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Abstract

The coincidence degree for the pair (L, N) developed by Mawhin (1972) provides a method for
proving the existence of solutions of the equation Lx = Nx where L: domL<= X^-Z is a
linear Fredholm mapping of index zero and N: Q -*• Z is a (possiblv nonlinear) mapping and
Q is a bounded open subset of X, X and Z being normed linear spaces over the reals. In this
paper we have extended the coincidence degree for the pair (L, N) to solve the equation

LxeNx,

where L: d o m i c : x^-Z is a linear Fredholm mapping of index zero, N: Q->- CK(Z) and
X, Z and £1 are as above, CK(Z) being the set of compact convex subsets of Z.

Subject classification (Amer. Math. Soc. {MOS) 1970): primary 47H15, 47 A 50; secondary
47 H 10, 47 A 55.

Keywords and phrases: Set-valued compact vector field, set-valued ultimately compact vector
field, ^-^-contractions, coincidence degree.

Introduction

Let X and Z be normed linear spaces over the reals. Extensive researches have been
undertaken on the study of the operator equation

(0.1) Lx = Nx,

where I : d o m L c I - > Z is a linear mapping and N: domN <= X-»Z is a
(possibly nonlinear) mapping. The equation (0.1) represents a wide class of
problems including nonlinear ordinary, partial and functional differential equa-
tions. When L~l exists, the reduced equation x = L~1 Nx is under the scope of
fixed point theory. For extensive literature for this case we refer to the survey
works of Dolph and Minty (1964) and Ehrmann (1965).
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When L~l does not exist and X and Z are Banach spaces, the basic works on
the study of the equation (0.1) are due to Cacciopoli (1946), Shimizu (1948),
Cronin (1950), Bartle (1953), Vainberg and Trenogin (1962), Vainberg and
Aizengender (1968) and Nirenberg (1960-1961). These works involve some small-
ness assumption on N. The method for finding solutions of the equation (0.1),
initiated by Cesari (1963) and (1964) and further developed by Locker (1967),
Bancroft et al. (1968) and Williams (1968) deals with a more general class of
mappings. For application of Cesari's method to differential equation we refer to
Cesari (1969, 1971) and Hale (1969, 1971).

Using an equivalence theorem which reduces the problem of existence of
solutions of the equation (0.1) to that of fixed points of an auxiliary mapping and
Leray-Schauder degree, Mawhin (1972) developed a degree called the coincidence
degree for the pair (L,N) and applied to nonlinear differential equations (for
example, see Gaines and Mawhin (1977). In essence, Mawhin's method preserves
the spirit of the works of the authors mentioned above.

In the recent past the Leray-Schauder degree theory for a single-valued compact
vector field has been extended to a larger class of single-valued mappings, namely
to k-set contractive vector fields by Nussbaum (1969, 1971), ball condensing
vector fields by Vainikko and Sadovskii (1968) and Borisovich and Sapronov
(1968), ultimately compact vector fields by Sadovskii (1968) (see also Sadovskii
(1972) and Danes (1974)). On the other hand, Leray-Schauder degree theory has
been extended to set-valued compact vector fields by Granas (1959), Cellina and
Lasota (1969), Ma (1972) and more recently to ultimately compact vector fields by
Petryshyn and Fitzpatrick (1974).

The coincidence degree of Mawhin (1972) has been sharpened by Hetzer
(1975a, b) by replacing the complete continuity assumption by k-set contraction
with k<l and Leray-Schauder degree by the corresponding degree of k-set
contractive vector field mentioned above.

The purpose of this paper is to consider the equation

(0.2) LxeN(x),

where L: domZ, <= X->Z is a single-valued linear Fredholm mapping of index
zero and N: domN cz X-> CK(Z) is a mapping, X and Z being normed linear
spaces.

Like Mawhin (1972) we have proved equivalence theorems which reduce the
problem of existence of solutions of the equation (0.2) to that of fixed points of
an auxiliary set-valued vector fields given by Petryshyn and Fitzpatrick (1974),
and we have built up the coincidence degree theory for the pair (L, N) appearing
in the equation (0.2). We have proved that this degree has all the usual properties
of a degree theory. We have also extended the Rouche's theorem and the Leray-
Schauder continuation principle to our context.
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1. Degree theory for set-valued ultimately compact vector fields

In this section, we shall recall the concept of an ultimately compact mapping
and the degree theory of such mappings as introduced by Petryshyn and
Fitzpatrick (1974). We shall also consider the definition of measure of non-
compactness and the definition and properties of k—(^-contractions as a special
class of ultimately compact mappings.

1A. Notations and definitions

Let X denote a separated locally convex topological vector space over the reals
with the additional property that for each compact subset A of X, there is a
retraction of X onto the convex closure of A. By virtue of a theorem due to
Dugundji (1951), this property automatically holds when X is metrizable, espec-
ially when A' is a normed linear space. For any B c X, let CO B denote the convex
closure of B and let B and dB denote respectively the closure and boundary of B.
Let K(B) and CK(B) denote respectively the set of nonempty closed convex sub-
sets of B and the set of nonempty compact convex subsets of B. If F is a set-valued
mapping, then F(B) = \JxeBF(.x).

DEFINITION 1.1. A mapping F defined on a set B <= X and taking values in the
set of subsets of X is said to be upper-semicontinuous, henceforth denoted u.s.c,
if, given an open set V in X with F(x) c V, there exists an open subset W of X
containing x such that F(W) c V. A u.s.c. mapping F is said to be a compact
vector field if (/—F)(5) is relatively compact.

CONSTRUCTION. Let Q. <= X be an open set and let F: U -»K{X) be u.s.c. We
define a transfinite sequence {Kx} as follows:

Ko = CO F(U)

{COF(nnKx_1) if a is an ordinal such that a —1 exists,

( I I X j if a is an ordinal such that a — 1 does not exist.

It is easily verified that the following properties hold:

(1.1) each Ka is closed, convex and Kx <= Kfi for all a > /?,

(1.2) F(KxnU)<=K, for each ordinal a.

Since the transfinite sequence {Kx} is nonincreasing, there is an ordinal y such
that Ky = Ky+! and hence, Kf = Ky for each P^y.We define K = K(F, U) = Kr

Clearly,
Ky = Ky+! = CO F(U n Ky) = CO F(Q nK).

https://doi.org/10.1017/S1446788700015640 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015640


142 E. Tarafdar and Suat Khoh Teo [4]

We thus have

(1.3) K = PI Kp= CO F(UnK).

DEFINITION 1.2. A u.s.c. mapping F: Q ->K(X) is said to be ultimately compact
if either KnU = 0 or, if KnU=£ 0, then F(Q.nK) is relatively compact. If
F is an ultimately compact mapping, we shall call I—F an ultimately compact
vector field, where / is the identity mapping on X.

DEFINITION 1.3. Let Q <= X be open and let F: H -» JST(^O be ultimately compact
with 04x—F(x) for each xedQ. If KnQ, is empty, define the degree of I—F on
n with respect to zero, denoted by d(I-F,Cl,0), to be zero. If KnCl / 0, let p
be a retraction of A' onto K and define

(i .4) d(i-f, n, o)=dc(i- FP, p- \a), o),

where the right-hand term is the degree for compact set-valued vector fields given
by Ma (1972).

REMARK 1.1. To see that this degree is well defined and has all the usual proper-
ties of the Leray-Schauder degree, please refer to Petryshyn and Fitzpatrick (1974).

The following theorem which we shall use later in the proof of the Continuation
Theorem seems to be new and has its own interest.

THEOREM 1.1. (Reduction Formula.) Let X be a metrizable, locally convex
topological vector space with the additional property that, for each closed subspace
E and any compact subset B of E, there exists a retraction of E onto the convex
closure of B. Let F:£l-* K(X) be an ultimately compact mapping such that x$F(x)
for each xedQ.. Let Eo be a finite dimensional subspace of X containing the closure
o/F(H). Then

d(I- F, Cl, 0) = d(I- F |Bn£o, ClnE0,0).

PROOF. AS K is a closed convex compact set, KnE0 is also closed convex and
compact. Let p1: Eo-+ KnE0 be a retraction of Eo onto KnE0. Now define
p2:

tfxeK.

As pj is a retraction of Eo onto KnE0, p^x) =x for all x in KnE0 and it is
clear that p2 is well defined in KKJ EO. Also, since dKnE0 <= d(KnE0), and p t

is continuous on is0, p2 is a continuous mapping on the closed set KKJE0. By
Dugundji's Extension of Tietze's Theorem (1951), there exists an extension p of
p2, p: X->COPz(KvEo) such that p is continuous. Now as p2(Ku Eo)= K
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which is closed and convex, p is a retraction of X onto K and is an extension of

p2 and pt. Now,

)pl and pj

oxeE0 and px =

Hence we have p~[ 1(Q, u JE0) =Eonp~ 1(fi). By Definition 1.3,

= dc(I-Fp\(l)-Hn)nEo)-,p-1(n)nE0,0).

By the continuity of p and the hypothesis of the theorem that (F(H))~ <= Eo, we
have

Hence, we may apply Theorem 11.1 of Ma (1972) and we have

dc(I-Fp)\ip-Hn)nEo)-,p-1(Ci)nE0,0)

= dc(I-Fp,p-\O),0)

the last equality holding by Definition 1.3 as p is a retraction of X onto K. Hence
we obtain the required result,

d(I- F, Q, 0) = d(I- F | £ o n S Ci n Eo, 0).

1C. k — (^-contractions

DEFINITION 1.4. Let C be a lattice with a minimal element which we denote by
zero, 0. A mapping <p: 2X -> C, where 2X denotes the family of all subsets of X,
is called a measure of noncompactness if, for any A c X, B c X, it satisfies the
following properties:

(1.5)

(1.6) q>(A)=0 if and only if A is precompact,

(1.7) <p(A u 5) = max

It follows from (1.7) that v4 <= B=>q>(A)
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DEFINITION 1.5. Let q> be a measure of noncompactness and we additionally
assume that the lattice C has the property that, for each ceC and XeR with
k > 0, there is defined an element XceC. An u.s.c. mapping F:Vi->CK{X) is
called a k—(p-contraction or a k — ̂ -contractive mapping if there exists some
k > 0 such that, for every subset A of H,

kcp(A).

The following three propositions follow almost immediately from the definition of
a k — ^-contraction and the proofs will be left to the reader.

PROPOSITION 1.1. Let (pbe a measure of noncompactness as given in Definition 1.5,
with the additional property that, for any A c X, B c X,

(1.8) (p(A+B) < <p(A)+<p(B)

Iff: U-+CK(X) and G: U->CK(X) are kx- and k2-cp-contractions respectively
then (F+G): U -• CK(X) defined by

(F+G)(x)=F(x)+G(x)

is a (k1+k2) — (p-contraction.

PROPOSITION 1.2. Let q> be a measure of noncompactness as in Definition 1.5.
Let F:U-> CK(X) be a kl — (p-contraction and letG: Z-> X be a linear, continuous,
single-valued mapping such that, for each Ac: X, we have

(p(G(A)) < k2(p(A)

Then GF: U -> CK(X) defined by

GF(x) = {G(y):yeF(x)}

is a k1k2 — (p-contraction.

NOTE. Linearity and continuity of G ensures that GF(x) is a compact, convex
set for each xeU.

PROPOSITION 1.3. Let (p be a measure of noncompactness as in Definition 1.5. If
F and G are k—(p-conttactions, then so is XF+(\—X)G, where Ae[0,1].

THEOREM 1.2. Let (p: 2X^>R+ ={teR: t 5* 0} u {oo} be a measure of non-
compactness and suppose that F: £!-• CK(X) is a k—(p-contraction with 0 < k < 1
and (p(F(Si)) < oo. If either X is quasi-complete or U is complete, then F is ultimately
compact.

PROOF. This follows from Lemmas 3.2 and 3.4 of Petryshyn and Fitzpatrick
(1974).
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The k—(^-contractions as defined in Definition 1.5 are a generalization of
fc-ball-contractions and A:-set-contractions for multivalued mappings and are an
extension of the k — ^-contractions for single-valued mappings. Nussbaum (1971)
and Sadovskii (1972) have made contributions in these cases and more generalized
multivalued k—(^-contractions were introduced by Petryshyn and Fitzpatrick
(1974). In the following we shall recall the x and y measures of noncompactness
and restate some of the properties of the k—(^-contractions for such q>.

If {pt: <xeA} is a family of seminorms which define the topology on X, given
aeA and ft c X, we define

Xj&) = inf|e > 0: 3{xu ...,xn} c= X, with a c | J { j : pJLxt-y) < s}\,

ya(ft) = inf {e > 0: ft can be contained in the union of a finite number of sets,
each with pa-diameter < s}.

Let C = {q>: A -* R+ be the set of all mappings from A into R+} with the usual
definitions of ordering, maximum, multiplication by a real number, etc. Then C
forms a lattice and the two mappings ^ : 2X -> C and y: 2X -*• C are defined by

*(")(«) = *.(") and y(Q)(a)=ya(n)

for every <xeA, il a X.

It can be verified that x and y are measures of noncompactness and, furthermore,
they satisfy the following:

(1.9a) ficlis bounded if and only if ya(B) or x*(B) is finite for each ae A.

(1.9b) B <= X is precompact if and only if, for each aeA,

(1.9c)

y(A(fi) = | A | y(Q) for any ft <= X, X e /?.

(1.9d) For any ftj c Z, Q2 c X,

THEOREM 1.3. Let F: £1->CK(X) be a k—cp-contraction where 0 < k < 1
(p =X or y. Suppose that either X is quasi-complete or ft is complete and suppose
that F(H) is bounded. Then F is ultimately compact.

The proof follows immediately from Lemmas 3.2 and 3.5 of Petryshyn and
Fitzpatrick (1974.)
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Suppose Zis a normed linear space with norm || || and the metric d: Xx X-> R+

is defined by d(x,y) = || x—y ||. If we let the norm || || be the only element of A,
the set C is isomorphic to R+ and x and y reduce to the ball- and set-measures of
noncompactness. Let us denote these two measures of noncompactness by x& and
yd respectively.

THEOREM 1.4. (a) Let F be a k—(p-contr action where <p = x, y, Xt or 7d- Then for

XeR, Xfis a\X\k — <p-contraction.

(b) Suppose F and G are ki— and k2 — (^-contractions respectively where <p is

X> 7> Id or yd. Then (F+G) is a (k^+k^-y-contraction.

(These results follow immediately from (1.9c) and (1.9d) and Proposition 1.1.)

2. Notations and algebraic preliminaries

We shall include in this section some preliminary results obtained by Mawhin
(1972) (see also Gaines and Mawhin (1977) which we shall use in the section 3).

Let L be a linear single-valued operator between X and Z, two vector spaces,
where domL, the domain of L, is a subspace of X. We shall denote the kernel or
null-space of L, L-1(0), by kerL, the range space of L, L(domL), by ImL and the
quotient space Z/ImZ,, the cokernel of L, by cokerL.

Given a vector subspace Y of a vector space E, there always exists a projection,
a linear and indempotent operator, P of E onto Y and E is the direct sum of
ImP= Y and kerP. If E is a topological vector space, and P is a continuous
projection, then E is the topological direct sum of ImP and kerP.

DEFINITION 2.1. If X, Z, L are as above, let P and Q be projections on X and Z

respectively such that ImP = kerZ. and ker Q = ImL. Such a pair of projections
(P, Q) will be called exact with respect to L.

DEFINITION 2.2. Let Lp be the restriction of L to kerPndomL. The Lp is an
isomorphism from kerPndomZ, to ImL. Let Kp: ImL-^kerPndomL be the
inverse of Lp. Kp is then called the pseudo inverse of L associated with P.

Let 7i: Z-» cokerL be the canonical surgection, that is nz = z+ImL for each
zeZ. Clearly, the restriction of n to I m g is an algabraic isomorphism. If Z is a
topological vector space and cokerL is given the quotient topology, then n is
continuous.

The following results are almost immediate:

(2.1) PKP = O,

(2-2) LKp=LpKp = I,
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(2.3) KpL = KPL(I-P) = I-P,

(2.4) Qz = OozeImLonz = 0,

where the zeros denote the null elements of the respective spaces.
The following two results are also easy consequences of the above.

PROPOSITION 2.1. Let (P, Q) andiP', Q') be pairs of projections exact with respect
to L. Then

(2.5) Kp. = {I-P')Kp,

(2.6) PKP.+P'KP = O,

where Kp,Kp, denote the pseudo-inverses of L associated with P and P' respectively.

PROPOSITION 2.2. Let P,P' be projections of X onto kerL and let P" = aP+bP'
for some real numbers a,b. Then, P" is a projection onto kerZ. if and only if
a+b = 1. If this necessary and sufficient condition holds, the pseudo inverse of L
associated with P" is given by

Kp.=aKp+bKp,.

3. Coincidence degree for set-valued fc — ̂ .contractive perturbations of linear

Fredholm mappings

In this section, we will extend the notion of coincidence degree as developed by
Mawhin (1972) to the case where the second mapping is set-valued. Such a degree
theory will provide a method for proving the existence of solutions to the equation

LxeNx.

3A. An equivalence theorem

THEOREM 3.1. Let X and Z be two vector spaces over the same scalar field. Let
L: dom La X->Z be a linear mapping and N: A c X -> 2Z be a set-valued mapping •
Further, assume that there is a linear injective {one-to-one) mapping

\j/\ cokerL-»kerL.

Then x0 e dom LnA is a solution of the equation

(3.1) LxeNx

if and only ifx0 is a fixed point of the set-valued mapping M^: A -» 2X defined by

(3.2) MfX
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for every pair (P, Q) of exact projections with respect to L, where n and Kp have
their meaning as explained in Section 2. In other words,

(3.3) (L-N)-\0) = (I-MJ-\0).

PROOF. Since the images under P and ij/ are contained in kerL and that under
Kp is in Xj_Pn domL, it is clear that M^A) c: domL. First, let us suppose that
JC0 e A n domL with Lx0 e Nx0. Then

Hence using (2.3) and (2.4) we have

(I-P)x0 e Wn+KJI- Q]Nx0.
Therefore

Next, let us suppose that xoeA ndomL with XQEM^XQ, that is

(3.4) x0 <=Px0 + Wn+KJI- Q)-]Nx0-

Since the operator \j/n+Kp{I— Q) is injective (see Lemma 3.3) we have

(3.5) [< / '*+* , ( / -0 ] - 1 [>rc+t f P ( / -0 ]Mt o =Nxo.

Hence it follows from (3.4) and (3.5) that

(3.6) Wn+Kp(I-Q)T\l-P)xoeNxo.

Thus

(3.7) ^

yields LxoeNxo, where n/lmQ denotes the restriction of n to imQ. We now
establish (3.7).

For each zeZ we have by using (2.2)

[(7r/Im Q)'1^'1 P+L] [_^n+Kp{I- Q)~\z

= (;i/Im Q)-1 nz+(J- Q)z = Qz+(I- Q)z = z.

Also if xedomL, then using (2.3) and (2.4) we have

f- 0 ] [fr/Im Q)-1^-iP+L\x =Px+{I-P)x = x.

3B. Basic assumptions

Before we define the coincidence degree for (L, N), we shall state the assumptions
which we shall make on the mappings.
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ASSUMPTIONS, (a) A' is a real Banach space and Z is a real normed linear space.
(b) L: domt c X->Z is a linear Fredholm mapping of index zero defined on a

subspace domL of X, that is L is linear, ImL is closed and

dimkerL = dim cokerL < oo,

where 'dim' denotes dimension.
(c) Q is a bounded, open set in X and the set-valued mapping N: H -> CK(Z)

takes each x in the closure of Q to a nonempty compact convex subset of Z.
(d) N is upper-semicontinuous with nN(U) bounded in cokerL.
(e) Let (P, Q) be an exact pair of projections with respect to L and let Kp be the

pseudo-inverse of L associated with P. Let <p be a measure of noncompactness
defined on 2X such that either (i) <p satisfies the subadditivity condition of
Proposition 1.1 and takes values in i ? + = { ? e / ? : f ^ 0 } u { o o } or (ii) we addi-
tionally assume that Z is a Banach space and q> is one of x, 7, Id a n d Id- We assume
that with such a measure of noncompactness <p, KP(I— Q)N is a k — (^-contraction
with 0 < k < 1 and that (p(Kp(J— Q)N(Q)) <oo. In this case we also assume that
Kp is continuous.

- A0(domL n BSi) where dCl denotes the boundary of Q.

REMARK 3.1. From assumption (b), the exact pair of projections (P, Q) may be
assumed continuous and will hereafter be assumed continuous. Moreover, with
the quotient norm topology cokerL is a normed space and the canonical sur-
jection n is continuous with respect to this topology. Also, (b) is sufficient con-
dition for the existence of a linear isomorphism \j/\ cokerL -»kerL.

PROPOSITION 3.1. Let assumptions (a) to (d) hold and let {P, Q) and (/>', Q') be
exact pairs of continuous projections with respect to L. Suppose that (P, Q) satisfy
assumption (e). Then the pair (Pr, Q') also satisfies the assumption (e).

PROOF. Writing nQ = njlm. Q and nQ. = n/lm Q' and using (2.5) we have

(3.8) Kp.(I-Q')N = (I-P')Kp(I-Q')N

= (I-P')KP(I-Q)N+(I-P')KP(Q-Q')N

= (I-P)Kp(I-Q)N+(I-P)Kp(nQ1-nQ.l)nN,

where Kp denotes the restriction of Kp to the finite dimensional subspace
(Q— Q')Z. Thus Kp is continuous. Since 7riV(Q) is bounded in a finite dimensional
subspace of X, it follows that (I-P')Kp(nQl-nQ})xN is a O-cp-contraction.
Hence from Propositions 1.1 and 1.2 it follows that Kp.{I—Q')N is a k — q>-
contraction. That Kp, is continuous follows from (2.5) as Kp and (I-Qr) are
continuous. Finally applying cp to both sides of (3.8) and using subadditivity of (p
we can easily show that (p(Kp.{I— Q')N(U) < oo.
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DEFINITION 3.1. A mapping N: Q -» CK(Z) satisfying (c), (d) and (e) is said to
be aL — k —(p-contraction. (We see that this is a proper definition as assumption (e)
is independent of the choice of (P, Q).)

3C. Definition of coincidence degree

PROPOSITION 3.2. Suppose assumptions (a) to (e) are satisfied and M^, is the
mapping defined in Theorem 3.1 for some continuous isomorphism

\j/: cokerL -» kerL.

Then for each x in H, M^ x is a compact convex subset of X and M^ is a k — cp-
contraction.

PROOF. Since P, Q, Kp, \j/ and n are all linear and N(x) is convex for each
x£ Q, it follows that M^x is convex for each xeCl. Again since P, Q, Kp and i//
are continuous and Nx is compact, M ^ x = Px+[\l/n+Kp(I— Q)~]Nx is compact
for each xeU.

Now P is linear continuous and has a finite dimensional range. Hence P is
compact and is, therefore, a 0—(^-contraction. Also \]/nN(n) being bounded sub-
set of a finite-dimensional subspace is relatively compact.

We now prove that [il/n+Kp(I— Q)~]N is a k—^-contraction. Let A £ H.
Noting that

\&n+KJLI- QW(A) c ij,nN(A)+Kp(I- Q)N(A)
we have

cp([il,n+Kp(I- Q)]N(A)) < <ptynN(Ay)+KJJ- Q)N(A))

< <pWnN{A))+cp(Kp(l- Q)N(A))

(by subadditivity of <p)
< k<p(A)

as cp(\l/nN(A) = 0 , \pnN(A) being relatively compact. Now from Proposition 1.1 it
follows that M^ is a k — ̂ -contraction from H to CK(X).

REMARK 3.2. We note that assumption in (e) that Kp is continuous has been
used to prove that M^x is a compact subset for each jceH. This assumption is
not unrealistic. For, if in addition to the assumption (b) L: domL X^Z is a
closed operator and Z is a Banach space, then Kp is continuous. To see this let
yn -*• y, yn e ImZ, and Kpyn = xn-+x. Since

Lxn=LKpyn=yn and x , e d o m L n I , . f >

we have by closedness of L thatZjc =y and xedomL. Clearly xeX,_P as X,.f is
closed. Hence Kpy=KpLx = (I—P)x = x and obviously yelmL as ImL is
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closed. Thus Kp is closed. Again since ImL is closed, the closed graph theorem
yields that Kp is continuous.

REMARK 3.3. From Proposition 3.2, we see that if the assumptions (a) to (0
are satisfied M is an ultimately compact mapping (see Theorems 1.2 and 1.3). It
follows from assumption (f) and Theorem 3.1 that 0£( / -Af^) (domLn3f i ) .
Thus the degree of the ultimately compact field l—M^ with respect to zero is
well defined.

DEFINITION 3.2. Let JS?L denote the set of all continuous isomorphisms from
cokerL to kerL. tj/, \//' are said to be homotopic in £?L if there exists a continuous
mapping ^ : cokerL x [ 0 , 1 ] -+kerL such that <^(-,0) = rj/, $ ( - , l ) = i/r' and, for

REMARK 3.4. To be homotopic is an equivalence relation which partitions JS?t

into equivalence classes called homotopy classes.

The following two propositions and corollary are quoted from Gaines and
Mawhin (1977):

PROPOSITION 3.3. \p and ij/' are homotropic in £?L if and only if det (ij/' \j/~l)>0.

COROLLARY 3.1. JifL is partitioned into two homotopy classes.

DEFINITION 3.3. ifr: cokerL-»• kerL is said to be orientation preserving if
{^«i, ^a2, • y^On} belongs to the orientation chosen in kerL where {au a2, •••,«„}
is a basis for cokerL belonging to a certain chosen orientation. Otherwise, \j/ is
said to be orientation reversing.

PROPOSITION 3.4. / /cokerL and kerL are oriented then \]/ and t//' are homotopic
in i f L if and only if they are simultaneously orientation preserving or orientation
reversing.

LEMMA 3.1. Let X and Z be normed linear spaces and let £1 be a bounded open
subset of X. Let <p: 2X -* C be a measure of non-compactness as given in assumption
(e). Let F: U x [0,1 ] -» CK(X) be an upper-semicontinuous mapping such that
<p(F(U x [0,1])) < oo and, for some ke(0,1), we have

(p(F(A x [0,1])) < kq>(A) for every 4 c S .

Then F((K' n H) x [0,1]) is relatively compact where

K'=K(F,Ux [0,1]).
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PROOF. A S K' = K(F, U x [0,1]) = CO F((H n K') x [0,1]),

<p(K' n Q) < <?(#') = <p(.F(n n X') x [0,1])

As 0 < k < 1, and q>(F(fi x [0, l]))<oo, we have

cp(K' nH) = ^(/-((n n K') x [0,1])) = 0.

Hence, K' nH and F((H n AT')x [0,1]) are precompact and by the assumption

that H is complete, we conclude that F((fi. n K') x [0,1]) is relatively compact.

THEOREM 3.2. Let assumptions (a) to (f) be satisfied. Then d(I—M^,Cl,0) as
defined in Definition 1.3 depends only on L,N and the homotopy class of *// in SCL.

PROOF. Let (P, Q) and (P1, Q') be exact pairs of projections with respect to L.
Let \j/, \j/' e S£L be in the same homotopy class and let $ : cokerL x [0,1 ] -* kerL
be the mapping in Definition 3.2. Let

M' =P'+Wn+Kp.(I- Q'y]N.
For each Ae [0,1], define

Px = (l-X)P+XP',

By Proposition 2.2, (Px, Qx) is an exact pair of projections with respect to L.
Moreover, Po=P,Pl=P', Q0 = Q and QV = Q' and KPA = {\-X)Kp+XKp..
Define M*:Ux [0,1] -> CK(X) by

M*{x,X) =Pkx+\$W;\X)+KPx(!- QJ]Nx.

By theorem 3.1 and assumption (f),

x$M*(x,X) for every xedQ, Xe[0,1].

Also, M*( •, 1) = M' and M*( •, 0) = M.

We claim that M*((H n AT') x [0,1]) is relatively compact, where

Now, writing explicitly,

M*(x, X) = (1 - X)Px+XP'x+[#(«(•), A)
+ {(1 - A ^ + A ^ , } {/-(I -A)fi-Afi'}

= (1 - X)Px+XP'x+[^(B( •), A)
+ {(1 - A ^

7 - XP')Kp(I- Q)
+X(I-XP')Kp(Q-Q'y]Nx.
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Using the same argument as in Proposition 3.1 we can show that for each
Ae [0,1], kfJ-XP^KpiQ— Q')Nis 0 - ^-contraction. Now by using the assumption
(e) and similar argument as in Proposition 3.2 we can show that for each Ae [0,1].

[?(*(•), A)+(/-AP') ̂ ( 1 - 0 + A ( / - XP')Kp{Q- Q'W

is A:-<j9-contraction (note that P and P' being compact maps are both 0-q>-
contraction). Thus, it follows from Propositions 1.1 and 1.2 that for each
Ae[0,1], M*(-,A) is a k—(^-contraction.

Now,

9>(M*(/lx[0,l])) = (?>( U M*(A,X)\

= max <p(M*(A,X)).

Since for each Ae[0,1], M*{-, A) is a k—^-contraction

cp(M*(Ax 10, lJ))^k<p(A).

From the preceding lemma, M*((fi n K') x [0,1]) is relatively compact. By the
Homotopy Invariance Theorem given in Petrysyn and Fitzpatrick (1974),

d(I- M*{-, 0), SI, 0) = d(I-M*{-, 1), Si, 0)
or

d(I- M, SI, 0) = d(I- M', Q, 0).

Thus the degree of /— M+ on fi with respect to zero is independent of the choice
of P, Q and ip within the same homotopy class.

DEFINITION 3.4. Suppose that assumptions (a) to (f) are satisfied and i// is an
orientation preserving continuous isomorphism from cokerL to kerL. Then, the
coincidence degree ofL and N in Q, denoted by d\_{L, N), Si], is defined by

(3.9) d£(L, N), O] = d(I- M+, 0,0),

where M^: £2 -> CK(X) is defined by

and the right-hand term is the degree for the set-valued ultimately compact field
I—Mf as defined in Definition 1.3.

REMARK 3.3. (a) If X=Z, L = I, then kerZ, = {0} and thus cokerL = {0}.
This implies that ImL = X and hence, P = 0, Q = 0 and KP(I- Q) = I and the
only isomorphism between cokerL and kerL is the trivial one i/r(0)=0. The
assumption (b) is trivially satisfied and (e) reduces to assuming that N is a k—cp-
contraction for some k in (0,1) with (p(N(Q)) < oo. Assumption (f) means that N
has no fixed points on the boundary of SI. As M^ = N, we have

i] =d(I- N,Sl,0).
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We may, in fact, replace assumption (e) by the assumption that N is ultimately
compact.

3D. Basic properties of the coincidence degree

In this section, unless otherwise specified, we shall assume that assumptions (a)
to (f) are satisfied such that the Coincidence Degree is well defined.

THEOREM 3.3. (a) Existence Theorem.
Ifd[(L,N),Sl] # 0, then Oe(L-N)(domLnSi).

(b) Additivity Property.
Let O1,Q2 be disjoint open sets such that S11\JS12<=-SI Si1vSi2=Sl and
0^(L-N)(dSl1 u dSl2). Then,

dl(L, N), Si] = d[(L, N), fij +di(L, N), flj.

(c) Excision Property.
IfSlt c SI is an open set such that (L-N)~ 1(0) c fi1 then

dl(L,N),Si]=dl(L,N),Sl{].

PROOF, (a) and (b) follow from the Definition of Coincidence Degree and the
corresponding properties of degree of an ultimately compact vector field given by
Petryshyn and Fitzpatrick (1974). By taking Sl2 = Sl\Uu that is

The result (c) follows from (a) and (b).

THEOREM 3.4. If SI is a symmetric bounded neighbourhood of the origin and
N(-x) = -Nxfor all xeSl, then dL,N),Ci] is odd.

PROOF. Note that, as P, Q, Kp, \j/ and n are all linear, the condition on N implies
that M^(—x) = — M^(x) for all xeCl. Thus, by the corresponding property of
degree of an ultimately compact vector field (Petryshyn and Fitzpatrick (1974))
and the definition of Coincidence Degree, d[_(L, N), Si] is odd.

THEOREM 3.5. (Homotopy Invariance.) Let assumptions (a) and (b) be satisfied
and let SI be a bounded, open subset of X. Let q>, P, Q and Kp be as given in assump-
tion (e) and suppose ft: U x [0,1] -> CK(Z) satisfy the following

(i) N is upper-semicontinuous on SI x [0,1],
(ii) nN(U x [0,1]) is bounded,
(iii) (p(Kp(I- Q)ft(n x [0,1])) < oo,
(iv) there exists &e(0,1) such that, for every A<=Sl,

cp(KJI- Q)N(A x [0,1])) <kcp(A),
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(y) for each Xe [0,1],

(3.10) 0$(L-N(-,X))(domLndil).

Then, rf[(L, N( •, A)), Q] w independent of X in [0,1].

PROOF. Let i//: cokerL->kerZ, be an orientation preserving continuous iso-
morphism. Define My. U x [0,1] -> CK(X) by

M^x, X)=Px+ tyn+K/J- QfiffOc A).

Then, by Lemma 3.1 and (v), M^ satisfies the conditions of Theorem 2.2
of Petryshyn and Fitzpatrick (1974). Hence, by the definition of Coincidence
Degree,

dl(L, N( •, 0)), fl] = d[(L, N( •, 1), O].

Now, for any Xe[0,1], let A'=A/ and apply the above to N'(-,t), te[0,1]
where /?'(•, r) = Af(•, A'). Then,

</[(L, ft( •, A)), fl] =d[(L, ft'( •, 1)), ft]

Hence, </[(L,^(-,A)),n] is independent of A in [0,1].

COROLLARY 3.2. Let assumptions (a) and (b) hold and let Q 6e an open bounded
subset of X. Let N and N' be two L—k — ̂ -contractions on H satisfying (f) such
that Nx = N'x for each xedQ. Then d[(L, N), £2] = d[_(L, N'), O],

PROOF. Define
f}:Ux[0,l2^CK(Z)

by
ft(x, A) = (1 - X)Nx+XN' x.

Then ft is clearly upper-semicontinuous and satisfies all the other conditions of
Theorem 3.5. Hence by Theorem 3.5,

and hence,

DEFINITION 3.5. Let X and Z be normed linear spaces with norms denoted by
|| ||. Let x be any point of X (or Z) and let A,B be subsets of X (or Z). Then
D*(x,A) = 'mf{\\x—a\\:aeA} is the usual distance between x and A and we
define

) = in£{\\a-b\\: aeA,beB}
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to be the distance between A and B. In fact, d*(x, A) is equivalent to the distance
between A and the singleton {x}.

LEMMA 3.2.

d*(x,A)+d*(B, Q > d*(x,A+C-B).

PROOF. If aeA, beB and ceC, a+c—beA+C—B and hence, for every aeA,
beB, ceC,

|| x-(a+c-b) || ^ d*(x,A+C-B)
Now,

Hence, for every aeA, beB and ceC, we have

d*(x,A+C-B)^\\x-a\\ + \\b-c\\
and so,

d*{x,A+C-B) < inf {|| x-a ||: ae^}+inf {|| b-c\\: beB,ceC)

= d*(x,A)+d*(B,C).

LEMMA 3.3. For each xedomLnH, we have

(I-MJx = Wn+KJI- Q)1(L-N)x,

where \j/n+Kp(I— Q) is an algebraic isomorphism between Z and domL.

PROOF.

I- 0 ] (L-N) =Wn+Kp{I- Q)-]L-[.il,n+Kp(I- Qj\N

= KP(I- Q)L- Wn+Ktf- Q)W by (2.4)

= I-P- Wn+Kp(I- QW by (2.3)

To show that \jin+Kp{I— Q) is an isomorphism, consider the equation

(3.11) Wn+Kp{I-Q)]z=y

for some ye&omL.
This is equivalent to

(3.12) >},nz=Py,

(3.13) Kp(I-Q)z = (I-P)y.

Now, as kerrc = ImL = Im(7— Q), \j/nQ, the restriction of \j/n to imQ, is an
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isomorphism from Im Q to kerL and hence (3.12) is equivalent to

(3.14) Qz = ^nQ)-iPy

and since LKp = I and LP = 0, (3.13) is equivalent to

(3.15) (I-Q)z=L(I-P)y=Ly

Hence,
z = Qz+(I-Q)z

This shows the existence and uniqueness of the solution z of equation (3.11) for
each given y in domL. Hence \//n+Kp(I— Q) is an isomorphism from Z to
domL.

LEMMA 3.4. Let assumptions (a) to (f) be satisfied. IfM^(dCl) is relatively compact,
then there exists fi > 0 such that

(3.16) inf {d*(Lx,Nx):xedQn domL} > fi.

PROOF. By assumption (f), d*(Lx,Nx) > 0 for all xedQn domL. Now, suppose
that for all fi > 0, (3.16) does not hold. Then for each positive integer n, there
exists xnedSl n domL such that

d*(Lxn, Nxn)<
1-.

Now, d*(xn, M+xn)< || xn-y || for all ye M+ xn.
Using the preceding lemma and noting that \jin+Kp{I— Q) is a continuous

linear operator from Z onto domL, we have for each zneNxn,

(il/n+Kp(I- Q)(Lxn-zn))=xn-y for some yeM^,xn.

Hence, for all zneNxn,

\\(iPn+Kp(I- 0 ) (Lxn-zn)\\ > d*(xn, M* xj.

If | |^+tfp(/-0|| = «£(),

d*(xn,M*xn) < \Wn+Kp(I- 0||||Lx.-r.ll

= a ||Lxn - zn || for all zB e Nxn

Hence,
d*(xn,M+xn)^<xd*(Lxn,Nxn)

Thus for each integer n, there exists some uneM^xn such that

II * „ - « „ ! ! < £
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Now since uneM^,xn c: M^(SQ) which is relatively compact, we can find a

subsequence {unk} of {«„} such that uKk ->• u0 and the triangle inequality

Unk - M01|

implies that xnic -> M0 as nk -*• oo. As xniced£i which is closed, uoedil. By upper-
semicontinuity of M+, unk s Af̂  xnk for each nt implies that u0 e M^, u0 which is a
a contradiction as w0edO. Hence (3.16) holds for some \i > 0.

REMARK 3.5. In Gaines and Mawhin (1977), Rouche's Theorem was extended
to the context of Coincidence Degree. The following theorem is a version of
Rouche's Theorem in our situation.

THEOREM 3.6. Let assumptions (a) to (f) be satisfied and assume that M^idCi) is
relatively compact. Let \i > 0 be such that

inf {d*(Lx,Nx):xedQn domZ,} $s \i.

Then, for each L—k—^-contraction N':U-> CK(Z) satisfying assumption (f) and
the following condition:

sup {d*(Nx, N'x) :xedii}<n
we have

d[(L,N),O]=dUL,N'),Ci].

PROOF. Let ft: U x [0,1] -> CK(Z) be denned by

ft(x, X) = (1 - X)Nx+kN' x.

It can easily be verified that conditions (i) to (iv) of Theorem 3.5 are satisfied.
Now,

d*(Lx, ft(x, A)) = d*(Lx, Nx - X(Nx - N' x))

^ d*(Lx, Nx) - Xd*(Nx, N' x)

t h e las t i n e q u a l i t y fo l lowing f r o m L e m m a 3.2 b y p u t t i n g B = XN' x,C = XNx a n d
A=Nx-XNx+XN'x.

Hence, for each (x, X) e (domL n dil) x [0,1],

d*(Lx, ft(x,X))>n-Xn> 0.

This shows that ft satisfies the last condition of Theorem 3.5 and hence,
rf[(L, N), fi] = dl(L, ft(-, 0)), Q] = dl(L, ft(-, 1)), Q] = d\L, N% ft].

Thus,
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3E. A generalized continuation theorem and existence theorems

In Gaines and Mawhin (1977), the Leray-Schauder Continuation Theorem was
extended to the context of Coincidence Degree. Here, we shall extend it to the
set-valued situation. We shall also consider some existence Theorems for LxeNx.

DEFINITION 3.6. Consider the mapping F: X-+ CK{X) where X is the zero-
dimensional space {0}. As CK(X) may only contain nonempty subsets of X,
CK(X) = {{0}} and hence F is the mapping F(0) = {0}. We define d(F, (0},0) = 1
and this degree agrees with the usual properties of the degree for an ultimately
compact field F. We also set d{F, <p, 0) = 0.

DEFINITION 3.7. Let X and Z be normed linear spaces and let L be a linear
Fredholm mapping of index zero. Let P, Q, KP and q> be given as in assumption (e)
and let ft be an open bounded subset of X such that ft is complete. Let a > 0 and
let N*: fi x [0, a] -» CK(Z) be a set valued mapping. Let N* satisfy the following
conditions:

(i) N* is upper-semicontinuous on ft"x [0,a],
(ii) N*(H x [0,a]) is bounded,

(iii) <p(Kp(I- Q)N*(U x [0, a])) < oo,
(iv) there exists a positive k < 1 such that, for every A c ft",

cp(Kp(I- Q)N*{A x [0, a])) < kcp{A).

Then N* is said to be a L—k—q>-contraction on ft x [0,a].

REMARK 3.5. With N* as defined above, it can be seen that for each Ae[0,a],
N*(-,X) is L—k—^-contraction as defined by assumptions (c), (d) and (e). Also
note that for a = 1, N* satisfies the first four conditions of the homotopy in-
variance theorem, Theorem 3.5.

Now, let assumptions (a) to (f) be satisfied for a pair of mappings L: domL -• Z
and W: ft" -> CK(Z) and let N*: ft" x [0,1] -> CK(Z) be a L-k-^-contraction on
ft" x [0,1] such that N*(-, 1) = N.

Let yelmL and consider the family of equations

(3.17) Lx<=XN*(x,X)+y.

An element (x,X)eHx [0,1] satisfying (3.17) is said to be a solution of (3.17).
If A is specified, any xeft" satisfying the equation for that A is also called a solution.
It will be clear from the context whether a solution is an element of H or H x [0,1].

LEMMA 3.5. For each Ae(0,1], the set of solutions of(3.17) is equal to the set of
solutions of the equation

(3.18) Lxe IQ+MI- 0]N*(x, X)+y

https://doi.org/10.1017/S1446788700015640 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015640


160 E. Tarafdar and Suat Khoh Teo [22]

and if X = 0, every solution o/(3.18) is a solution o/(3.17).

PROOF. If A = 0, (3.18) reduces to

LxeQN*(x,0)+y.

But Lx = (I— Q)Lx which implies that

Lxe(I- Q)lQN*(x,0)+y] = {y}.

This means that Lx = y or x is a solution of (3.17) for A = 0.
Let Ae(0,1] and let x be a solution of (3.17). Then there exists ueN*(x,X)

such that
Lx = Xu+y.

Hence u = X~1(Lx—y)eImL. Therefore Qu = 0 and thus,

Hence,

Lx = 0+Aw+j> = [g+A(7- 0]«+j>e [g+A(7- 0]JV*(x,

that is x is a solution of (3.18).
Conversely, let x be a solution of (3.18). Then there exists veN*(x,X) such that

L* = [fi+^7-fi)>+^.
Hence 0 = QLx = Qv+XQ(I- Q)v+ Qy = gt;. Thus,

Lx = gv+A(7- 0 t )+^

= Xv+y as 2» = 0

6AiV*(x,A)+^,

that is x is a solution of (3.17).

THEOREM 3.7. (A Generalized Continuation Theorem.) Let L and N be mappings
satisfying assumptions (a) to (f) and let N* be a L—k—^-contraction on Six [0,1]
such that N*(-, 1) =N. Let .yelmL and we assume the following conditions hold:

(1) Lx$XN*{x,X)+yfor every xedOndomL, Ae(0,1).
(2) 0$nN*(x,0)for every xeL" 1 ^} n dto.
(3)d(g(.)\L-lM,ilnCl1nL-1{y},0)^0,

where the left-hand expression is the Brouwer degree for the single-valued compact
field g restricted to the affine finite-dimensional space L~l{y} and g and Qt are
defined as follows: As kerL is a finite dimensional subspace of X, —\J/nN*(- +Kpy,0)
defined on {{Q.—Kpy))~ nkerZ, is a set-valued compact field with respect to zero
(the conclusion that 0 £ — \l/nN*(x+Kpy, 0) for every x e d(Q—Kpy)n kerL follows
from condition (2)). In Ma (1972), Section 5.2, it has been shown that there exists a
single-valued compact field g and an open bounded set Cl^ <= kerL containing zero
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such that g(-+Kpy) and — ij/TtN*(- +Kpy,0) are homotopic and

g{x+Kpy) = x+Kpy for all x in (((Q-Kpy))- \(flt -Kpy)) n kerL.

Ma has also defined the degree of the set-valued compact field — \j/nN*(-+Kpy,0)

by

d( - xl>nN*( -+Kpy, 0) | k e r t , (Q - Kpy) n ker L, 0)

= d(g( -+Kpy) |ker L, (Q - Kp y) n (Slt -Kpy)n ker L, 0).

Then, for each Xe [0,1), equation (3.17) has at least one solution in Q and for X = 1,
the equation

(3.19) LxeNx+y

has at least one solution in U.

PROOF. Let Ae[0,1] be considered fixed. For each xeU, /*e[0,1] we define

Clearly N is a L—k—(^-contraction in Q x [0,1].
Let us now consider the case where Xe[0,1). By condition (1) and Lemma 3.5

ifA^O
Lx $ f}(x, n) for every xedCln domZ., n e (0,1].

Also, if/*=Oor A = 0

and Lxefl(x,ii) would imply that Lx =y and 0eQN*(x,0) or xeL~l{y) and
06 7tA'*(^,0). Thus, by assumption (2), x$d£l. Hence, for every xedilndomL,

(3.20) Lx$Ft(x,ii).

By Theorem 3.5, </[(L,J^(-,/i)),Q] is independent of fi in [0,1] and hence,

= dl(L,QN*(;0)+y),Ci]

= d(I-P- Wn+Kp(I- 0 ] IQN*{-, 0)+^], Q, 0)
that is

(3.21) </[(£,#(-, 1)),Q] =d(I-P-<l,nN*(-,0)-Kpy,Q,0).

Let us now consider two cases. Firstly let us assume kerZ, = {0}. Then
P = 0, Q = 0, n = 0, Kp = L~1 and hence, from (3.21), we have

(3.22) dt(L, f}(-, 1)), £2] = d{l-L~' y, Q, 0).

Now, Z,"1^} = {L'1 y] is a zero dimensional space and hence, for condition (3)
to be satisfied, L - ' ^ n J l n Q ^ 0 .
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Hence, L~1ye£l and so, as the right-hand term of (3.22) has reduced to the
degree of a single-valued mapping I—L~1y, we have

d[_(L, ff(•, 1)), Q] = d(I-L- * y, £2,0)

From Theorem 3.3, there exists xeCl such that LxeN(x, 1), that is, for some
xeQ,

LxelQ+MI- Q)1N*(x, X)+y.
and by Lemma 3.5, equation (3.17) has at least one solution in Cl. Now let us
consider the case where kerZ. ̂  {0}. By a change of variables, we have

(3.23) d(I-P-il,nN*(-,0)-Kpy,n,0) = d(I-P-ilniN*(-+Kry,0),Q-K,y,0).

As kerL is a finite-dimensional subspace containing the range of P+i//nN*, we
may apply Theorem 1.1 and obtain

(3.24) d{I-P- tnN*( •+Kpy, 0), fi - Kp y, 0)

= d[(I-P-il/nN*(-+Kpy,0)-]\ketL,(n-KPy)nkeiL,0)

= d(-<l/nN*(-+Kpy,0) |ker L, (Q-Kpy) n kerL,0)

= d(g( -+Kpy) |ker L, (fi-Kpy) n (Qj -K p y) n kerL,0)

the last equality holding by definition.
By a change of variables again,

(3.25) d(g(- +K,y)\kmL, (Sl-Kpy)n(n1-Kpy)nkcTL,0)

^ 0 by condition (3).

Hence, from (3.21), (3.23), (3.24) and (3.26),

and again, we conclude from Theorem 3.3 and 3.5 that equation (3.17) has at
least one solution in Q.

Now, for X — 1, equation (3.17) becomes

(3.17) LxeNx+y = N*(x,l)+y.

If, for every xedClndomL, (3.17) does not hold, then Lx$FI(x,ti) for each
xedSlndomL and each (ie[0,1] and the above proof can be repeated. If,
however, there exists x in SQndomL such that LxeNx+y, then a solution
exists in dil a Q. Hence (3.17) always has a solution in Q.

This completes the proof of the Theorem.
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THEOREM 3.8. Let X be a Banach space, Z normed linear spaces and let L be a
linear Fredholm mapping of index zero from a subspace of X into Z.

Let Q. be an open bounded subset of X and let ft: Ux [0,1] ->• CK(Z) be a
L—k — ̂ -contraction on fix[0,l]. If for each Ae[0,1] and xedilndomL, we
have

Lx$ft(x,X)

and if ^[L,#(-,A0)),£}] ^ 0 for some A0e[0,1], then for each Ae[0,1], the
equation

(3.26) Lxeft(x,X)

has at least one solution in Cl.

PROOF. By Theorem 3.5, for each Ae [0,1],

</[(£,#(-, A)), fi] =dKL,N(;Xo)),ai # 0

and hence by Theorem 3.3, the equation

Lxeft(x,X)
has a solution in ft.

COROLLARY 3.3. (A Generalized Borsuk's Theorem.) Let X, Z and L be as in
Theorem 3.8 and let SI be a bounded open subset of X, symmetric with respect to
the origin and containing it. Let ft: Hx [0,1] -> CK(Z) be a L—k—<p-contraction
on Hx [0,1]. Also, suppose that ft(—x,O) = — ft(x,0) for each xeU.

Then equation (3.16) has a solution in Clfor each Xe[0,1].

PROOF. From Theorem 3.4, d\_(L, N(-,0)),Q] is odd and hence different from
zero. The result follows from the preceding Theorem.

COROLLARY 3.4. (A Generalized Krasnoselskii Theorem.) Let X, Z, L and Q be
as in Corollary 3.3. and let N:Q-> CK(Z) be a L—k—cp-contraction such that for
each A e [0,1] and xedCln domL, we have

(3.27) UL-N)x} n [A(L-#)(-*)] = 0 .

Then the equation

(3.28) LxeNx

has at least one solution in Q.

PROOF. Define N: U x [0,1] - • CK(Z) by

N(x,X) = (l+X)-*[Nx-XN(-x)].

It can be easily verified that ft is a. L—k—(^-contraction on fix [0,1]. Now,
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N(x,0) = Nx and N(x,l) = RNx-N(-xj] which is odd. We claim that
Lx$N(x,X) for each Ae[0,1] and each xedClndomL. Assuming otherwise,
there exist Ae [0,1], xedQ, n doml, such that

(l+X)LxeNx-XN(-x);

that is, there exist ueNx, veN(-x) such that

or
Lx-u = k(L(-x)-v)

which contradicts (3.27).
Hence the conditions of Theorem 3.8 are satisfied and thus, there is a

such that
LxeN(x,0)=Nx

and so equation (3.28) has a solution in SI.

4. A different approach

In building up the coincidence degree for the pair (L, N) where N is a single-
valued mapping, Mawhin (1972) (see also Gaines and Mawhin (1977)) has
assumed continuity of the mappings nN and Kp(I— Q)N. It can be easily seen that
if we replace the upper-semicontinuity of N by that of nN in our condition (d) in
Section 3B, our degree theory built up in the previous section will still hold under
the remaining assumptions. However, it is not clear if we can replace the con-
tinuity of Kp by that of Kp(I- Q)N (see Remark 3.2).

The purpose of this section is to indicate that a coincidence degree theory under
assumptions similar to those of Mawhin (1972) can be built up via an alternative
equivalence theorem.

4A. Another equivalence theorem

The following equivalence theorem has its own interest.

THEOREM 4.1. Let X and Z be two vector spaces over the same scalar field. Let
L: domLc X-*Z be a linear mapping and N:A<=X-+2Z be a set-valued
mapping. Further, assume that there is a mapping ij/: cokerL->kerL such that
^ - 1 (0) = {0}. Then, x0 e domL n A is a solution of the equation

(4.1) LxeNx

if and only if x0 is a fixed point of the set-valued mapping ifr^: A -* 2X defined by

(4.2) &+(x) =Px+il/nNx+Kp(I- Q)Nx

https://doi.org/10.1017/S1446788700015640 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015640


[27] Existence of solutions of the equation Lx e Nx 165

for every pair (P, Q) of exact projections with respect to L, where n, Kp, Q have their

meanings as explained in Section 2 and ft: A~*2 is defined by

_JNxnImL if Nx n Im L * 0 ,
X ~ \NX if Nx n Im L = 0 ,

In other words,

(4.3) (L-N)-\0)=(l-^)-\0).

PROOF. Since the images under P and \j/ are contained in kerZ, and those under
Kp are in Xj^PndomL, it is clear that J W ^ ) c domL. Now, for each x e l ,
we write

(4.4) x=Px+KpLx

as KPL = I-P from (2.3). Also, since ^-'(0) =0 , we have

{\l/nN)-\0)={nNY\Q).

Now let us suppose that
LxeNx.

Since Nx n Im L ̂  0 , J^x = iVjc n Im L and Lx e Nx. Hence, 0 6 nftx or

xeinN)- \0) = tynfi)-\G)
which implies that

(4.5) OeijfTiNx.

Since LxeNx,

(4.6) KpLx = Kp(I-Q)LxeKp(I-Q)Nx.

From (4.4), (4.5) and (4.6),

x=Px+KpLx+0

ePx+Kp(I- Q)Nx+il/nNx

=-M+x.

Conversely, if xeM^x, then

I- Q)Nx.

Let ueil/nNx and veNx be such that

(4.7) x=P;c+«+/(rp(/-0t>.

Now,
Px =Px+Pu+PKp(I- Q)v

— Px+u

and hence u = 0 from which Oeij/nNx and thus 0e7ti^x. This implies that
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#xnImJL / 0 and, consequently, JVxnlmL # 0 . Thus,

#x = iVx n ImL c ImL

and so, QNx = {0}. As veNx, Qv = 0 and, with u = 0, (4.7) reduces to

p

Thus,
Lx = LPx+LKp v = veNx.

Hence Lxefix and as Nx <=• Nx for every x, we have LxeNx and hence the
proof of the theorem.

REMARK 4.1. From Theorems 3.1 and 4.1 it is clear that each solution xeO of
the equation LxeNx is a fixed point of M^ as well as of M^ where M^ and A?̂
are respectively as defined in Theorems 3.1 and 4.1. We should point out that if
we define the mapping M^: Q -* 2X by

M$ x = Px+\j/nNx+Kp{I- Q)Nx, xeU,

then it is clear that each solution in Q of LxeNx is a fixed point of A?̂  as for
each xeU, M^x = Px+[)lin+Kp{l'— Q)~]Nx is always a subset of

M^ x = Px+il/nNx+Kp(T~ Q)Nx.

However, each fixed point of M^ is not necessarily a solution of the equation
LxeNx. In other words, the solution set in £1 of the equation LxeNx may not
coincide with fixed point set of M^. To show this we furnish the following example.

EXAMPLE 4.1. Let L: R2 -> R2 be defined by

L(x,y) = (x,0) for all (*,>>)etf2.

Let Jl = (-1,1) x (-1,1) and let N: U -> CK(R2) be defined by

N(x V )=

Now, let x = (1,1). Then
£x =1(1,1) =(1,0).

Since (0,0)eiv"(l, 1) and (0,0)eImL, we have 0e7tiV(l, 1) and hence 0e4/nN(l, 1).
Since /— Q is the projection of R2 on the x-axis

KJLI- Q)N{\, 1) = ^,([0,1] x {0}).

But ImP = kerL =y axis. Hence Kp: R x {0} -> R x {0} is the identity mapping.
Hence Kp(I-Q)N(l, 1) = [0,1] x {0} and so, (l,0)eKp(I-Q)N(\,l). Also,

P(l,l) = (0,1). Hence
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eP(l, l)+tnN(l, 1)+KJI- Q)N(1,1),

that is (1,1) is a fixed point of M+. But L(l, 1) = (l,0)£iV(l,1).
Thus the above example shows that we cannot replace N by A''in our equivalence

Theorem 4.1 nor could we remove the square bracket in the definition of M^
in our equivalence Theorem 3.1.

REMARK 4.2. (a) If N is a single-valued mapping, we can regard it as set-valued
by considering the single point Nx as a singleton {Nx} and it follows that in this
case, N = N.

(b) If, for every xeA, either Nx n ImL = 0 or Nx <= ImL, then N=N.

4B. Basic assumptions

For this section we will make the following assumptions.

ASSUMPTIONS, (a)' Same as (a) of Section 3B.
(b)' Same as (b) of Section 3B.
(c)' fi is a bounded, open set in X and the set-valued mapping N: H -» CK(Z)

takes each x in the closure of Q to a nonempty compact, convex subset of Z.
(d)' If N: U -> CK(Z) is the mapping associated with TV as defined in Theoem 4.1,

N is assumed to be upper-semicontinuous with nN(d) bounded in cokerZ,.
(e)' Let (P, Q) be an exact pair of continuous projections with respect to L and

let Kp be a pseudo-inverse of L associated with P. Let <p be a measure of noncom-
pactness defined on 2X such that either (i) q> satisfies the subadditivity condition
of Proposition 1.1 and takes values R+ ={teR: t > 0} u {oo} or (ii) we addi-
tionally assume that Z is a Banach space and <p is one of x, 7, Xd an<l Id- We assume
that for such a measure of noncompactness, KP(I—Q)N is a k—(^-contraction
with 0 < k < 1 and that (p(Kp(I- Q)N(Q)) < oo.

(f)' Same as (f) of Section 3B.

PROPOSITION 4.1. Let assumption (a)' to (d)' hold and let (P, Q) and{P', Q') be
exact pairs of continuous projections with respect to L. Suppose that the pair (P, Q)
satisfies the assumption (e)'. Then the pair (Pr, Q') also satisfies the assumption (e)'.

PROOF. The proof follows similarly from that of Proposition III.l in Gaines and
Mawhin (1977) by noting that a compact mapping is a 0—(^-contraction.

4C. Definition of coincidence degree

PROPOSITION 4.2. Suppose assumptions (a)' to (e)' are satisfied and J#^ is the
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mapping defined in Theorem 4.1 for some continuous isomorphism

\j/: cokerL-vkerL.

Then, for each x in H, M^x is a compact convex subset of X and tii^, is a k—<p-
contraction.

PROOF. Since P, Q, Kp, i// and n are all linear, and since fix is convex for each
xeU, ift^x is convex. Now, as Kp(I—Q)ft is a ^-(^-contraction, Kp(I-Q)ftx
is compact by definition. By the continuity of ifr and n, \J/KNX is also compact and
hence i&^xe CK(X) for each xeU,.

Now, P is linear, continuous and has a finite dimensional range and is therefore
compact and a 0—^-contraction. Also, \j/nN(n) is bounded, closed and contained
in a finite-dimensional subspace of X. Hence it is relatively compact and \j/nfi
is thus a 0 — (^-contraction. From assumption (e)' and Proposition 1.1, ift^ is a
k—^-contraction from H to CK(X).

REMARK 4.3. From Proposition 4.1, we see that if the assumptions (a)' to (e)'
are satisfied M^ is an ultimately compact mapping. It follows from assumption (f)'
and Theorem 4.1 that 0^(7—M^)(domL n dfi). Thus the degree of the ultimately
compact field I—M^,, with respect to zero, is well defined.

DEFINITION 4.1. Suppose that assumptions (a)' to (f)' are satisfied and \ji is an
orientation preserving continuous isomorphism from cokerL to kerL (see
Definition 3.3). Then, the coincidence degree of L and N in Cl, denoted by
d[(L,N),Ci], is defined by

(4.8) dt(L, N), Q] = d(I- ti +, £1,0)

where fity. Q. -* CK(X) is defined by

and the right-hand term is the degree for the set-valued ultimately compact field
I—]ftt as defined in Definition 1.3.

REMARK 4.4. (a) If X = Z, L = I, then kerL = {0} and thus cokerL = {0}.
This implies that ImX = X and hence, P = 0, Q = 0 and KP(I- Q)=I and the
only isomorphism between cokerL and kerL is the trivial one ^(0)=0. The
assumption (b)' is trivially satisfied and (e)' reduces to assuming that N is a
^-(^-contraction for some k in (0,1) with (p(ft(£i)) < oo. Assumption (f)' means
that N and ff have no fixed points on the boundary of Q. As JŴ  = iV, we have

, AT), Q] =< / ( / -# ,n ,0 ) .

https://doi.org/10.1017/S1446788700015640 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015640


[31] Existence of solutions of the equation Lx e Nx 169

We may, in fact, replace assumptions (d)' and (e)' by the assumption that ft is
ultimately compact.

y,
ultimately compact.

(b) As N = ft, by definition,

4D. Basic properties of the coincidence degree

Following the same argument as given in Section 3D, we can show that this
degree 5[(L, N), £1] has all the basic properties of a degree. In other words, if
(a)' to (f)' are satisfied, then Theorems 3.3-3.5 hold with d[(L, N), £2] replaced by
<?[(Z,,JV),Q]. Also Rouche's Theorem and Generalized Continuation Theorem
can be obtained under suitable assumptions.

5. A general remark

The basic difference between the degree theory presented in Section 3 and that
in Section 4 lies in the continuity conditions appearing in assumptions (d) and (e),
and assumptions (d)' and (e)' respectively. At the beginning of Section 4 and
Remark 3.2 we have already discussed assumptions (e) and (e)'. Assumptions (d)
and (d)' differ in the upper-semicontinuity of N (or KN) and ft (or nft). Thus in
order to apply the degree d[(L,N),Q) or d[(L,N),Qi] to the pair (L,N) we need
respectively the upper-semicontinuity of N or ft. The following two examples
show that the upper-semicontinuity of one does not, in general, follow from the
upper-semicontinuity of the other.

EXAMPLE 5.1. This example gives a pair (L, N) where N is u.s.c. but ft is not.
Thus d[(L,N),£l] cannot be defined.

L: R -> R is the zero operator, that is Lx = 0 for all xeR.

is defined by

Then,

which is not u.s.c.

# f{sinl/x}
It—1,13

^ f{sinl/x}
1(0}

ifx #0,
i fx=0.

ifx^O,
ifx = 0

EXAMPLE 5.2. Here we give an example where ft is u.s.c. but N is not. Let
L:R2^R2 be defined by

T (Y ii\ :=: (v 0^ for (JC v\ P /?
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and

be defined by

f * , O : O < f < l } i f y = O and x > 0,
X> )0} otherwise.

Thus, ft(x,y) = {(x,y)} for all (x, j ) e H . Hence N is u.s.c.

To see that N is not u . s .c , consider the sequences {«„} and {va} with

«. = (£,(Men and o^f^A
Now,

and hence vneN(un) for each n. Now, wB ->• (0,0) and vn -> (0,1). N(0,0) = {(0,0)}
and hence (0, l)^N(0,0). Thus N is not u.s.c.

The following two propositions give sufficient conditions for ft to be upper-
semicontinuous when N is upper-semicontinuous. These propositions are included
here for the sake of interest.

PROPOSITION 5.1. Let N: H -» CK(Z) be upper-semicontinuous and let

be defined by

N x = -
(Nx if Nx n ^ = i

where A is a closed subset ofZ.
Suppose the set

S = {yeU: Ny n A = 0} is closed in X.

Then ft is upper-semicontinuous.

PROOF. If A = Z, ft = N and there is nothing to prove. Now let us assume that
A # Z, that is Ac # 0, where Ac denotes the complement of A.

Let xeQ. and let V be an open set in Z containing Nx. To show that ft is u.s.c.
at x, we need to find an open set W of X containing x such that ft(W) c V.

Let us consider two cases:
(i) If N x n A = 0 , then Nx = ftx and by upper-semicontinuity of N, there

exists an open set W containing x such that N(W) c V. But for every yeW,
fty c Ny and hence ft(IV) <= N(W) <= V.

(ii) If Nx n A / 0 , then Nx = Nx n ^. Let U = 7 u /lc. As ^ is closed, C/ is
open and Nx = Nxu(Nxn^4C) c F u i c = U, we have by upper-semicontinuity
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N, that there exists an open set W containing x such that N(W') a U. Now, let
W = W n Sc. Since Nxr\A¥= 0, xeSc and so xe W. By our assumption on S,
W is open. Now, if y e FT,

Hence ft(W) <= F. Thus, we have shown that JY" : J2-> CAT(Z) is upper-semi-
continuous.

REMARK 5.1. In our case, A = ImZ. which is closed.

PROPOSITION 5.2. Let N:U-* CK(Z) be u.s.c. and let # : H -> CK(Z) fee defined
by

^ [NxnlmL i/JVxnImL # 0 ,
[Nx i /NxnImL=0.

Suppose that #(H) w closed and that, for any x,yeH with x / >>, we Aaue

(Nx\ImL) n (iV>\ImL) = 0 .

u M.J.C.

PROOF. Let {xn} be a sequence in H converging to x and {yn} be a sequence in
Z such that >»„ e i9xB for every positive integer n and {>>„} converges to y. We wish
to prove that yeNx. Now, >»ne^xB <= Nxn for each n. By the upper-semicontinuity
of N, yeNx. If yelmL, then j e i ^ x and the proof is complete.

Suppose that >>£ImL. Hence yeNx\ImL. Now, since yneN(U) for each n
and N(U) is closed, >>eJ^(n). Let xeU be such that ye fix c JVjc. Thus we have
jeJVx\ImZ, and by the above condition, x = x. Hence >'eJ\"x.
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