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Porous membranes, like nets or filters, are thin structures that allow fluid to flow through
their pores. Homogenisation can be used to rigorously link the flow velocity with the
stresses on the membrane via several coefficients (e.g. permeability and slip) stemming
from the solution of Stokes problems at the pore level. For a periodic microstructure, the
geometry of a single pore determines these coefficients for the whole membrane. However,
many biological membranes are not periodic, and the porous microstructure of industrial
membranes can be modified to address specific needs, resulting in non-periodic patterns
of solid inclusions and pores. In this case, multiple microscopic calculations are needed
to retrieve the local non-periodic membrane properties, negatively affecting the efficiency
of the homogenised model. In this paper, we introduce an adjoint-based procedure that
drastically reduces the computational cost of these operations by computing the pore-scale
solution’s first- and second-order sensitivities to geometric modifications. This adjoint-
based technique only requires the solution of a few problems on a reference geometry and
allows us to find the homogenised solution on any number of modified geometries. This
new adjoint-based homogenisation procedure predicts the macroscopic flow around a thin
aperiodic porous membrane at a fraction of the computational cost of classical approaches
while maintaining comparable accuracy.
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1. Introduction
Fluid flows permeating a porous, thin membrane, have attracted a wide interest in
engineering and natural sciences. Biological cells exchange water and nutrients with the
environment using protein-based channels on their membranes (Verkman & Mitra 2000;
Jensen et al. 2016). Glass sponges like the Euplectella aspergillum show interesting thin
porous skeletons, which ensure their structural stability and allow the feeding of the
organisms living inside them. Filtration and separation systems are widely used in the
chemical and biomedical industry (Catarino et al. 2019), water purification technologies
(Mohanty & Purkait 2011) and batteries (Lu et al. 2017; Dai et al. 2022). Periodic porous
media are adopted in some applications such as regenerators (i.e. porous matrices working
as heat exchangers) for refrigerators used in cryogenic applications (Roberts & Desai 2003)
and offer obvious modelling advantages, such as the possibility of retrieving the whole
medium properties from the geometric unit cell repeating along the membrane. On the
other hand, biological porous membranes can be very irregular (Verkman & Mitra 2000)
and periodic membranes can become aperiodic due to the loads applied by a fluid flowing
across it (Fagbemi et al. 2018), erosion or fouling or by the presence of defects in the
fabrication process. Non-periodicity is also leveraged to improve the efficiency of filtration
devices (Dalwadi et al. 2015).

The precise and efficient description of flows through porous media plays a key role
in many engineering fields. We can classify the modelling of flows across porous media
into two families: direct solutions and averaged models. In the first case, we consider the
actual geometry of the porous medium and solve the governing equations at all scales of
interest. Periodic and aperiodic structures in various flow conditions (Icardi et al. 2014;
Falcucci et al. 2021) can be studied using this technique with very high accuracy, since
the fluid flow solution is accessible up to the smallest scale of interest in time and space.
However, these simulations easily become prohibitively computationally expensive, they
are rarely scalable and do not adapt well to large parametric studies or optimisation
routines. The second family relies on a simplified physical description. We substitute
a fictitious homogeneous domain to the actual geometry of the medium characterised
by coefficients representing the average properties of the porous structure (Darcy 1856;
Dagan 1987). Some authors (Hasimoto 1958; Conca 1987; Wang 1994; Bourgeat et al.
2001) analytically computed these coefficients in simple, periodic geometries and flow
configurations. However, in most cases, they have been empirically found. Non-periodicity
of the medium’s microstructure is often introduced in these models using additional
correction coefficients (Jensen et al. 2014). Such techniques are computationally very
cheap compared with direct solutions, but their empiricism limits their predictive power.
Averaged models with predictive capabilities are thus an active field of research since they
represent a good trade-off between accuracy and computational cost. Multiscale methods
such as the volume averaging method (Whitaker 1999) and homogenisation (Hornung
1997; Mei & Vernescu 2010) are at the core of these techniques.

In most homogenisation and volume averaging works, the porous microstructure
must show periodicity or exhibit a representative elementary volume(REV), i.e. the
minimal geometrical portion of the medium where some properties like permeability
are univocally determined in a statistical sense. We refer to the book by Bear &
Bachmat (1990) for a formal definition of the REV. In the periodic case, there exists
a unit cell containing one (Lācis & Bagheri 2017; Luckins et al. 2023) or more pores
(Shipley & Chapman 2010), repeating along the medium geometry. In the REV case,
there is no such geometrical repetition along the membrane, but if the microstructure
is sufficiently regular, an enclosing volume with the same full membrane statistical

1011 A51-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

27
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.277


Journal of Fluid Mechanics

properties can be found (Whitaker 1999). This, however, requires several iterations. For
example, Rolland du Roscoat et al. (2007) experimentally determined the extension of
such entity in some industrial paper materials using microtomography. Auriault et al.
(2009) also pointed out that typically 10 heterogeneities along a direction in the REV
are sufficient in several real situations and that the REV reduces to the unit cell for
periodic media. Using the REV assumption, Valdés-Parada & Alvarez-Ramírez (2011)
studied asymmetric diffusion in stratified and fractured porous media and Chernyavsky
et al. (2011) studied haemodynamic transport across the villous branches of the human
placenta. However, microstructures with slow geometry modifications have also been
considered, effectively bridging the gap between the periodic and non-periodic cases. For
example, van Noorden (2009) studied precipitation and dissolution in a pore of varying
volume and Van Noorden & Muntean (2011) studied the transport across porous structures
with varying diffusivities, while Auton et al. (2022) studied the transport and sorption in
a longitudinally heterogeneous and transversely periodic medium and Alavi et al. (2024)
introduced a conformal transformation to analyse quasiperiodic porous structures. In many
cases, considering spatially varying geometry or flow conditions requires the construction
of surrogate models to contain the computational cost. For example, in a previous work
(Wittkowski et al. 2024), we adopted a clustering technique (i.e. algorithms used to divide
a given dataset into clusters based on a notion of similarity between the elements) to
reduce the computational cost of a coupling procedure for inertial flows across thin porous
membranes. The problem of coupling the pore-scale and the far-field scale dynamics for
reacting flows in bulk porous media has also been investigated by Karimi & Bhattacharya
(2024a,b) using recurrent neural networks.

The works mentioned above were mainly related to bulk porous media, while
homogenisation has been proposed as a methodology for the analysis of fluid flows
(Zampogna & Gallaire 2020) and transport of diluted species (Zampogna et al. 2022,
2023) across thin porous membranes with periodic microstructure. In this framework, the
membrane average properties (i.e. the so-called Navier tensors) are the spatially averaged
solutions of solvability conditions derived from the equations valid at the pore scale. The
Navier tensors encrypt the ability of the fluid to pass across and along the membrane
and they are useful in the design of efficient filtration devices (Park et al. 2013). These
tensors correspond to and extend the concept of permeability and slip in the case of bulk
porous media and impervious rough surfaces, respectively. Ledda et al. (2021) embedded
homogenisation into an adjoint-based loop for the design of thin, porous membranes,
finding optimal aperiodic microstructures maximizing drag for a given macroscopic flow
configuration. In their work, the link between the shape of a single solid inclusion and the
Navier tensors was mapped for different geometrical parameters using direct solutions of
the equations valid at the pore scale. The cost of this mapping scales with the number
of pores/inclusions. The interest in a theoretical tool able to efficiently predict how
geometrical modifications in the microstructure of a porous thin membrane affect the local
average microscopic properties is thus clear. In other words, we search for a mathematical
tool able to handle many shape modifications of the microstructure while keeping the
computational cost lower than a series of direct evaluations. This is a common situation
in many engineering fields, such as in the automotive and aerospace industries, where the
shape of vehicles can be optimised to reach a desired objective such as minimizing drag.
In many cases, the resulting gradient-based optimisation routines are solved using adjoint
equations, see Skinner & Zare-Behtash (2018) for a review.

Adjoint-based approaches have proven an efficient physics-based technique to forecast
how shape changes affect given integral quantities of a flow field in external aerodynamics
(Jameson 1988; Jameson et al. 1998; Mohammadi & Pironneau 2001). In other techniques,
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such as finite differentiation (Reneaux & Thibert 1985), a set of control points are
used to control the shape of objects immersed in a flow. These control points are
displaced one by one, and the flow is recomputed for each modified geometry. An
approximation of the shape sensitivity is then constructed component by component using
finite differences. This simple approach does not require solving additional flow equations,
but its cost increases with the number of evaluation points and its precision depends on
the discretisation. On the other hand, adjoint methods to compute shape sensitivity are
more precise and their cost does not depend on the number of evaluation points on the
geometry. However, these techniques require the solution of additional flow equations, the
adjoint equations, which allow us to evaluate the gradient mentioned above directly.

In the present paper, we focus on the efficient evaluation of the properties of non-
periodic membranes via adjoint-based techniques. To develop our methodology, we
consider the model developed in Zampogna & Gallaire (2020) for flows past membranes
with perfectly periodic pore structure and introduce a technique based on adjoint equations
to estimate the gradient of the Navier tensors with respect to an infinitesimal modification
of the shape of the solid inclusion, i.e. the shape sensitivity. In § 2 we summarise the
model by Zampogna & Gallaire (2020) and derive the adjoint problems from the equations
governing the system at the pore scale; in § 3 we compare the direct solution of the pore-
scale problems with the adjoint-based prediction for a series of shape changes; in § 4 we
use the so-developed tools to analyse the fluid flow across non-periodic thin membranes.
In § 5, we summarise the main results and discuss future perspectives.

2. Modelling shape changes in porous membranes using first- and second-order
adjoint methods

We consider the incompressible flow of a Newtonian fluid of density ρ and viscosity
μ across a thin permeable membrane, depicted in figure 1(a). We denote with
x̂i = (x̂1, x̂2, x̂3) the (dimensional) global coordinate system, with ûi and p̂ the
dimensional fluid flow velocity and pressure and with τ̂ the dimensional time. We also
introduce the outward-pointing normal and two tangent vectors to any boundary (n̂, t̂, ŝ),
specified case by case. Locally, on the surface, we can isolate a control volume containing
few pores/solid inclusions and identify a dimensional local reference frame (x̂n, x̂t , x̂s).
Assuming that the membrane curvature is negligible at the pore scale, the local frame
of reference (x̂n, x̂t , x̂s) is aligned with the normal and tangent vectors (n̂, t̂, ŝ) to the
membrane centreline C at that location. In the following, the absence of the ·̂ symbol
indicates the non-dimensional quantities and when an index is not repeated, it runs
implicitly for 1, 2, 3 for the quantities written on the (x̂1, x̂2, x̂3) coordinate system and
for n, t, s for the quantities written in the (x̂n, x̂t , x̂s) coordinate system.

In the case of an aperiodic porous medium satisfying a precise set of hypotheses based
on statistics, such as ergodicity, it is possible to apply homogenisation within a REV. The
REV can be regarded as the minimal subset of the medium at which some properties, such
as its porosity or the permeability, are statistically constant if the subset size is enlarged
(Bear & Bachmat 1990). We denote with l ′ (cf. figure 1c) the REV size, with l the distance
between two subsequent pore centres and L the membrane characteristic length. We can
estimate that l ′ ∼ ml, where m is the number of pores we count crossing the REV along
some direction. Bear & Bachmat (1990) adopted statistical arguments to conclude the
need for the scale relation l � l ′ � L . Based on experimental evidence, Auriault et al.
(2009) have shown that the relation above is relaxed as l ≤ l ′ � L , where the equality
is attained in the case of periodic microstructure, i.e. m = 1, and the REV reduces to
the unit cell. A common choice to compute the permeability associated with some REV
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Figure 1. (a) Porous aperiodic thin membrane as it appears in the physical world. We denote with (x̂1, x̂2, x̂3)

the (dimensional) global coordinate system and with L the characteristic size of the membrane. (b) Membrane
centresurface C, which serves as a fictitious interface to divide the original fluid domain into two macroscopic
subdomains. (c) Section of the local aperiodic microstructure of the full-scale membrane, neglecting the
curvature of C. (x̂n, x̂t , x̂s) is the local coordinate system, aligned with the normal and tangent vectors to
the membrane midsurface, C (red). Along the membrane, we identify a REV (dashed black line in the zoom
box) of size l ′, which counts m unit cells of typical size l (distance between two subsequent pore centres).
We denote with F the fluid domain inside it and with U,D and ∂M its upward and downward sides and its
boundary with any solid inclusion, respectively. The portions of the (rectified) membrane centreline C in the
REV crossing the fluid and the solid are denoted with CF (red line) and CM (red dots), respectively.

geometry is to employ its periodic extension and impose periodic boundary conditions
on the fluid flow variables along the membrane tangential directions, compare with, for
example, Hendrick et al. (2012). From a practical point of view, we need to verify that the
ergodicity hypothesis at the basis of the REV concept applies to a given microstructure:
a strategy to establish which REV is statistically representative of the whole geometry
is to calculate the membrane properties in sets of nested REVs and determine when the
property of interest converges with the size and location of the REV. Identifying such a
REV requires many direct evaluations of the average medium properties. In this paper, we
propose an efficient procedure to evaluate the properties of such different REV geometries.
To perform this task, we postulate the existence of a REV and we consider simple pore
geometries. This procedure can also be applied to explore geometrical modifications of
periodic porous media, where the unitary cell replaces the REV.

In our domain, the fluid region in the REV is denoted by F (figure 1) and all the
boundaries of the fluid domain by ∂F. Among the latter, the solid–fluid boundary is
called ∂M and the upward and downward sides of F are named U and D, respectively.
The Navier–Stokes equations govern the evolution of the dimensional flow velocity ûi and
pressure p̂ in the whole fluid domain,⎧⎪⎨

⎪⎩
ρ(∂̂τ ûi + û j ∂̂ j ûi ) = −∂̂i p̂ + μ∂̂2

kk ûi ,

∂̂i ûi = 0,

ûi = 0 on ∂M,

(2.1)

where Einstein’s index notation is adopted and ûi = 0 is intended for each vector
component.

Zampogna & Gallaire (2020) proposed a predictive homogeneous model to compute the
average flow fields across a periodic thin membrane. In this model, the membrane is treated
as a fictitious interface on which equivalent stress-jump conditions are imposed to mimic
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the macroscopic effect of the real porous structure on the fluid flow. These conditions,
explicitly given in § 2.1.5, contain some coefficients which represent the membrane
properties and are the solution of Stokes problems within the REV. We summarise the
homogenised model in § 2.1 and introduce in § 2.2 the adjoint-based method used to
compute the sensitivity of the above-mentioned coefficients with respect to shape changes.

2.1. From the pore geometry to the macroscopic flow
Starting from the Navier–Stokes equations (2.1), the homogenisation procedure described
in Zampogna & Gallaire (2020) relies on the following steps: (i) define and normalise
the inner equations, valid at the pore scale, (ii) define and normalize the outer equations,
valid far from the membrane, (iii) match the inner and outer equations and solve the inner
(microscopic) problem and (iv) average the inner solution and deduce the macroscopic
conditions, i.e. the equivalent interface conditions to account for the presence of the
membrane in the outer (macroscopic) problem. In the present analysis, we develop a new
methodology to efficiently compute the average solution of the microscopic problems
for different microstructures. We thus consider a small number of pores per REV, i.e.
m =O(1) (when m = 1, we have a fully periodic geometry). We introduce a small scale-
separation parameter ε = l/L , that is the ratio between the typical interpore distance and
the membrane characteristic size. Auriault et al. (2009) suggested that real heterogeneous
media exhibit a typical m of approximately 10. The relevant separation of scales parameter
ε is not modified by the introduction of a REV of typical size l ′, since l ∼ l ′. The relation
ε = l/L ∼ l ′/L holds, which is consistent with considering a small number of pores
per REV.

2.1.1. The inner, pore-scale problem
We first focus on the inner, pore-scale flow description within the REV. We introduce the
following non-dimensionalisation for equation (2.1):

x̂i = lxi p̂ = �Pp = μU

l
p ûi = Uui τ̂ = T τ = l

U
τ, (2.2)

where �P and U are the (dimensional) microscale characteristic pressure difference and
microscale velocity, respectively. The governing equations become⎧⎪⎨

⎪⎩
Rel(∂τ ui + u j∂ j ui ) = −∂i p + ∂2

kkui ,

∂i ui = 0,

ui = 0 on ∂M,

(2.3)

where Rel = ρUl/μ is the Reynolds number based on the microscopic length l and
microscale characteristic velocity U . We assume that the flow variables (ui , p) exhibit
periodicity along the tangential-to-the-membrane direction in the REV, but not at the
macroscale, i.e. they are locally periodic but macroscopically aperiodic. This approach
has already been proposed for homogenizing fluid flows and solute transport across bulk,
heterogeneous porous media by, for example, Dalwadi et al. (2015) and Auton et al. (2022).

2.1.2. The outer, membrane-scale problem
In the macroscopic domain, the following non-dimensionalisation is employed to scale the
equations:

x̂i = L Xi p̂ = �PO pO = μUO

L
pO, ûi = UOuO

i , τ̂ = TOτO = L

UO
τO,

(2.4)
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where �PO, UO and TO are the (dimensional) outer pressure difference, velocity and
time scales, respectively. The governing equations of the outer problem become{

ReL

(
∂τOuO

i + uO

j ∂ j u
O

i

)
= −∂i pO + ∂2

kkuO

i ,

∂i u
O

i = 0,
(2.5)

where ReL = ρUOL/μ is the Reynolds number based on the macroscopic length L and
outer velocity UO.

2.1.3. Matching inner and outer normalisations
On the upward U and downward D sides of the fluid domain F, the fluid flow is continuous,
i.e. the (dimensional) velocity and fluid stresses match

uiU = uO,U
i UO, uiU = uO,D

i UO, Σi j n j = ε
UO

U
Σ

O,U
i j n j , Σi j n j = ε

UO

U
Σ

O,D
i j n j ,

(2.6)
where Σi j = −pδi j + (∂i u j + ∂ j ui ) is the stress tensors normalised with the inner
scales and Σ

O,U
i j = −pO,Uδi j + (∂i u

O,U
j + ∂ j u

O,U
i ) and Σ

O,D
i j = −pO,Dδi j + (∂i u

O,D
j +

∂ j u
O,D
i ) are the stress tensors normalised with the outer scales and evaluated on U or D,

respectively.

2.1.4. Solving the inner problem
Exploiting the separation between the pore and membrane length scales, we can
decompose the inner spatial variable into a fast (xi ) and a slow (Xi ) variable and perform
an asymptotic expansion of the flow fields,

xi → xi + εXi , ∂i → ∂i + ε∂I , (ui , p) → (u(0)
i , p(0)) + ε(u(1)

i , p(1)) + O(ε2),
(2.7)

where the capital subscript denotes the derivation with respect to the macroscopic
slow spatial variable Xi . Substituting (2.7) into (2.3), supposing that the flow inertia is
negligible at the pore scale (as in Malone et al. 1974; Tio & Sadhal 1994; Zampogna &
Gallaire 2020; Ledda et al. 2021; Zampogna et al. 2023), i.e. Rel ∼ ε, and collecting each
order term in ε, we obtain the leading-order problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i p(0) + ∂2
kku(0)

i = 0,

∂i u
(0)
i = 0,

Σ
(0)
i j n j = Σ

O,U
i j n j on U,

Σ
(0)
i j n j = Σ

O,D
i j n j on D,

u(0)
i = 0 on ∂M,

u(0)
i , p(0) periodic along ti , si ,

(2.8)

where ti , si are the tangents to the membrane centreline C (cf. figure 1b,c). In problem
(2.8), the quantities Σ

O,U
jk and Σ

O,D
jk do not depend on the integration variable xi and

they act as non-homogeneous source terms. As shown by Zampogna & Gallaire (2020),
the linearity of the governing equations allows us to formally write the velocity and
pressure fields as a linear combination of the source terms, i.e. the outer stresses acting
on the upward U and downward D sides of the REV. Naming Mi j , Ni j , Q j and R j the
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Figure 2. Sketch showing the physical meaning of Mi j and Ni j . A 2-D configuration is chosen, with a
membrane formed by the periodical repetition of circular solid inclusions. In each panel, the left-hand and
right-hand sides of the rectangular cell, U,D, are the upward and downward sides of the fluid domain F as
in figure 1(c). The union of all fluid boundaries, ∂F, and the fluid–solid boundary alone, ∂M, are shown
in (b) in yellow and magenta, respectively. The red arrows represent the direction of the vector Σi j n j ,
while the blue lines represent the flow streamlines. Solid green arrows represent the local flow direction and
the corresponding dashed arrows its components along the principal axes: (a) (Mnn, Mtn); (b) (Mnt , Mtt );
(c) (Nnn, Ntn); (d) (Nnt , Ntt ).

coefficients of the linear combination, the formal solution of problem (2.8) is written as⎧⎨
⎩

u(0)
i = Mi jΣ

O,U
jk nk + Ni jΣ

O,D
jk nk,

p(0) = Q jΣ
O,U
jk nk + R jΣ

O,D
jk nk .

(2.9)

Substituting (2.9) into (2.8), we obtain the closure problems (the so-called microscopic
problems) for the quantities Mi j , Ni j , Q j and R j within the REV, i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Q j + ∂2
kk Mi j = 0 in F,

∂i Mi j = 0 in F,

Σhq(M· j , Q j )nq = δ jh on U,

Σhq(M· j , Q j )nq = 0 on D,

Mi j = 0 on ∂M,

Mi j , Q j periodic along ti ,si ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂i R j + ∂2
kk Ni j = 0 in F,

∂i Ni j = 0 in F,

Σhq(N· j , R j )nq = 0 on U,

Σhq(N· j , R j )nq = −δ jh on D,

Ni j = 0 on ∂M,

Ni j , R j periodic along ti ,si ,

(2.10)

where δ jh is the Kronecker delta and we adopt the notation Σhq(A· j , B j ) = −B jδhq +
(∂h Aq j + ∂q Ahj ), that is, fixing j , the dimensionless stress tensor built from B j acting as
pressure and A· j as velocity field.

For the sake of clarity, we describe the physical significance of the entries of the
quantities Mi j , Ni j , Q j and R j for the two-dimensional (2-D) configuration depicted in
figure 2. We thus forget for a moment about the s components and focus on the n, t ones.
For a fixed j , the vector field Mi j (Ni j ) and the scalar field Q j (R j ) play the role of
flow velocity and pressure in a problem governed by Stokes’s flow with no-slip boundary
conditions on the fluid–solid interface ∂M, periodicity along the tangential direction
and an external unitary stress applied along the normal – if j = n– or tangential – if
j = t– direction on the upward U (downward D) side of the domain. Thus, M·n and M·t
(N·n and N·t ) represent the flow field caused by normal and tangential unitary stresses
applied on U (D), respectively. Similarly, Qn and Qt (Rn and Rt ) represent the pressure
fields caused by normal and tangential unitary stress on U (D), respectively.
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However, to represent the effect of the membrane microstructure, we are interested in
the average values of these tensor quantities. Indeed, the average value of Mnn can be
interpreted as a permeability coefficient and the average value of Mtt as a slip coefficient,
for example (Zampogna & Gallaire 2020).

2.1.5. The macroscopic conditions
Model (2.9) together with the microscopic problems (2.10) represent a closed description
for the flow in the vicinity of the membrane. However, (2.9) still contains the dependence
on the microscopic spatial variable xi , since Mi j , Ni j , Q j and R j depend on it. Our objec-
tive is to find an interface condition which depends only on the macroscopic spatial vari-
able Xi . To obtain the membrane macroscopic model, we introduce the spatial average

·̄ = 1
|CF ∪CM|

∫
CF

· dS = 1
|CF ∪CM|

∫
F

· δ(xn − xCn ) dV, (2.11)

where δ(xn − xCn ) is the Dirac delta centred in xCn , d S and dV are an infinitesimal element
of surface and volume, respectively, and · represents any of the entries in Mi j , Ni j , Q j
or R j , solution of (2.10) and CF and CM represent the fluid and solid portion of the
membrane centreline C (cf. figure 1). Applying average (2.11) to (2.9) and renormalizing
with the outer scales, we obtain the purely macroscopic conditions

uO

i = ε
(

M̄i jΣ
O,U
jk nk + N̄i jΣ

O,D
jk nk

)
on C, (2.12)

pO = Q̄ jΣ
O,U
jk nk + R̄ jΣ

O,D
jk nk on C. (2.13)

These equivalent interface conditions quantify the effects of the porous membrane on the
flow from a purely macroscopic perspective, without the need to solve the fluid flow in
the geometric details of the membrane for each specific flow configuration. The effect of
the microstructure is indeed entirely embedded in the tensors M̄i j , N̄i j , known as Navier
tensors (Zampogna & Gallaire 2020), while the vectors Q̄ j and R̄ j are only useful to
estimate the pressure on the membrane centreline a posteriori, if needed. If the membrane
microstructure is periodic, we need to solve the microscopic problem (2.10) once and
for all to find the averaged quantities, whereas when the microstructure is non-periodic,
in principle, we should solve system (2.10) within each REV. This negatively affects the
computational efficiency of the method. In the following, we develop a sensitivity-based
procedure to perform this operation with a computational cost similar to the periodic case,
independently of the number of REVs. We focus on the microscopic problem (2.10) that
defines the Navier tensors and on the adjoint problems needed to compute the sensitivity
of these tensors to changes in the geometry of the solid inclusion’s boundary ∂M.

2.1.6. Further considerations on the Navier tensors
A few considerations are propaedeutic for a better comprehension of the adjoint analysis
which we will perform in the next section.

(i) The macroscopic problem (2.5) and the boundary condition (2.12) determine the
outer macroscopic solution (uO

i , pO), including pO on each side of the membrane;
Q j and R j are only needed if one wishes to evaluate a posteriori pO at the membrane
centreline with (2.13). Therefore, we will use the adjoint-based sensitivity to estimate
the effect of inclusion geometry changes on Mi j and Ni j only, i.e. we will compute
the gradient of the quantities M̄i j and N̄i j for a shape modification of the boundary
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∂M by introducing a Lagrangian optimisation problem and deriving adjoint problems
for these quantities. The method can easily be adapted to estimate the effect on Q j
and R j , but it is not necessary for the determination of the flow across the membrane.

(ii) In the particular case of solid inclusions that are symmetric about the membrane
centreline C, the Navier tensors satisfy

N̄i j = −M̄i j . (2.14)

In the specific configuration of solid inclusions that are also symmetric about the
normal membrane direction, then M̄nt = M̄tn = 0.

(iii) Equations (2.10) are a set of Stokes problems normally ( j = n) or tangentially
( j = t or s) forced on the upward side U or downward side D of the fluid domain F

(for Mi j or Ni j , respectively). Equation (2.10) is essentially a set of three independent
problems for Mi j and three for Ni j (i.e. one for each value of the j subscript). To ease
the notation, we rewrite (2.10) column by column by introducing the quantities (vi , q)

such that ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q + ∂2
kkvi = 0 in F,

∂ivi = 0 in F,

Σi j (v·, q)n j = ai on U,

Σi j (v·, q)n j = −bi on D,

vi = 0 on ∂M,

vi , q periodic along ti ,si ,

(2.15)

where

ai = (1, 0, 0), bi = 0 for M·n, Qn, ai = 0, bi = (1, 0, 0) for N·n, Rn, (2.16)
ai = (0, 1, 0), bi = 0 for M·t , Qt , ai = 0, bi = (0, 1, 0) for N·t , Qt , (2.17)
ai = (0, 0, 1), bi = 0 for M·s, Qs, ai = 0, bi = (0, 0, 1) for N·s, Rs, (2.18)

and Σi j (v·, q) = −qδi j + (∂iv j + ∂ jvi ). This gives a total of six independent Stokes
problems, which correspond to (2.10). Explicit correspondence between (2.10) and
(2.15) is given in appendix B. In the following section, we use the compact form
(2.15) to formally write the sensitivity to solid inclusions shape variations.

2.2. Sensitivity to shape changes in the microscopic geometry
In this section, we derive the first- and second-order shape sensitivities of the Navier
tensors. The shape sensitivity is a quantity derived from the original microscopic flow
and used to estimate the effect of geometric modifications without recomputing the flow
past any modified geometry. In particular, we aim to estimate the change in the Navier
tensors induced by a local geometric modification of the porous microstructure in order to
understand how this local modification affects the macroscale flow. We follow the formal
method of Céa (1986). The reader interested in shape optimisation is referred to Chapter 4
of Allaire et al. (2021).

We first recall a general result about shape derivatives. Consider a real-valued
functional,

L(F) =
∫
F

f (x)dV +
∫

∂M

g(x)dS, (2.19)
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where f and g are sufficiently smooth functions defined on the domain F and on part of
its boundary ∂M⊂ ∂F, respectively. The shape derivative of L(F) is

∂L
∂F

β =
∫

∂F

β f dS +
∫

∂M

β

(
∂g

∂n
+ Hg

)
dS, (2.20)

where β(x) is the amplitude of the deformation applied to boundary ∂M perpendicularly
to it at any point, n is the normal to ∂M, and H = ∂i ni is the mean curvature of ∂M (see
e.g. § 5.9 in Henrot & Pierre 2005 or § 4.2 in Allaire et al. 2021).

2.2.1. First-order sensitivity
We wish to evaluate the effect of a small-amplitude modification of the shape of an
inclusion on the spatially averaged Navier tensors M̄i j and N̄ i j , which appear in the
effective macroscopic boundary condition (2.12). With the compact form introduced in
§ 2.1.6, each row of Mi j and N i j is a vector vi solution of the general problem (2.15), made
specific to the row of interest with a suitable choice of ai and bi (see also appendix B).
Therefore, we focus on v̄i , the spatial average of vi (as defined in (2.11)), and consider the
objective function J (1) defined as

J (1)(vi , F) = v̄i ri = 1
|CF ∪CM|

∫
F

vi riδ(xn − xCn )dV . (2.21)

Here ri is a unit vector defined in the (xn, xt , xs) microscopic reference frame and used
to select a specific component of v̄i , i.e. a specific component of M̄i j or N̄ i j (see again
appendix B),

ri = (1, 0, 0) to select M̄n· or N̄n·, (2.22)

ri = (0, 1, 0) to select M̄t · or N̄t ·, (2.23)

ri = (0, 0, 1) to select M̄s· or N̄s·. (2.24)
The objective function J (1) depends both (i) on the solution vi of the microscopic problem
and (ii) on the microscopic fluid domain F itself, where vi is computed. We are looking
for the first-order sensitivity S(1)(x) of v̄i with respect to the geometry, such that the first-
order variation in v̄i ri induced by any small-amplitude normal deformation β(x) of the
inclusion geometry ∂M is

δv̄i ri =
∫

∂M

βS(1)dS. (2.25)

Computing this sensitivity under the constraint that vi is a solution of (2.15) is a
constrained problem, which is notoriously difficult as is. However, it can be conveniently
recast into an easier unconstrained problem via a standard Lagrangian approach. We
introduce the Lagrangian

L(1)(vi , q, v
†
i , q†, λ†

i , F) = J (1) +
∫
F

[
v

†
i (−∂i q + ∂2

kkvi ) + q†∂ivi

]
dV +

∫
∂M

λ†
i vi dS,

(2.26)

where (v
†
i , q†) and λ†

i are yet unknown Lagrange multipliers, whose aim is to enforce
the constraints acting on (vi , q): governing equations in F, and no-slip condition vi = 0
on ∂M, respectively. All the variables in L(1) are assumed independent. The derivative
of J (1) with respect to F is obtained via the first-order derivatives of the Lagrangian, as
follows.
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(i) By construction, equating to zero the partial derivative of the Lagrangian with respect
to the Lagrange multipliers,

∂L(1)

∂(v
†
i , q†)

= ∂L(1)

∂λ†
i

= 0, (2.27)

yields the direct equations (2.15) for (vi , q) and the no-slip condition vi = 0 on ∂M.
(ii) The partial derivative of the Lagrangian with respect to (vi , q) in the direction

(δvi , δq) reads after integration by parts as

∂L(1)

∂(vi , q)
δ(vi , q) = 1

|CF ∪CM|
∫
F

δvi riδ(xn − xCn )dV +
∫
F

[
δv j∂iΣ

†
i j + δq∂iv

†
i

]
dV

+
∫

∂F

[
−δviΣ

†
i j n j + v

†
i δΣi j n j

]
dS +

∫
∂M

λ†
i δvi dS, (2.28)

where Σ
†
i j = −q†δi j + (∂iv

†
j + ∂ jv

†
i ) is the adjoint stress tensor. The two domain

integrals over F are zero for any (δvi , δq) if the following adjoint equations for
(v

†
i , q†

i ) are satisfied:{
−∂i q† + ∂2

kkv
†
i = −δ

(
xn − xCn

)
ri ,

∂iv
†
i = 0.

(2.29)

Next, we equate to zero the two boundary integrals over ∂F and ∂M⊂ ∂F for each
boundary separately. On the lateral sides, periodicity applies in the direct problem
and thus in the adjoint problem too; indeed, δvi takes the same values on the two
sides, as δΣi j does, whereas n has opposite signs, therefore we ask that v

†
i and Σ

†
i j

be periodic. On U and D, the direct stresses Σi j satisfy Dirichlet conditions, therefore
δΣi j = 0, so we choose Σ

†
i j n j = 0. On ∂M, we choose v

†
i = 0 and therefore obtain

λ†
i = Σ

†
i j n j . To summarise, the adjoint problem for the adjoint variables (v

†
i , q†

i ) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q† + ∂2
kkv

†
i = −δ

(
xn − xCn

)
ri in F,

∂iv
†
i = 0 in F,

Σ
†
pq(v†· , q†)nq = 0 on U,D,

v
†
i = 0 on ∂M,

λ†
i = Σ

†
i j n j on ∂M,

v
†
i , q† periodic along ti ,si .

(2.30)

Note that the relation λ†
i = Σ

†
i j n j on ∂M is not a boundary condition on (v

†
i , q†

i ) but
a defining expression for λ†

i . Interestingly, this adjoint problem depends on ri but
neither on vi nor on ai and bi , which implies that it needs to be solved only once for
each row of M and N , independently of the selected column

(iii) Finally, we compute the partial derivative of the Lagrangian with respect to a
geometry modification in the direction normal to the solid–fluid boundary ∂M.
Noting that L(1) has the same form as in (2.19), with

f = vi riδ
(
xn − xCn

)
|CF ∪CM| + v

†
i (−∂i q + ∂2

kkvi ) + q†∂ivi , (2.31)

g = λ†
i vi , (2.32)
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we obtain from (2.20)

∂L(1)

∂F
β =

∫
∂F

β f dS +
∫

∂M

β

(
∂g

∂n
+ Hg

)
dS

=
∫

∂F

β

[
vi riδ(xn − xCn )

|CF ∪CM| + v
†
i (−∂i q + ∂2

kkvi ) + q†∂ivi

]
dS

+
∫

∂M

β

(
∂

∂n
+ H

) (
λ†

i vi

)
dS. (2.33)

If, specifically, the direct field (vi , q) is a solution of the direct equations (2.15),
and the adjoint field (v

†
i , q†) and Lagrange multiplier λ†

i satisfy the adjoint equations
(2.30), we obtain the derivative of the objective function with respect to the geometry
F in the direction β,

∂ J (1)

∂F
β =

∫
∂M

β

(
λ†

i
∂vi

∂n
+ ∂λ†

i

∂n
vi + Hλ†

i vi

)
dS

=
∫

∂M

βλ†
i
∂vi

∂n
dS

=
∫

∂M

β

(
−q†ni + ∂v

†
i

∂n

)
∂vi

∂n
dS

=
∫

∂M

β
∂v

†
i

∂n

∂vi

∂n
dS. (2.34)

Here the second equality results from the no-slip condition on vi , and the last equality
from the velocity gradient at the wall being purely tangential and thus orthogonal to
−q†ni . Therefore, one can identify from (2.25) the first-order shape sensitivity of
v̄i ri to a deformation of the solid inclusion,

S(1)(x) = ∂v
†
i

∂n

∂vi

∂n
, (2.35)

which can be evaluated on ∂M once vi and v
†
i have been computed by solving

the direct and adjoint problems. Here S(1) allows us to estimate the first-order
macroscopic effect of a microscopic change of the geometry. Indeed, on the left-hand
side of (2.25), we find the variation δv̄i of the average value of vi , i.e. the variation
of the Navier tensors caused by a geometric deformation of magnitude β.

2.2.2. Second-order sensitivity
We now look for the second-order sensitivity S(2)(x) of v̄i ri with respect to the geometry,
such that, up to second order, the variation in v̄i ri induced by any small-amplitude normal
deformation β(x) of the inclusion geometry ∂M is

δv̄i ri =
∫

∂M

[
βS(1) + 1

2
β2S(2)

]
dS. (2.36)

To compute this second-order sensitivity of v̄i ri , we consider the new objective function

J (2)(vi , v
†
i ,F) =

∫
∂M

S(1)dS =
∫

∂M

∂v
†
i

∂n

∂vi

∂n
dS, (2.37)
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and apply the same method as in § 2.2.1, which is justified for purely normal deformations
(Henrot & Pierre 2005). The integral is limited to ∂M, the only deformed boundary. The
Lagrangian for this objective function subject to the constraints (2.15) and (2.30) is

L(2)(vi , q, v
†
i , q†, ṽi , q̃, λ̃i , ṽ

†
i , q̃†, λ̃†

i , F) = J (2)

+
∫
F

[
ṽi (−∂i q + ∂2

kkvi ) + q̃∂ivi

]
dV +

∫
∂M

λ̃ivi dS

+
∫
F

[
ṽ

†
i (−∂i q

† + ∂2
kkv

†
i ) + q̃†∂iv

†
i

]
dV +

∫
∂M

λ̃†
i v

†
i dS, (2.38)

where (v̂i , q̂), λ̂i , (v̂
†
i , q̂†) and λ̂†

i are yet unknown Lagrange multipliers whose aim is to
enforce the constraints acting on (vi , q) and (v

†
i , q†).

(i) By construction, equating to zero the partial derivatives of the Lagrangian with
respect to the Lagrange multipliers (ṽi , q̃) and λ̂i yields the direct problem (2.15)
for (vi , q).

(ii) By construction, equating to zero the partial derivatives of the Lagrangian with
respect to the Lagrange multipliers (ṽ

†
i , q̃†) and λ̃†

i yields the first-order adjoint
problem (2.30) for (v

†
i , q†).

(iii) The partial derivative of the Lagrangian with respect to (vi , q) in the direction
(δvi , δq) reads after integration by parts as

∂L(2)

∂(vi , q)
δ(vi , q) =

∫
∂M

∂v
†
i

∂n

∂δvi

∂n
dS +

∫
F

[
δv j∂i Σ̃i j + δq∂i ṽi

]
dV

+
∫

∂F

[
−δvi Σ̃i j n j + ṽiδΣi j n j

]
dS +

∫
∂M

λ̃iδvi dS, (2.39)

with Σ̂i j = −q̂δi j + (∂i v̂ j + ∂ j v̂i ). Equating to zero the domain and boundary
integrals yields adjoint equations and boundary conditions for (ṽi , q̃), respectively.
Periodicity holds on the lateral sides in the direct problem (2.15), and thus for
(ṽi , q̃), too. On U and D, the direct stresses Σi j satisfy Dirichlet conditions, therefore
δΣi j = 0, so we choose Σ̃i j n j = 0. On ∂M, we choose ṽi = −∂v

†
i /∂n (which also

implies ṽi ni = 0 because a velocity gradient at a wall is purely tangential) and we
deduce λ̃i . The adjoint problem for (ṽi , q̃) is summarised as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q̃ + ∂2
kk ṽi = 0 in F,

∂i ṽi = 0 in F,

Σ̃pq(ṽ·, q̃)nq = 0 on U,D,

ṽi = −∂v
†
i

∂n
on ∂M,

λ̃i = −q̃ni + ∂ṽi

∂n
on ∂M

ṽi , q̃ periodic along ti ,si .

(2.40)

(iv) Similarly, the partial derivative of the Lagrangian with respect to (v
†
i , q†) in the

direction (δv
†
i , δq†) reads after integration by parts as
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∂L(2)

∂(v
†
i , q†)

δ(v
†
i , p†) =

∫
∂M

∂δv
†
i

∂n

∂vi

∂n
dS +

∫
F

[
δv

†
j ∂iΣ̃

†
i j + δq†∂i ṽ

†
i

]
dV (2.41)

+
∫

∂F

[
−δv

†
i Σ̃

†
i j n j + ṽ

†
i δΣ

†
i j n j

]
dS +

∫
∂M

λ̃†
i δv

†
i dS,

with Σ̂
†
i j = −q̂†δi j + (∂i v̂

†
j + ∂ j v̂

†
i ). Equating to zero the domain and boundary

integrals yields adjoint equations and boundary conditions for (ṽi
†, q̃†), respectively.

Periodicity holds on the lateral sides in the adjoint problem (2.30), and thus for
(ṽ

†
i , q̃†), too. On U and D, the adjoint stresses Σ

†
i j satisfy Dirichlet conditions,

therefore δΣ
†
i j = 0, so we choose Σ̃

†
i j n j = 0. On ∂M, we choose ṽ

†
i = −∂vi/∂n

(which also implies ṽ
†
i ni = 0 because a velocity gradient at a wall is purely

tangential) and we deduce λ̂†
i . The adjoint problem for (ṽ

†
i , q̃†) is summarised as

follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q̃† + ∂2
kk ṽ

†
i = 0 in F,

∂i ṽ
†
i = 0 in F,

Σ̃
†
pq(ṽ†· , q̃†)nq = 0 on U,D,

ṽ
†
i = −∂vi

∂n
on ∂M,

λ̃†
i = −q̃†ni + ∂ṽ

†
i

∂n
on ∂M,

ṽ
†
i , q̃† periodic along ti ,si .

(2.42)

Although very similar, the two second-order adjoint problems (2.40) and (2.42) differ
by the Dirichlet boundary condition on ∂M, where ṽi and ṽ

†
i are related to the normal

gradient of the first-order adjoint variable v
†
i and the direct solution vi , respectively.

As a consequence, (2.42) depends on vi but not on ri and v̂i , so, like the direct
problem (2.15), it needs to be solved only once for each column of Mi j and Ni j ,
independently of the selected row; by contrast, (2.40) depends on v

†
i but not on vi , ai

and bi , so, like the first-order adjoint problem (2.30), it needs to be solved only once
for each row of Mi j and Ni j , independently of the selected column.

(v) Finally, we compute the partial derivative of the Lagrangian with respect to the
geometry F in the direction β. Noting that L(2) has the same form as in (2.19), with

f = ṽi (−∂i q + ∂2
kkvi ) + q̃∂ivi + ṽ

†
i (−∂i q

† + ∂2
kkv

†
i ) + q̃†∂iv

†
i ,

g = ∂v
†
i

∂n

∂vi

∂n
+ λ̃ivi + λ̃†

i v
†
i , (2.43)

we obtain from (2.20) the following:

∂L(2)

∂F
β =

∫
∂F

β f dS +
∫

∂M

β

(
∂g

∂n
+ Hg

)
dS

=
∫

∂F

β
[
ṽi (−∂i q + ∂2

kkvi ) + q̃∂ivi + ṽ
†
i (−∂i q

† + ∂2
kkv

†
i ) + q̃†∂iv

†
i

]
dS

+
∫

∂M

β

(
∂

∂n
+ H

)(
∂v

†
i

∂n

∂vi

∂n
+ λ̃ivi + λ̃†

i v
†
i

)
dS. (2.44)
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If, specifically, the direct field (vi , q) is a solution of the direct problem (2.15), the
first-order adjoint field (v

†
i , q†) and Lagrange multiplier λ†

i satisfy the first-order adjoint
problem (2.30), and their second-order counterparts (ṽi , q̃, λ̃i ) and (ṽ

†
i , q̃†, λ̃†

i ) satisfy the
second-order adjoint problems (2.40) and (2.42), respectively, we obtain the derivative of
the objective function with respect to the geometry F in the direction β,

∂ J (2)

∂F
β =

∫
∂M

β

(
∂

∂n
+ H

)(
∂v

†
i

∂n

∂vi

∂n
+ ∂ṽi

∂n
vi + ∂ṽ

†
i

∂n
v

†
i

)
dS

=
∫

∂M

β

[(
∂

∂n
+ H

)(
∂v

†
i

∂n

∂vi

∂n

)
+ ∂ṽi

∂n

∂vi

∂n
+ ∂ṽ

†
i

∂n

∂v
†
i

∂n

]
dS. (2.45)

Therefore, one can identify from (2.36) the second-order shape sensitivity of v̄i to a
modification of the solid inclusion shape,

S(2)(x) =
(

∂

∂n
+ H

)(
∂v

†
i

∂n

∂vi

∂n

)
+ ∂ṽi

∂n

∂vi

∂n
+ ∂ṽ

†
i

∂n

∂v
†
i

∂n
, (2.46)

which can be evaluated on ∂M once vi , v
†
i , v̂i and v̂

†
i have been computed by solving the

direct and first- and second-order adjoint problems.

3. Microscopic problems: comparison between direct and adjoint approaches
In this section, we compare the average values of the tensors Mi j obtained by solving
the direct microscopic problem (2.15) and evaluating (2.11) on the actual geometry with
the prediction obtained by solving the adjoint microscopic problems (2.30), (2.40) and
(2.42) on a reference geometry and evaluating (2.36). To simplify the analysis, we consider
geometries for which relation (2.14) holds, i.e. N̄i j = −M̄i j . Details about the numerical
solution are given in appendix C. As a test case, we use a REV containing two circular
solid inclusions of different radii RA and RB , depicted in figure 3(a).

This means that the considered membrane exhibits a periodicity for every two
inclusions. We consider two families of small amplitude geometry modifications: a change
in the radius of a solid inclusion (without displacing its centre, cf. figure 3b) and a
displacement of the centre of one inclusion (without changing its shape, cf. figure 3c).
In the following, we leave the compact notation introduced in (2.15) to analyse the direct
and adjoint fields component by component. According to the notation introduced in
(2.10) and the relations thoroughly explained in appendix B, M†

i j , M̃i j and M̃†
i j denote

the first, second, and third adjoint variables whose associated problems are (2.30), (2.40)
and (2.42), respectively.

Figure 4 shows the contours and streamlines (red) of Mi j (a, e), M†
i j (b, f ), M̃i j

(c, g) and M̃†
i j (d, h) in the 2-D domain described in figure 3(a) with RA = 0.12, RB =

0.15, x A
t = 0.2 and x B

t = −0.2. Figure 4(a,e) are obtained by computing (2.15), i.e. the
direct problem. Figure 4(b, f ) are solutions of (2.30) for ri = (1, 0) and (0, 1), respectively.
These two fields do not depend on the direct solution, but only on ri . They can be computed
once and for all for M̄i j and the solution for the N̄i j fields is the same. Figure 4(c,g) are
obtained by computing (2.40), which depend only on the solution of (2.30) by means of
the inhomogeneous boundary condition on ∂M. Figure 4(d,h) are obtained by computing
(2.42), which depend only on the direct solution through the inhomogeneous boundary
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xnRB

β = �RA

Δ

θ

βni

–0.5

0.5

(a) (b) (c)

RA xt
A

xt

xt
B

Figure 3. (a) Sketch of a REV containing two circular inclusions with centres in (x A
n , x A

t ) = (0, 0.2),
(x B

n , x B
t ) = (0, −0.2) and radii RA = 0.12 and RB = 0.15. We consider two cases for the deformation of the

boundary of the inclusions ∂M: (b) a purely normal deformation, consisting of a modification of the radius
of the upper circular solid inclusion of a quantity β = �RA and (c) an alteration Δ of the position (x A

t , 0) of
its centre. In both cases, the red arrows showing the deformation are directed along the normal to the original
boundary (black solid line) and their length is proportional to β. The black dashes in (b) and (c) represent the
deformed boundary. θ ∈ [0, 2π ] in panel (b) is an angular coordinate that spans the inclusion’s surface from
the positive xn , anticlockwise. This coordinate is used to plot the sensitivities S(1), S(2) and the magnitude of
the normal deformation β along ∂M.
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0.5

(a) (b) (c) (d )

0.01

–0.5

0 0 0.01 0.02 0.1 0.3 0.5 0.5 1.0 1.5 2.00.2 0.4

0 0.5 –0.5 0 0.5 –0.5 0 0.5 –0.5 0 0.5

|M·n| |M·n|

0.02 0.03 0 0.01 0.02 0.03 0 0.01 0.02 0.030.2 0.4 0.6

|M·n|˜ |M·n|˜

(e) ( f ) (g) (h)

|M·t| |M·t|˜ ˜|M·t||M·t|

Figure 4. Solution of the (a, e) direct microscopic problems and (b–d, f –h) adjoint microscopic problems in
the geometric configuration shown in figure 3 with RA = 0.12, RB = 0.15, x A

t = 0.2 and x B
t = −0.2. Contour

of magnitude
√

M2
n· + M2

t · and streamlines (red) for the fields (a) (Mnn, Mtn), (b) (M†
nn, M†

tn), (c) (M̃nn, M̃tn),

(d) (M̃†
nn, M̃†

tn), (e) (Mnt , Mtt ), ( f ) (M†
nt , M†

t t ), (g) (M̃nt , M̃tt ), (h) (M̃†
nt , M̃†

t t ) are shown.

condition on ∂M. We now use these quantities to predict variations in the Navier tensors
induced by small amplitude shape modifications.

3.1. Radial shape perturbations of a circular solid inclusion
We let the radius RA of inclusion A vary while keeping the radius of inclusion B
constant. Figure 5(a– f ) shows the first and second-order sensitivities of the different
tensor components evaluated on three different reference geometries with RA = 0.054
(red), 0.120 (green) or 0.186 (blue). In this section, we modify the radius RA only, which
means that the normal deformation β of the solid boundary ∂M is constant with θ .
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Figure 5. Effect of a modification of the radius of inclusion A on the Navier tensors representing the membrane
microstructure macroscopically. Panels (a,d,g), (b,e,h) and (c,f,i) refer to a single Navier tensor component.
The sensitivities for each Navier tensor are shown in (a,d), (b,e) and (c,f ). Each colour except black refers to
one reference geometry used to compute these sensitivities. Reference geometry: x A

t = 0.2, x B
t = −0.2, RA =

[0.054, 0.120, 0.186] (corresponding to red, green and blue) and RB = 0.15 (cf. figure 3a). (a–c) First-order
and (d– f ) second-order sensitivities of M̄nn , M̄nt and M̄tt on the boundary of inclusion A. (g-i) Here M̄nn ,
M̄nt and M̄tt recomputed with the modified geometry (black solid line) and predicted from first-order (dashes)
and second-order (dots) shape sensitivities. Coloured squares represent evaluation points of the sensitivities.
Since Mtn is antisymmetric with respect to the xn axis, its average M̄tn is zero and N̄i j = −M̄i j .

We notice in figure 5(a,d) that the maxima (in absolute value) of M̄nn shape sensitivity are
attained in θ = π/2 and θ = 3π/2 or in a neighbourhood of these values. We saw in § 2.1.4
that M̄nn has the physical meaning of a permeability coefficient. Now we can conclude that
the membrane permeability is more sensitive to geometry changes in the pore between
inclusions A and B (i.e. for example between the bottom part of inclusion A and the top
part of inclusion B in figure 3a) than on the upward or downward sides of the inclusion
(i.e. their rightmost and leftmost portions in figure 3a). This is visually confirmed (note the
adjacency of yellow and blue zone) in figure 4(a–d), where the direct and adjoint fields all
show steeper wall-normal gradients (which are quantities determining the sensitivities)
in θ = π/2 and 3π/2 than in θ = 0 and π , for example. The opposite stands for M̄tt
(figure 5c, f ), whose shape sensitivity has a maximum in θ = π , corresponding to the side
of the solid inclusion facing the tangential boundary stress. On the other side (θ = 0), the
sensitivity is close to zero, as wall-normal derivatives of the direct and adjoint fields are
negligible (figure 4e–h). We conclude that the slip coefficient is more sensitive to shape
modifications of the upward or downward sides of the membrane than to its pore shapes.
A mixed situation is found in the case of normally directed flow caused by tangential stress
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(M̄nt , cf. figure 5b,e) since the most relevant values of the shape sensitivities are found
for θ near odd multiples of π/4. The sensitivity maps in this case suggest that, if a larger
M̄nt is desired, one should ‘pull-and-push’ the solid boundary at alternating odd multiples
of π/4, creating a solid geometry that is asymmetric about the xn axis. In figure 5(g–i),
we compare the curves representing the direct computations of the M̄i j components (black
solid lines) with the predictions based on S(1) only (red, green and blue dashes) and with
the predictions based on both S(1) and S(2) (red, green and blue dots). The reference
geometries used for predicting each coloured curve correspond to the squares of the same
colour. The dashed lines representing the first-order predictions are tangent to the black
solid line at the reference points (i.e. the squares), while the dotted parabolas have the
same concavity as the solid black lines at the reference points.

The adjoint-based predictions and the direct evaluations of M̄i j agree beyond the
theoretical limit of infinitesimal deformations. In the presented cases, the worst second-
order prediction corresponds to M̄tt for the reference radius RA = 0.054 (red dots in
figure 5i). For example, this prediction has a 17.5 % error when RA increases by ∼ 50 %
to 0.075. If RA is further increased, the error increases. The variation of M̄tt between the
case with RA = 0.054 and RA = 0.075 is approximately −32 %. The best case corresponds
to M̄nn for a reference radius of RA = 0.186 (blue dots in figure 5g), where the second-
order prediction is in good agreement with the direct solutions in a range of deformations
between −95 % and +24 %, with a maximum error of ∼ 11 % at RA = 0.054 (a −71 %
deformation, corresponding to a ∼ 263 % variation in M̄nn with respect to the reference
case). In the considered cases, there always exists a range of RA in which second-order
predictions are more accurate than first-order ones.

3.2. Displacement of the centre of a circular solid inclusion
In this section, we consider a more general deformation of the solid boundaries, obtained
by shifting by a quantity Δ (cf. figure 3c) the position of the centre of a circular solid
inclusion x A

t with respect to another, centred at x B
t (cf. figure 3). The geometry parameters

for this configuration are RA = 0.125, RB = 0.075 and x B
t = −0.2. Figure 6(a–c) shows

some distributions of sensitivity for the reference geometry with x A
t = 0.218 (green

squares in figure 6e−g). A shift of the inclusion of a quantity Δ causes a distribution of the
normal deformation β as shown in figure 6(d). The local maxima (in absolute value) of β

are located in θ = π/2, 3π/2, except for Δ = RA, where we observe a plateau in the range
θ ∈ [π, 2π ]. Indeed, when Δ = RA (lighter grey line corresponding to Δ = RA = 0.125),
the image of half of the original inclusion reduces to a single point of the displaced
inclusion. It is thus mathematically inconsistent to consider the case Δ > RA since some
points of the original inclusion have no image on the displaced inclusion through a normal
deformation. Note also that the function β in figure 6(d) passes by zero twice in its
domain θ ∈ (0, 2π). However, any displacement Δ 
= 0 of the centre causes all points on
the circle to move of Δ. The existence of zeros in β is a consequence of its definition as
normal displacement. This means that there exist points which change position, but this
movement has zero component along the normal to the reference geometry, thus β = 0 in
those points. In figure 6(e−g), we compare the actual (black line) and predicted value of
M̄i j with first-order (dashes) and second-order (dots) sensitivities computed using three
base points (squares). Since β is not constant along ∂M, the first-order predictions are
not lines and the second-order ones are not parabolas. The notion of slope and concavity
used to assess the performance of the prediction in figure 5 cannot be used in this case
and we can visually rely only on how close the predictions and the actual values are.
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Figure 6. Effect of a displacement Δ of inclusion A along xt in terms in the Navier tensors representing the
membrane microstructure macroscopically. First-order (black) and second-order (red) sensitivities of (a) M̄nn ,
(b) M̄nt and (c) M̄tt on the boundary of inclusion A in the reference configuration x A

t = 0.218, x B
t = −0.2,

RA = 0.125 and RB = 0.075 (cf. figure 3a), corresponding to the green square in panels (e− f ). (d) Examples
of normal deformation β induced by a displacement Δ of inclusion A (colour legend) at each location θ along
the solid inclusion. (e– f ) Here M̄nn , M̄nt and M̄tt recomputed with the modified geometry (black solid line)
and predicted from first-order (green dashes) and second-order (green dots) shape sensitivities. First-order
(dashes) and second-order (dots) predictions for two additional reference locations x A

t are shown in red and
blue. Coloured squares represent evaluation points of the sensitivities.

We notice that we have a good agreement only for infinitesimal perturbations and most of
the second-order predictions do not perform well for sensible deformations.

In conclusion, displacements of ∂M having a strong tangential-to-the-reference-
geometry component are more difficult to predict than those dominated by normal
deformation. This condition is embedded in the hypothesis under which (2.20) is valid.
However, for small displacements (i.e. Δ � RA in this case), the first-order prediction can
be trusted.

3.3. Application: efficient handling of parametric studies
In § 3.2, we considered a microscopic case constituted by a REV containing two solid
inclusions. However, the adjoint procedure presented in this work does not depend on
the choice of the REV. In the following section, we consider a REV containing a single
solid inclusion. This geometrical configuration was used in Ledda et al. (2021) to create
a map of permeability and slip coefficients associated with a membrane formed by the
periodic repetition of an elliptical solid inclusion. The map, obtained by interpolating a
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Figure 7. Effect of a modification of the axis ln and lt of a single elliptic inclusion on the M̄i j tensor (geometry
shown in the insets of panel c). Reference geometry: circular solid inclusion (ln = lt = 0.3; black stars in panels
c,d) only. (a) First-order (black) and second-order (red) shape sensitivities of M̄nn (solid lines) and M̄tt (dots)
along ∂M as parametrised by θ (cf. figure 3b). (b) Example of normal deformation β between the base circle
with ln = lt = 0.3 and sample ellipses (ln, lt in the legend). (c, d) Contours of permeability M̄nn and slip M̄tt
computed with a direct approach (solid lines) and with first-order (dashes) or second-order (dots) sensitivity.
(e-h) Sample of the surfaces in (c, d) at constant lt (e, g) or ln ( f, h). Colours correspond to ellipse semiaxes
values as shown in the legend of each panel.

set of direct microscopic solutions, was used to optimise the flow around a porous thin
membrane. Obtaining such a map involves a non-negligible computational cost.

The objective of this section is to replicate a subset of the results obtained by Ledda et al.
(2021) using a single direct and adjoint microscopic solution. We consider an elliptic,
isolated, solid inclusion of axes ln and lt , aligned with the (xn, xt ) axes, respectively.
We solve the direct microscopic problem around this geometry for a range of (ln, lt )
values, obtaining the maps in solid line in figure 7(c,d). We consider a base geometry for
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the adjoint computations constituted by a circle ln = lt = 0.3 (black star). The sensitivity
distribution obtained in this configuration is shown in figure 7(a), while figure 7(b) shows
some distributions of the normal deformation β as a function of the ellipse semiaxes.
Changes in permeability M̄nn or slip M̄tt can be estimated via (2.36) with products
involving the normal deformation beta and the sensitivities S(1) and S(2). These predictions
of first order (dashes) and second order (dots) are plotted on the same isocontours obtained
using the direct solutions for comparison (figure 7c,d). There is a general agreement
between the actual and predicted values of permeability and slip, confirmed also by the
local sections of the maps, shown in figure 7(e–h). Overall, second-order predictions
improve over the first-order ones: in the (ln, lt ) space considered, the root mean square of
the difference between the direct evaluation and the first- and second-order predictions are
(0.0084, 0.0047) for M̄nn and (0.0078, 0.0048) for M̄tt , respectively. Local oscillations
near θ = π/2 and 3π/2 are due to numerical noise caused by the Dirac delta function.
Their influence on the final solution is negligible, as shown in appendix C.

We conclude that not only the method proposed in this paper is computationally lighter
compared with the parametric study proposed in Ledda et al. (2021), but also it allows
for displacements of the solid boundaries of general shape. The numerical resolution has
been carried out with the tools specified in appendix C. Using the same computer, the
direct evaluation of M̄nn and M̄tt requires in this case approximately 2.5 hr with a step in
ln and lt of 0.02, whereas the sensitivity-based prediction takes approximately 6 min.

4. Comparison between macroscopic and full-scale solutions
In this section, we use the developed sensitivity-based procedure to predict the flow around
a non-periodic porous membrane in a computationally efficient way. We compare full-
scale solutions of the flow against macroscopic solutions (2.12) obtained by solving a
microscopic problem for each solid inclusion and macroscopic solutions obtained by
solving a single microscopic direct and adjoint problem and predicting the effect of the real
geometry using shape sensitivities. We propose two complementary test cases: (i) the flow
around and across a membrane whose solid inclusions are not periodic because of a small
random perturbation and (ii) the flow across a membrane obstructing a channel, whose
solid inclusions have a systematic deformation pattern, consisting of a linear variation
of the inclusion radius. Notice that the macroscopic flows are normalised with the outer
scales as in (2.4).

4.1. Membrane with random small perturbations of the solid inclusion
As a first test case, we consider a periodic 2-D membrane constituted by 20 circles of radius
R = 0.0125 (i.e. ε = 0.05). The i th circle is centred at (xi

1, xi
2) = (−ε(i − 0.5)/

√
2, ε(i −

0.5)/
√

2). The membrane is placed in a vertical channel of size 5 × 2. It is oriented at 45◦
to the horizontal axis and traversed by a fluid flow which obeys Stokes equations (cf. sketch
in figure 8). Dirichlet conditions (u1, u2) = (0, 1) apply on the bottom side and ui = 0 on
the lateral sides and on the membrane solid inclusions. The Neumann condition Σi j n j =
0 applies on the top side. For convenience in the notation, we introduce a curvilinear

coordinate ξ =
√

x2
1 + x2

2 , as shown in figure 8(a). We radially perturb the surface of each
solid inclusion using a Fourier series such that the i th deformed solid boundary has a
radius

Ri = R + αi
0 +

N∑
j=1

αi
j cos( jθ) + γ i

j sin( jθ), (4.1)
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Figure 8. Full-scale and macroscopic simulations around an aperiodic membrane. (a) Contours of velocity
magnitude and streamlines (red) for the full-scale simulation. The centre of each solid inclusion (grey
obstacles) is located at (xi

1, xi
2) = (−ε(i − 0.5)/

√
2, ε(i − 0.5)/

√
2), thus at the curvilinear coordinate

ξ i =
√

x2
1,i + x2

2,i = (i − 0.5)ε along C, while the inset shows the typical streamline pattern in the proximity of

the solid inclusions. (b) Macroscopic simulation with M̄i j and N̄i j computed using REVs containing only one
inclusion and (c) macroscopic simulation with M̄i j and N̄i j predicted using the shape sensitivities computed
around a circle of radius 0.25ε and multiplying them for the β describing the difference between the considered
solid inclusion and the reference circular one. The fictitious interface representing the membrane in panels (b)
and (c) is denoted by the black dashes. The flow enters from the bottom of the domain with a unit velocity in
the vertical direction. The lateral sides are no-slip walls and at the outlet (top boundary), Σi j n j = 0.

where θ ∈ [0, 2π ], N = 6 and αi
j , γ i

j are randomly sampled coefficients from a uniform
distribution in the range [−0.005ε, 0.005ε] and collected in the Supplementary material.
These solid inclusions are visualised in figure 9 (black lines, as opposed to the green
lines, representing the reference geometry) and the full-scale solution of system (2.1) is
visualised in figure 8(a).

In the macroscopic simulation, we solve (2.5) with (2.12), which requires M̄i j and N̄i j .
For the microscopic problems, we choose a REV containing a single solid inclusion at
a time along the membrane (Ledda et al. 2021) and average one by one the microscopic
direct problems on each of the 20 inclusion geometries. The tensors obtained in this case
are used to compute the macroscopic fluid flow presented in figure 8(b). The computational
cost of this operation is that of solving 80 Stokes problems (2.15). Equivalently, this means
solving 20 times (one for each inclusion) (2.10), which contains two components for Mi j
and another two for Ni j .

We now consider the macroscopic solution obtained using the sensitivity-based
workflow. To obtain M̄i j and N̄i j , we solve the direct problem (2.15) and adjoint problems
(2.30, 2.40, 2.42) around a circular solid inclusion of radius R, finding the shape
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Figure 9. Details of the inclusions in the aperiodic membrane of figure 8. The boundaries of the original
circular inclusions are sketched in dashed green line while the actual geometry is sketched in solid black line.
Index i increases from top to bottom and from left to right.

sensitivities S(1) and S(2) for all M̄i j and N̄i j components. We then evaluate (2.36) with
the normal displacement

β i (θ) = αi
0 +

N∑
j=1

αi
j cos( jθ) + γ i

j sin( jθ), (4.2)

from the reference circular inclusion, obtaining an estimate for the variation of M̄i j and N̄i j
caused by the shape modification. The computational cost of this operation is 12 Stokes
problems (i.e. four for the direct solution and two for the first adjoint problem to find
S(1) and another six to find S(2)), regardless of the number of inclusions (and neglecting
potential tensor symmetries, which would possibly reduce this cost). The macroscopic
fluid flow obtained with these estimates is visualised in figure 8(c) by means of streamlines
and isocontours of velocity magnitude.

Figure 10(a,b) compares the velocity profiles on the membrane centreline for the full-
scale solution (black lines, average values as dots), direct macroscopic solution (blue) and
shape sensitivity-based prediction (red). The agreement of both macroscopic solutions
(direct and adjoint) with the average full-scale solution is excellent. For reference, green
dots represent the macroscopic solution obtained by computing M̄i j and N̄i j with the base
(undeformed) circular inclusions. The values of the M̄i j and N̄i j tensors computed using
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Figure 10. Velocity and Navier tensors on the centreline C of the aperiodic membrane of figures 8 and 9.
(a) Normal- and (b) tangential-to-the-membrane velocity components. Black line, full-scale solution without
averaging; black dots, averaged full-scale solution; blue line, macroscopic solution with M̄i j and N̄i j computed
cell-by-cell; red line, sensitivity-based predictions on the reference, undeformed geometry (circular inclusion).
Additionally, the green line shows the macroscopic solution computed with undeformed circular inclusions, to
highlight the differences caused by the geometry modification. Panels (c– j) show the tensors values along the
membrane: (c) M̄nn , (d) M̄nt , (e) M̄tn , ( f ) M̄tt , (g) N̄nn , (h) N̄nt , (i) N̄tn , ( j) N̄tt . Values directly computed
via (2.15) are depicted in blue while the values predicted using shape sensitivities (2.36) are in red. The values
associated with the reference circular geometry are in green.

the direct (blue) and adjoint (red) procedures are shown in figure 10(c– j). Interestingly,
although the geometric modifications may seem small (figure 9), the corresponding
microscopic tensor values significantly vary. These variations cause peaks of tangential
velocity, which are absent for the undeformed, circular inclusions. We can ascribe these
differences entirely to the anisotropic nature of the deformed inclusions. The sensitivity-
based prediction proves nearly as accurate as the direct solution, with a considerably
lower computational cost. Indeed, the relative error on the membrane velocity magnitude
with respect to the average full-scale solution (excluding the first and last REVs) is
2.77 % for the macroscopic direct simulation and 2.90 % for the macroscopic adjoint-aided
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prediction, while the computational cost of the adjoint-aided simulation is approximately
6.7 times lower. In this section, we expressed the computational cost in terms of Stokes
problems because the microscopic direct and adjoint problems are a set of Stokes problems
which can be solved in a cascade. To translate this cost in computational time, consider
that the computational time associated with a single Stokes solution is approximately
50 s on a laptop with 32 GB RAM and one INTEL i 9–10900HK CPU with eight
cores.

4.2. Membrane with large systematic deformations of the solid inclusions
The developed procedure can handle small random geometry variations of the solid
inclusions, resulting in membrane velocity profiles with random peaks. However, one
may argue that the effect on the macroscopic flow of such modifications is captured –
on average – by the green profile in figure 10(a,b) (corresponding to a periodic membrane
of base circles) and thus that the effect of these geometry modifications is not significant
at the macroscale. We emphasise that the present method can capture macroscopic flow
modifications. We consider the flow across a membrane constituted by 20 inclusions of
radii Ri = 0.2ε2(i − 1/1 − ε) + 0.15ε and evenly spaced centres. The average radius,
used for the computation of the shape sensitivities is thus the same as in figure 9. The
associated normal displacement of the solid boundary about the average radius reaches
peak values of ±40 % at the membrane extremes. The so-constituted membrane obstructs
a 2-D channel of unit height, as shown in figure 11(a). The flow enters from the left-
hand side of the domain horizontally with unit speed and exits from the right-hand
side with zero stress, and the top and bottom sides are no-slip walls. Contrary to the
previous case, where the fluid could flow around the membrane, it is now forced to flow
across it. The fluid prefers to flow in the lower-half of the channel where the porosity
of the membrane is larger. The flow is hence asymmetric about the centreline x2 = 0.5.
Similarly to the previous case, we compare the full-scale solution (figure 11a) with a
macroscopic solution of the flow past a membrane with all circular inclusions having
the same radius 0.25ε (figure 11b) and with space-varying microscopic geometry whose
tensors are calculated using the direct (figure 11c) and adjoint (figure 11d) approach.
For the adjoint case, the sensitivity is calculated with a circular solid inclusion of radius
0.25ε as reference geometry. The values of M̄nn and M̄tt used to compute the solutions
in frames figure 11(b,c,d) are represented in figure 11( f,g) by green, blue and red lines,
respectively.

The velocity magnitude contours between the full-scale (figure 11a), macroscopic direct
(c) and sensitivity-based (d) simulations are in good agreement. The differences with
respect to the flow through a periodic, unperturbed membrane (cf. figure 11b, where the
flow is symmetric with respect to the x2 = 0.5 axis) are important. This is confirmed by the
velocity magnitude profiles along the membrane (figure 11e), where we adopted the same
colour code as in figure 10(a,b). The green line is indeed symmetric about x2 = 0.5, while
the full-scale flow is not. As in the previous flow configuration, the full-scale average
fields are correctly predicted both in the direct and sensitivity-based simulations, with
minor differences, and at a much-reduced cost for the latter.

The two examples presented in this section show complementary applications of the
proposed model: in the former, the fluid can flow around the membrane and the random
geometry modifications locally change the flow along the membrane, while in the latter,
the membrane obstructs a channel, forcing the flow through its pores, whose geometric
properties globally alter the macroscopic flow. The present model handles both cases,
offering an advantageous trade-off between accuracy and computational cost.
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Figure 11. Full-scale and macroscopic flow past an aperiodic membrane constituted by 20 circular inclusions
(i.e. ε = 0.05). The radii linearly vary between 0.15ε (lowermost inclusion) and 0.35ε (uppermost inclusion).
The centre of the nth inclusion is located in (xn

1 , xn
2 ) = (0, (n − 1/2)ε). In panels (a−d) the contours of

velocity magnitude and streamlines (red) are shown: (a) full-scale solution; (b) macroscopic solution past a
periodic membrane formed by circular inclusions of radius 0.25ε; (c) macroscopic solution with M̄i j and N̄i j

computed using REVs containing only one inclusion; (d) macroscopic solution with M̄i j and N̄i j predicted
using the shape sensitivities computed around a circular inclusion of radius 0.25ε. The fictitious interface
representing the membrane in panels (b, c) and (d) is denoted by the black dashes. The flow enters from the
left of the domain with a unit velocity in the horizontal direction. The top and bottom of the panels are no-
slip walls and at the outlet Σi j n j = 0. (e) Velocity magnitude at the membrane centreline (colour code as in
figure 10a,b). ( f, g) Non-zero M̄i j components along the membrane (colour code as in figure 10c− j). By
symmetry, N̄i j = −M̄i j and M̄i j = 0 if i 
= j .

5. Conclusions
In the present paper, we considered the problem of computing the fluid flow across a thin,
aperiodic porous membrane in an efficient way, coupling the homogenisation technique
developed by Zampogna & Gallaire (2020) with a second-order shape-sensitivity
approach. We introduced the concept of REV in the model developed in Zampogna &
Gallaire (2020) to account for the aperiodic porous microstructure. Using the separation
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of scales between the pore- and membrane-level flows, we wrote the macroscopic velocity
field on the membrane as a linear combination of the stresses acting on the two sides of the
membrane itself. The coefficients of the linear combination, the Navier tensors M̄i j and
N̄i j , stem from the solution of solvability conditions at the REV scale, the microscopic
problems, after an averaging step. While M̄i j and N̄i j only need to be computed once for
a periodic microstructure, this is not possible for aperiodic geometries. Indeed, several
direct microscopic solutions are needed only to find the proper REV size. The cost of this
direct tensor evaluation scales with the number of pores/inclusions and quickly annihilates
the computational gain of the homogeneous, macroscopic model.

Consequently, we developed an adjoint-based technique to account for geometrical
modifications of the pore-scale microstructure starting from some reference geometry and
in the limit of infinitesimal deformations. The computational cost of such an operation is
constant with respect to the number of pores/inclusions, only requiring a small set of linear
problems to be solved at the pore scale, the adjoint problems. We validated this procedure
against direct solutions of the microscopic problems and found that it can predict the
effect of moderately small geometric perturbations of the solid inclusions. To conclude
our analysis, we considered a full-scale membrane of randomly perturbed microstructure
and a membrane of circular inclusions of linearly increasing radius. We compared our
model with a direct solution, finding a significant improvement in efficiency for a similar
accuracy. Indeed, in § 4.2, we found that the sensitivity-based homogeneous solution was
approximately 6.7 times faster than the direct homogeneous solution and the relative error
(based on the average full-scale solution) on the velocity at the membrane centreline was
2.77 % for the direct solution and 2.90 % for the sensitivity-based one.

The present work introduces an efficient methodology to relate the Navier tensors to
modifications of the membrane microstructure about some reference configuration. In
particular, this work is complementary to the optimisation routine proposed by Ledda et al.
(2021), enabling a truly efficient exploration of many microscopic geometries without
requiring large parametric studies.

Further developments towards the analysis of flows through non-periodic membranes
should handle large and irregular deformations of the reference inclusion geometry.
Describing these situations will require integrating the sensitivity-based approach
(formally valid for infinitesimal geometrical deformations) with data-based methods to
efficiently explore large deformations using a Newton algorithm. Minimizing the number
of Newton iterations through data-based approaches will be crucial in keeping the method
computationally convenient when large deformations are considered. Already existing
examples of data-aided homogenisation approaches are Karimi & Bhattacharya (2024a)
and Wittkowski et al. (2024), which efficiently handled inertial flows in bulk porous media
and thin permeable membranes, respectively. Exploring the use of such techniques in the
present framework opens perspectives for future work.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.277.
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Original notation

Figure 12. Schematic visualisation of the compact notation and averaging when n = (1, 0, 0), t = (0, 1, 0),

s = (0, 0, 1): the Mi j and Ni j tensors are decomposed column by column into a sequence of six independent
problems for (vi , q). The rowwise selection of the ‘observed’ component of vi (i.e. the component whose
average is considered) in the computation of the first-order Lagrangian (2.21) is done via the unitary vector r .

Appendix A. Details about the compact notation and averaging
In § 2, we compacted (2.10) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q + ∂2
kkvi = 0 in F,

∂ivi = 0 in F,

Σi j (v·, q)n j = ai on U,

Σi j (v·, q)n j = −bi on D,

vi = 0 on ∂M,

vi , q periodic along ti ,si ,

(A1)

where

ai = (1, 0, 0), bi = 0 for M·n, Qn, ai = 0, bi = (1, 0, 0) for N·n, Rn, (A2)
ai = (0, 1, 0), bi = 0 for M·t , Qt , ai = 0, bi = (0, 1, 0) for N·t , Qt , (A3)
ai = (0, 0, 1), bi = 0 for M·s, Qs, ai = 0, bi = (0, 0, 1) for N·s, Rs, (A4)

and the unitary vector ri is used to select the i th component of Mi j or Ni j to be averaged,

ri = (1, 0, 0) to select M̄n· or N̄n·, (A5)

ri = (0, 1, 0) to select M̄t · or N̄t ·, (A6)

ri = (0, 0, 1) to select M̄s· or N̄s·, (A7)
as shown in the schematic figure 12.

We clarify the meaning of the compact notation in a 2-D domain where ni = (1, 0) and
ti = (0, 1):

(i) to find (Mnn, Mtn) and Qn we solve⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q + ∂2
kkvi = 0 in F,

∂ivi = 0 in F,

Σi j (v·, q)n j = (1, 0) on U,

Σi j (v·, q)ni = 0 on D,

vi = 0 on ∂M,

vi , q periodic along ti ,

equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Qn + ∂2
kk Min = 0 in F,

∂i Min = 0 in F,

Σhj (M·n, Qn)n j = (1, 0) on U,

Σhj (M·n, Qn)n j = 0 on D,

Min = 0 on ∂M,

Min, Qn periodic along ti ,
(A8)
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which, respectively, means

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q + ∂2
nnvn + ∂2

t tvn = 0 in F,

−∂i q + ∂2
nnvt + ∂2

t tvt = 0 in F,

∂nvn + ∂tvt = 0 in F,

−q + 2∂nvn = −1 on U,

∂nvt + ∂tvn = 0 on U,

−q + 2∂nvn = 0 on D,

∂nvt + ∂tvn = 0 on D,

vn, vt = 0 on ∂M,

vn, vt , q periodic along (1, 0),

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Qn + ∂2
nn Mnn + ∂2

t t Mnn = 0 in F,

−∂i Qn + ∂2
nn Mtn + ∂2

t t Mtn = 0 in F,

∂n Mnn + ∂t Mtn = 0 in F,

−Qn + 2∂n Mnn = −1 on U,

∂n Mtn + ∂t Mnn = 0 on U,

−Qn + 2∂n Mnn = 0 on D,

∂n Mtn + ∂t Mnn = 0 on D,

Mnn, Mtn = 0 on ∂M,

Mnn, Mtn, Qn periodic along (1, 0);
(A9)

(ii) to find (Mnt , Mtt ) and Qt we solve

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q + ∂2
kkvi = 0 in F,

∂ivi = 0 in F,

Σi j (v·, q)n j = (0, 1) on U,

Σi j (v·, q)ni = 0 on D,

vi = 0 on ∂M,

vi , q periodic along ti ,

equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Qt + ∂2
kk Mit = 0 in F,

∂i Mit = 0 in F,

Σhj (M·t , Qt )n j = (0, 1) on U,

Σhj (M·t , Qt )n j = 0 on D,

Mit = 0 on ∂M,

Mit , Qt periodic along ti ,
(A10)

which, respectively, mean

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q + ∂2
nnvn + ∂2

t tvn = 0 in F,

−∂i q + ∂2
nnvt + ∂2

t tvt = 0 in F,

∂nvn + ∂tvt = 0 in F,

−q + 2∂nvn = 0 on U,

∂nvt + ∂tvn = −1 on U,

−q + 2∂nvn = 0 on D,

∂nvt + ∂tvn = 0 on D,

vn, vt = 0 on ∂M,

vn, vt , q periodic along (1, 0),

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Qt + ∂2
nn Mnt + ∂2

t t Mnt = 0 in F,

−∂i Qt + ∂2
nn Mtt + ∂2

t t Mtt = 0 in F,

∂n Mnt + ∂t Mtt = 0 in F,

−Qt + 2∂n Mnt = 0 on U,

∂n Mtt + ∂t Mnt = −1 on U,

−Qt + 2∂n Mnt = 0 on D,

∂n Mtt + ∂t Mnt = 0 on D,

Mnt , Mtt = 0 on ∂M,

Mnt , Mtt , Qt periodic along (1, 0);
(A11)

(iii) to find (Nnn, Ntn) and Rn we solve

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q + ∂2
kkvi = 0 in F,

∂ivi = 0 in F,

Σi j (v·, q)n j = 0 on U,

Σi j (v·, q)ni = (−1, 0) on D,

vi = 0 on ∂M,

vi , q periodic along ti ,

equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Rn + ∂2
kk Nin = 0 in F,

∂i Nin = 0 in F,

Σhj (N·n, Rn)n j = 0 on U,

Σhj (N·n, Rn)n j = (−1, 0) on D,

Nin = 0 on ∂M,

Nin, Rn periodic along ti ;
(A12)
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(iv) to find (Nnt , Ntt ) and Rt we solve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i q + ∂2
kkvi = 0 in F,

∂ivi = 0 in F,

Σi j (v·, q)n j = 0 on U,

Σi j (v·, q)ni = (0, −1) on D,

vi = 0 on ∂M,

vi , q periodic along ti ,

equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Rt + ∂2
kk Nit = 0 in F,

∂i Nit = 0 in F,

Σhj (N·t , Rt )n j = 0 on U,

Σhj (N·t , Rt )n j = (0, −1) on D,

Nit = 0 on ∂M,

Nit , Rt periodic along ti .
(A13)

We now provide an explicit example of how we can calculate the shape sensitivities for
the Navier tensor component M̄nn . We produced figure 5(a,d,g) by solving the equations
provided in the present appendix in a 2-D domain with a circular solid inclusion of radius
RA. The remaining tensor components follow the nomenclature provided in schematic
figure 12.

To find how a change in shape β affects M̄nn , we need to evaluate (2.36) with vi = Min
and r = (1, 0), i.e.

δM̄nn =
∫

∂M

βS(1) + 1
2
β2S(2)dS, (A14)

where, on a 2-D circular inclusion such as the one in figure 3(a), dS = RAdθ and the
sensitivities S(1) and S(2) are specialised for Min , i.e.

S(1) = ∂ M†
in

∂n

∂ Min

∂n
, (A15)

S(2)(x) =
(

∂

∂n
+ H

)(
∂ M†

in

∂n

∂ Min

∂n

)
+ ∂ M̃in

∂n

∂ Min

∂n
+ ∂ M̃†

in

∂n

∂ M†
in

∂n
. (A16)

These fields are found by solving the direct and adjoint problems, i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Qn + ∂2
kk Min = 0 in F,

∂i Min = 0 in F,

Σhj (M·n, Qn)n j = (1, 0) on U,

Σhj (M·n, Qn)n j = 0 on D,

Min = 0 on ∂M,

Min, Qn periodic along ti ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Q†
n + ∂2

kk M†
in = −δ(xn − xCn )δin in F,

∂i M†
in = 0 in F,

Σ
†
pq(M†·n, Q†

n)nq = 0 on U,D,

M†
in = 0 on ∂M,

M†
in, Q†

n periodic along ti ,si ,

(A17)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Q̃n + ∂2
kk M̃in = 0 in F,

∂i M̃in = 0 in F,

Σ̃pq(M̃·n, Q̃n)nq = 0 on U,D,

M̃in = −∂ M†
in

∂n
on ∂M,

M̃in, Q̃n periodic along ti ,si ,

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂i Q̃†
n + ∂2

kk M̃†
in = 0 in F,

∂i M̃†
in = 0 in F,

Σ̃
†
pq(M̃†·n, Q̃†

n)nq = 0 on U,D,

M̃†
in = −∂ Min

∂n
on ∂M,

M̃†
in, Q̃†

n periodic along ti ,si ,

(A18)
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Figure 13. Mesh independence study. Total force Ftot = | ∫
∂M

Σi j n j | exerted by the fluid on the membrane
in the full-scale simulation (a) and in the macroscopic simulation (b) as a function of the mesh factor k. The
integral of the second-order shape sensitivity of M̄nn as a function of the mesh factor k (c) and the numerical
Dirac delta function amplitude d (d) in the microscopic simulation.

on a reference configuration, e.g. RA = 0.12, RB = 0.15, x A
t = 0.2 and x B

t = −0.2, as in
figure 4(a–d), corresponding to the green curves of figure 5(a,d). Now we can reconstruct
the green dotted lines in figure 5(g) by simply evaluating (B14) with β = �RA (the
variation in radius RA from the reference configuration) and summing δM̄nn to the M̄nn
of the reference configuration (i.e. the average solution of the first problem in (B17)).

Appendix B. Numerical implementation and mesh independence study
In the present study, we carried out simulations using the finite-element software
COMSOL Multiphysics. We employed P3-P2 elements (for velocity and pressure,
respectively) in all the microscopic simulations, and P2-P1 elements in the macroscopic
and full-scale simulations. Elements are quadrilaterals in the boundary layers and triangles
everywhere else. The mesh independence in the microscopic simulations was tested for
the microscopic domain size, the amplitude of the numerical Dirac delta function and the
mesh thickness. The study regarding the microscopic domain size shows the same trends
as Zampogna & Gallaire (2020), thus it will not be repeated here. The Dirac delta function
has been modelled using a Gaussian function

δ(x − x0) = 1√
2πd

e
− (x−x0)2

2d2 , (C1)

discretised with 10 mesh elements in the normal direction. In the present simulations,
we found that d = 0.005 is a good compromise between cost and accuracy, as shown
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Figure 14. Integral of the second order sensitivity S(2) for the component M̄tt along the solid inclusion (left-
hand axis, blue) and its standard deviation with respect to a low-pass filtered signal S̃(2) (right-hand axis, red)
in the window θ ∈ [π/2 − d/(2r), π/2 + d/(2r)], for a range of the mesh size parameter a. The low-pass filter
has a step response at a wavelength of d/2, to eliminate the oscillations caused by the Dirac delta function.

in figure 13(d). The convergence with respect to the mesh refinement has been studied
considering a mesh having typical sizes of 0.001l on the solid inclusion, as well as eight
quadrilateral layers, and 0.03l far from it. This mesh has been modified by dividing these
sizes by a factor of k. Figure 13(c) shows that for k = 1 the mesh-related error concerning
the integral value of the second-order sensitivity on the solid inclusion is smaller than
1 % between two subsequent meshes. The influence of the mesh in the full-scale and
macroscopic simulations has been studied similarly, as shown in figure 13(a,b). In this
case, the mesh sizes corresponding to k = 1 are

(i) for the full-scale simulation: 5 × 10−4 on the solid inclusions and 0.05 far from them,
with an enclosure around the membrane having a typical mesh size of 0.01;

(ii) for the macroscopic simulation: 0.0025 on the interface and 0.05 far from it.

In both cases, for k = 1, the module of the force exerted on the membrane Ftot changes
between two subsequent meshes less than 1 %.

Appendix C. About the oscillations of the second-order sensitivity
In this section, we discuss the influence of the oscillations around the locations θ = π/2
and 3π/2 of the second order sensitivity S(2)(M̄tt ) in figures 7(a) and 6(a,c). To show
their numerical nature, we consider the geometry corresponding to the black stars in
figure 7(c,d) (i.e. ln = lt = r = 0.15) and a base mesh whose sizing is

(i) 0.001 inside a zone large d = 0.01 around xn = 0 and on the solid inclusion;
(ii) 0.02 far from the solid inclusion;

and change only the discretisation in the zone of amplitude d including the numerical
Dirac delta function by multiplying the mesh sizes by a factor a. In figure 14, we compare
the integral of the second-order sensitivity and its standard deviation with respect to a low-
pass filtered signal S̃(2) for a ∈ [0.25, 10]. The oscillations of the second order sensitivity
decrease in amplitude as the mesh is refined (lower a) and its integral value along ∂M has
relative variations below 0.01 %. We conclude that these oscillations can be suppressed
with high mesh refinement, however, they do not influence the conclusions drawn in § 3.

1011 A51-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

27
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.277


K. Wittkowski, E. Boujo, F. Gallaire and G.A. Zampogna

REFERENCES

ALAVI, S.E., CHEIKHO, K., LAURENT, C. & GANGHOFFER, J.F. 2024 Homogenization of quasi-periodic
conformal architectured materials and applications to chiral lattices. Mech. Mater. 199, 105146.

ALLAIRE, G., DAPOGNY, C. & JOUVE, F. 2021 Chapter 1 - shape and topology optimization. In Geometric
Partial Differential Equations- Part II (ed. BONITO A. & NOCHETTO R.H.), Handbook of Numerical
Analysis vol. 22, pp. 1–132. Elsevier.

AURIAULT, J.-L., BOUTIN, C. & GEINDREAU, C. 2009 Heterogenous Medium: Is an Equivalent Macroscopic
Description Possible?,. John Wiley & Sons, Ltd.

AUTON, L.C., PRAMANIK, S., DALWADI, M.P., MACMINN, C.W. & GRIFFITHS, I.M. 2022 A homogenised
model for flow, transport and sorption in a heterogeneous porous medium. J. Fluid Mech. 932, A34.

BEAR, J. & BACHMAT, Y. 1990 Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer
Academic Publishers, Springer Dordrecht.

BOURGEAT, A., GIPOULOUX, O. & MARUSIC-PALOKA, E. 2001 Mathematical modelling and numerical
simulation of a non-Newtonian viscous flow through a thin filter. SIAM J. Appl. Maths 62 (2), 597–626.

CATARINO, S.O., RODRIGUES, R.O., PINHO, D., MIRANDA, J.M., MINAS, G. & LIMA, R. 2019 Blood
cells separation and sorting techniques of passive microfluidic devices: from fabrication to applications.
Micromachines 10 (9), 593.

CÉA, J. 1986 Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la
fonction coût. ESAIM: Math. Model. Numer. Anal. 20 (3), 371–402.

CHERNYAVSKY, I.L., LEACH, L., DRYDEN, I.L. & JENSEN, O.E. 2011 Transport in the placenta:
homogenizing haemodynamics in a disordered medium. Phil. Trans. R. Soc. Lond. A: Math. Phys. Engng
Sci. 369 (1954), 4162–4182.

CONCA, C. 1987 Etude d’un fluide traversant une paroi perforée I. Comportement limite près de la paroi.
J. Math. Pures Appl. 66, 1–43.

DAGAN, G. 1987 Theory of solute transport by groundwater. Annu. Rev. Fluid Mech. 19 (1), 183–213.
DAI, Q., XING, F., LIU, X., SHI, D., DENG, C., ZHAO, Z. & LI, X. 2022 High-performance pbi membranes

for flow batteries: from the transport mechanism to the pilot plant. Energy Environ. Sci. 15 (4), 1594–1600.
DALWADI, M.P., GRIFFITHS, I.M. & BRUNA, M. 2015 Understanding how porosity gradients can make a

better filter using homogenization theory, Proc. R. Soc. Lond. A: Math. Phys. Engng Sci. 471 (2182),
20150464.

DARCY, H. 1856 Les Fontaines Publiques De LA Ville De Dijon: Exposition et Application Des Principes à
Suivre et Des Formules à Employer Dans Les Questions De Distribution d’eau. Victor Dalmont.

FAGBEMI, S., TAHMASEBI, P. & PIRI, M. 2018 Pore-scale modeling of multiphase flow through porous media
under triaxial stress. Adv. Water Res. 122, 206–216.

FALCUCCI, G., AMATI, G., FANELLI, P., KRASTEV, V.K., POLVERINO, G., PORFIRI, M. & SUCCI, S. 2021
Extreme flow simulations reveal skeletal adaptations of deep-sea sponges. Nature 595 (7868), 537–541.

HASIMOTO, H. 1958 On the flow of a viscous fluid past a thin screen at small Reynolds numbers. J. Phys. Soc.
Japan 13 (6), 633–639.

HENDRICK, A.G., ERDMANN, R.G. & GOODMAN, M.R. 2012 Practical considerations for selection of
representative elementary volumes for fluid permeability in fibrous porous media. Transp. Porous Med.
95 (2), 389–405.

HENROT, A. & PIERRE, M. 2005 Variation et Optimisation De Formes. 1st edn. Springer.
HORNUNG, U. 1997 Homogenization and Porous Media. Springer.
ICARDI, M., BOCCARDO, G., MARCHISIO, D.L., TOSCO, T. & SETHI, R. 2014 Pore-scale simulation of fluid

flow and solute dispersion in three-dimensional porous media. Phys. Rev. E 90 (1), 013032.
JAMESON, A. 1988 Aerodynamic design via control theory. J. Sci. Comput. 3 (3), 233–260.
JAMESON, A., MARTINELLI, L. & PIERCE, N.A. 1998 Optimum aerodynamic design using the Navier–Stokes

equations. Theor. Comput. Fluid Dyn. 10 (1), 213–237.
JENSEN, K.H., BERG-SØRENSEN, K., BRUUS, H., HOLBROOK, N.M., LIESCHE, J., SCHULZ, A.,

ZWIENIECKI, M.A. & BOHR, T. 2016 Sap flow and sugar transport in plants. Rev. Mod. Phys 88 (035007).
JENSEN, K.H., VALENTE, A.X.C.N. & STONE, H.A. 2014 Flow rate through microfilters: influence of the

pore size distribution, hydrodynamic interactions, wall slip, and inertia. Phys. Fluids 26 (5), 052004.
KARIMI, M. & BHATTACHARYA, K. 2024a Accelerated computational micromechanics for solute transport

in porous media. Comput. Meth. Appl. Mech. Engng 426, 116976.
KARIMI, M. & BHATTACHARYA, K. 2024b A learning-based multiscale model for reactive flow in porous

media. Water Resour. Res. 60 (9), e2023WR036303.
LACIS, U. & BAGHERI, S. 2017 A framework for computing effective boundary conditions at the interface

between free fluid and a porous medium. J. Fluid Mech. 812, 866–889.

1011 A51-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

27
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.277


Journal of Fluid Mechanics

LEDDA, P.G., BOUJO, E., CAMARRI, S., GALLAIRE, F. & ZAMPOGNA, G.A. 2021 Homogenization-based
design of microstructured membranes: wake flows past permeable shells. J. Fluid Mech. 927, A31.

LU, W., YUAN, Z., ZHAO, Y., ZHANG, H., ZHANG, H. & LI, X. 2017 Porous membranes in secondary battery
technologies. Chem. Soc. Rev. 46 (8), 2199–2236.

LUCKINS, E.K., BREWARD, C.J.W., GRIFFITHS, I.M. & PLEASE, C.P. 2023 A homogenised model for the
motion of evaporating fronts in porous media. Eur. J. Appl. Maths 34 (4), 806–837.

MALONE, G.H., HUTCHINSON, T.E. & PRAGER, S. 1974 Molecular models for permeation through thin
membranes: the effect of hydrodynamic interaction on permeability. J. Fluid Mech. 65 (4), 753–767.

MEI, C.C. & VERNESCU, B. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific.
MOHAMMADI, B. & PIRONNEAU, O. 2001 Applied Shape Optimization for Fluids. Clarendon Press.
MOHANTY, K. & PURKAIT, M.K. 2011 Membrane Technologies and Applications. Taylor & Francis Group.
VAN NOORDEN, T.L. 2009 Crystal precipitation and dissolution in a porous medium: effective equations and

numerical experiments. Multiscale Model. Simul. 7 (3), 1220–1236.
PARK, K.-C., CHHATRE, S.S., SRINIVASAN, S., COHEN, R.E. & MCKINLEY, G.H. 2013 Optimal design of

permeable fiber network structures for fog harvesting. Langmuir 29 (43), 13269–13277.
RENEAUX, J. & THIBERT, J.-J. 1985 The use of numerical optimization for airfoil design. In 3rd Applied

Aerodynamics Conference, pp. 1–10.
ROBERTS, T. & DESAI, P. 2003 Periodic Porous Media Flows in Regenerators. Springer US.
ROLLAND DU ROSCOAT, S., DECAIN, M., THIBAULT, X., GEINDREAU, C. & BLOCH, J.-F. 2007 Estimation

of microstructural properties from synchrotron X-ray microtomography and determination of the rev in
paper materials. Acta Mater. 55 (8), 2841–2850.

SHIPLEY, R.J. & CHAPMAN, S.J. 2010 Multiscale modelling of fluid and drug transport in vascular tumours.
Bull. Math. Biol. 72 (6), 1464–1491.

SKINNER, S.N. & ZARE-BEHTASH, H. 2018 State-of-the-art in aerodynamic shape optimisation methods.
Appl. Soft Comput. 62, 933–962.

TIO, K.-K. & SADHAL, S.S. 1994 Boundary conditions for stokes flows near a porous membrane. Appl. Sci.
Res. 52 (1), 1–20.

VALDÉS-PARADA, F.J. & ALVAREZ-RAMÍREZ, J. 2011 A volume averaging approach for asymmetric
diffusion in porous media. J. Chem. Phys. 134 (20), 204709.

VAN NOORDEN, T.L. & MUNTEAN, A. 2011 Homogenisation of a locally periodic medium with areas of low
and high diffusivity. Eur. J. Appl. Maths 22 (5), 493–516.

VERKMAN, A.S. & MITRA, A.K. 2000 Structure and function of aquaporin water channels. Am. J. Physiol.
Renal Physiol. 278 (1), F13–F28.

WANG, C.Y. 1994 Stokes flow through a thin screen with patterned holes. AIChE J. 40 (3), 419–423.
WHITAKER, S. 1999 Theory and Applications of Transport in Porous Media: The Method of Volume Averaging.

Kluwer Academic Publishers.
WITTKOWSKI, K., PONTE, A., LEDDA, P.G. & ZAMPOGNA, G.A. 2024 Quasi-linear homogenization for

large-inertia laminar transport across permeable membranes. J. Fluid Mech. 1000, A46-1–A46-37.
ZAMPOGNA, G.A. & GALLAIRE, F. 2020 Effective stress jump across membranes. J. Fluid Mech. 892, A9.
ZAMPOGNA, G.A., LEDDA, P.G. & GALLAIRE, F. 2022 Transport across thin membranes: effective solute

flux jump. Phys. Fluids 34 (8), 083113.
ZAMPOGNA, G.A., LEDDA, P.G., WITTKOWSKI, K. & GALLAIRE, F. 2023 Homogenization theory captures

macroscopic flow discontinuities across Janus membranes. J. Fluid Mech. 970, A39.

1011 A51-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

27
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.277

	1. Introduction
	2. Modelling shape changes in porous membranes using first- and second-order adjoint methods
	2.1. From the pore geometry to the macroscopic flow
	2.1.1. The inner, pore-scale problem
	2.1.2. The outer, membrane-scale problem
	2.1.3. Matching inner and outer normalisations
	2.1.4. Solving the inner problem
	2.1.5. The macroscopic conditions
	2.1.6. Further considerations on the Navier tensors

	2.2. Sensitivity to shape changes in the microscopic geometry
	2.2.1. First-order sensitivity
	2.2.2. Second-order sensitivity


	3. Microscopic problems: comparison between direct and adjoint approaches
	3.1. Radial shape perturbations of a circular solid inclusion
	3.2. Displacement of the centre of a circular solid inclusion
	3.3. Application: efficient handling of parametric studies

	4. Comparison between macroscopic and full-scale solutions
	4.1. Membrane with random small perturbations of the solid inclusion
	4.2. Membrane with large systematic deformations of the solid inclusions

	5. Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


