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CLOSED FORM SOLUTION TO SOME MIXED BOUNDARY
VALUE PROBLEMS FOR A CHARGED SPHERE
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Abstract

A new method is described which allows an exact solution in a closed form to the
following non-axisymmetric mixed boundary-value problem for a charged sphere: arbi-
trary potential values are given at the surface of a spherical segment while an arbitrary
charge distribution is prescribed on the rest of the sphere. The method is founded on a
new integral representation of the kernel of the governing integral equation. Several
examples are considered. All the results are expressed in elementary functions. Some
further applications of the method are discussed. No similar result seems to have been
published previously.

Introduction

The usual method of treatment of mixed boundary value problems in potential
theory involves expansion of the solution in series of spherical harmonics. The
convergence of such solutions depends heavily on the smoothness of the boundary
conditions. In many practical applications, the boundary conditions are discon-
tinuous, which renders some such solutions practically useless due to a very weak
convergency close to the surface of the sphere and even divergency at its surface.
The usual way out of this situation is to find some ingenious method to present
the solution in the form of a sum of a closed form expression and a series
expansion with a good convergence. All this makes it very important to find an
exact closed-form solution to the mixed boundary value problem for a sphere.

Reviewing the literature, we could not find a general closed-form solution even
for an axisymmetric mixed problem. An extensive list of references can be found
in books [4,5,6]. Some mixed problems for a spherical segment are solved in [6]
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[2] Mixed boundary value problems 297

by means of the Mehler-Fok integral transform, but the method does not allow
any mixed conditions at the spherical surface of the segment; only at the planar
part of the segment the normal derivative can be specified.

An exact solution in closed form is obtained here to the following mixed
problem for a sphere: an arbitrary potential value is given at a spherical segment,
and an arbitrary charge density is prescribed on the rest of the sphere. Some
preliminaries, helping to understand the method, are given in the next section,
after which the general solution follows. Two examples are considered: i) a
constant potential is prescribed at the surface of a spherical cap, and a uniform
charge density on the rest; ii) the potential value is assumed to be proportional to
the z-coordinate, and the charge density to the x-coordinate.

Preliminaries

Certain quantities are introduced in this section to simplify understanding of
the new approach. The following two integrals will be used in this paper, namely

W

(2)

Here

0)

(4)

(5)

(6)

Correctness of the integrals (1 and 2) can be verified by direct substitution of (4
and 5) into (1 and 2) respectively.

The following integral L-operator will also be used

H--O0

(7)
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where fn is the Fourier coefficient of the function / . The L-operator has the
following properties from (7)

L(k)L(kl) = L(kkl), L( l ) / = / (8)

and as a consequence, the operator inverse to the L-operator, is

). (9)

Formulation of the problem and its solution

Introduce the set of spherical coordinates (r,6, </>). Consider the following
mixed boundary-value problem: find the electrostatic field of a charged sphere of
radius a when the charge density q is given at the surface of a spherical segment
while an arbitrary potential value v is prescribed at the rest of the sphere.

The electrostatic field potential of a charged sphere can be presented in the
form

V(r,0,*) = a2 / 2" d

f dtof R-lq(60,<i>0)sine0dd0, (10)
0 Ja

where

R2 = r2 + a2 - 2ra[cos8cos60 + sin0sin0ocos(<J> - <f>0)].

Introduce the notations

i) = 2a tan(0/2), T,0 = 2a tan(0o/2), (11)

lu2(r,a,e,60)

= \[^a2 + r2 - 2arcos(6 + 0o) T /a2 + r2 - 2arcos(6 - 60) ].

(12)

The geometrical interpretation of these notations is obvious. The following
properties of lx and /2 should be noted:

V 2 = rasin0sin0o; /2 + l\ = r2 + a2 - 2arcos6cos6O; (13)

so that

R2 = l\ + I2 - 2/1/2cos(<J> - *o)

The last expression can be rewritten in terms of i) and TJ0 in the following
manner:

R2 = £ 2 h 2 + 1o " 2T?TJ0COS(4> - *o) + f 2 ] ; (14)
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where
2 + V

2)(4a2 + ug)], f2 = (« - r)2/€2- (15)
Introducing the notations

kia(vo) = | [ l / ( ^ + ^o)2 + f2 + A ^ - ^ o ) 2 + f 2 ] - (16)
expression (14) can be rewritten as

R2 = *2[*2(n0) + ki(Vo) - 2*1(i?0)*2('Jo)cos(* - </><,)]- (17)
Here the following easily verifiable properties were used:

*,*2 = Wo. A:2 + A:2 = r,2 + T,2 + f2, /1>2 = # u (18)
Now formulae (1-6) allow us to construct the following integral representations:

1 A r00

Using the properties (18), expressions (19) and (20) can be rewritten in the
following form:

J 2 - ^ ( ) X(JC2/(T7?70),<> - ^>o)^x

,^> ~ <!>o)dx
R ^ ^ ( / 2 2 2 / 2 ( ) 2 '

where

)2(m2 = 1 + /82/4a2, fl2 = (a - r)2(4a2 + V
2)/4ar, (23)

— v-2

7}2 —
(24)

One can notice that the function g is inverse to i , for 0 < x < t\/m, and is
inverse to k2 for x2 > TJ2 + /?2.

Substitution of (21) and (22) into the first and the second terms of (10)
respectively yields, after the change of the order of integration:

W(r,i},4>) = 4 / - / , — L a(?io,<))
•'o /T, 2 - m 2 x 2 •'«W /T , 2 - g2(x) \ ^ o i W O V /

4.4 P

(25)
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Here

b = 2atan(a/2) , O(T)0,4>O) =
T ) 2

0 )

(26)

i2 + v
2 . (27)

The quanities o and W were introduced in such a way that in the limiting case
a —* oo they turn into the charge density and the potential as the sphere turns
into a half-space. We recall that the /.-operator in (25) is understood according to
its definition (7).

It is appropriate now to split our problem into two: i) to find the electrostatic
field potential of a charged sphere when the zero potential is prescribed at the
surface of a spherical segment, and an arbitrary change density is given at the rest
of the sphere; ii) to find the electrostatic field potential of a charged sphere when
an arbitrary potential value is prescribed at the surface of a spherical segment,
and there is zero charge density elsewhere. Hereafter these problems are treated
separately.

PROBLEM 1:

Consider the potential problem of a charged sphere subject to the following
boundary conditions at r = a:

V\ a, 6, <J>) = 0 for 0^<J><277,0^$<ff,

q = q(8,<f>) forO < </>< 2w, a < 6 < m. (28)

Substitution of the boundary conditions (28) in (25) leads to the following
integral equation

(29)

It is important to notice that a in the first term of (29) is yet unknown while the
value of a in the second term of (29) is known from (28) and (26). It is then
necessary to express one through the other. Using the integral representation (21)
instead of (22), expressions (29) can be rewritten as follows:

dx
/
•'o
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with an immediate result

Application of the operator

to both sides of (30) results in

/ ^ ^ (31)

Returning to the spherical coordinates and the original notations, one gets

1 1
2n2 vfcos 9 — cos a

,2* /•"• /cos a - cos 0O ^ ( 5 0 , <|>0)sin »0 itf0 d<t>0

•̂ o 'a 1 - cos0cos^o - sin0sin0ocos(<f> - <j>0) '

which corresponds to the source function discovered in geometrical form by Lord
Kelvin who used his method of images. In the case of axial symmetry, expression
(32) simplifies, after integration with respect to <>0, to

1 1 r* Jcosa-cos0oq(0o)sin6od0o

L cos6»-cos6»0- cos a L cos6»-cos6»0

Now the charge density is defined all over the sphere, and the electrostatic field
potential can be expressed directly through q by substitution of (31) in the first
term of (25). Changing the order of integration and the integration with respect to
Vo i

+ 4 f
(34)

The second term in (34) can be presented, using (21), as

g2{x
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Now one can change the order of integration in the following manner:

/ dt)0\ dx = dx drio+ dx d-q0;
Jb J0 J0 Jb Jkl(b) Jg(x)

and this allows one to rewrite (35) as

/•*,(*) dx /•» V0dr}0

4/ I/
V 'I •"• " y "IU O \ "*" / '

^ - 0(1,0,*). (36)
nl - g\x)

Substitution of (36) in (34) yields, considering that A^oo) = TJ/W,

„,/ ^ N . fv/m dx r00 TJ0JIJ0 / x2 \ , ,

W(r,r),4>) = 4 / - f , — I a(i)0,4>).

(37)

A change of the order of integration in (37) and the integration with respect to x
results in

j~tan"1 (•£-)o(r,0,*«,)rj0rfij0, (38)f j
where

^o = ^ 2 + 1o " 2TIIJ0COS(* - <̂ o) + f2, (39)

and the value of K can be defined in several ways, namely

h h l/kx(b). (40)
Returning to spherical coordinates, one gets

^ | ^ 0 , (41)( ) p ^ % | 0
77 JQ Ja K K

where

/?2 = a2 + r2 - 2ar[cos0cos0O + sin0sin0ocos(</> - (f>0)] (42)

and
- sin2 — /

" - « • - k • <43>
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Here /1)2(*) stands as an abbreviation for /1>2(/", a,6, x), as defined by (12). The
function

can be interpreted as a source function. Formulae (37) and (41) give two
equivalent expressions for the electrostatic field potential, the first one being more
convenient for the exact evaluation of the integrals, while the second has definite
advantages for numerical integration.

PROBLEM 2:

Consider a sphere with the following boundary conditions at its surface r = a:

V(a,0,<t>) = v(6,<}>) forO «S <j> < 2ir,0 < 0 < a,

q(0, <f>) = 0 for 0 < <j> < 2m, a < 0 < m. (44)

Substitution of the boundary conditions (44) in (25) leads to the following
integral equation:

r £ / * ^ ( £ ) (45)
where w is related to v according to (27). An equation similar to (45) was treated
in [2]. Here, a different type of solution is suggested. Application of the operator

to both sides of (45) gives

The second operator to apply is

L(y) d_ fb tdt_
y ~hJ,,

The result is

(46)

Expression (46) can be presented in another form, using the rules of differentia-
tion under the integral sign and the properties of the L-operator (8):

1 , y,<f>) rb dt 9 -*,/

_ ,,2 L ,1,2 _ ,,2 9' ''
(47)
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V. I. Fabrikant

Integration by parts allows to establish the following identity:

< 4 8 )

( 4 9 )

Here A is the two-dimensional Laplace operator in the polar coordinates. Now
the solution (47) can be rewritten as follows:

1
°(y,4>) = —r ,y,9) c*>

_ ,,2 L
dt

{b2-y _ y2

(50)

A further simplification is possible by changing of the order of integration in (50)
and integration with respect to t. The result is

o(y,<>) = —y
•n

1 n*
bi _ y2 lm Jo Jo lyi + ^2 _ 2r)jcos(<#> -

xtan- l • (51)

The expression for the charge density (51) consists of two distinct terms: the first
one is singular at the edge (y -* b) while the second tends to zero as y -* b.

Now it is possible to express the electrostatic field potential directly through
the given value of v{8, <j>). The substitution of (46) in (25) gives, after simplifica-
tion,

dx•*i(6)

o /TJ2 - m2x

3

Here the following property of the Abel-type operators was used:

r" dr d ra tf(t) dt
J r^ T Ar I --y/(*).

(52)

(53)
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11 o ] Mixed boundary value problems 305

Introduction of the new variable u = g(x), x = kx(u) allows to rewrite (52) as

«,/ , i 2 rb dkx{u) I TJ \ d f yodi)o

wJo tf - m2kl{u)

(54)

A change of the order of integration in (54) gives

f U d k M T I ?f , UdkM- T.I-?-) (55)
•'IO / T , 2 - m 2 k 2 ( u ) / w 2 - i)l \ k 2 ( u ) j

The w-integration in (55) can be performed to give, after returning to the spherical
coordinates:

v(r.e.*) = 5 1 ^ 1 1 / * d<>of (A
2IT2 Jo •'o \Xi

(56)

where R is defined by (42) and

\/2~/cos«0 - cos a Jl2(a) - cos2 y/f(O)

One can notice that in the case a -» m formula (56) transforms into the well-known
Poisson's solution to the Dirichlet problem for a sphere. In the limiting case of
r -» a, formula (56) gives the potential value at the rest of the sphere through its
value prescribed at the segment 6 < a:

- cosa [l - cos0cos0o - sin0sin#ocos(<J> - <j>0)]

(58)

A further simplification becomes possible in the case of axial symmetry, namely

-.,1 n\ vcosa — cos6 riv ra uidojsindnddn
V(a,d) = 1 / / -=====—9— . (59)

"• •'o •'o Jcos^n - cosa (cos0n - cos0)
Notice certain similarity between formulae (32-33) and (58-59). Expressions (54)
and (56) give two equivalent forms of solution to the problem, the first formula
being more convenient for exact evaluation of the integrals.
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Illustrative examples

Example 1: Consider a charged sphere with the following conditions at r = a,
0 < <f> < it:

V(a, 8, <j>) = v0 = const, for 0 < 6 < a;

q{6,<$>) = q0 = const, for a < 6 < it. (60)

The charge density at the surface of the spherical cap 0 < 6 < a is given by
superposition of the results of evaluation of (33) and (46), and is

, , _ v0 r Vl + cos a _j / cos 6 - cos a
~ 2v2a[y/cos6 - cos a U n V 1 + cosa

2 [ \/l + cos a , / 1 + cosa 1 /,,x
- —70 -— tan" M I (61)

w L / o 0 - cosa Vcos^-cosaJ
One can notice that for q0 — yo/4wa, q{6) = q0 with an obvious interpretation.

The potential distribution can be obtained from (37) and (54). The result of
integration is

(62)

where

t = (a + r)sin(a/2)/y'/2
2(a) + 4arsin2(a/2)sin2(^/2) ,

A2 =\a - r | s in(a/2) / / / | (o) - 4arsin2(a/2)cos2(0/2) . (63)

Again, in the case of q0 = vo/4-rra, one gets the potential distribution of a
uniformly charged sphere

Example 2: Consider a non-axisymmetric problem when a potential value,
proportional to the z-coordinate, is given at a spherical segment, and the charge
density, proportional to the x-coordinate, is prescribed on the rest of the sphere.
The boundary conditions are formulated as follows:

V(a,8,<f>) = v0cos6, 0 < 0 < a,

q(6,4>) = <7osin0cos<J>, a < 0 «s IT. (64)
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Formulae (37) and (54) give, after integration,

2ar
-sin lAx — I r 3 - a 3 |

lar
sin"1 A-, \cosO

+ sin(a/2) 2

307

1
 l A \r3-a3\

-cos A, - -—- Lcos
lar

' sin(a/2)
(65)

V(a,d,<j>) = — vo[cos0 sin'1tl + vl - cos a \/cos a - cos 0 ]

where Ax and A2 are defined by (63). Certain simplification occurs at the surface
of the sphere where the potential value is uocos0 for 0 < 6 < a, and for
a < $ < IT

2
—i

+ -a
3 >• I iv i

where rx = sin(a/2)/sin(^/2). The charge density at 0 < 0 < a can be obtained
from (33) and (46), and is

\/2~cos—a
i = r + 3\/2~cos -z-i/cos6 - cosa

— t\ (66)

2m2a v'cosff — cos a

, cos 8 — cos a
+ 3cos 6 tan"1 —r—

1 + cos a

-—<7osin0cos<#>
1 - tj/3

- tan"1-
1

\t\ - 1 \t\ -
(67)

where t2 = cos(0/2)/cos(a/2). The total charge Q can be evaluated as

Q = (voa/ir)sina(l + cosa),

and consequently the potential value at the centre r = 0 is

V(0) = (uo/7r)sina(l + cosa).

https://doi.org/10.1017/S0334270000005415 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005415


308 V. I. Fabrikant [13)

Discussion

It is of interest to compare the results of this paper with those available in the
literature. Expression (56) can be considered as a generalization for a spherical
cap of the well known Poisson's formula for a sphere. One can indicate an
alternative method of derivation of (56), by differentiation of the Green's func-
tion for a spherical cap obtained by Hobson [3]. All the other major results of this
paper seem to be quite new.

The practical use of expressions of the type (41) and (56) is very limited, except
for direct numerical integration, due to the complexity of the Green's functions
under the integral sign. On the other hand, expressions (37) and (54) are
equivalent to (41) and (56), and are very convenient for practical evaluation of the
integrals involved, as it is shown by the examples considered in previous section.

The problem of a spherical cap at a constant potential was considered by
several authors. The list of references and the solution can be found in [1], and is,
in our notation,

V(r,8)=(v0/Trr)[ry + ay'], (68)

where

siny _ siny' _ sina , .

— - — -!&)' ( }

The angles y and y' are discontinuous at the surface of the cap, and may assume
the values between 0 and m/2 or between ir/2 and it depending where the point
{r, 6) is, which constitutes the main difficulty in the practical use of (68). One can
show that the first term in (62) is equivalent to (68), and is free of the above
mentioned inconveniences, since the inverse trigonometric functions are under-
stood everywhere as their principal values.

The solution to the problem of spherical cap, held at the potential v = u0 cos 6,
can be rewritten from [1] as follows

V(r,d) — (vQ/'na)[(y + a3y'/r3)rcos6 +(acosa - rcos0)tanv

+ r'2a2(rcosa- acos6)ta.ny'], (70)

where y and y' are defined by (69), which indicates the same difficulties in the
practical use of (70). Again, one can show that (70) is equivalent to the term in the
first two lines of (65).

Notice that certain integral characteristics can be found without completely
solving the problem. For example, if one needs the value of the total charge Q in
the Problem 1, there is no need to compute (32). Direct integration under the
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integral sign gives

T h e method presented can be successfully used to solve some mixed problems
for several spheres or spherical caps, and can be generalised for the case of more
than three dimensions. Notice also that for the case a -» oo all the results of this
paper can be interpreted as the exact solution to the mixed boundary value
problem for a half-space.
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