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Abstract

This paper studies degenerate forms of Maxwell's equations which arise from ap-
proximations suggested by geophysical modelling problems. The approximations
reduce Maxwell's equations to degenerate elliptic/parabolic ones. Here we con-
sider the questions of existence, uniqueness and regularity of solutions for these
equations and address the problem of showing that the solutions of the degenerate
equations do approximate those of the genuine Maxwell equations.

1. Introduction

We begin by recalling Maxwell's equations:

V xE = -d,B
V xH = dtD + J

V Z ) = p

J =

where E and H are the electric and magnetic field intensities, p is the density
of electrical charge, / is the total current density, oE is the conduction cur-
rent density, B is the magnetic induction field, D is the displacement current,
AT is a known current density maintained by an external energy source and a
is the conductivity.

The problem studied in this paper is suggested by geophysical modelling
in which the following assumptions are made:

(1) D = eE, B = fiH where, ft is the premeability, assumed constant and
e is the permittivity,
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278 A. L. Carey and K. McNamara [2]

(2) a and e are independent of the time variable,
(3) AT is switched on at t = 0,
(4) for t < 0, E{-, t) = 0, H(-, t) = 0, />(•, *) = 0.
It is then easy to see that E is determined by the solution to the equation

+ fiad,E + V x V x £ = -/id,K. (1)

Now formaiiy (i) may be Lapiace transformed to

(ties2 + nas + V xVx)e = -/xsk, (2)

(where J?(E) — e, ^(K) = k, and 5 is the Laplace transform variable) or
Fourier transformed to

(—Heco2 - fiaict) + V x Vx)e = -ico/ik, (3)

(where &~(E) = e, ^{K) = k, and co is the Fourier transform variable). In
this form existence, uniqueness and regularity of the solutions was established
in [1]. In particular the case e = 0 (the quasi-static approximation) was
included and convergence of the solution as e —> 0, established.

The methods of [1] are not adequate to deal with the problem considered
here and for the reader's convenience we summarise the reasons. Firstly re-
call that the quasi-static approximation corresponds to the physical situation
where the time at which observations are taken is long after the electromag-
netic wave-fronts have left the observation point or, where the source is of
low-frequency. These two viewpoints are equivalent to asserting that the
terms —/ieco2 and fies2 are negligible, so that the solution to (1) is approxi-
mated in a sense made precise in [1] by the inverse transforms of the solutions
to

(fias + V xVx)e = -sptk (4)

or
(-fiaico + V x Vx)£ = -icofik. (5)

Now the results in [1] assume that a > 0, whereas in the geophysical
context it is often convenient to allow regions with zero conductivity (in
particular to consider the case where a vanishes in a half-space). We note
in passing that the reason the solutions of (4) and (5) are not smooth even
if K is smooth arises from the fact that it is usual in these applications
to approximate the conductive medium (for example the earth) by making
a piecewise constant. Then e inherits this non-regularity precisely on the
'interfaces' i.e. boundaries between regions of constant a. Nevertheless e is
still in L2(R?) and the results of [1] follow from the bound:

± (6)
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[3] Degenerate forms of Maxwell's Equations 279

where
a. = info(x),e. = infe(x),

xeR3 xew
£%'s = real part of s (and $s = imaginary part of s)

and || • || is the norm in L2(R3). This bound is well-behaved, for a model in
which er, > 0, as e —> 0 and it is therefore possible to take the quasi-static
limit.

It should by now be clear that when e = 0 and a = 0 in some region this
whole strategy breaks down since (6) is inapplicable.

An alternative strategy is suggested in Hohmann [5, 6] who considered the
geophysical model of an infinite flat-earth where,

°' Z > ° (7)
Aground, Z <\i,

where <7grOund > 0 and may be written as a&0Xini = ffhOst + (tfbody -
with (Tbody and ffhost constant and xv the characteristic function of a bounded
subset V of R3. Thus one is modelling the situation of a buried ore body of
finite volume V.

From the vector diffusion equation, which is obtained from (1) by making
the quasistatic approximation, viz.:

Had,E + V x V x £ = -fidtK. (8)

Hohmann derives an integral equation which is asserted to be equivalent to
the vector diffusion equation in the region where a is non-vanishing:

E = G*K + G*{ovXv)E, (9)

where av is the difference (Thost - embody. G is the pointwise limit, as e vanishes,
of the kernel of the Greens' operator for the transmission problem with a
source in the region z < 0 in the presence of an insulating upper half-space
with e non-zero and * denotes a modified convolution operator whose mean-
ing is made clear in the appendix.

The integral equation approach currently forms the basis of a variety of
numerical methods of solving Maxwell's equations in the geophysical mod-
elling context [5, 6 and references therein] and hence it is of some interest to
justify mathematically the approximations made in this method.

An innovative alternative approach has been proposed by Joly [7] (and
developed extensively of him and co-workers) using a discretisation scheme
of Nedelec [10]. Joly's technique is to replace equation (9) in the region z > 0
by an integral boundary operator (incorporating any source in this region) on
a certain Hilbert space of functions on the interface. This is matched with
the solution for z < 0 using the electromagnetic boundary conditions. The
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electric field in the region z < 0 is never calculated, one computes only the
electric field in the region z < 0 and on the interface. This is sufficient
to model the usual geophysical situations but does not address the issues
considered here of how well the solution of the degenerate system (where
a vanishes for z > 0) approximates the solution of the original Maxwell's
equations.

We remark that there is an extensive geophysical literature on numerical
schemes for solving Maxwell's equations some of which may traced from [5,
6, 12]. To our knowledge, with the exception of Joly's work, little is known
about the numerical analysis of these methods.

Our results may be summarised as follows:
(i) In Section 2.2 we give a variational form of the problem and in Sec-

tions 2.3 to 2.5, a direct proof of the existence and uniqueness of solutions to
the vector and scalar diffusion equations (without recourse to Laplace trans-
forms) using a modification of arguments in Treves [16, pp. 397-405] in the
case where cr* > 0.

(ii) Concurrently we find that if we allow a = 0 in a half-space, the ar-
gument in (i) still works for the scalar equation with the modification that
the solution lies in a weighted L2 space, however, the existence proof breaks
down in the vector case. Thus while one can easily solve degenerate parabolic
equations of the form

oil - V2« = g,

the sense in which
ou + V x V x M = £ (10)

is solvable is a much more subtle problem. (Note that the results of this
section were obtained independently in the preprint in [7] while the technique
used in [7] has the additional merit that it also handles the degenerate case
of (10).)

As remarked above our approach is motivated by [5, 6] and so:
(iii) In Section 3.1 we establish an equivalence between Hohmann's inte-

gral equation and the variational form of the problem used in Section 2 in
the case a* is non-vanishing. Denoting by GOur the kernel of the fundamental
solution of (8) in the case where a has the general form (7), except that a(x)
is a constant (= a^w ^ 0) for z > 0, it was observed in [9] that GOiU —* G
pointwise in the region z < 0 as erair -+ 0. This suggests studying the operator
from L2([0, T]; (L2{V))3) to L2([0, T\, (L2{R3_))3) given by F H-> G * ovXvF.
We sketch in the appendix how to show, using the explicit expression for
G given there, that this operator is bounded. It follows that for small oy a
solution to the integral equation exists even when <7air = 0. This then gives a
solution to the differential equation (8)in the region z < 0 and a^ - 0.
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[5] Degenerate forms of Maxwell's Equations 281

(iv) In Section 3.3 we consider the question of how well this solution to
the degenerate problem approximates the solution of the original Maxwell
equations. Using [1] it is sufficient to investigate the convergence of the
solutions of (8) as aaiT —» 0. Because we use properties of the explicit form
of the fundamental solution we have to work with the Laplace transformed
problem. We establish weak convergence (in L2(/?!)) of the solution to (8)
as ffair —* 0 to the solution of the integral equation with crair = 0.

(v) In Section 3.2 we examine briefly the boundary conditions at the in-
terface indicating how the results in [1] may be used to establish regularity
even when <7air = 0.

As we have remarked, the arguments in (iii) depend on [9] and so for the
reader's convenience we give in the appendix the explicit form of the kernel G,
its Laplace transform and sketch the relevant discussion from [9]. We depend
on [15] for some formulae used in the weak convergence argument and the
reader will need to refer to that to fill in some details. We also consider
(in the appendix) the decay of the electric field in the region where <xair = 0
(checking the so-called radiation condition). We conclude the appendix with
some remarks on general existence results for the degenerate problem.

The notation is standard (see [8]): WJ(Sl) = W^2(O) is the Sobolev space
of functions in L2(Q), Q. c R3, with distributional derivatives of order less
than or equal to j in L2(Q.). An asterisk denotes convolution, di denotes par-
tial differentiation with respect to /, (•, •)# is the inner product in the Hilbert
space H, where H may be L2(Q), (L2(Q))3, etc., depending upon the context
and D(A) denotes the domain of the operator A on H.

2. Existence and uniqueness of the solution of
the generalised diffusion equation

2.1 Introduction

In this section the existence and uniqueness of solutions to the vector and
scalar diffusion equations are investigated. We will denote by <f, depending
on context, either the operator - V 2 or the operator V x Vx. That is, we
study the equation ou + @u = g. Note that a must be bounded below by a
positive constant in the case & = V x Vx since the method we use to prove
the existence and uniqueness of the solution fails when a vanishes in a half-
space. When & = - V 2 it is possible to allow a to vanish in a half-space, thus
solving a degenerate parabolic/elliptic problem.
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2.2 The generalised diffusion equation
The vector/scalar generalised diffusion equation is

t) = g{x,t) (11)

with initial condition u(x_, 0) = 0, for all x_G R3 where

( ) - f °aiTy £€&+
I °ground(x)> X_G R_,

where <xair is a non-negative constant, Aground (*) is an arbitrary positive,
bounded function with lower bound ex* > 0, the integer n denotes 1 when @ is
scalar and 3 otherwise, x_ — (x,y, z) and T is a finite, non-negative real num-
ber. Note that all functions are real-valued and that all spaces are over the
reals. Firstly, we replace u by exp(-rt)u, where T is a positive real number.
(We will eventually restrict T to be greater than some To > 0.) In the case
0air / 0 this substitution ensures that we obtain a contraction semi-group.
(We note in passing that semigroup methods are applicable to this problem
only when <rair / 0.) Thus, upon making the above substitution, (11) becomes

oil + xau + <fu — cxp(-r t)g = F. (12)

We define

where (•, )z.2(/?3) indicates the inner product in (L2(/?3))". Note that
exists since the operators we are dealing with are positive, self-adjoint and
closed (For —V2 this is a standard result. For V x Vx see [1].) For the cases
of interest to us:

3

B_vi{u,V) = ^2(dXlU,dXlv)o{Ri),

( = 1

(xi =x,x2 = y,xy = z) and
3

BVxVx(u,v) = ̂ 2(dx,(l - Q)u,dXl{\ - Q)v)Lim,
1=1

where Q is the pseudo-differential operator defined by

VxVx = -V 2 ( l - ( ? ) .

That is, loosely speaking
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[7] Degenerate forms of Maxwell's Equations 283

We now define the spaces Q>g and Eg in which we seek the solution to
(11):

Q>g is the completion of (Cc°°(i?3))" with respect to the topology induced
by the norm corresponding to the following inner product:

(M, V)^ = (au, v)L2(Ri) + Bg(u,v). (13)

The reason our argument fails when (9 = V x Vx and <7air = 0 is that
a function u which has its support in R\ and is longitudinal, (i.e. V x
u = 0), must satisfy ||«||<j>^xVx = 0, i.e. the inner product merely induces
a semi-norm. Hence we exclude this case from our consideration. Note
however that using Schowalter [14] we can produce an existence result even
for this case by quotienting out the subspace in which (12) is degenerate.
This is not particularly useful in the geophysical context unless there is an
embedding of the quotient space into a function space for it is only then that
the electromagnetic boundary conditions can be formulated. Unfortunately
we have not found such an embedding.

Eg is denned as the completion of L2([0, t]; (C?°(R3))3) in the norm

(If H is a Banach space, H' denotes its dual). That is,

Etf = {ue L2([0, T);^)\adu/dt e L2([0, T];

We now define the bilinear form on Eg x Eg corresponding to the weak
form of (12):

fT fT fT
A(Z,g)(u,v)= -{u,av)dt+ I (Tou,v)Limdt+ I Bg(u,v)dt, (15)

Jo Jo Jo

where the notation (•, •) without a subscript denotes the bracket of duality.
Thus the weak form of (12) is to find a u such that

fT
A{T/?)(u,v)= / (T,v)dt

Jo

for all v e Eg. The following result shows that Og is a space of functions:
CLAIM. Let W be the space of functions u with

-rj— 2 dxdydz < oo. (16)

(8 is the Heaviside function.) Then, if «rair ^ 0 or in the case where aa[T — 0,
<? = - V 2 (scalar), ®g c W.
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To see why this is the case we firstly note that if <7air # 0 then O^ c
L2{R?) c W, so we need only consider the case a^ = 0, @ = - V 2 (scalar).
Let u G Cc°°(i?3), then

M2
 = -9(Z)U2 8ZU2

as M and thus M2 is of compact support. Now
6{z)u2

" ^ dyaz = I -y.—.. . . ax ay dzy J(l + d(z)z)

O r

that is,

Let

02= f
JR3_

then (17) implies
a2<2(a2 + p2)l'2y. (18)

This forces

a2<2y2(l + s/p + y2) (19)

< 2y2 + 2y/p* + 2p2y2 + y* = 4y2 + 202,

and thus
a2 + p2 < 4(02 + y2). (20)

Now, we define CT» as inf^g^a a{x). Thus, if cr* < 1, then

P2 + y2<-{a.p2 + y2),

and if a* > 1
P2 + y2 < <T.P2 + y2.

Noting that || • H^ is equivalent, when ffair = 0, to Jo*\\ • l l ^ s ) + B&{-,-) it

can be seen that there is a constant Ka such that

\\u\\w<Ka\\u\U,, (21)

that is, <&& c W.
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[9] Degenerate forms of Maxwell's Equations 285

When (? = V x V x and <7ajr is zero we cannot obtain an analogue of (21)
and hence the method described here for existence fails. (Note that (21) also
appears in the preprint in [7].)

We now discuss the dual of <Jv.
For & = - V 2 and aaiT / O w e have that O^ is just the Sobolev space

(Wl-2(R3))n and therefore the dual of O^ is merely (W-l*(R3))n. However,
if <7air = 0, the situation is more complicated. In this case, av has support
only in the lower half-space and therefore we are interested in the duality
between <Jv and &# only for the subspace of O^ consisting of functions
with support in R3_. However, this subspace is {Wl'2(R}_))n and hence its
dual is (W~x>2(Rl_))n. Thus, the space £> is the space of functions v such
that

(l)veL2([0,T];<t>#)

For & = V x Vx the situation is slightly more complicated. Since Q>& c
(L2(/?3))3, if aair / 0, we can resolve u e ®<? into its transverse and longi-
tudinal components which we will denote by My- and u^> respectively. Note
that

ll«H& = {ouy "y)z2(*3) + (Vus- Vus-)Lim

Now for <rair / 0, (22) implies that u^ e (W1-2^))3 and u^ e (L2(R3))3.
That is, Oyxvx = (Wp2{R3))3 ® (L%,(R3))3 {&',SC indicate the transverse
and longitudinal subspaces respectively) and therefore

It is also of interest to consider in exactly which space the solution to (11)
lies. Now when & = V x Vx, (11) is

aii(x_, t) + V x V x M(X, 0 = g(x_, t)

where g e Z,2(i?3 x [0, T]). (We ignore initial conditions for the moment and
consider the case (^ = V x V x , <7ajr = 0, even though we have no existence
proof in this case.) Now, for (11) to be meaningful it is necessary that V x u
and V x V x u be elements of (L2(/?3))3. That is,

r (w"-2(/?3))3, <xair ? o

which implies that
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This, in view of (11), implies that

^ \ {IV~1'2(R3_))3, <Xair = 0.

We also have from (11) that
r { r2r j?3\\3 „ . u c\
I V-*-' V " II > " a i r T «

That is

where ft = R3_(R3) when (Tair = 0& 0).
By a similar argument it can be seen that for & = - V 2 the solution u e
W)n and that ou e 2

2.3 Existence of solution
We now prove the existence of a solution to the generalised diffusion equa-

tion. To do this we consider a space of the form ^ x / where E& c.2? and
y contains the function corresponding to our choice of initial condition. A
subset of & x y is chosen so that:

(1) the pair (v,vo) corresponds to a choice of a function v e E& with
lim,_>0 ||w - uolLr = 0

(2) ||(w,Vo)||srx^<l^(T/f)(«,«)|.
Lions' generalisation of the Lax-Milgram lemma is then used to prove that

there exists a unique solution to the weak differential equation which satisfies
the initial conditions.

Firstly we define J*" to be the completion of {Cf[B?))n with respect to the
norm induced by the inner product (<ru, v)L2(R3y We take 9 - L2([0, T];
and thus & x J = M = L2([0, T]; <S><?) x J2" with norm

T
(u, UO)\\M = \l I INI*, dt + (au0,«O)L2(^)-

We choose as the subset of M, h c M as

{{V,VO)GM\V e£^,lim||u||jr = Q&lim \\v -vo\\jr = 0}.

If <xair = 0 we make the additional restriction upon J*" that its element
have support in Rt, i.e. it is the completion of (C~(/?3_))" with respect
to (a-, -)L2(^3)- NOW,

/ (ait, u) dt =
Jo

(ouT, uT)o(gi) - (auo,
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[11] Degenerate forms of Maxwell's Equations 287

and thus

= (au0, uo)L2m + 2 IJ [(xau, u)Lim + Bff(u, u) dt] J .

Assume without loss of generality that r > 1; thus we have the energy in-
equality:

fT

2AlT/f)(u, u) + (ouT, «r>L2(/j3) > (au0, uo)LilRi) + 2 / (au, u) + B#M dt.
Jo

Hence for h € h,
\\h\\2

M<\A{z/?)(h,h)\.

Note that A^^)(w, h) is clearly a continuous linear functional on M for every
fixed (h,ho) E h. We now use Lions' generalisation of the Lax-Milgram
Lemma (Treves [16], p. 403).

LEMMA. Let Ebea Hilbert space, h a linear subspace ofE, V(w,h) a sesquilin-
ear functional on E x h having the following properties:

(a) for each fixed h e h, w —> V(w, h) is a continuous linear functional on
E.

(b) there is aco>O such that, for every h eh, co\\h\\2
E < \\J(h, h)\.

Under these circumstances we have the

CONCLUSION. There is a bounded linear map G of the antidual E~'ofE into
E, with norm < CQ\ such that for every continuous linear functional X on E,

So let our continuous functional X be
rT

{T,v)U(Ri)dt.
r

Jo

Choose our h to be h and E to be M. The energy inequality for A(T/?) on h and
the fact that {W,WQ) *-* A(T/?)(w,h) is continuous on M for fixed (h,ho) e h,
(co,coo) e M, shows that we can take V(u,v) = AT^(u,v) and apply the
lemma to obtain the

THEOREM. There exists (V,VQ)eM such that

T*){r,h)= f (T,h)L2(Ri) dt VA e h.
Jo
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Choose h e Cc°°([0, T];O^)(c h c M) so

= f (T,h)mmdt,
Jo/o

and therefore,
aV + (xaV + 0 V) = T (23)

in sense of <I>̂  valued distributions on [0, T].

2.4 Initial conditions
First we prove a technical result.

LEMMA. The natural injection C°°{[0,T\,^) -* C°([0, T];^) can be ex-
tended to a continuous map E& -* C°([0, T\\S) {we equip C°([0,
with the natural norm sup0 < / < r ||Wf |Lr where uto = u(x_, t)\t=h).

PROOF. Let u e Eg. We define u on {-T, T) by

t>0. f "t, tu= {
I u-t, t

It is clear that the map u •-• u is a continuous injection, with norm 2, from
E# = £>([0, T]) to E&{{-T, T)). Consider now

0, t<-T
aeC°°{R),at= .

1 1 t>0.
Let u e C°°([0, T]);O^). Note that when <rair = 0 we are really dealing with
a truncation of u,

f «(*), z < 0
Trunc(w)(x) = ^ v ^ ~ .

I 0, otherwise,

since we require the elements of <f to have support in R3_. However, since
(au, u)L2(Ri) = (crTrunc(M), Trunc(«))L2(j?3) this is not a problem.

We now consider
rt

(o(au), (au))L2{Ri) = 2 I ((au)s, o(au)s) ds

fT - 2 - 2
- J-T a * *" S *'

H«*llL + I k M * ' ds < 2Ca||M||£>.

Since au restricted to [0, T] equals u, we see that the natural injection

C o o ( [0 ,71 ;* < f ) -C 0 ( [0 , r ] ; J r )
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[13] Degenerate forms of Maxwell's Equations 289

is continuous and thus has a unique continuous extension to all of E&, since
C°°([0, T];&&) is, clearly, dense in £>.

Now (23) implies aV e L2([0, T];O^) i.e. V e £>, hence we can consider
V as a continuous function on [0, T], with values in Jr. Thus,

fT fT •
/ {-<rV,h)LilRi)dt = (aV,h)LHRi)\t^o+ (oV,h)mRi)dt.

Jo JO

So by (23)
(aV,h)L2{R})\t=0 = 0 for all he h,

i.e., ff^o = 0 a.e. in R3 and therefore so does VQ, since if tr has support only
in Rl_ we have chosen J2" to ensure that the initial data VQ is zero in R\.
2.5 Uniqueness of the solution

If we have two solutions u,v e E& to the above problem then W - u-v
is an element of Eg which satisfies

aW + {TO + <f)W = 0, W0 = 0 inR\ (24)

We now show, using the bilinear form A'(xff) defined on E& x E& by

A[^){u, v) = / ({ail,v) + {xau, v)L2{R3) + B^u, v)) dt, (25)
Jo

that fF = 0 in L2([0, r];<*V).
Firstly, by a similar argument to that for A^^ above we have:

2A[T/f)(W, W) + (aW0, W0)L2m > (aWT, WT)mm + 2||^||i2([Oi7.].^). (26)

Now

4x<f)(W,W)= [ (oW + (T<J + <?)W,W)dt = 0, (27)
Jo

and

by (24). Therefore

0 > (aWT, WT)LHRi) + 2\\W\\2
mOtTJs9^ > 0, (29)

and hence W = 0 in L2([0, T];^).

3. Equivalence of the weak form of the
Vector diffusion equation

and Hohmann's integral equation

In this section we establish the validity of Hohmann's [5, 6] method of
approximating the electric field in the case of an insulating upper half-space.

https://doi.org/10.1017/S0334270000006652 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006652


290 A. L. Carey and K. McNamara [14]

The main problem in this case is that there is no Green's tensor since the
operator o(x_)dt+VxVx has a nonzero kernel. Specifically, if u is a transverse
infinitely differentiable function with compact support in the upper half-space
then {a{x)dt + V x V X ) H = 0 . Thus, the inverse of the operator cannot
exist without further restrictions. Hohmann's [6] method implicitly places a
restriction on the solution, viz. that it is the limit as e —> 0 in some sense
of the solutions to (V x V x +a(x_)dt + edf)u = f, a^ = 0, which satisfy a
radiation condition at infinity.

Our first result shows that the solutions to the vector diffusion equation
with (7ajr ^ 0 are bounded in L2{R?_) independently of the conductivity of
the upper half-space, if the source has support in the ground.

We have from [1] the inequality:

which

Thus,

\s\(u,

implies that

if we define P:

eu)L2{Ri] + (u,au)l

\s\{u,ou)LHm <

L2(R3) -» L2(Rl)

2(u,

by

<2(u,f)Li(Ri),

/)Z-2(/?3).

(30)

(31)

we have the following:

\s\(Pu,Pau)Lim < 2{Pu,f)mRi). (32)

That is

- ^ f 1 1 7 1 1 ^ 3 ) ' (33)

(where a* = in f^^ a{x)). Thus, there is a subsequence of the sequence of
solutions, ordered by the value of the conductivity of the upper half-space,
which converges weakly in L2 (/?!). We will establish in Section 3.3 that this
weak limit satisfies the Laplace transformed integral equation (at least for
small ay) when V is bounded.

It follows therefore that our next task should be to establish the sense in
which the integral equation holds.

3.1 Equivalence of the weak] form of the vector diffusion equation and Hohmann's
integral equation

Here we show that the weak form of the vector diffusion equation

(V x V x +a(x)d,)u = -fid,K (34)

is equivalent to an integral equation involving the field E'(x_,t) generated by
the source K for the case where ay = 0 and the fundamental solution to the
above equation where ay = 0.
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We will assume for that the region V where ay # 0 is contained in R?_
and is compact. We first consider the case in which a is non-vanishing.

Consider E'(x,t) e L2([0, T];D(V x Vx)) such that for

K{x, t)&{S& C?{R3 x [0, 7"])|V • S(x, t) = 0, W e [0, T]}

the equation

V x V x E'(x, t) + noaod,E'{x, t) = -tiod,K(x, t) (35)

with initial condition

£'(*, 0 = 0 W < 0 and Vx e R3

holds weakly, where

with tr+,cr_ both positive constants. (That is, E'(x,t) is the solution to the
vector diffusion equation in the case ay = 0.)

GoBir{x.> x.', 0 be the solution of (in the sense of distributions)

V x V x GOMr{x,x[, t) + WodtGaiir(x,x[, t) = -n0d,I5{x, t) (36)

GaJxJx',t) = 0, t<0. (37)

(/ is the identity tensor.) Note that Ga^{x_,x^,t) is known explicitly in terms
of its Laplace transform [15]. Hohmann [6] refers to this as the Green's
dyadic when ffair = 0, though this is not immediately apparent because of a
misprint in that paper.

Let E 6 L2([0, T\, (L2(/?3))3) be the solution of

E(x, t) = E'{x, t) + Gam * ovXvE{x, t) (38)

with
E(x,t) = 0, t<0, (39)

where ay is some positive constant and Xv is the characteristic function of V.
The modified convolution operator E \-* GOtii * oyXvE is well defined since it
is just the operator which we denoted by G in section 2.3 and therefore defines
a bounded operator on L2([0, T\; (L2(i?3))3). Now a solution of (9) exists in
L2([0, T]\ (L2(V))3) (for small ay) by application of a Picard argument.

The solution is then extended to all of R3 using (38) and the known form
of GauT. Next from (38) we have

/i0Ood,E(x, t) = no0odtE'(x, t) + nQaodtG * ayXvE(x, t) (40)
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weakly, i.e. in 2>'{R}). Using the properties of Gam, we calculate that the
right hand side of (40) equals

- V x V x E'{x, t) - fiOdtK(x, t)

+ I f ( -V x Vx (7ffair(*,*', t-t')- n0S{x -x',t- t'))ovXvE(x', t') dx' dt'
Jo Jv

Gamt(x,x',0)ovXvE(x',t)dx' (41)
v

= - V x V x (£'(*,0 + [' [ Ga^x,x!,t,t')avXvE{x!,t')dv'dt')
Jo Jv

- fiOdtK(x, t) - OvXvd,E(x, t).

Therefore,

V x V x £ (* , 0 + fi0(a0 + OvXv)d,E(x, t) = -fiodtK(x, t). (42)

But (To + OvXv = o\ thus

V x V x E(x, t) + noadtE{x, t) = -/iod,K(x, t) (43)
in the weak sense. That is, E'(x_, t) is a weak solution of the vector diffusion
equation.

Conversely, if E(x_, t) is a weak solution of the vector diffusion equation,

V x V x E(x, t) + no<rdtE(x, t) = -nod,K(x, t); (44)

then

V x V x E(x, t) + HoOodtE^ t) = -^avXvdtE^ t) - fiod,K(x, t), (45)

i.e. E{x, t) is response to source (JvXyE(x_, t) + K(x_, t), i.e.

E{x, t) = Gaui, * {ovXvE + J)(x, t)

= GOm * K(x, t) + GCTair * ovXvE(x, t) (46)

= E\x, t) + GCTair * <7vXvE(x, t).

That is, E{x_, t) satisfies the integral equation.
The case a^ = 0 is similar. Although we cannot show a priori that

E'{x_,t) € L2([0, T];(L2(i?i))3) or that there is a fundamental solution
of the vector diffusion equation which is a bounded integral operator on
L2([0, r];(L2(/?l))3), it nevertheless follows from the argument in the ap-
pendix (cf. [9]) that for c7air = 0 the operator F i-> G* ovXvF (note Ga^ = G
when <rair = 0) from L2([0, T];{L2(V))3) to L2([0,71; (L2^3.))3) is bounded.
Hence for small ay we can again use a Picard type method to get a solution to
(38). Thus, considering the weak form of the vector diffusion equation in the
ground (in 2t'{R3_)) the argument above from equation (39) onwards holds
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in this sense. Thus, in the case of an insulating upper half-space, the integral
equation and the weak form of the vector diffusion equation are equivalent
in the region z < 0. The solution in the region z > 0 is then computed
from (39) using the known form of G{x\x!) for x' e F and x_ in the upper
half-space [15].

REMARK: Note that if J is transverse and has no z-component then E{x_, t)
satisfies the scalar diffusion equation (O'Brien and Smith [13]). Hence by the
results of Section 2, E(Xj t) lies in the weighted Sovolev space in that case.

3.2 Boundary conditions

In the quasi-static limit there are no true total surface charges. Since we
assume that D = eE we have from Maxwell's equations that if e — 0 then

V • D = V eE = 0.

However, Hohmann's integral equation contains a perturbation term corre-
sponding to the response to a scattering current js which has associated with
it a rate of change of surface charge V • js = V • oyXvE. Now, since the
surface charge is always zero, this implies that

V • o(x)E = 0,

and writing o{x) = oyXv + 0o we have that

= - V • o0E,

which reflects the physically obvious fact that the field in the region z <
0 gains its longitudinal component as a consequence of the presence and
geometry of the region V of differing conductivity.

We now turn to the behaviour of the field at interfaces. In [ 1] it was shown
that for O, a region spanning the boundary T between two regions £2_, Q+,
that

LEMMA. Suppose f e L2(il) and V • / = 0 in Q. Let n • fT denote the normal
trace ofnfon Y from QT then

n-f-=n-f+

in the sense of equality of distributions in H~l/2(T).

Now for a source in the region z < 0 the field E in the case Ground is
constant is in L2{R}_) and when oy is non-zero, the field, as given by the
solution to Hohmann's integral equation, is also in L2(R?_). Thus, we have
that, irrespective of the presence or absence of a region V of differing conduc-
tivity, oE = 0 in the region z > 0,E e L2([0, T]\ {L2(Rl))3) and V • oE = 0.
Thus, the conditions of the lemma are satisfied and we have that the normal
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component of oE is continuous across all interfaces, (in the sense of traces
on the interfaces). A similar discussion establishes that the other regularity
results of [1] hold here as well.

3.3 The weak convergence argument
In this section the source k is transverse (i.e. V • k — 0 in an L2 sense) and

has compact support in R\ and as usual V is compact and in R-_. We work
with the Laplace transformed version of (38):

e(x) = e'aJx) + VLSOV j ^ GaJx\x')Xv(x!)e(x!) dx[ (47)

where Ga^(x_\x_') is given in [15] for aaiT ^ 0 and for crair = 0 in the appendix.
We regard this as an equation to the solved in L2(R}_), that is we fix the
Laplace transform variable (see however the remark below). As shown by
a typical calculation in the appendix, the explicit expressions in [15] can be
used to show that the operator from L2(V) to L2(R}_) given by F \-+ F where

F(x)=f Gaiit(x\x!)Xv(x')F(x!)dx! (48)

converges in the weak operator topology as the parameter ffa;r goes to zero
to the corresponding operator for crair = 0 (given by integration against
Go(x\x_') = G(x\x_')). (To establish this in the time domain in the absence
of an explicit form for the fundamental solution when <7air ^ 0 requires
considerably more work and hence we restrict our discussion to the Laplace
transform version.)

From this we deduce
(i) The equation (47) has a solution in L2(V) for av sufficiently small by

the contraction mapping theorem. This solution may then be extended to all
of R\ using (47).

(ii) The solution to (47) is the norm limit as n —• oo of the sequence (e%"r)
defined iteratively by

<i'iU) = e'aJx) + f Gaui(x\x')Xv(x!)e^ dx' (49)

(iii) We also note in the appendix that the same argument which establishes
the weak convergence of the operator in (19) as crair goes to zero also suffices
to show that e'Om converges weakly to e'o in L2{R}_) as <7air -+ 0 provided the
source k is in L2{R\) with compact support. Putting these facts together we
deduce the main result of this section.

(iv) The solution e%"T of (49) converges weakly as aaiT —• 0 to the solution
e of

e(x) = e'Q{x) + iisov f G(x\x!)e(x!) dx' (50)
JR3
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in L2{R}_) for sources which are transverse and of compact support in Rt-
REMARKS. A more detailed inspection of the convergence arguments in

the appendix reveals that the convergence as aaiT —> 0 is actually uniform in
the Laplace transform variable and so the inverse Laplace transform may be
taken. The details are somewhat lengthy so we omit this refinement. We also
note that the preceding argument works when ovXv is replaced by any L°°
function of sufficiently small norm with support in V.

3.4 Conclusion
We have established an existence and uniqueness result for an approx-'

imate form of Maxwell's equations used in geophysical modelling. These
equations are degenerate parabolic-elliptic diffusion equations. The case of
the degenerate vector equation defies standard methods and so existence in
this case is established using an integral equation introduced by Hohmann.
That this integral equation has solutions is proved using the explicit from
of the Green's tensor for the half-space problem. We have also shown that
we can approximate the Laplace transform of the solution of the degenerate
problem weakly in the ground by the solution of the Laplace transformed
non-degenerate equation. Finally we note that we cannot establish this ap-
proximation directly in the time domain because we have insufficient infor-
mation on GCTair. However one can nevertheless establish boundedness of the
L2 norm of the solution to (9) independently of crair.
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Appendix

The first part of this appendix summarises the estimates which allow the
argument in Section 3.3 to go through. Because these estimates use the ex-
plicit form of the solution of

V x V x G(x\x!) + sonoG(x\x!) = -nosS(x - x')I,

we cannot give the full details and still keep this paper to a reasonable length.
Consequently we sketch the main ideas using for illustration the explicit form
of the solution to this equation only in the case <rajr = 0. To avoid confusion
with the literature we will change our conventions at this point and henceforth
the subset of R3 with z > 0 has conductivity a&omi (=a constant) and the
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complement has conductivity <Ta;r. Then the so called Green's tensor for this
problem when £Tair = 0 is the solution to the preceding equation, which we
write in the form G(x\x_') = Gp(x.\x_') + Gs(x\x_'), where

k2 fai °
GP(x\x!) = %• 0 a, 0

° I 0 0 a,
dxdyia\ dxdza\ \

dydylQ.\ dydzl0L\ I (51)

dzdyiOL\ dzidza.\ J

and

where,

(52)

(53)

with R = l̂ c — JC' | and /J, obtained by replacing z' by — z' in /? and z > z' > 0.
For the case z' > z > 0 we merely interchange z and z' in the above formulae.
The action of G on J e (L2(/?L))3 is given by integration with respect to the
primed variables. Note that this is the modified convolution referred to in the
introduction where the z' variable appears in the Gs terms in the combination
z + z' not z - z'.

In the general case the solution GOiiI of

V x V x Gam(x\x')

for x_,x_' e .R3 is given in [15]. One notes that Gazir can be written as the sum
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where Gp(x\x_') is given by (1) and G's(x\x') has the same form as (52) except
that a2,a3,a4 are slightly modified. As (51) is the solution to the vector
diffusion equation when the conductivity is constant (= o^nd) and hence is
well understood it suffices to consider only the operator denned by integration
against G's(x\x_'). We will consider in detail just the case where <xair = 0 as
the modifications to the Green's tensor introduced by allowing crair ^ 0 can
be seen from [15], to, at worst, only modify the succeeding estimates by
inessential constants. The method of proof is to establish for &'s > 0 an
inequality of the form

\(p2 + (z + z')2)Gs(x\x')\2 < constant. (54)

We illustrate the argument by considering just the term (p2 + (z + z')2)a3.
(The other terms are handled in a similar way). Now

/•OO

|(z + z')2a3| < (z + z')2(const) / kexp-k(z + z')dk < constant.
Jo

The proof that \p2a-$\ is bounded uses some manipulations with Bessel func-
tion recurrence relations to write

2 J { k ) ^ K^ ^ K { z + z ' )

in the form
J0(kp)Fl(k, z + z') + J,{kp)F2{k, z + z')

where Fj are functions whose integral with respect to k is bounded indepen-
dently of z as above.

This means that given any pair u, v of functions in L2(R}_) the function
on R}_ x R? given by

u{x)Xv{x!)Gs{x\x!)v{x!)

is bounded in modulus by a constant times the function

independently of the value of <7air.
Using the analogues of (53) (see [9] or [15]) for the case aair ^ 0 one sees

that Gain(x\x_') converges pointwise to G{x\x!). Hence the observation of
the previous paragraph enables us to use the dominated convergence theo-
rem to deduce convergence (in the weak operator topology on the bounded
operators from L2(V) to L2(i?L)) of the operator of integration against
G^r(x]x!)Xy(x.') to the operator of integration against G(x\x')xv(x!).

We remark that one can prove the same fact (again using the explicit
formulae in [15]) when V is allowed to lie in the region with z < 0. The
argument is essentially identical.
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A.1 Inverse Laplace transform of the Green's dyadic
We can now find the time-domain version of the elements of the tensor.

We follow Hohmann [5].
First we note that (Oberhettinger and Badii [11])

^,_ , (exp(-k2Rs)\ =s?-\
V * > ~ ' V ^ J (55)

0 l 4/
where a = <7ground- Secondly,

• (56)

We now verify Hohmann's [6] time domain expressions, using our nota-
tion. We first consider:

( 5 7 )

We now define as in Hohmann [6]:

We next consider

' ( ) (59)(-T)
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We now consider

Finally, we consider
da

93W(RS).

We now briefly outline why the operator defined by the above kernel is
bounded. Firstly, we recall that the Green's tensor in the ground, when the
source is in the ground, can be written as: G = Gp + Gs where Gp is the free
space Green's function for the equation

(V x V x +ad,)Gp = -fidtS (with a = constant).

Note that Gp a priori defines a bounded operator on L2(R3).
Hence we need to show that the operator F >-> Gs * avXvF is a bounded

operator from L2([0, T\; (L2(F))3) to L2([0, T\, (L2(/?i))3). Observe that we
can assume there is a real / with 0 < / < z' so that the scattering terms
depend upon Rs which is bounded below by / for x_' in V. This allows us to
show that the scattering terms are either exponentially damped with respect
to Rs or are of the form f(z)g(x,y) where / e L2(R), g e L2(R2). It can
then be easily shown that F >-> GS * XvF is bounded.

A.2 The asymptotic z-behaviour of the solution
It is worth checking the radiation condition in Hohmann's method as

z —* -oo in the air. In can be seen from the explicit expressions for the
Green's tensor that the asymptotic z-behaviour of the tensor depends upon
the behaviour of terms of the form:

i T ^ ' - hxz))dk.
where p = \x_-x!_\.

Using the estimates \dXldXjJ\(Ap)\ < F(p)X2, where F(x) is a bounded
continuous function, and \dXlJi(Ap)\ < X it can be shown that terms of the
above form are dominated by .F(/>)|s||z|~2.

Thus, as a matrix | |<J(^,X,X')| | < |5|3f(^)|z|~2. This estimate can be used
to show that:

LEMMA. Let F(s,x,y, z) e L2(Rt) with compact support, then G * F -* 0 as
z —> —oo.

It then follows from a theorem of Treves [16], pp. 420-421 we have
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A.3 Conjecture on a general existence theorem
From a mathematical viewpoint it may be desirable to have a proof of

existence which avoids the integral equation. It is observed in [9] that such
a proof cannot be formulated along the lines of this paper as, at best, the
Green's function for the problem can only be denned as an operator from
the space of transverse L? functions into a weighted Sobolev space consisting
of functions on R- x {0, T] which are not necessarily transverse. While we
conjecture that this is true a proof would require a form of the Lax-Milgram
lemma not known to us. The alternative approach of Joly [7] also indicates
that this is true.
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