shows that expressions of
quantities as a percentage of total genetic variance will differ
depending on aii so that specific values of interest must be chosen.
Often, the mean of the diagonal elements of the relationship
matrix is used, and this will be denoted by a. Then, for example,
the percentage of additive variance for environment j can be
computed as

100� agajj
agajj þ gejj

(A2)

where gajj and gejj are the jth diagonal elements of Ga and Ge;

respectively. Note that as an alternative to using an overall ā
value, a separate value for each environment could be used. Thus,
a in equation (A2) could be replaced by aj, where this is the mean
of the diagonal elements of the relationship matrix corresponding
to those varieties grown in environment j.
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