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Abstract

The coincidence degree for the pair (L, N) developed by Mawhin (1972) provides a method for
proving the existence of solutions of the equation Lx = Nx where L: domL< X —Z is a
linear Fredholm mapping of index zero and N: Q— Z is a (possibly nonlinear) mapping and
Q is a bounded open subset of X, X and Z being normed linear spaces over the reals. In this
paper we have extended the coincidence degree for the pair (L, N) to solve the equation

Lx € Nx,
where L: dom L< X— Z is a linear Fredholm mapping of index zero, N: Q— CK(Z) and
X, Z and Q are as above, CK{Z) being the set of compact convex subsets of Z.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 47 H 15, 47 A 50; secondary
47 H 10, 47 A 55.

Keywords and phrases: Set-valued compact vector field, set-valued ultimately compact vector
field, k- ¢-contractions, coincidence degree.

Introduction

Let X and Z be normed linear spaces over the reals. Extensive researches have been
undertaken on the study of the operator equation

0.1) Lx = Nx,

where L:domL < X—Z is a linear mapping and N:domN<cX—>Z is a
(possibly nonlinear) mapping. The equation (0.1) represents a wide class of
problems including nonlinear ordinary, partial and functional differential equa-
tions. When L~ exists, the reduced equation x = L~! Nx is under the scope of
fixed point theory. For extensive literature for this case we refer to the survey
works of Dolph and Minty (1964) and Ehrmann (1965).
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When L~ does not exist and X and Z are Banach spaces, the basic works on
the study of the equation (0.1) are due to Cacciopoli (1946), Shimizu (1948),
Cronin (1950), Bartle (1953), Vainberg and Trenogin (1962), Vainberg and
Aizengender (1968) and Nirenberg (1960-1961). These works involve some small-
ness assumption on N. The method for finding solutions of the equation (0.1),
initiated by Cesari (1963) and (1964) and further developed by Locker (1967),
Bancroft et al. (1968) and Williams (1968) deals with a more general class of
mappings. For application of Cesari’s method to differential equation we refer to
Cesari (1969, 1971) and Hale (1969, 1971).

Using an equivalence theorem which reduces the problem of existence of
solutions of the equation (0.1) to that of fixed points of an auxiliary mapping and
Leray-Schauder degree, Mawhin (1972) developed a degree called the coincidence
degree for the pair (L, N) and applied to nonlinear differential equations (for
example, see Gaines and Mawhin (1977). In essence, Mawhin’s method preserves
the spirit of the works of the authors mentioned above.

In the recent past the Leray-Schauder degree theory for a single-valued compact
vector field has been extended to a larger class of single-valued mappings, namely
to k-set contractive vector fields by Nussbaum (1969, 1971), ball condensing
vector fields by Vainikko and Sadovskii (1968) and Borisovich and Sapronov
(1968), ultimately compact vector fields by Sadovskii (1968) (see also Sadovskii
(1972) and Danes (1974)). On the other hand, Leray-Schauder degree theory has
been extended to set-valued compact vector fields by Granas (1959), Cellina and
Lasota (1969), Ma (1972) and more recently to ultimately compact vector fields by
Petryshyn and Fitzpatrick (1974).

The coincidence degree of Mawhin (1972) has been sharpened by Hetzer
(1975a, b) by replacing the complete continuity assumption by k-set contraction
with k<1 and Leray-Schauder degree by the corresponding degree of k-set
contractive vector field mentioned above.

The purpose of this paper is to consider the equation

0.2) LxeN(x),

where L: domL c X — Z is a single-valued linear Fredholm mapping of index
zero and N: dom N < X - CK(Z) is a mapping, X and Z being normed linear
spaces.

Like Mawhin (1972) we have proved equivalence theorems which reduce the
problem of existence of solutions of the equation (0.2) to that of fixed points of
an auxiliary set-valued vector fields given by Petryshyn and Fitzpatrick (1974),
and we have built up the coincidence degree theory for the pair (L, N) appearing
in the equation (0.2). We have proved that this degree has all the usual properties
of a degree theory. We have also extended the Rouche’s theorem and the Leray-
Schauder continuation principle to our context.
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1. Degree theory for set-valued ultimately compact vector fields

In this section, we shall recall the concept of an ultimately compact mapping
and the degree theory of such mappings as introduced by Petryshyn and
Fitzpatrick (1974). We shall also consider the definition of measure of non-
compactness and the definition and properties of k — ¢-contractions as a special
class of ultimately compact mappings.

1A. Notations and definitions

Let X denote a separated locally convex topological vector space over the reals
with the additional property that for each compact subset 4 of X, there is a
retraction of X onto the convex closure of A. By virtue of a theorem due to
Dugundji (1951), this property automatically holds when X is metrizable, espec-
ially when X is a normed linear space. For any B c X, let CO B denote the convex
closure of B and let B and 6B denote respectively the closure and boundary of B.
Let K(B) and CK(B) denote respectively the set of nonempty closed convex sub-
sets of B and the set of nonempty compact convex subsets of B. If Fis a set-valued
mapping, then F(B) = |Jep F(x).

DEerFINITION 1.1. A mapping F defined on a set B < X and taking values in the
set of subsets of X is said to be upper-semicontinuous, henceforth denoted u.s.c.,
if, given an open set V in X with F(x) c V, there exists an open subset W of X
containing x such that F(W) < V. A u.s.c. mapping F is said to be a compact
vector field if (I— F)(B) is relatively compact.

CONSTRUCTION. Let @ = X be an open set and let F: @ — K(X) be u.s.c. We
define a transfinite sequence {K,} as follows:

K,=COF®)

K — {@F(ﬁn K,_,) if «is an ordinal such that a—1 exists,

n K, if o is an ordinal such that «—1 does not exist.
pLa

It is easily verified that the following properties hold:
(1.1) each K, is closed, convex and K, = K; for all a > B,

1.2) F(K,nQ) < K, for each ordinal a.

Since the transfinite sequence {K,} is nonincreasing, there is an ordinal y such
that K, =K, and hence, K; = K, for each f > . We define K =K(F,Q) =K,
Clearly,

K,=K,,; =COFQnK,)=COFQnK).
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We thus have
1.3) K=MNK,=COFQnK).
8

DEFINITION 1.2. A u.s.c. mapping F: Q — K(X) is said to be ultimately compact
if either KnQ = or, if KnQ # &, then FQ N K) is relatively compact. If
F is an ultimately compact mapping, we shall call J—F an wltimately compact
vector field, where I is the identity mapping on X.

DEFINITION 1.3. Let Q < X be open and let F: § — K(X) be ultimately compact
with 0¢ x — F(x) for each xedQ. If Kn Q is empty, define the degree of I—F on
Q with respect to zero, denoted by d(I—F,Q,0), to be zero. If KnQ # &, let p
be a retraction of X onto K and define

(1.4 d(I-£,Q,0) = d(I- Fp,p~'(Q),0),

where the right-hand term is the degree for compact set-valued vector fields given
by Ma (1972).

ReMARK 1.1. To see that this degree is well defined and has all the usual proper-
ties of the Leray-Schauder degree, please refer to Petryshyn and Fitzpatrick (1974).

The following theorem which we shall use later in the proof of the Continuation
Theorem seems to be new and has its own interest.

THEOREM 1.1. (Reduction Formula.) Let X be a metrizable, locally convex
topological vector space with the additional property that, for each closed subspace
E and any compact subset B of E, there exists a retraction of E onio the convex
closure of B. Let F: Q — K(X) be an ultimately compact mapping such that x ¢ F(x)
Jor each xe Q. Let E, be a finite dimensional subspace of X containing the closure
of F(Q)). Then

d(I-F,Q,0) =d(I— F |gg,, Q N Ey, 0).

PrOOF. As K is a closed convex compact set, K N E, is also closed convex and
compact. Let p;: E, » Kn E, be a retraction of E, onto Kn E,. Now define
p2: KU Ey— K by

_Jpi(x) if xeE,

p2(x) —{ if xeK.

As p, is a retraction of E, onto Kn E,, p;(x) =x for all x in Kn E, and it is
clear that p, is well defined in KU E,. Also, since KN E, < (K E,), and p,
is continuous on E,, p, is a continuous mapping on the closed set KU E,. By
Dugundji’s Extension of Tietze’s Theorem (1951), there exists an extension p of
P2, p: X>COp(KUE,) such that p is continuous. Now as p,(Ku Ey)=K
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which is closed and convex, p is a retraction of X onto K and is an extension of
p, and p,. Now,

xepi QNEy)<p, xeQ and p,xeE,
<xeE, and px=p,xeQ
<xeE,np Q).
Hence we have p; 1(QuU E,) = Eo n p~ (Q). By Definition 1.3,
d(I - F |5ng, QN E, 0)=d(I-Fp, l(p;"‘(ﬂnEo))"’ I l(Q N E,),0)
=d.(I-Fp, '(p“(ﬂ)nEo)“9 [ 1(Q) N Ey,0)
=d(I-Fp I(P"(ﬂ)nEo)‘! [ 1(9) N E,,0).

By the continuity of p and the hypothesis of the theorem that (F(Q))~ < E,, we
have

(Fo(p='(@)7)™ =(Fp(p~' @)~
<= (F())~
< E,. S
Hence, we may apply Theorem 11.1 of Ma (1972) and we have

d.(I—Fp) | (p-1q)nEep)-s P~ Q) N E,,0)
= c(I_Fp,p_l(Q)’ 0)
=d(I-F,Q,0),
the last equality holding by Definition 1.3 as p is a retraction of X onto K. Hence

we obtain the required result,

d(I— F,Q,0) = d(I— F|5,.5Q  Eq,0).

1C. k— @-contractions

DEerFINITION 1.4. Let C be a lattice with a minimal element which we denote by
zero, 0. A mapping ¢: 2¥ —» C, where 2% denotes the family of all subsets of X,
is called a measure of noncompactness if, for any A = X, B < X, it satisfies the
following properties:

(&) ¢(CO 4) = p(4),
(1.6) ¢(4)=0 if and only if 4 is precompact,
1.7 @(4 v B) = max {¢(4), ¢(B)}.

It follows from (1.7) that 4 = B= ¢(4) < ¢(B).
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DEerFINITION 1.5. Let ¢ be a measure of noncompactness and we additionally
assume that the lattice C has the property that, for each ce C and AeR with
A >0, there is defined an element Ace C. An u.s.c. mapping F: Q — CK(X) is
called a k—¢-contraction or a k— @-contractive mapping if there exists some
k > 0 such that, for every subset 4 of G,

P(F(A4) < ko(A).

The following three propositions follow almost immediately from the definition of
a k— ¢-contraction and the proofs will be left to the reader.

PROPOSITION 1.1. Let ¢ be a measure of noncompactness as given in Definition 1.5,
with the additional property that, for any A < X, B c X,

(1.8) ¢(A+B) < ¢(4)+¢(B)
If F: Q- CK(X) and G: Q— CK(X) are k- and k,-p-contractions respectively
then (F+G): Q — CK(X) defined by

(F+G)(x) = F()+G(x)

is a (k,+k,)— @-contraction.

PROPOSITION 1.2. Let @ be a measure of noncompactness as in Definition 1.5.
Let F: Q — CK(X) be a k, — @-contraction and let G: X — X be a linear, continuous,
single-valued mapping such that, for each A = X, we have

o(G(A)) < k,90(4)
Then GF: Q — CK(X) defined by
GF() = {GU): ye F()}
is a ky k, — @-contraction.

NoTE. Linearity and continuity of G ensures that GF(x) is a compact, convex
set for each xeQ.

PROPOSITION 1.3. Let ¢ be a measure of noncompactness as in Definition 1.5. If
F and G are k— @-contractions, then so is AF+(1—2)G, where Ae[0,1].

THEOREM 1.2. Let ¢:2¥ > R* ={teR:t>0}u {0} be a measure of non-
compaciness and suppose that F: Q — CK(X) is a k— @-contraction with 0 <k <1
and o(F(Q)) < oo. If either X is quasi-complete or Q is complete, then F is ultimately
compact.

ProoF. This follows from Lemmas 3.2 and 3.4 of Petryshyn and Fitzpatrick
(1974).
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The k—¢-contractions as defined in Definition 1.5 are a generalization of
k-ball-contractions and k-set-contractions for multivalued mappings and are an
extension of the k — ¢-contractions for single-valued mappings. Nussbaum (1971)
and Sadovskii (1972) have made contributions in these cases and more generalized
multivalued k— @-contractions were introduced by Petryshyn and Fitzpatrick
(1974). In the following we shall recall the ¥ and y measures of noncompactness
and restate some of the properties of the k — @-contractions for such ¢.

If {p,: a€ A4} is a family of seminorms which define the topology on X, given
ae A4 and Q < X, we define

JA()] =inf{e >0:3x,,..,x,} = X, with Qc U {y: p(x;—y) < s}},
i=1

7,(Q) =inf {&¢ > 0: Q can be contained in the union of a finite number of sets,
each with p,-diameter < &}.

Let C={p: 4> R* be the set of all mappings from 4 into R*} with the usual
definitions of ordering, maximum, multiplication by a real number, etc. Then C
forms a lattice and the two mappings y: 2X  C and y: 2X  C are defined by

X)) =x(Q) and Q) x) =7,Q)
for every ae 4, Q < X.

It can be verified that y and y are measures of noncompactness and, furthermore,
they satisfy the following:

(1.92) B c X is bounded if and only if y,(B) or y,(B) is finite for each ae 4.
(1.9b) B < X is precompact if and only if, for each ae 4,
7o(B) = 1.(B) =0,
(1.9¢) x(AQ) = 1| x(Q),
PAC) =1A|p(Q) foranyQc X, AeR.

(19d) ForanyQ, c X, Q,c X,

21 +Q,) < x(Qy)+x(Q2),

Q1 +Q2) < 7(Q)+1(Q).

THEOREM 1.3, Let F: Q— CK(X) be a k— p-contraction where 0 <k <1 and
@ =x or y. Suppose that either X is quasi-complete or Q is complete and suppose
that F(Q) is bounded. Then F is ultimately compact.

The proof follows immediately from Lemmas 3.2 and 3.5 of Petryshyn and
Fitzpatrick (1974.)
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Suppose X is a normed linear space with norm || | and the metricd: X x X —» R*
is defined by d(x,y) = |l x—y|. If we let the norm || | be the only element of A4,
the set C is isomorphic to R* and y and y reduce to the ball- and set-measures of
noncompactness. Let us denote these two measures of noncompactness by yx, and
4 Tespectively.

THEOREM 1.4. (a) Let F be a k— @-contraction where ¢ =y, v, x4 or v4. Then for
A€R, Afis a | 2|k — ¢p-contraction.

(b) Suppose F and G are k,— and k,— @-contractions respectively where ¢ is
%> V> Xa OF V4. Then (F+G) is a (k,+k,)— p-contraction.

(These results follow immediately from (1.9¢c) and (1.9d) and Proposition 1.1.)

2. Notations and algebraic preliminaries

We shall include in this section some preliminary results obtained by Mawhin
(1972) (see also Gaines and Mawhin (1977) which we shall use in the section 3).

Let L be a linear single-valued operator between X and Z, two vector spaces,
where dom L, the domain of L, is a subspace of X. We shall denote the kernel or
null-space of L, L~1(0), by ker L, the range space of L, L(dom L), by Im L and the
quotient space Z/Im L, the cokernel of L, by coker L.

Given a vector subspace Y of a vector space E, there always exists a projection,
a linear and indempotent operator, P of E onto Y and E is the direct sum of
ImP =Y and kerP. If E is a topological vector space, and P is a continuous
projection, then E is the topological direct sum of Im P and ker P.

DeriniTION 2.1, If X, Z, L are as above, let P and Q be projections on X and Z
respectively such that Im P =ker L and ker Q@ =Im L. Such a pair of projections
(P, @) will be called exact with respect to L.

DEFINITION 2.2. Let L, be the restriction of L to kerPndomL. The L, is an
isomorphism from kerP ndomL to ImL. Let K,: ImL —ker PndomL be the
inverse of L,. K, is then called the pseudo inverse of L associated with P.

Let n: Z — coker L be the canonical surgection, that is nz =z+ImL for each
zeZ. Clearly, the restriction of n to Im Q is an algabraic isomorphism. If Z is a
topological vector space and cokerL is given the quotient topology, then 7 is
continuous.

The following results are almost immediate:

@1 PK, =0,

2.2) LK,=L,K,=1,
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2.3) K,L =KPL(I—P) =J]—P,
(2.49) Qz=0<zelmL<snz=0,

where the zeros denote the null elements of the respective spaces.
The following two results are also easy consequences of the above.

PROPOSITION 2.1. Let (P, Q) and (P’, Q') be pairs of projections exact with respect

to L. Then
2.5) K, =({-P)K,,
(2.6) PK,+P' K,=0,

where K,, K, denote the pseudo-inverses of L associated with P and P’ respectively.

PROPOSITION 2.2. Let P, P’ be projections of X onto kerL and let P" = aP+bP’
Jor some real numbers a,b. Then, P” is a projection onto kerL if and only if
a+b=1. If this necessary and sufficient condition holds, the pseudo inverse of L
associated with P” is given by

K, =aK,+bK,.

3. Coincidence degree for set-valued ) _ p-contractive perturbations of linear
Fredholm mappings

In this section, we will extend the notion of coincidence degree as developed by
Mawhin (1972) to the case where the second mapping is set-valued. Such a degree
theory will provide a method for proving the existence of solutions to the equation

LxeNx.

3A. An equivalence theorem

THEOREM 3.1. Let X and Z be two vector spaces over the same scalar field. Let
L:domL c X — Z be alinear mappingand N: A = X — 2% be a set-valued mapping.
Further, assume that there is a linear injective (one-to-one) mapping

Y coker L — ker L.
Then xoedomL n A is a solution of the equation
3.1) Lxe Nx
if and only if x, is a fixed point of the set-valued mapping M,,: A — 2* defined by
3.2) My x =Px+[yn+K,(I— Q)INx
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for every pair (P, Q) of exact projections with respect to L, where n and K, have
their meaning as explained in Section 2. In other words,

3.3) (L—=N)"'(0) =I—M,)~(0).

ProoF. Since the images under P and y are contained in ker L and that under
K, is in X;_pndomlL, it is clear that M ,(4) = dom L. First, let us suppose that
xo€ A ndomL with Lx,€ Nx,. Then

n+K(I- Q)1Lx, € [yn+ K (I— Q)] Nx,.
Hence using (2.3) and (2.4) we have

(I—P)xoe[Yn+K,(I— Q]Nx,.
Therefore
Xo€M 4 x,.

Next, let us suppose that xoe 4 ndom L with x4 € M, x,, that is
3.4 Xo€Pxo+[Yn+K,(I— Q)INx,.

Since the operator yn+K,(I—- Q) is injective (see Lemma 3.3) we have

3.5) Wr+K,(I— Q)1 '[Yn+K,(I— Q)]Nx, = Nx,.

Hence it follows from (3.4) and (3.5) that

(3.6) [Yr+K,(I—- 0)1~'(I— P)x, € Nx,.

Thus

(3.7 [+ K- Q)] = [(n/Im @)~ ¢~ ! P+L]

yields Lx,€ Nx,, where n/Im Q denotes the restriction of = to Im Q. We now
establish (3.7).

For each zeZ we have by using (2.2)

[(x/Im @)~ 'y~ P+LI[Yn+K,(I- Q)2
=@/Im Q) 'nz4+(I—-Q)z=Qz+(I—-Q)z=1z.

Also if xedom L, then using (2.3) and (2.4) we have
Wrn+K,(I- Q)1 [(n/Im Q)= 'y ~' P+L]x = Px+(I-P)x = x.
3B. Basic a.ssumptions

Before we define the coincidence degree for (L, N), we shall state the assumptions
which we shall make on the mappings.
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ASSUMPTIONS. (a) X is a real Banach space and Z is a real normed linear space.
(b) L:dom; €« X — Z is a linear Fredholm mapping of index zero defined on a
subspace dom L of X, that is L is linear, Im L is closed and

dim ker L = dim coker L < oo,

where ‘dim’ denotes dimension.

(c) Q is a bounded, open set in X and the set-valued mapping N: Q — CK(Z)
takes each x in the closure of Q to a nonempty compact convex subset of Z.

(d) N is upper-semicontinuous with 7N(Q) bounded in coker L.

(e) Let (P, Q) be an exact pair of projections with respect to L and let K|, be the
pseudo-inverse of L associated with P. Let ¢ be a measure of noncompactness
defined on 2¥ such that either (i) ¢ satisfies the subadditivity condition of
Proposition 1.1 and takes values in R* = {teR: t > 0} U {0} or (ii) we addi-
tionally assume that Z is a Banach space and ¢ is one of y, y, x; and y,. We assume
that with such a measure of noncompactness ¢, K,(I— Q)N is a k — ¢-contraction
with 0 < k < 1 and that ¢(K,(/— Q)N(Q)) <. In this case we also assume that
K, is continuous.

(f) 0¢ (L— N)(dom L n Q) where 02 denotes the boundary of Q.

ReMARK 3.1. From assumption (b), the exact pair of projections (P, Q) may be
assumed continuous and will hereafter be assumed continuous. Moreover, with
the quotient norm topology cokerL is a normed space and the canonical sur-
jection = is continuous with respect to this topology. Also, (b) is sufficient con-
dition for the existence of a linear isomorphism : coker L — ker L.

PROPOSITION 3.1. Let assumptions (a) to (d) hold and let (P, Q) and (P', Q') be
exact pairs of continuous projections with respect to L. Suppose that (P, Q) satisfy
assumption (¢). Then the pair (P', Q') also satisfies the assumption ().

PROOF. Writing ny = n/Im Q and 7y, = n/Im Q' and using (2.5) we have

(3.8) K,(I-Q)N=(I-P)K(I-Q)N
=({I-P)K(I-QN+(I-P)K,(Q-Q)N
=({I-P)K,I-QN+(I-P )Kp(na t —n@‘)nN,

where K » denotes the restriction of K, to the finite dimensional subspace

(Q—-0)Z. Thus K , is continuous. Since 7N(Q) is bounded in a finite dimensional

subspace of X, it follows that (I—P')K,(n;'—ng')nN is a 0— ¢-contraction.

Hence from Propositions 1.1 and 1.2 it follows that K,(I— Q)N is a k—¢-

contraction. That K, is continuous follows from (2.5) as K, and (I- Q") are

continuous. Finally applying ¢ to both sides of (3.8) and using subadditivity of ¢
we can easily show that @(K,(I— Q")N(Q) < co.
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DEFINITION 3.1. A mapping N: Q — CK(Z) satisfying (c), (d) and (e) is said to
be a L—k — @-contraction. (We see that this is a proper definition as assumption ()
is independent of the choice of (P, Q).)

3C. Definition of coincidence degree

PROPOSITION 3.2. Suppose assumptions (a) to (e) are satisfied and M, is the
mapping defined in Theorem 3.1 for some continuous isomorphism

Y: coker L — ker L.

Then for each x in Q, M, x is a compact convex subset of X and M, is a k—¢-
contraction.

PrOOF. Since P, Q, K,, Y and = are all linear and N(x) is convex for each
x€ Q, it follows that M, x is convex for each xeQ. Again since P, Q, K, and ¢
are continuous and Nx is compact, M, x = Px+[yn+K,(I— Q)]Nx is compact
for each xe Q3.

Now P is linear continuous and has a finite dimensional range. Hence P is
compact and is, therefore, a 0— @-contraction. Also ¥z N(QQ) being bounded sub-
set of a finite-dimensional subspace is relatively compact.

We now prove that [Yyn+K,(I—Q)IN is a k—q-contraction. Let 4 < Q.
Noting that

[Yyn+ K (I— Q)IN(A) = ynN(A)+K,(I—- Q) N(4)
we have

P(lYn+ K, (I~ Q)IN(4)) < o(YnN(A)+ K, (I— Q)N(4))

< (YnN(A) + (K, (I— QIN(4))
(by subadditivity of ¢)
< ko(4)

as e(YnN(4) =0, ynN(A) being relatively compact. Now from Proposition 1.1 it
follows that M, is a k— ¢@-contraction from Q to CK(X).

REMARK 3.2. We note that assumption in (¢) that K, is continuous has been
used to prove that M, x is a compact subset for each xeQ. This assumption is
not unrealistic. For, if in addition to the assumption (b) L: domL X—->Z is a
closed operator and Z is a Banach space, then K, is continuous. To see this let
Yn—Y, yo€ImL and K, y, = x,, — x. Since

Lx,=LK,y,=y, and x,edomLn X,_p,

we have by closedness of L that Lx =y and xedom L. Clearly xe X, _p as X;_p s
closed. Hence K,y =K,Lx=(I—P)x=x and obviously yeImL as ImL is
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closed. Thus K, is closed. Again since ImL is closed, the closed graph theorem
yields that K, is continuous.

ReMARK 3.3. From Proposition 3.2, we see that if the assumptions (a) to (f)
are satisfied M is an ultimately compact mapping (sece Theorems 1.2 and 1.3). It
follows from assumption (f) and Theorem 3.1 that O¢(/— M ,)(domL N Q).
Thus the degree of the ultimately compact field 7— M, with respect to zero is
well defined.

DerFINITION 3.2. Let %, denote the set of all continuous isomorphisms from
coker L to ker L. y, /' are said to be homotopic in & if there exists a continuous
mapping ¥: coker Lx [0,1]— kerL such that §(-,0) =y, ¥(-,1) =y’ and, for
each Ae[0,1], ¥(-,N)e Z;.

RemArk 3.4. To be homotopic is an equivalence relation which partitions %,
into equivalence classes called homotopy classes.

The following two propositions and corollary are quoted from Gaines and
Mawhin (1977): :

PROPOSITION 3.3.  and ' are homotropic in &y, if and only if det ()’ y~*) >0.
COROLLARY 3.1. &, is partitioned into two homotopy classes.

DerFmviTION 3.3. i cokerL - kerL is said to be orientation preserving if
{ay,¥a,,...,ya,} belongs to the orientation chosen in ker L where {a,,a,, ...,a,}
is a basis for coker L belonging to a certain chosen orientation. Otherwise, V¥ is
said to be orientation reversing.

PROPOSITION 3.4. If coker L and ker L are oriented then y and ' are homotopic
in &, if and only if they are simultaneously orientation preserving or orientation
reversing.

Lemma 3.1. Let X and Z be normed linear spaces and let Q be a bounded open
subset of X. Let ¢: 2¥ — C be a measure of non-compactness as given in assumption
(©). Let F:Qx[0,1]— CK(X) be an upper-semicontinuous mapping such that
o(FQx[0,1])) < o and, for some ke(0, 1), we have

O(F(Ax[0,1]) < ko(4) for every A = Q.
Then F(K' n Q) x [0, 1]) is relatively compact where
K’ = K(F,0x[0,1]).
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PROOF. As K’ =K(F,Qx[0,1]) =CO F(Q@ ~ K")x[0,17),
P(K'nQ) < oK) =o(FQ N K')x[0,1])
<ko@ AN K.
As 0 < k <1, and o(F(Q x [0, 1])) <00, we have
oK' nQ) = p(F(Q N K")x [0,1])) =0.

Hence, K’ nQ and F(Qn K')x[0,1]) are precompact and by the assumption
that Q is complete, we conclude that F((Q n K') x [0, 1]) is relatively compact.

THEOREM 3.2. Let assumptions (a) to (f) be satisfied. Then d(I—M ;,Q,0) as
defined in Definition 1.3 depends only on L, N and the homotopy class of Y in ¥£,.

ProOF. Let (P, Q) and (P, Q') be exact pairs of projections with respect to L.
Let y,Y’ € £, be in the same homotopy class.and let §: coker Lx[0,1] — kerL
be the mapping in Definition 3.2. Let

M' =P +[Y'n+ K, (I-Q)]N.
For each A€[0, 1], define
P,=1-1)P+iP,
0,=0-1HQ+1Q".
By Proposition 2.2, (P,;, Q,) is an exact pair of projections with respect to L.
Moreover, Po =P, Py =P, Qo =Q and Q,=Q" and KP, =(1-A)K,+AK,.
Define M*: Qx [0, 1] - CK(X) by
M*(x,2) = Px+[¥(n(-), )+ KP (I- Q ;)]Nx.
By theorem 3.1 and assumption (f),
x¢ M*(x, 1) for every xeoQ, Ae[0,1].
Also, M*(-,1) =M’ and M*(-,0) =M.
We claim that M*((Q n K’) x [0, 1]) is relatively compact, where
K' = K(M*,Qx[0,1]).
Now, writing explicitly,
M*(x,2) = (1 = D)Px+AP' x+[¥(xn(+), A)
+{(1-DK,+AK, } {I-(1-2)Q—1Q'}INx
= =D)Px+AP' x+[Y(n(-), 1)
+{(L - DK+ M~ P)K I~ Q+1(Q— @)} INx
=(1=Px+AP'x+[Y(x(), ) +{I—-AP)K (I- Q)
+A(I—APYK(Q— Q")]Nx.
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Using the same argument as in Proposition 3.1 we can show that for each
A€[0,1], A—AP) K (Q— Q)N is 0— p-contraction. Now by using the assumption
(e) and similar argument as in Proposition 3.2 we can show that for each A¢[0, 1].

W@(-), H+I-AP) K, (1 - Q)+ AI-AP) K (Q— O)IN

is k—¢-contraction (note that P and P’ being compact maps are both 0—g-
contraction). Thus, it follows from Propositions 1.1 and 1.2 that for each
A€[0,1], M*(-,A) is a k— ¢-contraction.
Now,
oM (4x[0, 1) =0( U M*(4,D)
Ae[0,1]

= max ¢(M*(4,4)).

A¢e[0,1]
Since for each 1e[0, 1], M*(-, 1) is a k— p-contraction
P(M*(Ax[0,1])) < kp(A4).
From the preceding lemma, M*((Q K’)x[0,1]) is relatively compact. By the
Homotopy Invariance Theorem given in Petrysyn and Fitzpatrick (1974),

d(I—M*(+,0),Q,0) =d(I-M*(-,1),Q,0)
or
d(I-M,Q,0) =d(I-M',Q,0).
Thus the degree of /— M, on Q with respect to zero is independent of the choice
of P, O and y within the same homotopy class.

DEerINtTION 3.4. Suppose that assumptions (a) to (f) are satisfied and ¥ is an
orientation preserving continuous isomorphism from coker L to ker L. Then, the
coincidence degree of L and N in Q, denoted by d[(L, N),Q], is defined by
(3.9) d[(L,N),Q} =d(I—M,Q,0),
where M,: Q — CK(X) is defined by

M, =P+[yn+K (I~ QN

and the right-hand term is the degree for the set-valued ultimately compact field
I—M, as defined in Definition 1.3.

REMARK 3.3. (a) If X=2Z, L =1, then kerL = {0} and thus cokerL = {0}.
This implies that ImL = X and hence, P =0, @ =0 and K,(I— Q) =1 and the
only isomorphism between cokerL and kerL is the trivial one y(0) =0. The
assumption (b) is trivially satisfied and (e) reduces to assuming that N is a k—¢-
contraction for some k in (0, 1) with @(N(Q)) < co. Assumption (f) means that N
has no fixed points on the boundary of Q. As M, =N, we have

d[(I,N),Q] =d(I-N,Q,0).
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We may, in fact, replace assumption (¢) by the assumption that N is ultimately
compact.

3D. Basic properties of the coincidence degree

In this section, unless otherwise specified, we shall assume that assumptions (a)
to (f) are satisfied such that the Coincidence Degree is well defined.

THEOREM 3.3. (a) Existence Theorem.
If d[{L,N),Q] # 0, then 0e(L—N)(domL n Q).

(b) Additivity Property.
Let Q,,Q, be disjoint open sets such that Q,uQ,cQ Q, U, =8 and
0¢(L—N)(0Q, U 0Q,). Then,

d[(L,N),Q] =d[(L,N),Q,]+d[(L, N),Q,].
(c) Excision Property.
If Q, = Qis an open set such that (L— N)~'(0) = Q, then

d[(L9 N), Q] = d[(L, N): Ql]-

PROOF. (a) and (b) follow from the Definition of Coincidence Degree and the
corresponding properties of degree of an ultimately compact vector field given by
Petryshyn and Fitzpatrick (1974). By taking Q, =Q\Q,, that is

Q, ={xeQ: x¢Q}.
The result (c) follows from (a) and (b).

THEOREM 3.4. If Q is a symmetric bounded neighbourhood of the origin and
N(—x) = —Nx for all xeQ, then dL,N),Q] is odd.

PROOF. Note that, as P, Q, K,,, ¥ and = are all linear, the condition on N implies
that M (—x) = —M(x) for all xeQ. Thus, by the corresponding property of
degree of an ultimately compact vector field (Petryshyn and Fitzpatrick (1974))
and the definition of Coincidence Degree, d[(L, N),Q] is odd.

THEOREM 3.5. (Homotopy Invariance.) Let assumptions (a) and (b) be satisfied
and let Q be a bounded, open subset of X. Let ¢, P, Q and K, be as given in assump-
tion (¢) and suppose N: Q x [0, 1] » CK(Z) satisfy the following

() N is upper-semicontinuous on Q x [0, 1],

(ii) =N x [0, 1]) is bounded,

(iii) (K, (I—QNE@x[0,1])) < oo,

(iv) there exists ke (0, 1) such that, for every A = Q,

(K (I- DN (4 x[0,1) <ko(4),
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(v) for each A€[0,1],
(3.10) 0¢(L—N(-,))(dom L n 6Q).
Then, d[(L, N(-, 1)), Q] is independent of A in [0, 1].

ProoF. Let y: cokerL — kerL be an orientation preserving continuous iso-
morphism. Define M,: Qx [0, 1] - CK(X) by

M(x,2) =Px+[yn+K,(I— OIN(x, ).

Then, by Lemma 3.1 and (v), M, satisfies the conditions of Theorem 2.2
of Petryshyn and Fitzpatrick (1974). Hence, by the definition of Coincidence
Degree,

dl(L, N(-,0)), Q] =d[(L, N(-, 1),Q].

Now, for any 1e[0,1], let A’ =4t and apply the above to N'(-,?#), te[0,1]
where N'(-, 1) = N(-, 1'). Then,
d[(L, N(-, 2),Q] =d[(L,N'(-,1)),Q]
=d[(L,N'(-, 0)),Q]
=d[(L,N(-,0),Q].

Hence, d[(L, N(-, 4)), Q] is independent of A in [0, 1].

COROLLARY 3.2. Let assumptions (a) and (b) hold and let Q be an open bounded
subset of X. Let N and N' be two L—k— ¢@-contractions on Q satisfying (f) such
that Nx = N'x for each xe 0Q. Then d[(L,N),Q] =d[(L,N"),Q].

PrOOF. Define
N:Qx[0,1]- CK(Z)
by
N(x,2) =(1 =A)Nx+AN'x.

Then N is clearly upper-semicontinuous and satisfies all the other conditions of
Theorem 3.5. Hence by Theorem 3.5,

d[(Ls N) Q] =d[(L’ N( s 0))’ Q]
=d[(L,N(-,1)),Q]

and hence,
d[(L, N)’ Q] = d[(La N,), Q]'

DeFINITION 3.5. Let X and Z be normed linear spaces with norms denoted by
[l lI. Let x be any point of X (or Z) and let A, B be subsets of X (or Z). Then
D*(x,A) =inf{|| x—a||: ac A} is the usual distance between x and 4 and we
define
d*(4,B)=inf{|a—b|: acA,beB}
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to be the distance between 4 and B. In fact, d*(x, A) is equivalent to the distance
between A and the singleton {x}.

LEMMA 3.2.
d*(x, A)+d*(B,C) =z d*(x, A+ C—B).

PrOOF. If ae 4, be B and ceC, a+c—be A+ C— B and hence, for every ae 4,
beB, ceC,
| x—(a+c—b)|| > d*(x,A+C—B)
Now,
| x—(a+ec=b)| < |x—al+lb—c]

Hence, for every ae A, be B and ce C, we have

a*x,A+C-B) < [[x—al|+[b—c]|
and so,

d*(x,A+C—B) <inf{||x—a|: ac A} +inf{|b—c|: beB,ceC}
— d*(x, A)+d*(B, C).

LEMMA 3.3. For each xedom L N Q, we have

(I—Myx =[Yrn+K(I- QUL~N)x,

where Yyn-+ K, (I— Q) is an algebraic isomorphism between Z and dom L.

ProOF.

Wr+K,(I-DIIL—-N) =[Yn+K,(I—- Q)IL—[Yr+K,(I—Q)IN
=K, (I- Q)L—[yn+K,(I-Q)IJN by (2.4)
=K, L—-[Yn+K,(I-Q)IN
=I-P-[yn+K,(I-Q)JN by (2.3)
=I-M,.

To show that yn+K,(I— Q) is an isomorphism, consider the equation
(3.11) K- Oz =y

for some yedom L.
This is equivalent to

(3.12) ynz =Py,
(3.13) K,(I-Q)z=I—-P)y.

Now, as kern =ImL =Im(I—Q), yn,, the restriction of Yyn to ImQ, is an
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isomorphism from Im Q to ker L and hence (3.12) is equivalent to

(3.14) Qz =(mny)~' Py
and since LK, = I and LP =0, (3.13) is equivalent to
(3.19) (I-Qz=LI-P)y=Ly
Hence,

z=Qz4+(I—-Q)z

= (np)~* Py+Ly.
This shows the existence and uniqueness of the solution z of equation (3.11) for

each given y in domL. Hence yYn+Kp(I— Q) is an isomorphism from Z to
dom L.

LeMMA 3.4. Let assumptions (a) to (f) be satisfied. If M ,(0Q) is relatively compact,
then there exists p > 0 such that

(3.16) inf {d*(Lx, Nx): xedQ ndomL} > p.

ProoF. By assumption (f), d*(Lx, Nx) > O for all xedQ n dom L. Now, suppose
that for all u > 0, (3.16) does not hold. Then for each positive integer n, there
exists x,€ 0Q ndom L such that

1
d*(Lx,, Nx,)< -

Now, d*(x,, M , x,) < || x,—y| for all ye M, x,.
Using the preceding lemma and noting that yn+K,(/— Q) is a continuous
linear operator from Z onto dom L, we have for each z,e Nx,,

Yrn+K,(I- Q)(Lx,—z,) =x,—y for some ye M, x,.
Hence, for all z,e Nx,,
In+ K (I— Q) (Lx,—2,) | = d*(xp, My X,,).
If [yn+K,(I- Q)] =a 20,
d*(x,, M, x,) < |[Ym+ K, (I— Q)| Lx,— 2z,

=a|Lx,—z,|]| forall z,eNx,
Hence,

d*(x,, M, x,) <ad*(Lx,, Nx,)
<al
n
Thus for each integer n, there exists some u, € M, x, such that

o
II Xp— U, " < n
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Now since u,e M, x, = M, (0Q) which is relatively compact, we can find a
subsequence {u, } of {u,} such that u, — u, and the triangle inequality

Il X, — Ul < (1% — i [l 4 1| 12 =010
o
<y H e~ ol

implies that x,, — u, as n, > . As x, €0Q which is closed, u,€0Q. By upper-
semicontinuity of M,, u, € M, x, for each n, implies that u,e M, u, which is a
a contradiction as u, e 0. Hence (3.16) holds for some u > 0.

ReMARK 3.5. In Gaines and Mawhin (1977), Rouché’s Theorem was extended
to the context of Coincidence Degree. The following theorem is a version of
Rouché’s Theorem in our situation.

THEOREM 3.6. Let assumptions () to (f) be satisfied and assume that M ,(0Q) is
relatively compact. Let p > 0 be such that

inf {d*(Lx, Nx): xedQ ndomL} > pu.
Then, for each L—k— @-contraction N': Q - CK(Z) satisfying assumption (f) and
the following condition:

sup {d*(Nx, N'x): xedQ} < u
we have
d[(L,N),Q] =d[(L,N"),Q].

PROOF. Let N: Q@ x[0,1] - CK(Z) be defined by
N(x,2) =(1—A)Nx+AN'x.

It can easily be verified that conditions (i) to (iv) of Theorem 3.5 are satisfied.
Now,

d*(Lx, N(x, 1)) = d*(Lx, Nx— A(Nx— N’ x))
= d*(Lx, Nx)— Ad*(Nx, N’ x)

the last inequality following from Lemma 3.2 by putting B = AN’x, C = ANx and
A= Nx—ANx+AN'x.
Hence, for each (x, )e(dom L n Q) x [0, 1],

d*(Lx,N(x, 1)) > p—Au > 0.

This shows that N satisfies the last condition of Theorem 3.5 and hence,
d[(L,N),Q] =d[(L,N(-,0)),Q] =d[(L,N(-,1)),Q] =d[L,N),Q].
Thus,
d[(L,N),Q] =d[(L, N),Q].
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3E. A generalized continuation theorem and existence theorems

In Gaines and Mawhin (1977), the Leray-Schauder Continuation Theorem was
extended to the context of Coincidence Degree. Here, we shall extend it to the
set-valued situation. We shall also consider some existence Theorems for Lxe Nx.

DEerFINITION 3.6. Consider the mapping F: X —» CK(X) where X is the zero-
dimensional space {0}. As CK(X) may only contain nonempty subsets of X,
CK(X) = {{0}} and hence F is the mapping F(0) = {0}. We define d(F, {0},0) =1
and this degree agrees with the usual properties of the degree for an ultimately
compact field F. We also set d(F, ¢,0) =0.

DEerFINITION 3.7. Let X and Z be normed linear spaces and let L be a linear
Fredholm mapping of index zero. Let P, Q, K and ¢ be given as in assumption (e)
and let Q be an open bounded subset of X such that Q is complete. Let @ > 0 and
let N*: Q% [0,a] —» CK(Z) be a set valued mapping. Let N* satisfy the following
conditions:

(i) N* is upper-semicontinuous on O x [0, 4],

(i) N*(@ x [0, q]) is bounded,

(i) oK, (I~ QN*Ex [0,a])) < oo,

(iv) there exists a positive k < 1 such that, for every 4 = Q,

oK (I- Q)N*(4 x [0,a])) < kop(A).
Then N* is said to be a L—k— ¢-contraction on Q x [0, a].

REMARK 3.5. With N* as defined above, it can be seen that for each Ae[0,a],
N*(-,2) is L—k— ¢@-contraction as defined by assumptions (c), (d) and (e). Also
note that for a =1, N* satisfies the first four conditions of the homotopy in-
variance theorem, Theorem 3.5.

Now, let assumptions (a) to (f) be satisfied for a pair of mappings L: domL —»Z
and N: Q- CK(Z) and let N*: Qx [0,1] - CK(Z) be a L—k~—¢-contraction on
Qx[0,1] such that N*(-,1)=N.

Let yeIm L and consider the family of equations
(3.17) LxeAN*(x,A)+y.

An element (x, ) eQ x [0, 1] satisfying (3.17) is said to be a solution of (3.17).
If A is specified, any x € Q satisfying the equation for that 2 is also called a solution.
It will be clear from the context whether a solution is an element of Q or Q x [0, 1].

LeMMA 3.5. For each 2€(0,1], the set of solutions of (3.17) is equal to the set of
solutions of the equation

(3.18) Lxe[Q+AI— Q)IN*(x, )+y
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and if A =0, every solution of (3.18) is a solution of (3.17).

Proor. If 4 =0, (3.18) reduces to
Lxe QN*(x,0)+y.
But Lx = (I— @)Lx which implies that

Lxe(I~ Q)LQN*(x,00+y]1 = {y}.
This means that Lx =y or x is a solution of (3.17) for A =0.

Let 1e(0,1] and let x be a solution of (3.17). Then there exists ue N*(x, A)
such that
Lx =2u+y.

Hence u = A~ !(Lx~y)eIm L. Therefore Qu =0 and thus,

u=(— Que(I— Q)N*(x, 1).
Hence,
Lx =0+Au+y =[Q+MI— Q)Ju+ye[Q+AI— QIN*(x, )+,
that is x is a solution of (3.18).
Conversely, let x be a solution of (3.18). Then there exists ve N*(x, A) such that

Lx =[Q+A(—- Q)Jv+y.
Hence 0 = QLx = Qv+ A1Q(I— Q)v+ Qy = Qv. Thus,
Lx = Qu+A(I— Q)v+y
=Av+y as Qv=0
€AN*(x,2)+y,
that is x is a solution of (3.17).

THEOREM 3.7. (A Generalized Continuation Theorem.) Let L and N be mappings
satisfying assumptions (a) to (f) and let N* be a L—k— ¢-contraction on Qx [0,1]
such that N*(-,1)=N. Let yeImL and we assume the following conditions hold:

(1) Lx¢ AN*(x, A)+y for every xe0Q ndomL, A1e(0, 1).

(2) 0¢nN*(x,0) for every xe L~ *{y} n oQ.

B) d(g() 150, RN R AL~ 1{3},0) %0,
where the left-hand expression is the Brouwer degree for the single-valued compact
field g restricted to the affine finite-dimensional space L='{y} and g and Q, are
defined as follows: As ker L is a finite dimensional subspace of X, —ynN*(- +K,»,0)
defined on (Q—K,y))~ nkerL is a set-valued compact field with respect to zero
(the conclusion that 0¢ —ynN*(x+K,y,0) for every xed(Q—K,y) nker L follows
Jfrom condition (2)). In Ma (1972), Section 5.2, it has been shown that there exists a
single-valued com‘z}act field g and an open bounded set Q, < ker L containing zero
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such that g(- +K,y) and —ynN*(-+K,y,0) are homotopic and
g(x+K,y) =x+K,y forall x in (Q—K,y)~\(Q;—K,y)) nkerL.
Ma has also defined the degree of the set-valued compact field —ynN*(-+K,y,0)
by
d(—yaN*(-+K, y,0) leer 1, (Q@—K,y) nker L,0)
=d(g(- +K, ) lier 1,(Q@— K, ¥) 0 (K, y) nker L, 0).

Then, for each A€[0, 1), equation (3.17) has at least one solution in Q and for A =1,
the equation

(3.19) LxeNx+y

has at least one solution in Q.

ProOF. Let Ae[0, 1] be considered fixed. For each xeQ, ue[0, 1] we define

N(x, ) = [Q+AuI— Q)IN*(x, 2s)+.

Clearly N is a L—k — ¢-contraction in Q x [0, 1].

Let us now consider the case where 1€[0, 1). By condition (1) and Lemma 3.5
ifA#0

Lx¢ N(x,p) for every xedQ ndomL,ue(0,1].
Also, if u=0o0r A=0
N(x, 1) = ON*(x,0)+y
and LxeN(x, ) would imply that Lx =y and 0e QN*(x,0) or xeL~*{y} and
0enN*(x,0). Thus, by assumption (2), x¢JQ. Hence, for every xedQndomL,
ne[0,1],
(3.20) Lx¢ N(x, p).
By Theorem 3.5, d[(L, N(-, 1)), Q] is independent of u in [0, 1] and hence,
=d[(L, ON*(-,0)+),Q]

=d(I-P—-[yn+K,(I—- QDI[ON*(-,0)+y],Q,0)
that is

3.21) d[(L,N(-,1)),Q] =d(I—P—ynN*(-,0)- K, y,Q,0).

Let us now consider two cases. Firstly let us assume kerL ={0}. Then
P=0,Q0=0,n=0, K,=L"! and hence, from (3.21), we have

(3.22) d[(L,N(-,1)),Q]1 =d(I-L"'y,9Q,0).

Now, L~*{y} = {L~'y} is a zero dimensional space and hence, for condition (3)
to be satisfied, L~ '{y} nQ N Q, # <.
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Hence, L~ !1yeQ and so, as the right-hand term of (3.22) has reduced to the
degree of a single-valued mapping 7—L~' y, we have
d[(L’ N(‘ s l)), Q] = d(I_I‘—1 Vs Q9 0)
=d(I,Q,L~'y)
=1.

From Theorem 3.3, there exists xeQ such that Lxe N(x, 1), that is, for some
xeQ

Lxe[Q+A(I—- QIN*(x,2)+y.

and by Lemma 3.5, equation (3.17) has at least one solution in Q. Now let us
consider the case where ker L # {0}. By a change of variables, we have

(3.23) d(I-P—yraN*(-,0)~K,,Q,0) = d(I—P—ynN*(-+K,,0),Q—K,»,0).

As kerL is a finite-dimensional subspace containing the range of P+ynN*, we
may apply Theorem 1.1 and obtain

(3.24) d(I-P—ynN*(-+K,y,0),Q—-K,y,0)
=d[(I—-P—yaN*(: +K,y,0)] lxer 1, (2—Kpy) nker L,0)
=d(—yaN*(- +K, y,0) |y, 1, (@— K, y) nker L,0)
=d(g(* +Kp ¥ leer 1, (=K, ¥) 0 (@, — K, y) nker L, 0)

the last equality holding by definition.

By a change of variables again,

(325) d(g(- +K,)) ler 1> @—K, ) N (@~ K, y) nker L,0)
=d(g(*)|L-15p QN QyNL" 1{}’}, 0)
# 0 by condition (3).

Hence, from (3.21), (3.23), (3.24) and (3.26),

d[(L,N(-,1)),Q]1#0

and again, we conclude from Theorem 3.3 and 3.5 that equation (3.17) has at
least one solution in Q.
Now, for A =1, equation (3.17) becomes

3.17) LxeNx+y=N*(x,1)+y.

If, for every xedQndomL, (3.17) does not hold, then Lx¢N(x,u) for each
xedQndomL and each ue[0,1] and the above proof can be repeated. If,
however, there exists x in dQ ndomL such that Lxe Nx+y, then a solution
exists in dQ < Q. Hence (3.17) always has a solution in Q.

This completes the proof of the Theorem.
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THEOREM 3.8, Let X be a Banach space, Z normed linear spaces and let L be a
linear Fredholm mapping of index zero from a subspace of X into Z.

Let Q be an open bounded subset of X and let N:Qx[0,1] - CK(Z) be a
L—k— @-contraction on Qx[0,1]. If for each 2€[0,1] and xedQ ~domL, we

have
Lx¢ N(x,2)
and if d[L,N(-,1,)),Q]# 0 for some Ay€[0,1], then for each Ae[0,1], the
equation
(3.26) LxeN(x,4)

has at least one solution in Q.

Proor. By Theorem 3.5, for each Ae[0, 1],
d[(La N( s A)), Q] = d[(La N(' ’ A'O)): Q] #0
and hence by Theorem 3.3, the equation

LxeN(x,1)
has a solution in Q.

COROLLARY 3.3. (A Generalized Borsuk’s Theorem.) Let X, Z and L be as in
Theorem 3.8 and let Q be a bounded open subset of X, symmetric with respect to
the origin and containing it. Let N: Qx[0,1] - CK(Z) be a L—k— @-contraction
on Qx [0, 1]. Also, suppose that N(—x,0) =— N(x,0) for each xeQ.

Then equation (3.16) has a solution in Q for each 1.€[0,1].

ProoF. From Theorem 3.4, d[(L, N(-,0)),Q] is odd and hence different from
zero. The result follows from the preceding Theorem.

COROLLARY 3.4. (A Generalized Krasnoselskii Theorem.) Let X, Z, L and Q be
as in Corollary 3.3. and let N: Q — CK(Z) be a L —k — @-contraction such that for
each 2€[0,1] and xe 0Q n dom L, we have

(3.27) [(C-Nx]n[ML-N)(=x)]=&.
Then the equation
(3.28) LxeNx

has at least one solution in Q.

Proor. Define N: O x [0, 1] - CK(Z) by
N(x,2) = A+~ [Nx—AN(—x)].
It can be easily verified that N is a L—k—¢-contraction on Qx[0,1]. Now,
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N(x,0) =Nx and N(x,1) =4[Nx—N(—x)] which is odd. We claim that
Lx¢ N(x,2) for each 1e[0,1] and each xedQndomL. Assuming otherwise,
there exist A€[0, 1], x€dQ n dom L such that

(14+2)Lxe Nx—AN(—x);
that is, there exist #e Nx, ve N(—x) such that

(A4+AD)Lx=u—Av
or
Lx—u=ML(—x)—0)
which contradicts (3.27).
Hence the conditions of Theorem 3.8 are satisfied and thus, there is a xeQ
such that
LxeN(x,0) = Nx

and so equation (3.28) has a solution in Q.

4. A different approach

In building up the coincidence degree for the pair (L, N) where N is a single-
valued mapping, Mawhin (1972) (see also Gaines and Mawhin (1977)) has
assumed continuity of the mappings =N and K,(I— Q)N. It can be easily seen that
if we replace the upper-semicontinuity of N by that of =N in our condition (d) in
Section 3B, our degree theory built up in the previous section will still hold under
the remaining assumptions. However, it is not clear if we can replace the con-
tinuity of K, by that of K,(I— Q)N (see Remark 3.2).

The purpose of this section is to indicate that a coincidence degree theory under
assumptions similar to those of Mawhin (1972) can be built up via an alternative
equivalence theorem.

4A. Another equivalence theorem

The following equivalence theorem has its own interest.

THEOREM 4.1. Let X and Z be two vector spaces over the same scalar field. Let
L:domLc X—Z be a linear mapping and N: A< X »2° be a set-valued
mapping. Further, assume that there is a mapping : coker L — ker L such that
Y~1(0) = {0}. Then, xoedomL n A is a solution of the equation

@.1) LxeNx

if and only if x, is a fixed point of the set-valued mapping M,#: A — 2% defined by
“4.2) M y(X) =Px+ lllnﬁx+Kp(I - O)Nx

https://doi.org/10.1017/51446788700015640 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700015640

271 Existence of solutions of the equation Lx € Nx 165

Jor every pair (P, Q) of exact projections with respect to L, where n, K,, Q have their
meanings as explained in Section 2 and N: A — 2 is defined by

Nx={anImL if NxnImL # &,
Nx if NxnImL = .

In other words,
“4.3) (L—N)~1(0) = (I—My)~*(0).
PRrOOF. Since the images under P and ¥ are contained in ker L and those under

K, are in X;_pndomL, it is clear that M ,(4) = domL. Now, for each xe X.
we write

4.4 x =Px+K,Lx
as K,L =I—P from (2.3). Also, since ¥ ~'(0) =0, we have
WnR)~1(0) = (=N)=1(0).

Now let us suppose that
Lxe Nx.

Since NxnImL # @&, Nx =NxnImL and Lxe Nx. Hence, OenNx or

xe(aN)~1(0) = (Y=N)~*(0)
which implies that

4.5) OeynNx.
Since Lxe Nx,
4.6) K,Lx = K,(I- Q)Lxe K,(I- Q)Nx.

From (4.4), (4.5) and (4.6),
x=Px+K,Lx+0
ePx+K,(I- Q) Nx+ynNx
=M,x.
Conversely, if xe M, x, then
xePx+ynNx+K,(I- Q)Nx.
Let ueynNx and ve Nx be such that
4.7 x = Px+u+K,(I- Q).

Now,
Px = Px+Pu+PK,(I—- Q)

=Px+4u
and hence u=0 from which OeynNx and thus OenNx. This implies that
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NxAImL # & and, consequently, NxImL # (. Thus,
Nx=NxnImLcImL

and so, QNx = {0}. As ve Nx, Qv =0 and, with u =0, (4.7) reduces to

x =Px+K,v.
Thus,
Lx =LPx+LK,v= veNx.

Hence Lxe Nx and as Nx  Nx for every x, we have LxeNx and hence the
proof of the theorem.

REMARK 4.1. From Theorems 3.1 and 4.1 it is clear that each solution xeQ of
the equation Lx e Nx is a fixed point of M, as well as of M, where M, and M,
are respectively as defined in Theorems 3.1 and 4.1. We should point out that if
we define the mapping M,,: Q — 2% by

M, x =Px+ynNx+K,(I- Q)Nx, xe,

then it is clear that each solution in Q of Lxe Nx is a fixed point of M, as for
each xeQ, M, x =Px+[yn+K,(I- Q)]Nx is always a subset of

M, x =Px+ynNx+K,(I- Q)Nx.

However, each fixed point of M, is not necessarily a solution of the equation
LxeNx. In other words, the solution set in Q of the equation Lxe Nx may not
coincide with fixed point set of M,,. To show this we furnish the following example.

EXAMPLE 4.1. Let L: R*> > R? be defined by
L(x,y) = (x,0) for all (x,y)e R%.
Let Q =(—1,1)x(—1,1) and let N: & - CK(R?) be defined by

_ @, if (x,y) # (1, 1),
Nexy) = {{(t, 0:0<t<1) if (x,») =1, 1).
Now, let x =(1,1). Then
Lx=L(1,1)=(1,0).

Since (0,0)e N(1,1) and (0,0)eIm L, we have 0e xN(1, 1) and hence OeynN(1,1).
Since I— Q is the projection of R? on the x-axis

K,(I- Q) N(1, 1) = K,([0, 1] x {0}).

But Im P =ker L = y axis. Hence K,: Rx {0} = R x {0} is the identity mapping.
Hence K, (I—Q)N(1,1)=[0,1]1x {0} and so, (1,0)eK,(/—Q)N(1,1). Also,
P(1,1) =(0,1). Hence
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(1,1) =(0,1)+(0,0)+(1,0)
=P(1,1)+(0,0)+(1,0)
eP(1, 1)+yaN(1, )+ K,(I—- Q)N(1, 1),

that is (1,1) is a fixed point of M,. But L(1,1) =(1,0)¢ N(1,1).

Thus the above example shows that we cannot replace N by N in our equivalence
Theorem 4.1 nor could we remove the square bracket in the definition of M,
in our equivalence Theorem 3.1.

REMARK 4.2. (3) If N is a single-valued mapping, we can regard it as set-valued
by considering the single point Nx as a singleton {Nx} and it follows that in this
case, N =N.

(b) If, for every xe€ A, either Nx nImL = J or Nx < ImL, then N =N.

4B. Basic assumptions

For this section we will make the following assumptions.

ASSUMPTIONS. (a)’ Same as (a) of Section 3B.

(b)’ Same as (b) of Section 3B.

(c)’ Q is a bounded, open set in X and the set-valued mapping N: & - CK(Z)
takes each x in the closure of Q to a nonempty compact, convex subset of Z,

(d)' If N: @ - CK(Z) is the mapping associated with N as defined in Theoem 4.1,
N is assumed to be upper-semicontinuous with 7N(Q) bounded in coker L.

(e)’ Let (P, Q) be an exact pair of continuous projections with respect to L and
let K, be a pseudo-inverse of L associated with P. Let ¢ be a measure of noncom-
pactness defined on 2X such that either (i) ¢ satisfies the subadditivity condition
of Proposition 1.1 and takes values R* = {treR: t >0} u {oo} or (i) we addi-
tionally assume that Z is a Banach space and ¢ is one of y, y, x, and 7y,. We assume
that for such a measure of noncompactness, K,(/— Q)N is a k—¢-contraction
with 0 < k£ < 1 and that ¢(K,(I— Q)N(Q)) < .

(f)’ Same as (f) of Section 3B.

PROPOSITION 4.1. Let assumption (a) to (d) hold and let (P, Q) and (P', Q') be
exact pairs of continuous projections with respect to L. Suppose that the pair (P, Q)
satisfies the assumption (€)'. Then the pair (P', Q') also satisfies the assumption (€)'

PRrOOF. The proof follows similarly from that of Proposition III.1 in Gaines and
Mawhin (1977) by noting that a compact mapping is a 0 — ¢-contraction.

4C. Definition of coincidence degree

PROPOSITION 4.2, Suppose assumptions (a)' to (¢) are satisfied and M, is the
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mapping defined in Theorem 4.1 for some continuous isomorphism
Y1 coker L — ker L.

Then, for each x in Q, M, x is a compact convex subset of X and M,, isa k—op-
contraction.

PRroOF. Since P, Q, K,, ¥ and = are all linear, and since Nx is convex for each
xeQ, M, x is convex. Now, as K, (I— Q)N is a k—¢-contraction, K,(I— Q)Nx
is compact by definition. By the continuity of ¢ and =, ynNx is also compact and
hence M, xe CK(X) for each xeQ.

Now, P is linear, continuous and has a finite dimensional range and is therefore
compact and a 0— @-contraction. Also, YynN(Q) is bounded, closed and contained
in a finite-dimensional subspace of X. Hence it is relatively compact and ynN
is thus a 0—¢@-contraction. From assumption (¢)’ and Proposition 1.1, Mw is a
k— @-contraction from Q to CK(X).

REMARK 4.3. From Proposition 4.1, we see that if the assumptions (a)’ to (e)’
are satisfied M|, is an ultimately compact mapping. It follows from assumption (f)’
and Theorem 4.1 that 0¢(/— M ;) (dom L n 0Q). Thus the degree of the ultimately
compact field /— M y» With respect to zero, is well defined.

DEerINITION 4.1. Suppose that assumptions (a)’ to (f)’ are satisfied and ¥ is an
orientation preserving continuous isomorphism from cokerL to kerL (sece
Definition 3.3). Then, the coincidence degree of L and N in Q, denoted by
d[(L, N),Q], is defined by

4.8) d[(L,N),Q] =d(I-M ,,Q,0)
where M,,: Q - CK(X) is defined by
My, =P+yaN+K,(I- QN

and the right-hand term is the degree for the set-valued ultimately compact field
I—M, as defined in Definition 1.3.

REMARK 4.4. (@) If X=Z, L =1, then kerL ={0} and thus cokerL = {0}.
This implies that Im L = X and hence, P =0, Q =0 and K,(I—Q) =1 and the
only isomorphism between cokerL and kerL is the trivial one y(0) =0. The
assumption (b)’ is trivially satisfied and (e)’ reduces to assuming that N is a
k — p-contraction for some k in (0,1) with @(N(Q)) < 0. Assumption (f)’ means
that N and N have no fixed points on the boundary of Q. As M v = N, we have

a[(L N),Q] = d(I-N5 Qa 0)'
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We may, in fact, replace assumptions (d)’ and (¢)’ by the assumption that N is
ultimately compact.
(b) As N = N, by definition,

(L, N),Q] =d[(L,N),Q].

4D. Basic properties of the coincidence degree

Following the same argument as given in Section 3D, we can show that this
degree d[(L,N),Q] has all the basic properties of a degree. In other words, if
(a)’ to (f)’ are satisfied, then Theorems 3.3-3.5 hold with d[(L, N), Q] replaced by
d[(L,N),Q]. Also Rouché’s Theorem and Generalized Continuation Theorem
can be obtained under suitable assumptions.

5. A general remark

The basic difference between the degree theory presented in Section 3 and that
in Section 4 lies in the continuity conditions appearing in assumptions (d) and (e),
and assumptions (d) and (e)’ respectively. At the beginning of Section 4 and
Remark 3.2 we have already discussed assumptions (e) and (e)’. Assumptions (d)
and (d)’ differ in the upper-semicontinuity of N (or zN) and N (or zN). Thus in
order to apply the degree d[(L,N),Q) or d[(L, N),Q] to the pair (L, N) we need
respectively the upper-semicontinuity of N or N. The following two examples
show that the upper-semicontinuity of one does not, in general, follow from the
upper-semicontinuity of the other.

ExaMpLE 5.1. This example gives a pair (L, N) where N is u.s.c. but N is not.
Thus d[(L, N), Q] cannot be defined.
L: R — R is the zero operator, that is Lx =0 for all xeR.
: N:Q=[-1,1]- CK(R)
is defined by
Ax ={{sin1/x} if x #0,
[-1,1] ifx=0.
Then,
R ={{sin 1/x} if x #0,
{0} if x=0
which is not u.s.c.

EXAMPLE 5.2. Here we give an example where N is u.s.c. but N is not. Let
L: R* - R? be defined by

L(x,y) =(x,0) for (x,y)eR*
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and
N:Q=[-1L1Ix[-1,11=((-1,1)x(=1,1))" - CK(R?)
be defined by
_ {(x,:0<t<1} ify=0 and x>0,
N ») {{(x, »} otherwise.

Thus, N(x,y) = {(x,»)} for all (x,»)eQ. Hence N is u.s.c.
To see that N is not u.s.c., consider the sequences {u,} and {v,} with

U, = (,—11, 0>eﬁ and v,= ('—11, 1).
N, =N(;1,-,0> ={(% :): 0<t< 1}

and hence v, € N(u,) for each n. Now, u, — (0,0) and v, — (0, 1). N(0,0) = {(0,0)}
and hence (0, 1) ¢ N(0,0). Thus N is not u.s.c.

The following two propositions give sufficient conditions for N to be upper-
semicontinuous when N is upper-semicontinuous. These propositions are included
here for the sake of interest.

Now,

PROPOSITION 5.1. Let N: Q — CK(Z) be upper-semicontinuous and let
N: Q- CK(Z)
be defined by
fNx __{anA if NxnA # J,
Nx f NxnA=g,

where A is a closed subset of Z.
Suppose the set

S={yeQ: Nyn 4=} is closed in X.

Then N is upper-semicontinuous.

PROOF. If A =Z, N = N and there is nothing to prove. Now let us assume that
A # Z, that is A° # ¢, where A¢ denotes the complement of A4.

Let xeQ and let ¥ be an open set in Z containing Nx. To show that N is u.s.c.
at x, we need to find an open set W of X containing x such that N(W) < V.

Let us consider two cases:

(@) If Nxn A=, then Nx=Nx and by upper-semicontinuity of N, there
exists an open set W containing x such that N(W) c V. But for every yeW,
Ny = Ny and hence N(W) =« N(W) < V.

() If NxnA#, then Nx =NxnA. Let U=V U A°. As A4 is closed, U is
open and Nx = Nx U(Nx n A°) € V U A° = U, we have by upper-semicontinuity

https://doi.org/10.1017/51446788700015640 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700015640

[33] Existence of solutions of the equation Lx € Nx 171

N, that there exists an open set W’ containing x such that N(W’) = U. Now, let
W =W'nS° Since Nxn A4 # J, xeS° and so xe W. By our assumption on S,
W is open. Now, if ye W,

NRy=NynAcNW)nAcUnA=F vA)nA=V nAcV.

Hence N(W)< V. Thus, we have shown that N: Q- CK(Z) is upper-semi-
continuous.

REMARK 5.1. In our case, 4 =Im L which is closed.

PROPOSITION 5.2. Let N: Q — CK(Z) be u.s.c. and let N: Q — CK(Z) be defined
by
Rx ={NmemL if NxnImL # &,
Nx if NxnImL = (4.

Suppose that N(Q) is closed and that, for any x,yeQ with x # y, we have the
condition

(Nx\ImL)n(Ny\ImL) =.
Then, N is u.s.c.

PRrOOF. Let {x,} be a sequence in Q converging to x and {y,} be a sequence in
Z such that y,e Nx, for every positive integer 7 and { Y.} converges to y. We wish
to prove that ye Nx. Now, y,e Nx, c Nx, for each n. By the upper-semicontinuity
of N, yeNx. If yeImL, then ye Nx and the proof is complete.

Suppose that y¢ImL. Hence ye Nx\ImL. Now, since y,e N(@Q) for each n
and N(@) is closed, ye N(Q). Let xeQ be such that ye NX = Nx. Thus we have
yeNx\ImL and by the above condition, x = X. Hence yeNx.
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