
9
Resummation and hard thermal loops

We saw in the last chapter that QCD perturbation theory has problems
at finite temperature, when taken into the infrared domain. These prob-
lems are the cause of the breakdown of the perturbative expansion of the
pressure beyond O(g6). We shall see here that these divergences are also
responsible for the need to resum an infinite set of Feynman diagrams
in order to compute a physical quantity at a given order in the coupling
constant. These concepts were discussed before, in Chapter 3, when the
set of ring diagrams was evaluated. In order to make the discussion as
simple as possible, let us revisit the case of scalar λφ4 theory.

Recalling our evaluation of the one-loop self-energy diagram, we had

Π1 = 12λT
∑
n

∫
d3k

(2π)3
1

ω2
n + ω2

(9.1)

As previously the vacuum contribution is renormalized by a mass coun-
terterm and the complete self-energy, after analytic continuation to real
energies, at finite temperature and at first order in the coupling is

Πren
1 = 12λ

∫
d3k

(2π)3
1
ω

1
eβω − 1

(9.2)

In the high-temperature limit all masses are negligible, and then one can
write Π1 → λT 2. Therefore, at one-loop order thermal fluctuations gen-
erate a mass for the scalar field, meff =

√
λT . Notice that in the massless

limit the integral in (9.2) is dominated by momenta of the order of the
temperature, k ∼ T . In our high-temperature limit these momenta would
be referred to as “hard”. The effects of the thermal mass can be incorpo-
rated by defining an effective propagator which, in frequency–momentum
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178 Resummation and hard thermal loops

space, would be given by

D∗(ωn,k) =
1

ω2
n + k2 + λT 2

(9.3)

This simple example tells us that if momenta are of the order of the
temperature, or hard, the self-energy correction to the propagator is a
perturbative correction and can be neglected. However, if the momentum
is “soft”, so that k ∼ √

λT , then the thermal mass term is as large as
the inverse bare propagator and certainly must be included. In this limit,
the correction is as big as the leading term. The previous discussion also
suggests that it is useful to define hard, k � T , and soft, k � √

λT , scales
of momenta. Here k means indiscriminately energy or momentum. An
instructive exercise consists of recalculating the self-energy, only this time
using the effective propagator defined above. The only change from the
previous evaluation of the self-energy is that now one has the energy
appropriate for a massive field, ω =

√
k2 + m2

eff . We examine the behavior
of the integrand, which is largely dictated by the distribution function,
and recall that meff/T =

√
λ. The contribution to the integral from hard

momenta is small and generates corrections of order λ to the self-energy.
The contribution to the integral from soft momenta allows the distribution
function to be approximated by NB(ω) ≈ T/ω. Keeping in mind that the
upper limit in this case is of order

√
λT , we get a contribution to Π of

order

Π ∼ λT

m2
eff

∫ √
λT

0
dk k2

The quantitative result is

m2
∗ = m2

eff

(
1 − 3meff

πT
+ · · ·

)
(9.4)

The improved effective mass is the same as meff to leading order but
also contains a correction of order

√
λ which is given entirely by the soft

momenta in the loop integral. Importantly, this correction is obtained if
one uses the effective propagator (9.3), which represents a resummation
of an infinite set of higher-order diagrams. It is instructive to note that
even though each of these diagrams is infrared divergent, their sum is
finite. We have encountered this situation previously in the form of the
ring diagrams in Chapter 3.

The scalar field application is considerably simpler than that of gauge
theories, but it conveys the essential part of the message: in order to cal-
culate systematically amplitudes with soft lines, it is necessary to resum
perturbation theory by including all possible hard thermal loops. We
shall see that, in general, this procedure involves effective propagators
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9.1 Isolating the hard thermal loop contribution 179

and vertices. In λφ4 theory, it is sufficient to consider only the effective
propagator as defined above. Since the coupling depends on the temper-
ature only logarithmically, the use of bare vertices is adequate. The case
of gauge theories is more involved technically because the self-energy is
generally energy and momentum dependent, and because there are ver-
tices that are energy and momentum dependent. Also, there is a rich set
of important physical scales in weakly coupled gauge theories. The next
section outlines how to pick out the contributions of hard thermal loops
from a diagram with soft external four-momenta.

9.1 Isolating the hard thermal loop contribution

We will concentrate here on one-loop diagrams and generalize later. We
follow the original treatment of Pisarski and Braaten [1, 2]. As discussed
previously, the evaluation of one-loop self-energies involves a sum over dis-
crete frequencies as well as an integral over three-momenta. This sum may
be evaluated using the following technique. Let us first define a Fourier-
transformed propagator with respect to ωn = 2nπT , for bosons, as

ΔB(τ,k) = T

∞∑
n=−∞

e−iωnτD0(ωn,k) (9.5)

The sum over discrete frequencies is easily done by using the contour
integration technique of Chapter 3. The result is

ΔB(τ,k) =
1

2|k|
{

[1 + NB(k)] e−|k|τ + NB(k)e|k|τ
}

(9.6)

where NB(k) = 1/ [exp(|k|/T ) − 1]. The inverse of (9.5) is

D0(ωn,k) =
∫ β

0
dτeiωnτΔB(τ,k) (9.7)

It is easy to verify that the boson propagator in imaginary time has the
following properties:

ΔB(τ − β,k) = ΔB(−τ,k) = ΔB(τ,k) (9.8)

A similar analysis for fermions, with ωn = (2n + 1)πT , yields the intuitive
result

ΔF(τ,k) = T
∞∑

n=−∞

e−iωnτ

ω2
n + k2

=
1

2|k|
{

[1 −NF(k)] e−|k|τ −NF(k)e|k|τ
}

(9.9)

where NF(k) = 1/ [exp(|k|/T ) + 1].
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180 Resummation and hard thermal loops

The usefulness of this approach is easily illustrated for the case of one-
loop integrals. There, each internal propagator (we concentrate on bosons
for simplicity) is written as an integral over τ as in (9.7). Evaluating the
sum over discrete frequencies will create a delta function in τ . The overall
integral over imaginary time can be done directly. Then the contribution
of order T 2 is easy to pick out. A few examples will help to illustrate the
procedure.

In a tadpole self-energy one has to evaluate

T

∞∑
n=−∞

∫
d3k

(2π)3
D0(ωn,k) = T

∞∑
n=−∞

∫
d3k

(2π)3

∫ β

0
dτeiωnτΔB(τ,k)

=
∫

d3k

(2π)3
ΔB(τ = 0,k)

=
∫

d3k

(2π)3
1

2|k| [1 + 2NB(k)] (9.10)

The first term corresponds to the usual T = 0 ultraviolet divergence and
is removed by renormalization. Rewriting the result for the remaining
term we get

T

∞∑
n=−∞

∫
d3k

(2π)3
D0(ωn,k) ≈ 1

12
T 2 (9.11)

The approximation sign means that equality holds “in the hard thermal
loop (HTL) limit”. Here this is actually an exact result.

Another example is that of the photon self-energy in scalar QED. Let
us write the Lagrangian that governs the behavior of the scalar field φ
and of the photon field Aμ as

L = (Dμφ)∗Dμφ− 1
4
FμνF

μν − 1
2ρ

(∂μAμ)2 (9.12)

where ρ is the gauge-fixing parameter, discussed in Chapter 5. Recall that
Dμ = ∂μ + ieAμ. The Feynman diagrams that contribute to the first-order
self-energy are

+

In Euclidean space the photon self-energy is

Πμν(ωm,p) = −e2T
∑
n

∫
d3k

(2π)3
(2k + p)μ (2k + p)ν

(ω2
n + k2) [(ωm + ωn)2 + |p + k|2]

+ 2 δμν e2T
∑
n

∫
d3k

(2π)3
1

ω2
n + k2

(9.13)
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9.1 Isolating the hard thermal loop contribution 181

To facilitate the usage of noncovariant propagators, this may be written
as

Πμν(ωm,p) = −e2T
∑
n

∫
d3k

(2π)3
(k − q)μ(k − q)ν

(ω2
n + k2)

(
ω2
q + q2

)
+ 2δμνe2T

∑
n

∫
d3k

(2π)3
1

ω2
n + k2

(9.14)

where q = p − k and ωq = ωm − ωn.
Concentrating on the finite-temperature contributions, and recalling

that the temperature-independent divergent parts are regulated using the
same techniques that operate at zero temperature, we may write

Πμν = FPμν
L + GPμν

T (9.15)

which is now in Minkowski space. The analysis and the results are very
similar to those of electronic QED that were derived in Chapters 5 and
6. The quantities PL and PT are the familiar longitudinal and transverse
projection tensors. The scalar functions F and G are inferred as follows:

F = ΠμνPLμν , (9.16)

G =
1
2

ΠμνPTμν (9.17)

Note that the transversality of Πμν (kμΠμν
L = kμΠμν

T = 0) is manifest,
as required by current conservation. Writing F = (p2/p2) Π00 and using
(9.15) and the fact that the integral defining the scalar function will be
dominated by the hard momentum scale k ∼ T , we get

F ≈ e2T 2

3

(
1 − p2

0

p2

)[
1 − p0

2|p| ln
(
p0 + |p|
p0 − |p|

)]
(9.18)

where for this discussion p0 = iωm, and p2 = p2
0 − p2 = −(ω2

m + p2). Here
again the approximation sign is to be interpreted as meaning “in the HTL
limit”. Similarly, one may show that

G ≈ 1
2

(
e2T 2

3
− F

)
(9.19)

From this analysis of the HTL contribution in scalar QED, some new
aspects are immediately apparent. Unlike λφ4 theory, the self-energy is not
only temperature dependent but now also momentum dependent. Also,
the self-energy can develop an imaginary part when the kinematics are
such that |p| > p0 > −|p|. This situation corresponds to that of Landau
damping, where one particle is emitted from the thermal medium and
another is absorbed.

The reader will undoubtedly have noticed that writing propagators in
frequency–momentum space and then performing a Fourier transform to
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182 Resummation and hard thermal loops

imaginary time is but another method of doing the frequency sums. In
some cases, it has advantages over the direct contour integral technique.
However, the trick turns out to be useful only for loop diagrams; for
tree-level diagrams little is gained by going over to the imaginary time–
momentum domain.

The examples considered here can be used to extract some rules for
the evaluation of the HTLs. Following Braaten and Pisarski, one might
generalize the procedure to the evaluation of N -point functions in one-
loop amplitudes for QCD at finite temperature. Before one proceeds to
the more general case, it is instructive to evaluate explicitly the HTL
contribution to the gluon self-energy. This calculation was first performed
by Kalashnikov and Klimov [3] and Weldon [4].

We shall perform the QCD calculation in the Coulomb gauge
(∇ · Aa = 0), with a as color index. Even though this gauge is a little
awkward for many applications, owing partly to the fact that it is nonco-
variant, it has certain advantages at finite temperature. We will see some
of those shortly. Of course, the result of a calculation of any physical quan-
tity should be gauge invariant. Recall that the bare gluon propagator in
the Coulomb gauge is (omitting the color indices)

Dμν = − 1
p2

Pμν
T − 1

p2
uμuν (9.20)

A gauge-fixing term (∇ · Aa)2/2ρ could be added but would not change
the analysis that follows. At one-loop order, the gluon self-energy is
obtained by computing the Feynman diagrams in the following figure:

+ + +

Note that the ghost propagator in the Coulomb gauge is 1/p2, omitting
color indices. Thus, ghost fields are static in the Coulomb gauge: they do
not propagate. The same is true of the longitudinal gluons, another con-
venient feature. Hence there are advantages in using the Coulomb gauge
in an application like the one considered here. In gauges with propagating
unphysical degrees of freedom, the contributions from ghosts and longi-
tudinal gluons cancel each other only in the final stages of a calculation.
Therefore, the choice of the Coulomb gauge makes the computation of
the second diagram in the figure above unnecessary.

The first diagram in the figure generates a contribution to the self-
energy that is

Π = −g2N

2
T
∑
n

∫
d3k

(2π)3
ΓD ΓD (9.21)
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9.1 Isolating the hard thermal loop contribution 183

The prefactor is easily understood. The factor 1/2 comes from a combina-
tion of the coefficient in the perturbative expansion of the thermodynamic
potential, the numerical factors associated with the triple-gluon vertex,
and combinatorics. The factor N comes from a color trace. In the HTL
limit, the loop momentum constitutes a hard scale. In that limit, the
vertex functions can be rewritten as

≈ igfabc (gβγ 2kα − gαβ kγ − gγα kβ)

where k is the hard loop momentum. Inserting this vertex and using the
high-temperature limit, one obtains the HTL limit of the contribution of
the first self-energy diagram in frequency–momentum space:

Πμν(ωm,p) ≈ 4g2NT
∑
n

∫
d3k

(2π)3
kμkνD0(k)D0(p− k)

+ g2NT
∑
n

∫
d3k

(2π)3
δμiδνjDij(k) (9.22)

In a similar fashion one may compute the self-energy corresponding to
the four-gluon vertex and to the quark–antiquark loop. The sum of these
different contributions is written in Euclidean space as

Πμν(ωm,p) ≈ 4g2

(
N +

1
2
Nf

)(
T
∑
n

∫
d3k

(2π)3
kμkνD0(k)D0(p− k)

− 1
2
δμνT

∑
n

∫
d3k

(2π)3
D0(k)

)
(9.23)

The high-temperature limit of the gluon self-energy takes exactly the same
form as (9.18), (9.19) with the replacement of the overall factor e2T 2/3
by the square of the color electric mass m2

el. The latter is

m2
el =

1
3
g2

⎡⎣NT 2 +
1
2

∑
f

(
T 2 +

3
π2

μ2
f

)⎤⎦ (9.24)

where the sum refers to the quark flavors f , which may have differing
chemical potentials. The energy and momentum dependence of the gluon
self-energy, in this limit, is also identical to that of electronic QED, as
analyzed in Section 6.7. It follows that the functional form of the disper-
sion relation is the same as for photons, at least to lowest order in the
coupling constants.
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184 Resummation and hard thermal loops

Upon generalizing our result from self-energies to an arbitrary N -point
function, considerable progress is made by observing that the momentum-
independent term in (9.22) is specific to the self-energy topology. For
example, it will be absent in the HTL limit of the three-point functions.

Next consider the N -gluon amplitude in the Coulomb gauge. One of
the Feynman diagrams is shown in the following figure. (The complete
HTL calculation also needs a diagram with an internal quark loop.)

In the usual notation this N -point amplitude is proportional to

T
∑
n

∫
d3k

(2π)3
kμ1 · · · kμND0(k)D0(p1 − k) · · · D0(pN−1 − k) (9.25)

Insert the noncovariant propagators and do the frequency sum. One of
the resulting terms is∫

d3k
kμ1 · · · kμN

|k||p1 − k| · · · |pN−1 − k| [NB(k) −NB(p1 − k)]

× [(p0
1 − |k| + |p1 − k|) · · · (p0

N−1 − |k − pN−1| + |k|)]−1 (9.26)

The structure of the integrand can be understood as follows. The N
momenta in the first denominator come from the denominators of the
Fourier transform of the Euclidean propagators, (9.6); the N gluon
momenta in the numerator come from the triple-gluon coupling, which
is linear in momentum. The energy denominators come from integrat-
ing over the different imaginary time variables associated with the use
of (9.7). There are only N − 1 of them, as the first integral was used in
conjunction with the delta function generated by the frequency sum. As
argued previously, hard thermal loops occur when the integrating region
is hard, of order T . We may get an estimate of the magnitude of (9.26)
when the external momentum is soft, of order gT . In that limit

k ∼ T |pi − k| ∼ T |k| − |p − k| ∼ |p|
Now we use NB(k) −NB(p − k) ≈ |p| zdNB(k)/dk, with z = p̂ · k̂.
Putting all this together, and recalling that there is one power of the
coupling constant at each vertex, the amplitude for N external gluons is
gNT 2/|p|N−2. The tree-level diagram for the N -point gluon amplitude is
easier to estimate: it contains N − 2 vertices and N − 3 propagators. Its
magnitude is thus gN−2/|p|N−4. Clearly, when |p| ∼ gT in the one-loop
N -gluon amplitude, its magnitude is that of the tree-level contribution
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9.2 Hard thermal loops and Ward identities 185

and therefore has to be included in a consistent calculation. Therefore a
resummation is required.

A set of rules for the power-counting of one-loop diagrams, first estab-
lished by Braaten and Pisarski, may be inferred from the above analysis.
They are summarized here for the case where all external momenta are
soft.

1 The measure of the integral over the loop momentum is of magnitude
T 3.

2 One propagator does not contribute an energy denominator since it is
used in the integral over the delta function in imaginary time. Thus,
there is a factor 1/T for the first propagator from the denominator
of (9.6), and a factor 1/gT for each additional propagator owing to
Landau damping contributions.

3 Each kμ in the numerator, from vertices or fermion propagators, is
replaced by T .

4 For loops with at least two propagators, if the latter represent fields
of the same statistics, an extra factor of p/T appears owing to the
cancellation of distribution functions.

Note that the N = 2 case does require separate consideration. This can
be seen upon examination of the tadpole diagram in the scalar QED exam-
ple, and also in the computation of the gluon self-energy in the Coulomb
gauge. It is now also clear why loops with ghost fields will not contribute
to the HTL term in the Coulomb gauge: because they are nonpropagat-
ing they cannot generate the term 1/gT associated with Landau damping.
More specifically, the transverse gluon propagator will have a contribution
1/T × 1/gT , whereas a field with propagator ∼ 1/k2 will have a contribu-
tion 1/T 2, suppressed by one power of g. It is also useful to note here that
these rules assume that the N -point functions are linear in the thermal
distribution functions, whereas from (9.6) it would appear that powers
of the distribution function would arise. This power would be the same
as the number of propagators. However, in the final result a cancellation
always yields a single power of NB or NF. This fact is most easily seen
when the frequency sum is performed by the technique of contour inte-
gration. Indeed, considering (3.40) one sees that each pole residue gets
multiplied by a single distribution function. Finally, we note that there is
no HTL amplitude with external ghost fields.

9.2 Hard thermal loops and Ward identities

In the case of a gauge theory we know that N -point functions are related
to (N − 1)-point functions by Ward identities. At high temperature,
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186 Resummation and hard thermal loops

where HTLs give the leading contribution, we shall verify that Ward iden-
tities are indeed satisfied. This is a useful check on the method.

As an exercise, we can first check whether the HTL limit of the photon
self-energy in scalar QED satisfies a Ward identity; verification is immedi-
ate, pμΠμν(ωm,p) = 0. The same observation can be made for the gluon
self-energy we obtained previously. It suffices to calculate explicitly three-
point and four-point functions in order to generalize to a given topology
at some order of the coupling. For example, the three-gluon amplitude
will receive contributions from a pure gluon loop and from a quark loop.
With the rules, the HTL limit of their sum can be obtained, and it is

Γμνσ ≈ − 8g2

(
N +

1
2
Nf

)
T

×
∑
n

∫
d3k

(2π)3
kμkνkσD0(k)D0(p1 − k)D0(p2 + k) (9.27)

Note that the momentum-labeling convention in the vertex is such that
p1 + p2 + p3 = 0. Similarly, the HTL limit of the two-quark one-gluon
vertex is obtained through the evaluation of

+

and is

Γμ
2q−1g ≈ −4g2CfγνT

∑
n

∫
d3k

(2π)3
kμkνD0(k)D0(p1 − k)D0(p2 + k) (9.28)

where Cf =
(
N2 − 1

)
/2N and N is the number of colors.

The Ward identities can be derived in a straightforward fashion from
the properties of the three-point and four-point functions in the HTL
limit. Besides the transversality condition already mentioned, they are

p3γΓαβγ(p1, p2, p3) = Παβ(p1) − Παβ(p2)

p3μΓμ
2q−1g(p1, p2, p3) = Σ(p1) − Σ(p2)

(9.29)

where Σ(p) is the high-temperature quark self-energy. Similarly, the four-
and three-point functions, in the HTL limit, are related by

p4δΓαβγδ(p1, p2, p3, p4) = Γαβγ(p1 + p4, p2, p3)
−Γαβγ(p1, p2 + p4, p3)

p4βΓαβ
2q−2g(p1, p2, p3, p4) = Γα

2q−1g(p1 + p4, p2, p3)
−Γα

2q−1g(p1, p2 + p4, p3)

(9.30)
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9.3 Hard thermal loops and effective perturbation theory 187

where a trace over the color indices of the two gluons has been taken. It
is now apparent that effective vertices can and will exist in cases where
no bare vertex is defined. For example, the 1PI vertex between a pair of
quarks and a pair of gluons, Γμν

2q−2g, will consist solely of one-loop HTL
contributions, as is obvious from the figure:

≈ + +

A consequence of the fact that hard thermal loops obey Ward identities
similar to those of tree amplitudes is that their generating functional is a
gauge-invariant functional of the quark and gauge fields.

9.3 Hard thermal loops and effective perturbation theory

We have seen that, owing to hard thermal loops, some Feynman diagrams
that are superficially higher order in the coupling constant will have the
same magnitude as tree-level diagrams in finite-temperature field theories.
We have also seen how to evaluate the HTL contributions. We can employ
this knowledge to resum HTLs into an effective theory. In this formalism
bare vertices and propagators will be replaced by effective vertices and
propagators, which are obtained via a HTL resummation.

Using the Schwinger–Dyson equation one may define an effective gluon
inverse propagator in terms of the bare one as

(D∗)−1
μν = p2gμν − pμpν + Π∗

μν (9.31)

where the self-energy is evaluated in the HTL limit. An equivalent expres-
sion exists for quarks, the inverse propagator being related to the self-
energy. The effective three-gluon vertex can be constructed similarly:

Γ∗μνσ(p1, p2, p3) = Γμνσ
0 (p1, p2, p3) + δΓμνσ(p1, p2, p3) (9.32)

where the finite-temperature contribution (the second term on the right-
hand side) is evaluated in the HTL limit. The contributions to the three-
point function, in a ghost-free gauge, are represented by

≈ + +

This procedure is generalized to more complicated topologies. As noted
in the previous section, HTL effective vertices can exist in the absence
of their bare counterparts. If all the external momenta are of order gT
then the HTL self-energies are of the same order as the bare inverse
propagators; the same statement holds true for vertices. Therefore, in
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188 Resummation and hard thermal loops

the evaluation of a loop contribution, propagators and vertices need to be
of the effective kind for the kinematical region where the loop momentum
is soft. An example is that of the one-loop quark self-energy

+

where the blobs denote effective quantities.
One might formalize the effective perturbation theory one step further

by starting with effective Lagrangians. One can show [5] that the effective
Lagrangian for gluonic hard thermal loops is

L = −1
2
m2

el Tr

[
Fμν(x)

∫
dΩ
4π

k̂ν k̂λ

(k̂ ·D)2
F μ
λ (x)

]
(9.33)

Here the trace runs over color indices, Fμν = F a
μνGa where the Ga are the

generators of the group, and k̂ = (−i, k̂) (in Minkowski space). The inte-
gration over solid angle refers to the direction k̂. Also, Dμ = ∂μ + igAμ is
the covariant derivative (Aμ = Aμ

aGa). Similarly the effective Lagrangian
for fermionic hard thermal loops is

L = m2
qψ̄(x)γμ

∫
dΩ
4π

k̂μ

k̂ ·Dψ(x) (9.34)

with

m2
q =

N2 − 1
16N

g2

(
T 2 +

μ2

π2

)
(9.35)

9.4 Spectral densities

It is interesting to know where the spectral weights are concentrated for
various operators within the hard thermal loop approximation. Here we
shall focus on the quark spectral densities since they will be used in Chap-
ter 14 to compute the rate of photon emission from the quark–gluon
plasma formed in high-energy heavy ion collisions.

The quark self-energy in the HTL limit may be immediately inferred
from the electron self-energy given in Section 6.8. The only difference is
the change in the numerical factor in the fermion–vector meson vertex.
The quark propagator is

G∗(p) = G∗
+(p)

γ0 − p̂ · γ
2

+ G∗
−(p)

γ0 + p̂ · γ
2

(9.36)

https://doi.org/10.1017/9781009401968.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.010
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where

G∗
±(p) =

{
−p0 ± |p| + m2

q

|p|
[
Q0

(
p0

|p|
)
∓Q1

(
p0

|p|
)]}−1

(9.37)

The functions Q0 and Q1 are the Legendre functions of the second kind,
namely

Q0(z) =
1
2

ln
(

1 + z

1 − z

)
Q1(z) = zQ0(z) − 1 (9.38)

The effective quark mass was given in (9.35). In the limit g → 0 we recover
the bare quark propagator.

It is a straightforward exercise to compute the spectral densities for the
functions G∗±. They are

ρ∗±(ω,p) =
ω2 − p2

2m2
q

[δ(ω − ω±(p)) + δ(ω + ω∓(p))] + β±(ω,p)θ(p2 − ω2)

(9.39)
with

β±(ω,p) =
1
2
m2

q(|p| ∓ ω)

({
|p|(ω ∓ |p|)−m2

q

[
Q0

(
ω

|p|
)
∓Q1

(
ω

|p|
)]}2

+
[
1
2
πm2

q

(
1 ∓ ω

|p|
)]2

)−1

(9.40)

The ω±(p) represent the two branches of the dispersion relation for
quarks, essentially as discussed in Section 6.8. They are, of course, deter-
mined by the poles of G∗±(ω,p). The functions β± represent branch cuts
that give rise to Landau damping, which is possible when |ω| < |p|.

9.5 Kinetic theory

The connection between kinetic theory and the HTL formalism is at first
sight surprising and mysterious. However, once we realize that small devi-
ations from local thermal equilibrium may be described by either kinetic
theory or by linear response theory, the connection may be viewed as
different manifestations of the same physics.

The connection can be initiated by considering the elementary example
of an ensemble of charged classical particles. Assuming that hard colli-
sions can be neglected, and that the particles thus interact only through
average electric and magnetic fields, one can write an equation for the
time evolution of the single-particle phase-space distribution f(x,p, t):

∂f

∂t
+ v · ∂f

∂x
+ F · ∂f

∂p
= 0 (9.41)
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190 Resummation and hard thermal loops

Here v is a velocity and F is the Lorentz force. Note that in general
the single-particle distribution function depends on time, on the posi-
tion and on the momentum. This transport-type equation can be derived
by requiring the total time derivative to vanish in the absence of hard
collisions: a statement of Liouville’s theorem. This equation is the colli-
sionless Boltzmann or Vlasov equation. The derivation is completed by
using the appropriate Lagrangian for electromagnetic interactions as well
as Hamilton’s equations. For an electromagnetic plasma in equilibrium
the distribution functions will not depend on the spacetime coordinates
and will be isotropic in momentum space. Keeping those facts in mind,
let us slightly perturb the distribution function f (0):

f(x,p, t) = f (0)(|p|) + δf(x,p, t) (9.42)

Then, to first order in the modification of the distribution function,(
∂

∂t
+ v · ∂

∂x

)
δf(x,p, t) = −eE · vdf (0)(|p|)

dε
(9.43)

where ε is the energy of the particle of charge e. Assuming that the
perturbation is switched on adiabatically, one may solve for the out-of-
equilibrium part of the distribution function:

δf(x,p, t) = −e
df (0)(|p|)

dε

∫ t

−∞
dt′e−η(t−t′)v · E(x − v(t− t′), t′) (9.44)

This leads to an induced current

jμind(x, t) = e

∫
d3p

(2π)3
vμ δf(x,p, t) (9.45)

where vμ = (1,v). Finally, relating the polarization tensor to the induced
current via

jμind(x) =
∫

d4yΠμν(x− y)Aν(y) (9.46)

one obtains the following results in frequency–momentum space:

Π00(ωm,p) = −e2T 2

3

(
1 −

∫
dΩ
4π

iωm

iωm − q · v̂
)

Πij(ωm,p) =
e2T 2

3

∫
dΩ
4π

iωmv̂iv̂j
iωm − q · v̂

(9.47)

We have made the assumption that the particles are massless, in which
case their velocity vector is a unit vector v̂. The integrals in (9.47) are then
over the orientation of the unit velocity vector. Remarkably, the result
above is in fact the HTL contribution to the one-loop photon polarization
tensor in QED. A direct calculation to show this is straightforward.
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An important feature emerges here that generalizes to both the quan-
tum domain and to nonabelian quantum field theories. This feature is
that the Vlasov equation is an effective equation of motion for the soft
modes of the plasma and corresponds to the fact that the hard thermal
loops are obtained by isolating the leading-order contributions to one-loop
diagrams with soft external lines. Put another way, the induced current
calculated from the solutions of the Vlasov equation generates directly
the HTL contribution.

Since in QED the HTL in the vacuum polarization tensor could be
obtained by using classical transport theory, one could attempt a similar
treatment for QCD. This approach appears promising, as HTLs represent
the interaction of energetic quanta with weak mean fields. The hard ther-
mal effects should then be driven by thermal fluctuations that can be cast
in a classical framework. The starting point consists of considering a set
of particles carrying nonabelian SU(N) color charge Qa. One may write
down the time evolution equations for the space-momentum coordinates
of those particles. An important difference arises immediately in QCD:
the particles may exchange color with the fields with which they interact.
There needs to be an equation of motion for the color quantum number.
The set (x, p,Qa) can be thought of as an augmented phase space. Note
that, except for Qa, the elements of this set are now four-vectors.

The dynamical evolution of these phase-space variables is dictated by S.
K. Wong’s equations [6]. They can be derived by starting with the Dirac
equation, suitably generalized to include QCD, finding the equations of
motion for the operators, and then letting � → 0. One obtains

m
dxμ

dτ
= pμ m

dpμ

dτ
= gQaFμν

a pν (9.48)

m
dQa

dτ
= −gfabcpμAb

μQ
c

As usual F a
μν is the field strength tensor, g is the strong coupling constant,

and the fabc are the structure constants of the group. These equations can
be generalized to include spin, but this is not important for the present
discussion. In the collisionless case, the proper-time total derivative of the
phase-space density should vanish: df(x, p,Q)/dτ = 0. Using the equa-
tions of motion presented above, one obtains the Boltzmann equation in
the absence of collisions,

pμ
(

∂

∂xμ
− gQaF

a
μν

∂

∂pν
− gfabcA

b
μQ

c ∂

∂Qa

)
f(x, p,Q) = 0 (9.49)

Together with the Yang–Mills equation, (DνF
μν)a = Jμa (where

the covariant derivative is Dac
μ = ∂μδ

ac + gfabcAb
μ), one obtains a
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192 Resummation and hard thermal loops

self-consistent set of nonabelian Vlasov equations. The net current is
Jμa =

∑
jμa, where the sum runs over all species and spins. The space-

time coordinates are implicit. More explicitly,

jμa(x, p) = g

∫
dQpμQaf(x, p,Q) (9.50)

Physical states are guaranteed if the appropriate constraints are incor-
porated in the measure of the augmented phase space. In the limit of
vanishing masses,

dQ = d8Qδ(QaQa − q2) δ(dabcQaQbQc − q3) (9.51)

dP =
d4p

(2π)3
2θ(p0)δ(p2) (9.52)

The first equation is specific to SU(3) and ensures the invariance of the
Casimir constants. The dabc are the totally symmetric group constants.
The second equation makes positivity manifest along with the on-shell
requirement.

Specializing in small departures from equilibrium, one may write

f = f (0) + gf (1) + g2f (2) + · · · (9.53)

To first order in the coupling, the transport equation reduces to

pμ
(

∂

∂xμ
− gfabcAb

μQc
∂

∂Qa

)
f (1) = pμQaF

a
μν

∂

∂pν
f (0) (9.54)

Arguments that are phase-space variables are once again left implicit.
Integrating by parts, using the definition of the current at a given order

in terms of the distribution function, (9.50), and summing over the Nf

quarks, Nf antiquarks, and the N2 − 1 gluons and their physical spin
states, one gets

[p ·DJμ(x, p)]a = 2g2pμpνF a
ν0

d

dp0
[NNB(p0) + NfNF(p0)] (9.55)

Kelly et al. [7], as well as Taylor and S. M. H. Wong [8] have shown that
a solution of the above can be obtained in a functional form: Jμ(x) =
−δΓ(A)/δAμ = −GaδΓ(A)/δAa

μ. The generating functional is

Γ =
m2

el

2

∫
d4xAa

0(x)Aa
0(x) −

∫
dΩ

(2π)3
W (A) (9.56)

where an explicit expression for W is given in [8]. This generating func-
tional is consistent with the effective Lagrangians we wrote down earlier.

A field-theoretic procedure can also be invoked to derive the results
above. Following Blaizot and Iancu [9], the field equations of motion
may be obtained by functional differentiation of the nonabelian gener-
ating functional. However, by definition this procedure does not produce
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gauge-invariant equations of motion. Indeed, the original Lagrangian in
the action has to be gauge-fixed. This is not a problem, as physical results
will not depend on the choice of gauge. However, intermediate steps that
are gauge independent do permit a clearer physical interpretation. A
method that circumvents this annoyance is that of the background gauge
field [10], where the gauge field is split into a classical background field,
identifiable as a mean field, and a fluctuating quantum field. Then a mean
field approximation, where hard degrees of freedom interact with softer
mean fields, together with an extraction of terms of leading order in g, is
performed. Care has to be taken to preserve the gauge symmetry in those
procedures. As in the classical limit, one allows first-order fluctuations
in the density matrices, the Wigner transforms of which have many of
the properties of classical phase-space distributions. The transport equa-
tions thus obtained yield (9.55). Note that practical applications typically
involve the evaluation of quantities like the polarization tensor. This may
be obtained from the current in the case of weak fields or, equivalently,
in the linear response limit by a functional derivative of (9.46). Finally,
the formal manipulations in [9] have greatly clarified the physical nature
of hard thermal loops. As already mentioned, the high-temperature limit
does permit an ordering of scales. One starts with an identification of
plasma particles that have typical momenta of order T . Soft collective
degrees of freedom then appear, which carry the same quantum numbers
as the primordial constituents but which have typical momenta of the
order of gT . This scale separation allows for the derivation of a kinetic
equation for the plasma particles, the solution of which provides a gener-
ating functional for the hard thermal loops. Therefore, hard thermal loops
describe long-wavelength collective excitations of the thermal particles. A
natural consequence of this fact is that HTL perturbation theory is useful
for the evaluation of physical quantities that are only sensitive to scales
of the order of gT . Many other observables will be sensitive to scattering
processes whose treatment will go beyond hard thermal loops.

9.6 Transport coefficients

In Section 6.9 we discussed the general Kubo formulae for transport coef-
ficients. For completeness we quote here the values for the shear viscosity
and flavor diffusion constant for QCD at high temperature. They were
computed to lowest order in the gauge coupling but to all orders in the
logarithm of the coupling by Arnold, Moore and Yaffe [11]. For the pure
gauge theory without dynamical quarks the results are

D =
0.203

α2
s ln(0.580/αs)

1
T

η =
0.344

α2
s ln(0.608/αs)

T 3 (9.57)
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194 Resummation and hard thermal loops

while for two flavors they are

D =
0.165

α2
s ln(0.497/αs)

1
T

η =
1.095

α2
s ln(0.521/αs)

T 3 (9.58)

and for three flavors of massless quarks they are

D =
0.150

α2
s ln(0.461/αs)

1
T

η =
1.351

α2
s ln(0.464/αs)

T 3 (9.59)

Here D refers to quark flavor diffusion. These QCD expressions have an
extra logarithmic factor arising from the Debye screening of the long-range
color Coulomb force.

9.7 Exercises

9.1 Derive (9.6) and (9.10).
9.2 Obtain the polarization tensor for QED in the HTL limit, starting

with the effective Lagrangian of (9.33)–(9.35).
9.3 Derive the formulae for the spectral densities in (9.39).
9.4 Derive the formulae for gluon spectral densities that are analogous

to those for quarks.
9.5 Verify that (9.44) satisfies (9.43).
9.6 Obtain the polarization tensor for QED in the HTL limit starting

with (9.47).
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