
25
Gravity as a field theory

This chapter provides the briefest, tangential encounter with the Einsteinian
gravity viewed as a field theory. Gravity is a huge topic, full of subtleties, and
it deserves to be introduced as a systematic tower of thought, rather than as a
gallery of sketchy assertions. The purpose of this chapter is therefore no more
than to indicate, to those who already know the general theory of relativity, how
gravity fits into the foregoing discussions, i.e. why the foregoing ideas are still
valid in the presence of gravity, and how we generalize our notion of covariance
to include the gravitational force.

25.1 Newtonian gravity

Newtonian gravity plays virtually no role in field theory, for the simple reason
that gravity barely couples to any of the fields. Gravity is such a weak force at
the scale of elementary particles that it is almost completely negligible. There
are occasions, however, when we use field theory outside of the realm of the
elementary physics. For instance, fluid dynamics is a field theory where gravity
plays an often significant role.

In order to include gravity in terrestrial systems, we do not need to think about
Einstein or relativity. Gravity is simply an effective potential

V = mgx + const., (25.1)

where x is the height above the centre of gravity. In this effective theory of
gravity, planets and large objects are considered to be point particles, located
at the centre of gravity of the system. Eqn. (25.1) expresses a linear, flat-Earth
geometry, in which the potential is usually measured from the ground up (for
small distances of a few hundred metres). The arbitrary constant in the potential
is analogous to the arbitrariness in the electromagnetic potential Aµ. Instead
of gauge invariance, we have a corresponding arbitrariness in the origin of the
gravitational potential.
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492 25 Gravity as a field theory

25.2 Curvature

On astrophysical scales, gravity is the dominant force, and we need to consider
the subtleties of general relativity. There are two motivations for wanting to do
this

• Einsteinian gravity can be formulated as a field theory, in which the metric
tensor (spacetime itself) is also a dynamical field. This enables us to
understand gravity and spacetime as a dynamical system, leaning on all
of the lessons we have learned from electromagnetism etc.

• In the early universe, there was an important coupling between gravity
and other fundamental fields. Thus, relativistic, covariant formulations of
fields which include gravity are important models to consider.

Gravity therefore means Einsteinian gravity here, and this, we know, has a nat-
ural expression in terms of the intrinsic curvature of spacetime. For the reasons
discussed in the previous section, it makes no sense to look at non-relativistic
theories in the presence of a relativistically generalized gravitational potential;
such combinations would not be consistently compatible. We therefore dispense
with the non-relativistic theories for the remainder of this short chapter.

25.3 Particles in a gravitational field

The essence of general relativity is that gravitational effects can be considered
as physics in non-inertial frames. A non-inertial frame is a coordinate basis
which is either accelerating or which contains a gravitational field. These two
situations are indistinguishable, according to the equivalence principle, and so
this is a kind of tautology. Indeed, we could go on to refer to the gravitational
field as an acceleration field.

How shall we describe physics in such frames? Non-linear coordinate
transformations can always map us from a locally inertial frame,1 so covariance
will help us to formulate theories optimally. The discussion which follows is
based on the conventions and notations of Weinberg [133]. Readers who are
unfamiliar with gravity could do worse than to consult his book, since there is
no room for more than a cursory sketch here.

Let us denote the coordinates and derivatives and metric in a locally inertial

Cartesian frame by ξµ,
ξ

∂µ, ηµν , and the corresponding quantities in any other
coordinate system (flat, curvilinear, curved, accelerating etc.) by xµ, ∂µ, gµν .
The transformation which relates the two metrics is written according to the

1 Suppose you are in a fighter plane and are suffering from the effects of strong acceleration G
forces: to transform to a locally inertial frame, simply press the ejector seat button and you
will soon be in a freely falling coordinate system.
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25.3 Particles in a gravitational field 493

usual tensor rules,

ηαβ = gµν L α
µ L β

ν

= gµν (∂µξ
α)(∂νξ

β). (25.2)

In its locally inertial, or freely falling, coordinate frame, a moving particle seems
to be following a straight-line path (although, since the frame is only inertial
locally, we should not extrapolate too far from our position of observation). The
equation of motion of such a particle would then be

m
d2ξα

dτ 2
= 0, (25.3)

where the proper time τ is defined in the usual way by

−c2dτ 2 = ηαβdξαdξβ. (25.4)

Suppose now we transform into a general set of coordinates, using the Lorentz
transformation L ν

µ . We then have to transform ξα, so that eqn. (25.3) becomes

d

dτ

(
dξα(x)

dτ

)
= d

dτ

(
dξα(x)

dxµ
dxµ

dτ

)
. (25.5)

Thus, the equation of motion becomes

(∂µξ
α)

d2xµ

dτ 2
+ (∂µ∂νξα) dxµ

dτ

dxν

dτ
= 0. (25.6)

This can be simplified by multiplying through by
ξ

∂α xλ and using the chain-rule

(
ξ

∂α xλ)(∂λξβ) = δβα to give

d2xλ

dτ 2
+ �λµν

dxµ

dτ

dxν

dτ
= 0, (25.7)

which is the geodesic equation, where

�λµν = (∂µ∂νξα)(
ξ

∂α xλ). (25.8)

The presence of the affine connection �λµν signals the non-linear nature of the
coordinates. The connection may also be expressed in terms of the metric tensor
as

�σλµ =
1

2
gνσ

{
∂λgµν + ∂µgλν − ∂νgµλ

}
. (25.9)
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25.4 Geodesics

The geodesic equation can also be understood in a different way, from the action
principle. The geodesic equation is, in a sense, the structure of empty space, so
what if we take an empty action in a locally inertial rest frame of a general
curved spacetime and vary it with respect to different paths, as follows:

xµ→ xµ(λ)+ δxµ(λ)? (25.10)

The action would then be

S = a
∫

dτ, (25.11)

where τ is the proper time, defined in eqn. (3.38) and a is a constant with the
dimensions of energy. Writing this in general coordinates, we have

S = a
∫ √

gµν(x)dxµdxν, (25.12)

or – introducing a parameter λ,

S = a
∫

dλ
dτ

dλ
=

∫
dλ

√
gµν(x)

dxµ

dλ

dxν

dλ
. (25.13)

This equation can now be varied with respect to xµ to obtain the path of ‘least
action’ in the coordinate system x . We already know that, in a locally inertial
frame, the path of an object would be a straight line, and in a rest frame there
is no motion. So the question is: how does this look to a different observer in
possibly accelerating coordinates? The variation of the action is

δS = a
∫

dλ
1

2

dλ

dτ

{
δgµν

dxµ

dλ

dxν

dλ
+ 2gµν

dδxµ

dλ

dxν

dλ

}
= 0. (25.14)

Since we are looking at a coordinate variation, we have

δgµν = (∂λgµν) δxλ; (25.15)

see eqn. (4.85). Thus, integrating by parts and writing dλ dλ
dτ as dλ dλdτ

dτdτ ,

δS = a

2

∫
dτ

{
(∂λgµν)

dxµ

dτ

dxν

dτ
− 2(∂ρgµν)

dxρ

dτ

dxν

dτ
gµλ

−2gµν
d2xν

dτ 2
gµλ

}
δxλ = 0. (25.16)

Here we have assumed that the surface term

�

(
dxµ

dτ
δxµ

)
= 0 (25.17)
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vanishes for continuity. From eqn. (25.9), the result may be identified as

δS = a
∫ {

−�λµν
dxµ

dτ

dxν

dτ
− dxλ

dτ 2

}
gλσ δx

σdτ = 0. (25.18)

We have used the symmetry on the lower indices of �λµν . Thus we end up with
the geodesic equation once again:

d2xλ

dτ 2
+ �λµν

dxµ

dτ

xν

dτ
= 0. (25.19)

25.5 Curvature

The curvature of a vector field ξσ may be defined by the commutator of covariant
derivatives, just as in the case of the electromagnetic field (see eqn. (10.45)).
This defines a process of parallel transport of vectors and a tensor known as the
Riemann curvature tensor:

[∇µ,∇ν]ξσ = −Rλσµνξλ. (25.20)

Also analogous to electromagnetism is the expression of the curvature as a
covariant curl:

Rλµνκ = ∇κ�λµν − ∇ν�λµκ . (25.21)

This may be compared with eqn. (2.24). The Riemann tensor has the following
symmetry properties:

Rλµνκ = Rνκλµ (25.22)

Rλµνκ = −Rµλνκ = Rλµκν = Rµλκν (25.23)

Rλµνκ + Rλκµν + Rλνκµ = 0. (25.24)

The Ricci tensor is defined as the contraction

Rµκ = Rλµνκgλν = Rνµνκ, (25.25)

and satisfies

Rµν = Rνµ. (25.26)

The scalar curvature is the total contraction

R = Rµνµν. (25.27)

The curvature satisfies Bianchi identities, just like the electromagnetic field:

∇ρRλµνκ + ∇κRλµρν + ∇νRλµκρ = 0. (25.28)

Contracting with gλν gives

∇µ
[

Rµν − 1

2
gµνR

]
= 0. (25.29)
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25.6 The action

The action for matter coupled to gravity is written

S = SM + SG, (25.30)

where

SG = − c4

16πG

∫
(dx) [R − 2 ] ; (25.31)

(dx) = dtdnx
√

g and g = − det gµ. SM is the action for matter fields. These
act as the source of the gravitational field, i.e. they carry gravitational charge
(mass/energy).
 is the cosmological constant, which is usually set to zero. The variation of

the action with respect to the metric is

δ
√

g = −1

2
√

ggµν δµν

δR = δ(gµνRµν)

= δgµν Rµν. (25.32)

Thus,

δS = − c4

16πG

∫
(dx)

[
−1

2
gµν[R − 2 /c2]+ Rµν

]
δgµν

+ δSM

δgµν
δgµν = 0. (25.33)

The last term is the conformal energy–momentum tensor

Rµν − 1

2
Rgµν +  

c2
gµν = 8πG

c4
Tµν. (25.34)

This is Einstein’s field equation for gravity. It is, of course, supplemented by the
field equations for matter to complete the dynamical system. Notice that matter
and energy (the energy–momentum tensor) is the source of gravitation. Matter,
in other words, carries the gravitational charge: mass/energy.

The solution of these field equations is non-trivial and beyond the scope of
this book.

25.7 Kaluza–Klein theory

Following Maxwell’s treatise on the electromagnetic field, Theodore Kaluza
was amongst the first to propose a scheme for unifying the forces of nature
using a classical field theory, based in Einstein’s equations. Kaluza’s paper,
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communicated to Einstein, endured a long delay before its publication in 1921.
His main idea, later refined by Oskar Klein, made the bold assertion that, if one
postulated the existence of extra dimensions, then both of the known forces of
nature (electromagnetism and gravity) could be unified, using Einstein’s idea of
spacetime curvature. In Kaluza–Klein theory, the line element is assumed to
have the usual form

ds2 = ĝµ̂ν̂ dx µ̂dx ν̂ (25.35)

where the careted indices run from 0, . . . , 5 and xµ = (ct, x1, x2, x3, y) =
(xµ, y). Uncareted indices represent the usual 3 + 1 dimensional vectors of
general relativity. In order to account for the U (1) symmetry, Klein proposed
that the extra dimension should have the topology of a circle, with length L . The
electromagnetic field plays the role of a vector field on the 3 + 1 dimensional
spacetime, seen as the projection of the curvature of the extra dimension:

ds2 = ĝµ̂ν̂ dx µ̂dx ν̂

= gµν dxµdxν + (dy + κAµ(x)dxµ)2, (25.36)

where κ is a constant. Covariance in the extra dimension determines the
transformation rule for Aµ under coordinate transformations y′ = θ(y, xµ):

dy′ = ∂θ
∂y

dy + ∂µθ dxµ. (25.37)

For consistency with eqn. (25.36), one requires ∂θ/∂y = 1, so that under a
change of y only,

dy + κAµdxµ→ dy′ + κA′µdxµ

= (
dy + ∂µθdxµ

)+ κA′dxµ

= dy + κ (A′µ(x)+ κ−1∂µθ
)

dxµ. (25.38)

Invariance of ds2 therefore requires

A′µ(x) = Aµ(x)− κ−1∂µθ, (25.39)

which is the electromagnetic gauge transformation. From the line element, the
metric is

ĝµ̂ν̂ =
(

gµν + κAµAν κAµ
κAν 1

)
; (25.40)

however, by changing coordinates to the so-called horizontal lift basis, with
1-forms:

ω̃µ = dxµ

ω̃5 = dy + κAµ(x)dxµ, (25.41)
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498 25 Gravity as a field theory

the metric may be diagonalized, at the expense of non-Cartesian coordinates:

ĝ′µ̂ν̂ =
(

gµν 0
0 1

)
, (25.42)

The basis vectors conjugate to the 1-forms are ω̃µ̂êν̂ = δµ̂ν̂ , i.e.

êµ = ∂µ − κAµ(x)∂y

Ê5 = ∂y. (25.43)

In this anholonomic basis, there is one non-zero commutator:

[êµ, êν] = −κFµν(x) ∂y, (25.44)

where Aµν = ∂µAν − ∂ν Aµ, which gives the Lie algebra relation

[êµ̂, êµ̂] = C ρ̂

µ̂ν̂
êρ̂ . (25.45)

The affine connection, in a non-holonomic basis, is

�µνλ = 1

2

[
êλ gµν + êν gµλ − êµ gλν + Cµνλ + Cµλν + Cλνµ

]
, (25.46)

so that we have non-zero components

�̂µν5 = �̂µ5ν = −�̂5µν = −1

2
κFµν

�̂555 = 0 , �̂µνλ = �µνλ. (25.47)

From these, one may calculate the scalar curvature for the Einstein action,

R̂ = R̂µνµν + 2R̂µ5
µ5

= R + κ
2

4
FµνFµν. (25.48)

Thus, the Einstein action, in five dimensions, automatically incorporates and
extrapolates the Maxwell action:

S = − c4

16πGL

∫
d4xdy

√
ĝ
[

R̂ − 2 ]
]
. (25.49)

Kaluza–Klein theory came into trouble when it attempted to incorporate the
newly discovered nuclear forces in a common framework, and was eventually
abandoned in its original form. However, the essence of Kaluza–Klein theory
lives on, in a more sophisticated guise, in super-string theory.
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