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STRONG LOCAL SURVIVAL OF BRANCHING
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Abstract

In this paper we study the strong local survival property for discrete-time and continuous-
time branching random walks. We study this property by means of an infinite-dimensional
generating function G and a maximum principle which, we prove, is satisfied by every
fixed point of G. We give results for the existence of a strong local survival regime and we
prove that, unlike local and global survival, in continuous time, strong local survival is not
a monotone property in the general case (though it is monotone if the branching random
walk is quasitransitive). We provide an example of an irreducible branching random walk
where the strong local property depends on the starting site of the process. By means of
other counterexamples, we show that the existence of a pure global phase is not equivalent
to nonamenability of the process, and that even an irreducible branching random walk
with the same branching law at each site may exhibit nonstrong local survival. Finally,
we show that the generating function of an irreducible branching random walk can have
more than two fixed points; this disproves a previously known result.
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1. Introduction

A branching process is a very simple population model (introduced in [14]) where particles
breed and die (independently of each other) according to some random law. At any time, this
process is completely characterized by the total number of particles alive. Branching random
walks (BRWs) add space to this picture: particles live in a spatially structured environment, and
the reproduction law, which may depend on the location, not only tells us how many children the
particle has, but also where it places them. The state of the process, at any time, is thus described
by the collection of the numbers of particles alive at x, where x varies among the possible sites.
In the literature one can find BRWs both in continuous and discrete time. The continuous-time
setting has been studied by many authors (see, e.g. [17], [18], [19], [20], and [22]) along with
some variants of the process (see [2], [3], [4], [5], and [7]). The discrete-time case has been
initially considered as a natural generalization of branching processes (see [1], [10], [11], [12],
[13], and [16]). The definition of a discrete-time branching random walk (BRW) that we give in
Section 2.1 is sufficiently general to include the discrete-time counterpart that every continuous-
time BRW admits. Since every continuous-time BRW and its discrete-time counterpart have the
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same asymptotic behavior, it suffices to provide results for the discrete-time case. On the other
hand, continuous-time examples naturally yield discrete-time examples. Our definition also
includes the following as particular cases: BRWs with independent diffusion (where particles
are first generated and then dispersed independently according to a diffusion matrix P ; see
Section 2.1 and (2.2)), BRWs with no death (where each particle has null probability of having
no children), and BRWs whose total number of particles behaves as a branching process (where
the law of the number of offspring does not depend on the site—we call these BRWs locally
isomorphic to a branching process—see Section 2.4).

The basic questions which arise when studying the BRW are whether it survives with positive
probability and, in this case, if it visits a given site infinitely many times. The first question
addresses whether there is global survival, that is, with positive probability, at any time there is
someone alive somewhere). The second question deals with local survival, that is, whether, with
positive probability, the process returns infinitely many times to some fixed sites. It is clear that
the probability of global survival is greater than or equal to the probability of local survival. If
the probability of global survival is strictly greater than the probability of local survival then the
latter may be positive or null. In the first case we say that there is nonstrong local survival, in the
second case we say that there is pure global survival. When, on the contrary, the probabilities
of global and local survival are equal and strictly positive, we say that the BRW has strong
local survival. Hence, strong local survival means that the events of local and global survival
coincide (but for a null probability set) and have positive probability.

The interest in the strong local behavior is fairly recent (see, for instance, [15] and [23]). Our
aim is to study some properties of strong local survival, comparing them with the corresponding
properties of local and global survival.

As in the case of branching processes, the main tool is that probabilities of extinction are
fixed points of an infinite-dimensional generating function G (see Section 2.3 for the definition
and Section 3.2 for a link to the extinction probabilities). It is worth noting that, unlike the
case of a branching process with finite types, in general, G may have more than two fixed
points, even in the irreducible case (where, with positive probability, a particle at site x can
have progenies at site y for all x and y). Indeed, we prove this indirectly by providing examples
of irreducible BRWs which survive locally and globally but with different probabilities (hence,
nonstrong locally; see Examples 4.4 and 4.5), and directly by an explicit construction of three
fixed points for the G of a certain BRW (see Remark 4.1). By Corollary 3.1, in the irreducible
case, a sufficient condition for the existence of at most two fixed points for G is the finiteness
of the set of vertices.

In the particular case where there is no branching, we obtain a random walk, and the role
of G and its fixed points are respectively played by the transition matrix and the harmonic
functions. It is thus natural to look for a maximum principle in the context of BRWs as
well (see Proposition 2.1). As an application, in the irreducible case, pure global survival is
independent of the starting vertex. This is also true for local and global survival, but it does not
hold for strong local survival, unless the probability of having zero children is positive for all
sites or if the BRW is quasitransitive (see Sections 2.4 and 3.2 and Corollary 3.2). Example 4.3
shows that we may have strong local survival starting from some vertices and nonstrong local
survival starting from others.

The speed of reproduction of a continuous-time BRW is proportional to a positive parameter
λ (see Section 2.2). It is easily seen that the probabilities of local and global survival are
nondecreasing functions with respect to λ; thus, local and global survival are monotone
properties (meaning that if one of them holds for some λ0 then it holds for all λ ≥ λ0),
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and it is possible to define the local and global critical parameters λs and λw (see Section 2.2).
We show that monotonicity in λ does not hold for strong local survival and it is thus impossible,
in general, to define a strong local critical parameter: for the irreducible BRW in Example 4.2,
if λ is small enough or large enough, there is strong local survival, but in an intermediate interval
for λ there is global and local survival with different probabilities.

The paper is organized as follows. In Section 2 we give the necessary definitions and
some basic facts about discrete-time BRWs (Section 2.1), continuous-time BRWs (Section 2.2),
the infinite-dimensional generating function G, defined on [0, 1]X associated to a BRW
(Section 2.3), and the special class of F -BRWs (Section 2.4). This class properly contains
the class of BRWs on quasitransitive graphs (which were studied in [26]). We also give explicit
expressions for G in the particular cases of a BRW with independent diffusion (see (2.4)) and a
BRW with no death, constructed from a BRW with death, disregarding all particles with finite
progenies (see (2.5)). Moreover, in Section 2.3 we state a maximum principle for the solutions
of the equation G(v) ≥ v, including all fixed points of G (Proposition 2.1).

Section 3 is devoted to the study of all the types of survival. We first recall, in Section 3.1,
results on local and global survival (Theorems 3.1 and 3.2). In Section 3.2 extinction
probabilities are seen as fixed points of the generating function G. Theorem 3.3 gives equivalent
conditions for strong local survival, in terms of extinction probabilities, which are useful to prove
that strong local survival is not monotone.

From the maximum principle we derive Theorem 3.4, which describes some properties of
fixed points of G for F -BRWs, and Corollaries 3.1 and 3.2. Corollary 3.2 shows that, for an
irreducible, quasitransitive BRW, there are only three possible behaviors (independently of the
starting vertex): global extinction, pure global survival, or strong local survival. Thus, in this
case, strong local survival is monotone and the critical parameter is λs . A characterization of
strong local survival in terms of the existence of a solution of some inequalities involving the
generating function G is given by Theorem 3.5.

Section 4 is devoted to examples and counterexamples. For a continuous-time irreducible
F -BRW, the existence of a pure global phase is equivalent to nonamenability (see Section 2.1
and Section 3.3). Nevertheless, in general, nonamenability neither implies nor is implied by
the existence of a pure global phase (Example 4.1). Finally, we show (Examples 4.4 and 4.5)
that even fairly simple BRWs (such as irreducible BRWs with independent diffusion and with
offspring distribution independent of the site) may have nonstrong local survival (see also
Example 4.2). This implies that, even in the irreducible case, the generating function G may
have more than two fixed points in [0, 1]X and disproves a result in [25] (see Remark 4.1).

2. Basic definitions and preliminaries

2.1. Discrete-time BRWs

We start with the construction of a generic discrete-time BRW {ηn}n∈N (see also [8], where
it is called an infinite-type branching process) on a set X which is at most countable; ηn(x)

represents the number of particles alive at x ∈ X at time n. To this end, we consider a family
μ = {μx}x∈X of probability measures on the (countable) measurable space (SX, 2SX), where
SX := {f : X → N : ∑

y f (y) < ∞}. To obtain generation n + 1 from generation n, we
proceed as follows: a particle at site x ∈ X lives for one unit of time, then a function f ∈ SX is
chosen at random according to the law μx and the original particle is replaced by f (y) particles
at y for all y ∈ X; this is done independently for all particles of generation n (for a similar
construction in a random environment, see [15]). Note that the choice of f simultaneously
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assigns the total number of children and the location where they will live. We denote the BRW
by the couple (X, μ).

Equivalently, we could introduce the BRW by first choosing the number of children and then
their location. Define H : SX → N as H(f ) := ∑

y∈X f (y), which represents the total number
of children associated to f . Denote by ρx the measure on N defined by ρx(·) := μx(H

−1(·));
this is the law of the random number of children of a particle living at x. For each particle,
independently, we pick a number n at random, according to the law ρx , then we choose a
function f ∈ H−1(n) with probability μx(f )/ρx(n) ≡ μx(f )/

∑
g∈H−1(n) μx(g), and we

replace the particle at x with f (y) particles at y (for all y ∈ X).
In BRW theory, a fundamental role is played by the first-moment matrix M = (mxy)x,y∈X,

where mxy := ∑
f ∈SX

f (y)μx(f ) is the expected number of particles from x to y (that is,
the expected number of children that a particle living at x sends to y). We suppose that
supx∈X

∑
y∈X mxy < +∞. Most of the results of this paper still hold without this hypothesis;

nevertheless, it allows us to avoid dealing with an infinite expected number of offspring. The
expected number of children generated by a particle living at x is∑

y∈X

mxy =
∑
n≥0

nρx(n) =: ρ̄x .

Given a function f defined on X, we denote by Mf the function Mf (x) := ∑
y∈X mxyf (y)

whenever the right-hand side converges absolutely for all x. We denote by m
(n)
xy the entries of

the nth power matrix Mn, and we define

Ms(x, y) := lim sup
n→∞

n

√
m

(n)
xy , Mw(x) := lim inf

n→∞ n

√∑
y∈X

m
(n)
xy for all x, y ∈ X. (2.1)

Explicit computations of Ms(x, y) and Mw(x) are possible in some cases (see [6] and [8]). In
particular, Ms(x, x) can be obtained by means of a generating function (see [28, Section 3.2]).
In this paper we do not need to explicitly compute Ms and Mw, except for some specific
examples where justifications will be provided.

For a generic BRW, we define the diffusion matrix as the matrix P with entries p(x, y) =
mxy/ρ̄x . In particular, if ρ̄x does not depend on x ∈ X, we have Mw(x) = ρ̄ for all x ∈ X

and Ms(x, y) = ρ̄ lim supn→∞
n
√

p(n)(x, y) (where the lim sup defines the spectral radius of
P according to [27, Chapter I, Section 1.B]).

Note that, in the general case, the locations of the offspring are not chosen independently
(they are assigned by the chosen f ∈ SX). When the offspring are dispersed independently
according to P we call the process a BRW with independent diffusion; in this case

μx(f ) = ρx

(∑
y

f (y)

)
(
∑

y f (y))!∏
y f (y)!

∏
y

p(x, y)f (y) for all f ∈ SX. (2.2)

To a generic discrete-time BRW we associate a graph (X, Eμ), where (x, y) ∈ Eμ if and
only if mxy > 0. We denote by deg(x) the degree of a vertex x, that is, the cardinality of the
set Nx := {y ∈ X : (x, y) ∈ Eμ}. We say that there is a path from x to y, writing x → y, if
it is possible to find a finite sequence {xi}ni=0 (where n ∈ N) such that x0 = x, xn = y, and
(xi, xi+1) ∈ Eμ for all i = 0, . . . , n − 1. If x → y and y → x, we write x � y. Observe that
there is always a path of length 0 from x to itself. The equivalence class [x] of x with respect
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to ‘�’ is called an irreducible class of x. It is easy to show that if x � x′ and y � y′, then
Ms(x, y) = Ms(x

′, y′) and Mw(x) = Mw(x′). Moreover, m
(n)
xx and Ms(x, x) depend only on

the entries (mww′)w,w′∈[x]. We call the matrix M = (mxy)x,y∈X irreducible if and only if the
graph (X, Eμ) is connected (that is, there is only one irreducible class); otherwise, we call it
reducible. From the BRW point of view, the irreducibility of M means that the progeny of
any particle can spread to any site of the graph. For an irreducible BRW, Ms(x, y) = Ms and
Mw(x) = Mw for all x, y ∈ X.

The BRW (X, μ) is called nonoriented or symmetric if mxy = myx for every x, y ∈ X.
Note that if (X, μ) is nonoriented then the graph (X, Eμ) is nonoriented (that is, (x, y) ∈ Eμ

if and only if (y, x) ∈ Eμ). We call (X, μ) nonamenable if and only if

inf

{∑
x∈S,y∈S� mxy

|S| : S ⊆ X, |S| < ∞
}

> 0,

and we call it amenable otherwise.
The idea behind the definition of nonamenability is that the expected number of children

placed outside every finite subset of X is always comparable with the size of the subset itself.
This suggests that, in principle, it should be possible for the BRW to survive and, at the same
time, to escape from every finite set. This is true for a subclass of BRWs, but not in general; see
Example 4.1 and the preceding discussion. We note that if mxy ∈ {0, λ} (for some fixed λ > 0)
then the BRW is nonamenable if and only if the graph (X, Eμ) is nonamenable according to
the usual definition for graphs (see [27, Chapter II, Section 12.B]).

Depending on the initial configuration, the process can survive in different ways. We consider
initial configurations with only one particle placed at a fixed site x: let P

δx be the law of this
process. Throughout this paper, ‘w.p.p.ís shorthand for ‘with positive probability’.

Definition 2.1. (a) The process survives locally w.p.p. in A ⊆ X starting from x ∈ X if
q(x, A) := 1 − P

δx (lim supn→∞
∑

y∈A ηn(y) > 0) < 1.

(b) The process survives globally w.p.p. starting from x if q̄(x) := q(x, X) < 1.

(c) There is strong local survival w.p.p. in A ⊆ X starting from x ∈ X if q(x, A) = q̄(x) < 1
and nonstrong local survival w.p.p. in A if q̄(x) < q(x, A) < 1.

(d) The BRW is in a pure global survival phase starting from x if q̄(x) < q(x, x) = 1 (where
we write q(x, y) instead of q(x, {y}) for all x, y ∈ X).

From now on, when we talk about survival, ‘w.p.p.ẃill be tacitly understood. Often we will
say simply that local survival occurs ‘starting from x’or ‘at x’; in this case we mean that x = y.
When there is no survival w.p.p., we say that there is extinction, and the fact that extinction
occurs with probability 1 will be tacitly understood.

Note that q(x, A) are the probabilities of extinction in A starting from x. Roughly speaking,
there is strong survival at y starting from x if and only if the probability of local survival at y

starting from x, conditioned on global survival starting from x, is 1. Thus, strong local survival
means that, for almost all realizations, the process either survives locally (hence globally) or it
goes globally extinct. There are many relations between q̄(x) and q(x, y) and between q(w, x)

and q(w, y), where x, y, w ∈ X (see, for instance, Section 3.2, [9] or [28]).
In order to avoid trivial situations where particles have one offspring almost surely, we

henceforth make the following assumption.
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Assumption 2.1. For all x ∈ X, there is a vertex y � x such that

μy

(
f :

∑
{w : w�y}

f (w) = 1
)

< 1,

that is, in every equivalence class (with respect to ‘�’) there is at least one vertex where a
particle can have inside the class a number of children different from 1 w.p.p.

2.2. Continuous-time BRWs

In continuous time, each particle has an exponentially distributed random lifetime with
parameter 1. The breeding mechanisms can be regulated by means of a nonnegative matrix
K = (kxy)x,y∈X in such a way that, for each particle alive at x, there is a clock with Exp(λkxy)-
distributed intervals (where λ > 0), and each time the clock rings the particle places one son
at y. We say that the BRW has a death rate 1 and a reproduction rate λkxy from x to y. We
observe (see Remark 2.1) that the assumption of a nonconstant death rate does not represent a
significant generalization. We denote by (X, K) a family of continuous-time BRWs (depending
on the parameter λ > 0), while we use the notation (X, μ) for a discrete-time BRW.

To a continuous-time BRW one can associate a discrete-time counterpart which takes into
account all the offspring of a particle before it dies; in this sense the theory of continuous-time
BRWs, as long as it concerns the probabilities of survival (local, strong local, and global), is
a particular case of the theory of discrete-time BRWs. Elementary calculations show that μx

satisfies (2.2), where

ρx(i) = 1

1 + λk(x)

(
λk(x)

1 + λk(x)

)i

, p(x, y) = kxy

k(x)
(2.3)

(k(x) := ∑
y∈X kxy). Note that the discrete-time counterpart of a continuous-time BRW is a

BRW with independent diffusion and that ρx depends only on λk(x). It is straightforward
to show that mxy = λkxy and ρ̄x = λk(x). Moreover, (2.3) shows that the discrete-time
counterpart satisfies Assumption 2.1. All the definitions given in the discrete-time case extend
to continuous-time BRWs: a continuous-time BRW has some property if and only if its discrete-
time counterpart has it.

Remark 2.1. The same construction applies to continuous-time BRWs with a death rate
d(x) > 0 dependent on x ∈ X. In this case, the discrete-time counterpart satisfies (2.2),
where

ρx(i) = d(x)

d(x) + λk(x)

(
λk(x)

d(x) + λk(x)

)i

, p(x, y) = kxy

k(x)
.

Hence, from the point of view of local and global survival, this process is equivalent to a
continuous-time BRW with death rate 1 and reproduction rate λkxy/d(x) from x to y.

Given x ∈ X, two critical parameters are associated to the continuous-time BRW: the global
survival critical parameter λw(x) and the local survival critical parameter λs(x). They are
defined as

λw(x) := inf

{
λ > 0 : P

δx

(∑
w∈X

ηt (w) > 0 for all t

)
> 0

}
,

λs(x) := inf
{
λ > 0 : P

δx

(
lim sup

t→∞
ηt (x) > 0

)
> 0

}
.

These values are constant in every irreducible class; in particular, they do not depend on x if
the BRW is irreducible. The process is called globally supercritical, critical, or subcritical if
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λ > λw, λ = λw, or λ < λw; an analogous definition is given for the local behavior using λs

instead of λw. In particular, we say that there exists a pure global survival phase starting from
x if the interval (λw(x), λs(x)) is not empty; clearly, if λ ∈ (λw(x), λs(x)) then the BRW is in
a pure global survival phase according to Definition 2.1.

Given a continuous-time BRW (X, K), we define, for all x, y ∈ X,

Ks(x, y) := Ms(x, y)

λ
≡ lim sup

n→∞
n

√
k
(n)
xy , Kw(x) := Mw(x)

λ
≡ lim inf

n→∞ n

√∑
y∈X

k
(n)
xy ,

where Ms(x, y) and Mw(x) are the corresponding parameters of the discrete-time counterpart.
Here Ks(x, y) and Kw(x) depend only on the equivalence classes of x and y; hence, if the
BRW is irreducible then they do not depend on x, y ∈ X.

We say that a BRW is site breeding if k(x) does not depend on x ∈ X. We say that a
BRW is edge breeding if kxy ∈ N. The typical edge-breeding BRW can be constructed from
a multigraph with a set of vertices X by defining kxy as the number of edges from x to y; in
this case to each edge there corresponds a constant reproduction rate λ. If the multigraph is a
graph then it coincides with the graph (X, Eμ) associated with the discrete-time counterpart of
the edge-breeding BRW.

2.3. Infinite-dimensional generating function

We associate a generating function G : [0, 1]X → [0, 1]X to the family {μx}x∈X, which
can be considered as an infinite-dimensional power series. More precisely, for all z ∈ [0, 1]X,
G(z) ∈ [0, 1]X is defined as the following weighted sum of (finite) products:

G(z | x) :=
∑

f ∈SX

μx(f )
∏
y∈X

z(y)f (y).

Here G(z | x) is the x coordinate of G(z). The family {μx}x∈X is uniquely determined
by G. Indeed, fix a finite X0 ⊆ X and x ∈ X. For every z with support in X0, we have
G(z | x) = ∑

f ∈SX0
μx(f )

∏
y∈X0

z(y)f (y), which can be identified with a power series with

several variables (defined on [0, 1]X0 ). Suppose now that we have another generating function
Ḡ (associated to {μ̄x}x∈X) such that G = Ḡ. In particular, G(z | x) = Ḡ(z | x) for every z

with support in X0. Thus, μx(f ) = μ̄x(f ) for all f ∈ SX0 . Since SX = ⋃
{X0⊆X : X0 finite} SX0 ,

we have μx(f ) = μ̄x(f ) for all f ∈ SX.
Note that G is continuous with respect to the pointwise convergence topology of [0, 1]X

and nondecreasing with respect to the usual partial order of [0, 1]X (see [8, Sections 2 and 3]
for further details). Moreover, G represents the 1-step reproductions; we denote by G(n) the
generating function associated to the n-step reproductions, which is inductively defined as
G(n+1)(z) = G(n)(G(z)), where G(0) is the identity. Extinction probabilities are fixed points
of G and the smallest fixed point is q̄ (see Section 3.2 for details).

An example where the function G can be explicitly computed is a BRW with independent
diffusion; in this case it is not difficult to see that G(z | x) = ∑

n∈N
ρx(n)(P z(x))n, where

P z(x) = ∑
y∈X p(x, y)z(y). If, in particular,

ρx(n) = 1

1 + ρ̄x

(
ρ̄x

1 + ρ̄x

)n

(as in the discrete-time counterpart of a continuous-time BRW) then the previous expression
becomes G(z | x) = (1 + ρ̄xP (1 − z)(x))−1. The previous equality can be written in a more

https://doi.org/10.1239/aap/1401369700 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1401369700


Strong local survival of branching random walks is not monotone 407

compact way as

G(z) = 1
1 + M(1 − z)

, (2.4)

where M is the first-moment matrix and Mv(x) = ρ̄xP v(x) (by the definition of P ). In (2.4)
and hereafter, whenever z, v ∈ [0, 1]X, the ratio z/v will be taken coordinatewise, that is,
(z/v)(x) := z(x)/v(x) for all x such that v(x) > 0 (the value of (z/v)(x) if v(x) = 0, if any,
will be explicitly defined when needed).

When one is interested in whether a global surviving BRW survives strong locally, it may
be useful to condition the process on global survival. Given a generic discrete-time BRW such
that q̄(x) < 1 for all x ∈ X, by conditioning on global survival we associate a BRW with
no death (that is, a BRW such that ρx(0) = 0). Let {ηn}n∈N be the original BRW. Consider
the event �∞ = {∑x∈X ηn(x) > 0 for all n ∈ N}, and define the process {̂ηn}n∈N as follows:
η̂n(x, ω) equals the number of particles in ηn(x, ω) with at least one infinite line of descent
when ω ∈ �∞, and it equals 0 when ω 
∈ �∞. Roughly speaking, {̂ηn}n∈N is obtained from
{ηn}n∈N by removing all the particles with finite progeny, which are clearly irrelevant in view
of the survival owing to the fact that q̄(x) < 1 for all x ∈ X. Hence, the probability of local
survival of {̂ηn}n∈N in A (for all A ⊆ X), starting from x, is equal to the same probability for
{ηn}n∈N, that is, q(x, A). It can be shown that this process, restricted to �∞, is a BRW that
we call the no-death BRW associated to {ηn}n∈N (we still denote it by {̂ηn}n∈N). Its generating
function is

Ĝ(z | x) = G(v(z) | x) − q̄(x)

1 − q̄(x)
, (2.5)

where G is the generating function of the original BRW and v : [0, 1]X → [0, 1]X is defined
as v(z | x) := q̄(x) + z(x)(1 − q̄(x)). In a more compact way, (2.5) can be written as
Ĝ = T −1

q̄ ◦ G ◦ Tq̄ , where Tw : [0, 1]X → {z ∈ [0, 1]X : w ≤ z} is defined as Twz(x) :=
z(x)(1−w(x))+w(x); note that Tw is nondecreasing and, if w(x) < 1 for all x ∈ X, bijective.
In particular, if q̄ < 1 then Tq̄ is a bijective map from the set of fixed points of Ĝ to the set of
fixed points of G.

Clearly, for all A ⊆ X, the probability of local survival in A of the associated no-death BRW
starting from x is the probability of local survival in A of the original BRW conditioned on
global survival (starting from x), that is, 1 − (T −1

q̄ q(·, A))(x) = (1 − q(x, A))/(1 − q̄(x)).
The following proposition is a sort of maximum principle for the function (z − q̄)/(1 − q̄),

where z is such that G(z) ≥ z (note that we are not assuming that q̄(x) < 1 for all x ∈ X).

Proposition 2.1. Given z ∈ [0, 1]X such that z ≥ q̄ is a solution of the inequality G(z) ≥ z,
we define ẑ := (z − q̄)/(1 − q̄), where ẑ(x) := 1 for all x such that q̄(x) = 1. Then, for all
x ∈ X such that the set Nx = {y : (x, y) ∈ Eμ} is not empty, either ẑ(y) = ẑ(x) for all y ∈ Nx

or there exists y ∈ Nx such that ẑ(y) > ẑ(x). In particular, if ẑ(x) = 1 then, for all y ∈ Nx ,
we have ẑ(y) = 1. The same results hold if we take the set {y ∈ X : x → y} instead of Nx .

As an application, in a finite, final irreducible class (for instance, if the BRW is irreducible
and the set X is finite), if z is as in Proposition 2.1 then ẑ is a constant vector.

2.4. F -BRWs

Some results can be achieved if the BRW has some regularity; to this end, we introduce
the concept of an F -BRW (see also [28, Definition 4.2]), which extends the concept of quasi-
transitivity (see below).
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Definition 2.2. (a) A BRW (X, μ) is locally isomorphic to a BRW (Y, ν) if there exists a
surjective map g : X → Y such that νg(x)(·) = μx(π

−1
g (·)), where πg : SX → SY is defined as

πg(f )(y) = ∑
z∈g−1(y) f (z) for all f ∈ SX and y ∈ Y .

(b) (X, μ) is an F -BRW if it is locally isomorphic to some BRW (Y, ν) on a finite set Y .

Clearly, if (X, μ) is locally isomorphic to (Y, ν) then

GX(z ◦ g | x) = GY (z | g(x)) (2.6)

for all z ∈ [0, 1]Y and x ∈ X. We note that, since μ is uniquely determined by G, (2.6) holds if
and only if (X, μ) is locally isomorphic to (Y, ν) and g is the map in Definition 2.2. If {ηn}n∈N

is a realization of the BRW (X, μ) then {πg(ηn)}n∈N is a realization of the BRW (Y, ν).
Using (2.6) and the fact that q̄ = limn→∞ G(n)(0) (see (3.1) with A = X), it is possible

to prove that there is global survival for (X, μ) starting from x if and only if there is global
survival for (Y, ν) starting from g(x) (see [28, Theorem 4.3]). It is not difficult to prove
(the details can be found in [28] before Theorem 4.3) that, for all x ∈ X, y ∈ Y , and n ∈ N,
m̃

(n)
g(x)y = ∑

z∈g−1(y) m
(n)
xz , where M̃ is the first-moment matrix of the BRW (Y, ν). This implies

that MX
w (x) = MY

w(g(x)) for all x ∈ X.
In continuous time (see [8]) we can prove that (X, K) is locally isomorphic to (Y, K̃) if and

only if there exists a surjective map g : X → Y such that
∑

z∈g−1(y) kxz = k̃g(x)y for all x ∈ X

and y ∈ Y , whence KX
w (x) = KY

w(g(x)) for all x ∈ X. In other words, the total rate at which
particles at x generate children and place them in the set of vertices with ‘label’ y, depends
only on y and on g(x).

Roughly speaking, an F -BRW is a BRW where the vertices of X can be labeled by means
of a finite alphabet Y in such a way that the law of the labels of the positions of the children
of a particle depends only on the label of the position of the parent. As an example, consider
a graph (X, E(X)) such that supx∈X deg(x) < +∞ and where deg(x) = deg(y) implies that
#{z ∈ Nx : deg(z) = j} = #{z ∈ Ny : deg(z) = j} (for all j ); an example of such a graph is a
tree with two alternating degrees. In this case, a BRW on X with independent diffusion where
ρx depends only on deg(x) is an F -BRW and the label of x is deg(x).

It is worth mentioning a particular subclass of F -BRWs: a BRW is locally isomorphic to
a branching process if and only if the law of the offspring number ρx = ρ is independent
of x ∈ X. In this case, the BRW is locally isomorphic to a BRW on a singleton Y := {y},
where the law of the number of children of each particle is ρ and g(x) := y for all x ∈ X.
The explicit computations of Mw and Ms in this case can be found after (2.1). In particular,
a continuous-time BRW is locally isomorphic to a branching process if and only if k(x) = k

for all x ∈ X (that is, if and only if it is a site-breeding BRW). In this case, Kw(x) = k and
Ks(x, y) = k lim supn→∞

n
√

p(n)(x, y).
Let γ : X → X be an injective map. We say that μ = {μx}x∈X is γ -invariant if, for all

x ∈ X and f ∈ SX, we have μx(f ) = μγ(x)(f ◦γ −1) (where f ◦γ −1 is extended to a function
on X by setting 0 outside γ (X)). In particular, a BRW with independent diffusion is γ -invariant
if and only if ρx = ργ (x) and p(x, y) = p(γ (x), γ (y)) for all x, y ∈ X.

Moreover, (X, μ) is quasitransitive if and only if there exists a finite subset X0 ⊆ X such
that, for all x ∈ X, there exists a bijective map γ : X → X and x0 ∈ X0 satisfying γ (x0) = x,
and μ is γ -invariant. An edge-breeding BRW on a graph (X, E) is quasitransitive if and only
if (X, E) is a quasitransitive graph.

We note that every quasitransitive BRW is an F -BRW (see [28, Section 6.2]). The class of
F -BRWs is strictly larger than the class of quasitransitive BRWs. For instance, consider the
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Figure 1: (a) A regular graph of degree 3. (b) An irregular graph.

BRW described in Example 4.4. Indeed, in this case the BRW is γ -invariant if and only if, for
all i, j ∈ N, p(γ (i), γ (j)) = p(i, j). This implies that γ (0) = 0 and, by induction, γ (i) = i

for all i ∈ N. Thus, the only invariant map γ is the identity on N, whence there is no finite X0
as described in the definition of quasitransitivity. Nevertheless, the BRW is locally isomorphic
to a branching process; thus, it is an F -BRW. Other examples are the edge-breeding BRWs
associated to the following graphs: take a square and attach to each vertex an infinite branch
of a homogeneous tree T3 of degree 3 (see Figure 1(a)); now attach to each vertex of the new
graph an edge with a new endpoint (see Figure 1(b)). They are both F -BRWs which are not
quasitransitive; moreover, while the first graph is regular (it has constant degree 3), the second
graph is not, since it has vertices with degree 4 and vertices with degree 1.

3. Conditions for survival and extinction

3.1. Local and global survival

The following theorems summarize the main results about local and global survival for
discrete-time BRWs and continuous-time BRWs respectively (see [8, Theorems 4.1, 4.7, and
4.8, and Proposition 4.5] and [28, Theorems 4.1 and 4.3]). In particular, Theorem 3.1(d) is a
straightforward generalization of [6, Theorem 3.6] (we omit the proof).

Theorem 3.1. Let (X, μ) be a discrete-time BRW.

(a) There is local survival starting from x if and only if Ms(x, x) > 1.

(b) There is global survival starting from x if and only if there exists z ∈ [0, 1]X, z(x) < 1
such that G(z | y) = z(y) for all y ∈ X (equivalently, such that G(z | y) ≤ z(y) for all
y ∈ X).

(c) If (X, μ) is an F -BRW, there is global survival starting from x if and only if Mw(x) > 1.

(d) If (X, μ) is an irreducible, nonoriented F -BRW then Ms < Mw if and only if (X, μ) is
nonamenable.

Note that whether or not there is local survival depends only on the first-moment matrix M .
In particular, the BRW survives locally at x if and only if it does so when restricted to the
irreducibility class [x] of x. It is worth noting that if [x] is finite then Ms(x, x) is the Perron–
Frobenius eigenvalue of the submatrix M ′ := (myz)y,z∈[x]. In this case there is local survival
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at x if and only if max{t > 0 : there exists v 
= 0, M ′v = tv} > 1. In general, the global
behavior does not depend only on M (see [28, Example 4.4]) unless there is a one-to-one
correspondence between first moment matrices and processes. This is true for instance in the
class of BRWs with independent diffusion such that

ρx(n) = 1

1 + ρ̄x

(
ρ̄x

1 + ρ̄x

)n

(hence for a continuous-time BRW). Indeed, in that case an equivalent condition for global
survival starting from x ∈ X is the existence of v ∈ [0, 1]X, v(x) > 0 such that

Mv ≥ v

1 − v

(
equivalently, Mv = v

1 − v

)
,

which comes from Theorem 3.1(b) given z := 1 − v and the explicit expression (2.4) of G.
In particular, for a BRW with independent diffusion, the local survival probability vA :=
1 − q(·, A) satisfies MvA = vA/(1 − vA), which becomes λKvA = vA/(1 − vA) for a
continuous-time BRW.

Theorem 3.2. Let (X, K) be a continuous-time BRW.

(a) λs(x) = 1/Ks(x, x) and if λ = λs(x) then there is local extinction at x.

(b) λw(x) ≥ 1/Kw(x).

(c) If (X, K) is an F -BRWs then λw(x) = 1/Kw(x), and when λ = λw(x), there is global
extinction starting from x.

(d) If (X, K) is an irreducible, nonoriented F -BRW then λs > λw if and only if (X, μ) is
nonamenable.

For a generic BRW when λ = λw(x), there might be global survival (see [8, Example 3]).
A characterization of λw(x) has been given in [8, Theorem 4.2] by means of the so-called lower
Collatz–Wielandt number.

3.2. Probabilities of extinction and strong local survival

Define qn(x, A) as the probability of extinction in A no later than the nth generation, starting
with one particle at x, namely, qn(x, A) = P

δx (ηk(y) = 0 for all k ≥ n and all y ∈ A). It is
clear that {qn(x, A)}n∈N is a nondecreasing sequence satisfying

qn(·, A) = G(qn−1(·, A)) for all n ≥ 1, q0(x, A) = 0 for all x ∈ A; (3.1)

hence, there is a limit q(x, A) = limn→∞ qn(x, A) ∈ [0, 1]X which is the probability of local
extinction in A, starting with one particle at x (see Definition 2.1). Note that (3.1) completely
defines the sequence {qn(·, A)}n∈N only when A = X (otherwise, we need the values q0(x, A)

for x 
∈ A). Since G is continuous, we have q(·, A) = G(q(·, A)); hence, these extinction
probabilities are fixed points of G.

Note that q(·, ∅) = 1. Since q̄ = limn→∞ G(n)(0), q̄ is the smallest fixed point of G in
[0, 1]X (see [8, Corollary 2.2]). Using the same arguments, we can prove that q̄ is the smallest
fixed point of G(m) for all m ∈ N.

Note that A ⊆ B ⊆ X implies that q(·, A) ≥ q(·, B) ≥ q̄. Since, for all finite A ⊆ X, we
have q(x, A) ≥ 1 − ∑

y∈A(1 − q(x, y)), then, for any given finite A ⊆ X, q(x, A) = 1 if and
only if q(x, y) = 1 for all y ∈ A.
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If x → x′ and A ⊆ X then q(x′, A) < 1 implies that q(x, A) < 1; as a consequence,
if x � x′ then q(x, A) < 1 if and only if q(x′, A) < 1. Moreover, if y � y′, we have
q(x, y) = q(x, y′) for all x ∈ X.

In the irreducible case, if ρx(0) > 0 for all x ∈ X, we have q̄(x) = q(x, A) for some
x ∈ X and a finite subset A ⊆ X if and only if q̄(y) = q(y, B) for all y ∈ X and all finite
subsets B ⊆ X (hence, strong local survival is a common property of all subsets and all starting
vertices). Clearly, this may not be true in the reducible case. Besides, if we drop the assumption
that ρx(0) > 0 for all x ∈ X, we might actually have q̄(x) = q(x, A) < 1 and q̄(y) < q(y, A)

for some x, y ∈ X and a finite A ⊆ X even when the BRW is irreducible (see Example 4.3).
Hence, in general, even for irreducible BRWs, strong local survival is not a common property
of all vertices, as local and global survival are.

The following theorem, in the case of global survival, gives equivalent conditions for strong
local survival in terms of extinction probabilities.

Theorem 3.3. The following assertions are equivalent for every nonempty subset A ⊆ X.

(a) q(x, A) = q̄(x) for all x ∈ X.

(b) q0(x, A) ≤ q̄(x) for all x ∈ X.

(c) The probability of visiting A at least once starting from x is greater than or equal to the
probability of global survival starting from x for all x ∈ X.

(d) For all x ∈ X, either q̄(x) = 1 or the probability of visiting A at least once starting from
x conditioned on global survival starting from x is 1.

(e) For all x ∈ X, either q̄(x) = 1 or the probability of local survival in A starting from x

conditioned on global survival starting from x is 1 (strong local survival in A starting
from x).

From this theorem, it follows that if there exists x ∈ X such that q(x, A) > q̄(x) (that is,
there is a positive probability of global survival and nonlocal survival in A starting from x) then
there exists y ∈ X such that q0(y, A) > q̄(y) (that is, there is a positive probability that the
colony survives globally starting from y without ever visiting A). Note that q0(x, A) > q̄(x)

implies that q(x, A) > q̄(x), but the converse is not true. In particular, for a BRW with no death,
there is strong local survival in A starting from x for all x ∈ X if and only if the probability of
visiting A is 1 starting from every vertex.

We note that, a priori, there is no order relation between the events ‘visiting A at least once
starting from x’ and ‘global survival starting from x’. Nevertheless, if, for all x ∈ X, the
probability of ‘visiting A at least once starting from x’ is greater than or equal to the probability
of ‘global survival starting from x’, then, by Theorem 3.3, the probability of ‘global survival
starting from x never visiting A’ is 0 and this implies, whenever q̄(x) < 1, that there is strong
local survival in A starting from x.

In the case of an F -BRW, the fixed points of G have an interesting property, stated in the
following theorem.

Theorem 3.4. Let (X, μ) be an F -BRW.

(a) There exists at most one fixed point z for G such that supx∈X z(x) < 1, namely, z = q̄.

(b) For all x ∈ X, either q(·, x) = q̄(·) or supw∈X q(w, x) = 1. In particular, when (X, μ)

is irreducible then either q(x, x) = q̄(x) for all x ∈ X or supx∈X q(x, x) = 1.

https://doi.org/10.1239/aap/1401369700 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1401369700


412 D. BERTACCHI AND F. ZUCCA

It is worth noting that, unlike the branching process, for a generic irreducible F -BRW, when
q̄ < 1, there might be other fixed points for G (see Examples 4.2, 4.4, and 4.5, and Remark 4.1).
Nevertheless, this cannot happen when X is finite.

Corollary 3.1. If X is finite and the BRW is irreducible, then there are at most two solutions
of G(z) ≥ z when z ≥ q̄, that is, q̄ and 1.

Using Theorem 3.4, we can describe the case when X is finite (not necessarily irreducible).
Clearly, in this case q̄(w) = q(w, Aw), where Aw := {x ∈ X : w → x}. Moreover, for
all x ∈ X, either q(·, x) = q̄(·) or there exists w ∈ X such that q(w, x) = 1. If the BRW
is irreducible (and X is finite) then q̄(w) = q(w, w) for all w ∈ X or q(w, x) = 1 for all
w, x ∈ X.

Corollary 3.2. Let (X, μ) be an irreducible and quasitransitive BRW. Then the existence of
x ∈ X such that there is local survival at x (i.e. q(x, x) < 1) implies that there is strong local
survival at y starting from w for every w, y ∈ X (i.e. q(w, y) = q̄(w)).

Hence, for a quasitransitive, irreducible BRW, whenever there is local survival, it is a strong
local survival; in continuous time this implies that there is global and local extinction if λ ∈
[0, λw], pure global survival if λ ∈ (λw, λs], and strong local survival if λ ∈ (λs, +∞) (see
also Theorem 3.2).

In the particular case of a quasitransitive, irreducible BRW with no death and with
independent diffusion, Corollary 3.2 was proved in [23, Theorem 3.7]. The proof we give
in Section 5 is of a different nature. Unlike Theorem 3.4, Corollary 3.2 does not hold for every
F -BRW; indeed, as Examples 4.4 and 4.5 below show, for an irreducible F -BRW, there might
be nonstrong local survival.

The following result follows by applying [21, Theorem 3.1] to the no-death BRW associated
to a generic BRW as described in Section 2.3 (hence we omit the proof). The original result
[21, Theorem 3.1] can be recovered from this result by assuming that ρx(0) = 0 for all x ∈ X,
which implies that q̄ = 0 and T −1

q̄ is equal to the identity.

Theorem 3.5. Let (X, μ) be an irreducible, globally surviving BRW. Then there is no strong
local survival if and only if there exists a finite, nonempty set A ⊆ X and a function v ∈ [0, 1]X
such that q̄ ≤ v and

G(v | x) ≥ v(x) for all x ∈ A�, (T −1
q̄ v)(x0) > max

x∈A
(T −1

q̄ v)(x) for some x0 ∈ A�,

where T −1
q̄ v = (v − q̄)/(1 − q̄).

3.3. Pure global survival

The idea of pure global survival (see Definition 2.1(d)) was first introduced in continuous-
time BRW theory (and, more generally, in interacting particle theory) to define the situation
where λs(x) > λw(x). In this case, for every λ ∈ (λw(x), λs(x)], there is a positive probability
of global survival starting from x, but the colony dies out locally at x almost surely. A necessary
condition for the existence of a pure global survival phase starting from x is Ks(x, x) <

Kw(x) (see Theorem 3.2). According to Theorem 3.2(c), for an F -BRW, this condition is also
sufficient.

Clearly, for an irreducible, continuous-time BRW, the existence of pure global survival does
not depend on the starting vertex since λw(x) = λw and λs(x) = λs for all x ∈ X. This is
still true for an irreducible discrete-time BRW as a consequence of Proposition 2.1. Indeed, if
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z(·) := q(·, A), ẑ(x) can be interpreted as the probability of local extinction in A conditioned on
global survival (starting from x). Thus, according to Proposition 2.1, if the BRW is irreducible
then this conditional probability is 1 everywhere, provided it is 1 somewhere. This means that
if there is pure global survival starting from some x then there is pure global survival starting
from every x.

Theorem 3.2(d) tells us that an irreducible, continuous-time F -BRW has a pure global
survival phase if and only if it is nonamenable. This is not true if the process is not an F -BRW,
as shown by Example 4.1. The same example shows that pure global survival is a fragile
property of a BRW. Indeed, finite modifications, such as, for an edge-breeding BRW, attaching
a complete finite graph to a vertex or removing a set of vertices and/or edges can create it or
destroy it.

4. Examples

The first example shows that there are irreducible amenable BRWs with pure global survival
and irreducible nonamenable BRWs with no pure global survival (see also [24]).

Example 4.1. In this example we frequently use the following argument (which is an adaptation
from [6, Remark 3.2]). Consider a continuous-time BRW adapted to a connected graph X, in
the sense that kxy > 0 if and only if (x, y) is an edge. In some cases, it is easy to show that the
existence of a pure global survival of a BRW implies the existence of a pure global survival of
the BRW restricted to some subgraph (where all the rates kxy are turned to 0 if x or y do not
belong to the subgraph). Indeed, if Y is a finite subset of X such that X \ Y is divided into a
finite number of connected graphs X1, . . . , Xn (which is certainly true if kxy > 0 is equivalent
to kyx > 0 for all x, y ∈ X \ Y ) then, for every λ ∈ (λX

w, λX
s ), the BRW on X eventually

leaves, almost surely, the subset Y . Hence, it survives (globally but not locally) at least on one
connected component; this means that, although λ

Xi
s ≥ λX

s and λ
Xi
w ≥ λX

w for all i = 1, . . . , n

(since Xi ⊆ X), there exists i0 such that λ
Xi0
w = λX

w . The existence of a pure global survival

on Xi0 follows from λ
Xi0
s ≥ λX

s > λX
w = λ

Xi0
w . Hence, if there exists a subset Y as above such

that λ
Xi
w > λX

w for all i then there is no pure global survival for the BRW on X.
Consider an irreducible, edge-breeding continuous-time BRW on the (nonoriented) graph

X obtained by attaching to a copy of N one branch T of the homogeneous tree T3. The BRW
is amenable by the presence of the copy of N. We claim that λX

s = λ
T3
s and λX

w = λ
T3
w . Indeed,

T ⊂ X ⊂ T3; hence, λT
s ≥ λX

s ≥ λ
T3
s and λT

w ≥ λX
w ≥ λ

T3
w . But, by approximation, λT

s = λ
T3
s .

Indeed, λT
s ≥ λ

T3
s and it does not depend on the starting vertex. Moreover, T contains arbitrarily

large balls isomorphic to balls of T3; hence, by [28, Theorem 5.2] or [7, Theorem 3.1], their
critical local parameters coincide. Note that, in [28, Section 5.1], the hypothesis that M is a
nonnegative matrix is not stated, even though it is implicitly used. Moreover, [28, Theorems 5.1
and 5.2] hold without the irreducibility hypothesis. The key is that, given a sequence {Xn}n∈N

of subsets of X such that lim infn Xn = X, and defining the sequence of matrices {nM}n∈N

as nM := (mx,y)x,y∈Xn , we can prove that, for all x0 ∈ X, (nM)s(x0, x0) → Ms(x0, x0) (as

defined in (2.1)). Explicit computations show that λ
T3
w = 1

3 < 1/2
√

2 = λ
T3
s (there is pure

global survival on T3). Since T3 can be obtained by attaching three copies of T to a root,
the above discussion about surviving on a subgraph implies that λT

w = λ
T3
w . Then we have

λX
w = λT

w ≤ λ
T3
w < λ

T3
s = λX

s , and there is pure global survival on X.
On the other hand, consider a nonamenable graph X′ such that the corresponding edge-

breeding continuous-time BRW has a pure global survival phase (take, for instance, X′ := T3,
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the homogeneous tree with degree 3). Attach to a vertex of X′ a complete graph Y with
degree k > 1/λX′

w by an edge. It is easy to show that the resulting graph X is still nonamenable;
nevertheless, there is no pure global survival for the corresponding edge-breeding BRW. Indeed,
by the above discussion, if there were pure global survival on X then one of the connected
components of X \ Y should have the same global critical value of X; but X \ Y = X′ and
λX

w ≤ 1/k < λX′
w . Roughly speaking, for every λ ∈ (λX

w, λX′
w ), the process cannot survive

globally in X′; hence, with positive probability, it infinitely often hits the complete graph, and,
thus, λX

s = λX
w .

The following example shows that the strong local survival is not monotone. The counter-
example is obtained by modifying the edge-breeding BRW on a particular graph, namely the
homogeneous tree Td . The crucial property that we need here is the existence of a pure global
survival phase; thus, the procedure applies to every BRW with such a phase.

Example 4.2. Consider the edge-breeding continuous-time BRW on the homogeneous tree
Td with degree d ≥ 3. Since the graph has constant degree d, the BRW can be seen also
as a site-breeding process where k(x) = d for all x ∈ Td . Hence, it is locally isomorphic
to a branching process, which implies that λw(x) = 1/Kw(x) = 1/d for all x ∈ Td , and if
λ ≤ 1/d then the probabilities of survival are 0 (see Theorem 3.2(c)). Similarly, according
to Theorem 3.2(a), λs(x) = 1/Ks(x, x), which does not depend on x. By the definition
of P and the discussion after (2.3), Ks(x, x) = d lim supn→∞

n
√

p(n)(x, y), where P is the
diffusion matrix of the simple random walk on Td . Using [27, Lemma 1.24], we obtain
Ks(x, x) = 2

√
d − 1, which implies that λs(x) = 1/2

√
d − 1 for all x ∈ Td (and there is

global extinction when λ = λw). Hence, if λ > 1/2
√

d − 1, there is strong local survival (see
Corollary 3.2), while if λ ∈ (1/d, 1/2

√
d − 1], the probability of global survival is positive

and independent of the starting point, and the probability of local survival at any finite A ⊆ X

is 0.
Fix λ ∈ (1/d, 1/2

√
d − 1] and a finite A ⊆ X. According to Theorem 3.3, there exists

x ∈ X such that there is a positive probability of global survival starting from x without ever
visiting A (clearly, x 
∈ A). In this case, any modification of the rates in the subset A provides a
new BRW such that there is still a positive probability of global survival starting from x without
ever visiting A (since the original BRW and the new one coincide until the first hitting time
on A). On the other hand, if there is y ∈ A such that x → y, and we add a loop in y and a
rate kyy > 1/λ, then q̄(x) < q(x, y) < 1. The first inequality holds by the above discussion
on local modifications, and the second inequality holds since λkyy > 1 implies local survival
at y (then irreducibility implies local survival at y starting from x). This means that, for this
fixed value of λ, we obtained a locally and globally (but not strong-locally) surviving BRW at
y starting from x.

Suppose now that kyy > d . Then, as in Example 4.1, we have a new BRW such that λ′
w =

λ′
s ≤ 1/kyy . In this case, when λ ≤ λ′

w, there is global extinction. When λ > 1/2
√

d − 1,
there is strong local survival for the new BRW since there is strong local survival for the original
BRW (the probability of hitting x conditioned on global survival is 1 for both processes and
Theorem 3.3 applies). If λ ∈ (λ′

w, 1/d], there is local and global survival with the same
probability, since, in order to survive globally, the process must visit x infinitely many times
(it cannot survive globally in the branches of Td ; otherwise, according to Theorem 3.3, both
processes would survive globally w.p.p. without ever hitting x). If λ ∈ (1/d, 1/2

√
d − 1] then

kyy > 1/λ and, according to the previous discussion, there is nonstrong local survival for the
new BRW.
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We show that, even in the irreducible case, if ρx(0) = 0 for some x ∈ X then we might have
strong local survival starting from some vertices and not from others.

Example 4.3. Let us consider a modification of the discrete-time counterpart of the edge-
breeding BRW on Td with degree d ≥ 3 and λ ∈ (1/d, 1/2

√
d − 1] . Let us fix a vertex y;

in this modified version we add, with probability 1, one child at y for every particle at y. In
this case, q̄(y) = q(y, A) = 0 for all A ⊆ X. On the other hand, as in Example 4.2, there is a
vertex x such that q̄(x) < q(x, y).

In the last few examples we make use of the subclass of BRWs which are locally isomorphic
to a branching process (which are particular F -BRWs; see Section 2.4). By using Theorems 3.1
and 3.2, and the explicit computations for Ms and Mw given after (2.1), it is easy to show that,
for such a process, (i) there is global survival if and only if ρ̄ > 1; (ii) there is local survival
at x if and only if ρ̄ > 1/ lim supn→∞

n
√

p(n)(x, x) =: r(x, x). Hence, in the irreducible case,
there is pure global survival if and only if 1 < ρ̄ ≤ r (where r = r(x, x) in this case does not
depend on x ∈ X due to irreducibility). This is possible if and only if r > 1, which is equivalent
to nonamenability, since in this case Ms(x, y) = ρ̄/r and Mw(x) = ρ̄. It is clear that, given
a continuous-time BRW which is locally isomorphic to a branching process, λw = 1/k and
λs(x) = r(x, x)/k (where k = k(x) for all x ∈ X).

In general, there may be nonstrong local survival, even if the BRW is irreducible and locally
isomorphic to a branching process, and has independent diffusion as Examples 4.4 and 4.5 show
(see also Example 4.2). This disproves [25, Theorem 3 and Corollary 4] (see also Remark 4.1)
since q̄ < q(·, 0) < 1 are three distinct fixed points of G.

Example 4.4. Fix X := N, and consider a BRW with the following reproduction probabilities.
Every particle has two children with probability 3

4 and no children with probability 1
4 . Each

newborn particle is dispersed independently according to a nearest-neighbor matrix P on N.
More precisely,

p(i, j) :=
{

pi if j = i + 1,

1 − pi if j = i − 1,

and p0 = 1. The process described above is an irreducible F -BRW for every choice of the set
{pi}i∈N\{0} such that pi ∈ (0, 1) for all i > 0. The generating function of the total number of
children is z �→ 3z2/4 + 1

4 and its minimal fixed point is 1
3 = q̄(x) (for all x ∈ N).

Choose p1 < 5
9 . It is easy to show that the process confined to {0, 1} (that is, every

particle sent outside {0, 1} is killed) survives, since the expected number of children at 0
every two generations (starting from 0) is ( 3

2 )2(1 − p1) > 1. Since the confined process is
stochastically dominated by the original process, we have local survival, for instance, at x = 0.
By irreducibility, this implies that q(x, y) < 1 and q̄(x) < 1 for all x, y ∈ N.

Choose the pi such that
∏∞

i=1 p2i

i > 0 (or, equivalently,
∑∞

i=1 2i (1 − pi) < +∞). Consider
the branching process Nn representing the total number of particles alive at time n: for all n,
Nn ≤ 2n almost surely. The probability, conditioned on global survival, that every particle
places its children (if any) to its right is the conditional expected value of

∏∞
i=1 p

Ni

i . But∏∞
i=1 p

Ni

i ≥ ∏∞
i=1 p2i

i > 0 almost surely. Hence, conditioning on global survival, there is a
positive probability of nonlocal survival. This implies that q(·, y) 
= q̄ for every y ∈ N. Note
that, according to Theorem 3.4, supx∈N q(x, x) = 1. This proves that, even in the irreducible
case, the generating function G can have more than two fixed points (see also Remark 4.1).
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The key in the previous example is that the total number of particles alive at time n is
bounded. This is not an essential assumption. The following example shows that, given any
law ρ of a surviving branching process (that is, ρ̄ = ∑

n∈N
nρ(n) > 1), it is possible to construct

an irreducible BRW which is locally isomorphic to a branching process with nonstrong local
survival.

Example 4.5. Let X = N and ρx := ρ for all x ∈ N; ρ being the law of a surviving branching
process. We know that q̄(x) ≡ q̄ for all x ∈ N, where q̄ < 1 is the smallest fixed point of
z �→ ∑

n∈N
ρ(n)zn. Pick a sequence of natural numbers {Ni}i∈N satisfying∏

i∈N

ρ([0, Ni+1])
∏i

j=0 Nj > q̄, (4.1)

where N0 := 1. Note that the probability of the event A = ‘every particle alive at time
i has at most Ni+1 children for all i ∈ N’ is bounded from below by the left-hand side of

(4.1). Thus, from (4.1), with a probability greater than
∏

i∈N
ρ([0, Ni+1])

∏i
j=0 Nj − q̄ > 0,

the colony survives globally and the total size of the population at time n is not greater than∏n
j=0 Nj (i.e. the intersection between A and global survival has positive probability).
We define a BRW with independent diffusion, with P defined as

p(i, j) :=

⎧⎪⎨⎪⎩
pi, j = i + 1, i ≥ 0,

1 − pi, j = i − 1, i ≥ 1,

1 − p0, i = j = 0.

Let p0 such that (1 − p0)ρ̄ > 1; this implies local survival. We choose the sequence {pi}i∈N,
where pi ∈ (0, 1), in such a way that

∏
i∈N

p

∏i
j=0 Nj

i > 0 (4.2)

(or, equivalently,
∑

i∈N
(1 − pi)

∏i
j=0 Nj < ∞). Using (4.2), if we condition on A, the

probability that every particle places its children (if any) to its right is bounded from below by∏
i∈N

p

∏i
j=0 Nj

i . This implies that there is a positive probability of global, nonlocal survival.
We choose the sequences {Ni}i∈N and {pi}i∈N to respectively satisfy (4.1) and (4.2) as

follows. Choose a sequence {αi}i∈N such that αi ∈ (0, 1) for all i ∈ N and
∏

i∈N
αi > 1 − q̄.

Then, iteratively, if we fixed N0, . . . , Nk , since limx→∞ ρ([0, x]) = 1, there exists Nk+1 ∈ N

such that ρ([0, Nk+1]) > α
1/

∏k
j=0 Nj

k+1 . Let us take, for instance, pi > 1/(i
∏i

j=0 Nj).
We note that the class constructed in this example includes discrete-time counterparts of

continuous-time BRWs where ρ can be chosen as in (2.3), where k(x) ≡ k does not depend
on x, kxy := kp(x, y) (where P is defined as before), and λ > λs is fixed. Finally, we observe
that this example extends naturally to an example of a site-breeding BRW on a radial tree where
the number of branches of a vertex at distance k from the root is at least 1/p(k, k + 1).

Even though the local extinction probability q(·, y) (for any fixed y ∈ N) of Examples 4.4
and 4.5 provides a fixed point which is different from both q̄ and 1 for the function G of an
irreducible BRW, in the following example we give a more explicit construction of such a fixed
point.
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Remark 4.1. Consider a generating function

G(z | n) =

⎧⎪⎨⎪⎩
3(pnz(n + 1) + (1 − pn)z(n − 1))2

4
+ 1

4
, n ≥ 1,

3z(1)2

4
+ 1

4
, n = 0,

(4.3)

on [0, 1]N, where pn ∈ (0, 1) for all n ∈ N. This is the generating function of an irreducible
BRW, and the constant vectors q̄ ≡ 1

3 and 1 are always fixed points of G regardless of the choice
of {pn}. An explicit construction of {pn} and of a third fixed point z ∈ (0, 1)X can be carried
out recursively as follows. Take z(0)∈ ( 1

3 ,1), p0 = 1, and p1 < 5
9 . The explicit expression

of the equation G(z) = z is easily derived from (4.3). Since 1 >
√

(4x − 1)/3 > x for all
x ∈ ( 1

3 , 1), then 1 > z(1) > z(0) > 1
3 . Suppose that 1 > z(n) > z(n − 1) > · · · > z(0) > 1

3
for some p0, p1, . . . , pn−1 ∈ (0, 1). Choose z(n+ 1) < 1 such that 3z(n+ 1)2/4 + 1

4 > z(n).
By continuity, there exists pn < 1 such that 3

(
pnz(n+ 1)+ (1 −pn)z(n− 1)

)2
/4 + 1

4 = z(n).
By induction we have a new fixed point z of this G (associated to the sequence {pn}) such that
1
3 < z(n) < z(n + 1) < 1 for all n and limn→∞ pn = limn→∞ z(n) = 1−.

The above disproves [25, Theorem 3 and Corollary 4]. Indeed, there is an error in the
proof of [25, Theorem 3]. In line 8 of the proof, the sentence ‘Clearly B ′ 
= ∅’ is incorrect
when the set X is infinite as the following example shows. Using the notation of [25], take
x, t ∈ [0, 1]X such that x is constant, say x(i) = a < 1 for all i ∈ X and 1 > t(i) > a

for all i ∈ X. Suppose that supi∈X t(i) = 1. Then the half-line {x + θ(t − x) : θ ≥ 0} exits
from the set [0, 1]X at θ = 1, that is, at the point t . Indeed, if θ > 1 then supi∈X(x(i) +
θ(t(i) − x(i))) = θ supi∈X t(i) − a(θ − 1) = θ − a(θ − 1) = 1 + (θ − 1)(1 − a) > 1. But
B ′ := {i ∈ X : t(i) = 1} = ∅; roughly speaking, in this case there is not a smallest value for
θ ≥ 0 such that some coordinates of the point x + θ(t − x) are 1.

5. Proofs

Proof of Proposition 2.1. If q̄ = 1, there is nothing to prove. Suppose that q̄ < 1. Without
loss of generality we can suppose that q̄(x) < 1 for all x ∈ X. Indeed, given x0 such
that q̄(x0) = 1, then, for all x ∈ Nx0 , we have q̄(x) = 1. Since we defined ẑ(x) := 1
whenever q̄(x) = 1, we can remove these vertices to obtain a new set X′ ⊆ X. Consider the
restricted BRW on X′ (obtained by killing all the particles going outside X′). It is clear that
qX(x, A) ≤ qX′

(x, A) for all x ∈ X′ and A ⊆ X′. The generating function G′ of the new BRW
satisfies G′((z|X′)|x) ≥ G(z | x) for all x ∈ X′; hence, G(z) ≥ z implies that G′(z|X′) ≥ z|X′
(where z|X′ is z restricted to X′). Moreover, ẑ satisfies the conclusions of the proposition if and
only if ẑ|X′ ≡ ẑ|X′ does. Thus, it is enough to prove the result for the BRW restricted to X′.

Note that ẑ := T −1
q̄ (z); thus, G(z) ≥ z is equivalent to Ĝ(̂z) ≥ ẑ. Hence, it is enough to

prove the proposition when μx(0) = 0 for all x ∈ X, which implies that q̄ = 0 and ẑ = z.
Suppose that Nx is nonempty, z(y) ≤ z(x) for all y ∈ Nx , and z(y0) < z(x) for some
y0 ∈ Nx . Then, using the facts that z ≤ 1 and

∏
y∈X z(y)f (y) ≤ z(x) if H(f ) ≥ 1, it follows

that z(x) ≤ G(z | x) ≤ ∑
{f ∈SX : f (y0)=0} μx(f )z(x)+∑

{f ∈SX : f (y0)>0} μx(f )z(y0) < z(x),
which is a contradiction. If in particular z(x) = 1, since z(y) ≤ 1 = z(x) for all y ∈ X

then we have z(y) = 1 for all y ∈ Nx . Finally, by induction, we obtain the result for the set
{y ∈ X : x → y}.

Proof of Theorem 3.3. Indeed, since {qn(·, A)}n∈N is nondecreasing,

qn(·, A) = G(qn−1(·, A)),
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and q̄ is the smallest fixed point of G, we immediately have

q(·, A) = q̄(·) ⇐⇒ q0(·, A) ≤ q̄(·),
that is, the equivalence (a) ⇔ (b) holds. Moreover, the event ‘local survival in A starting
from x’ implies both ‘global survival starting from x’ and ‘visiting A at least once starting
from x’; hence, q(x, A) = q̄(x) < 1 if and only if the probability of visiting A infinitely many
times starting from x conditioned on global survival is 1 and (a) ⇔ (e) ⇒ (d). Trivially,
(b) ⇔ (c) and (d) ⇒ (c). This proves the equivalence.

Before proving Corollary 3.2 and Theorem 3.4, we need two lemmas.

Lemma 5.1. Let (X, μ) be a BRW, and fix z, v ∈ [0, 1]X such that z + εv ∈ [0, 1]X for some
ε > 0. Then the function t �→ G(z + vt | x) is strictly convex if and only if there exists

f : μx(f ) > 0,
∑

y∈supp(v)

f (y) ≥ 2, supp(z) ∪ supp(v) ⊇ supp(f ). (5.1)

Proof. Let us evaluate the function G on the line t �→ z + tv, where t ∈ [0, T ) and
T := sup{s > 0 : z + sv ∈ [0, 1]X}:

G(z + tv | x) =
∑

f ∈SX

μx(f )
∏
y∈X

f (y)∑
i=0

(
f (y)

i

)
z(y)f (y)−iv(y)i t i

=
∑

f ∈SX

μx(f )
∑

{g∈SX : g≤f }

∏
y∈X

(
f (y)

g(y)

)
z(y)f (y)−g(y)v(y)g(y)tg(y)

=
∑

f ∈SX

μx(f )
∑

{g∈SX : g≤f }
tH(g)

∏
y∈X

(
f (y)

g(y)

)
z(y)f (y)−g(y)v(y)g(y)

=
∑

f ∈SX

μx(f )

∞∑
i=0

∑
{g∈SX : H(g)=i, g≤f }

t i
∏
y∈X

(
f (y)

g(y)

)
z(y)f (y)−g(y)v(y)g(y)

=
∞∑
i=0

t i
( ∑

{f,g∈SX : H(g)=i, g≤f }
μx(f )

∏
y∈X

(
f (y)

g(y)

)
z(y)f (y)−g(y)v(y)g(y)

)
.

The strict convexity of a power series in t with nonnegative coefficients is equivalent to the strict
positivity of at least one coefficient corresponding to t i with i ≥ 2. Hence, it is easy to show
that each of the following assertions is equivalent to the next and that they are all equivalent to
the strict convexity of t �→ G(z + vt | x).

(i) There exists f, g : H(g) ≥ 2, f ≥ g, μx(f ) > 0, supp(v) ⊇ supp(g), supp(z) ⊇
supp(f − g).

(ii) There exists f, g : H(g) ≥ 2, f ≥ g, μx(f ) > 0, g = f 1supp(v), supp(z) ⊇ supp(f ) \
supp(v).

(iii) There exists f : μx(f ) > 0,
∑

y∈supp(v) f (y) ≥ 2, supp(z) ⊇ supp(f ) \ supp(v).

(iv) There exists f : μx(f ) > 0,
∑

y∈supp(v) f (y) ≥ 2, supp(z) ∪ supp(v) ⊇ supp(f ).
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Lemma 5.2. Let (X, μ) be a BRW, and fix x0 ∈ X. Suppose that, for some x̄ in the same
irreducible class of x0 and f ∈ SX, we have μx̄(f ) > 0,

∑
{w : w�x0} f (w) ≥ 2. We can fix

n̄ ∈ N such that if the process starts with one particle at x0 ∈ X then we have at least two
particles at x0 in the generation n̄ w.p.p.

Proof. Consider a path x0, x1, . . . , xm = x̄, and let f ∈ SX be such that μx̄(f ) > 0 and∑
{w : w�x0} f (w) ≥ 2. We have the following two cases.
Case 1. There exists xm+1 ∈ X such that xm+1 � x0 and f (xm+1) ≥ 2; in this case consider

the closed path x0, x1, x2, . . . , xm, xm+1, . . . , xn = x0 and take n̄ := n. Since any particle at xi

has at least one child at xi+1 w.p.p., and a particle at x̄ has at least two children at xm+1 w.p.p.,
then any particle at x0 has at least two descendants at x0 in the n̄th generation w.p.p. Indeed,
let fi ∈ SX such that μxi

(fi) > 0, fi(xi+1) ≥ 1 for all i = 0, . . . n̄ − 1 (fm being f ). Then
the probability that a particle at x0 has at least two descendants at x0 in the n̄th generation is
bounded from below by

∏m
i=0 μi(fi)

∏n̄−1
j=m+1 μj (fi)

2.
Case 2. There exists a couple of different vertices xm+1, ym+1 such that xm+1, ym+1 � x0

and f (xm+1), f (ym+1) ≥ 1; in this case, consider the paths x0, x1, . . . xm, xm+1, . . . , xn1 = x0
and x0, x1, . . . xm, ym+1, . . . , yn2 = x0, and take n̄ := LCM(n1, n2) (the conclusion follows
as before).

Proof of Theorem 3.4. (a) For every fixed point z of G, we know that z ≥ q̄ and z ≤ 1X.
This implies that if supx∈X z(x) < 1 for some fixed point then, necessarily, supx∈X q̄(x) < 1.
Hence, if q̄ = 1, there is nothing to prove. Otherwise, we show that if G(z) = z and z 
= q̄,
then supw∈X z(w) = 1. Suppose that the BRW is locally isomorphic to (Y, ν) through the map
g and define h(y) := supw∈g−1(y) z(w). Clearly, h ∈ [0, 1]Y and h ◦ g ≥ z, which implies that
GY (h) ≥ h. Indeed,

GY (h | y) = sup
x∈g−1(y)

GY (h | g(x))

= sup
x∈g−1(y)

G(h ◦ g | x)

≥ sup
x∈g−1(y)

G(z | x)

= sup
x∈g−1(y)

z(x)

= h(y).

If Y finite then we can choose ỹ ∈ Y which minimizes

t (y) := 1 − q̄Y (y)

h(y) − q̄Y (y)

(where t (y) := +∞ if h(y) = q̄Y (y)). Note that t (y) ≥ 1 for all y ∈ Y and t (ỹ) < +∞. By
applying the maximum principle (Proposition 2.1) to the function 1/t (y) (where y is ranging
in the set {w : q̄Y (w) < 1}), it follows that it is constant on {y : ỹ → y}. Since q̄Y (ỹ) < 1
and Y is finite, then there exists y0 such that ỹ → y0 and there is local survival at y0 starting
from y0. Since (Y, ν) satisfies Assumption 2.1, then there exists ȳ � y0 such that a particle
living at ȳ w.p.p. has at least two children in the irreducible class of y0. Then, by taking y0
instead of x0 in Lemma 5.2, we can find n̄ ∈ N such that the function

φ(t) := G
(n̄)
Y (q̄Y + t (h − q̄Y ) | y0) − q̄Y (y0) − t (h(y0) − q̄Y (y0))
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is strictly convex by Lemma 5.1. Indeed, G(n̄)
Y is the generating function of the BRW constructed

by considering the nth generations of the original BRW, where n̄ | n and, under our hypotheses,
it satisfies (5.1).

Note that φ is well defined in [0, t (y0)] since

rt (y) := q̄Y (y) + t (h(y) − q̄Y (y)) ≤ q̄Y (y) + t (y0)(h(y) − q̄Y (y)) ≤ 1.

Hence, rt ∈ [0, 1]Y for all t ∈ [0, t (y0)].
Clearly, every fixed point of GY is a fixed point of G

(n̄)
Y ; in particular, G(n̄)(z) = z and

G
(n̄)
Y (q̄Y ) = q̄Y , whence φ(0) = 0 and φ(1) = G

(n̄)
Y (h | y0) − h(y0). Now, using (2.6),

G
(n̄)
Y (h) ≥ h and this, in turn, implies that φ(1) ≥ 0. Since φ is strictly convex, φ(t) > 0

for all t ∈ (1, t (y0)]. If t (y0) > 1 then 0 < φ(t (y0)) = G
(n̄)
Y (rt (y0) | y0) − 1, but this is a

contradiction since rt (y0) ∈ [0, 1]Y and G
(n̄)
Y (rt (y0)) ∈ [0, 1]Y . In the end t (y0) = 1; thus,

1 = h(y0) = supw∈X z(w).
(b) This applies to z(·) = q(·, x) for any fixed x ∈ X. If the BRW is irreducible, q(w, x) =

q(w, y) for all x, y, w ∈ X. Thus, there exists x ∈ X such that q(·, x) = q̄(·) if and only if
q(w, w) = q̄(w) for all w ∈ X; analogously, there exists x ∈ X such that supw∈X q(w, x) = 1
if and only if supw∈X q(w, w) = 1.

Note that, from the first part of the previous proof, if the BRW on Y is irreducible, then, by
the maximum principle, (h − q̄Y )/(1 − q̄Y ) is a constant function. Thus,

h(y) = sup
w∈g−1(y)

z(w) = 1 for all y ∈ Y .

Proof of Corollary 3.1. When X is finite, (X, μ) is clearly an F -BRW. If q̄ = 1, there is
nothing to prove. Suppose that q̄ < 1. Since the BRW is irreducible, q̄(x) < 1 for all x ∈ X.
Let q̄ < z < 1 be a solution of G(z) ≥ z. Since X is finite and q̄ < z from Theorem 3.4(a),
we have z(x) = 1 for some x ∈ X. By Proposition 2.1, using irreducibility, ẑ = 1, which
contradicts z < 1.

Proof of Corollary 3.2. Since (X, Eμ) is irreducible, q(x, y) = q(x, x) for all x, y ∈ X,
and if q̄ < 1 (respectively q(·, y) < 1) then q̄(x) < 1 (respectively q(x, y) < 1) for all
x ∈ X. Moreover, quasitransitivity implies that if q(·, y) < 1 then supx∈X q(x, y) < 1. Thus,
according to Theorem 3.4, q(·, y) 
= 1 implies that q(·, y) = q̄.
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