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MAXIMUM PRINCIPLES FOR A CLASS OF
SEMILINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS

ZHANG HAILIANG

For years it has remained a problem to find suitable functionals satisfying certain
maximum principles for solutions of the equation Au + f(x, u) = 0. In this
paper, maximum principles for certain functionals which are defined on solutions
of semilinear elliptic equations subject to mixed or Robin boundary conditions are
obtained. The principles derived may be used to deduce bounds on important
quantities in physical problems of interest.

1. INTRODUCTION

In [1], Payne and Stokgold proved the following result:

Let u be a C3(D) -solution of

f Au + /(u) = 0 in D c En,

\ u = 0 on dD.

If the boundary dD has nonnegative mean curvature, then the function

I f(s)ds
o

assumes its maximum at a point where Vu = 0.

In [2] Scheafer and Sperb derived maximum principles for certain functions defined

for solutions of equations

Au + Ap(aj)/(«) = 0

in some region D C E2 subject to a mixed boundary condition.

In this paper we make use of the classical Hopf maximum principle [5] to derive
maximum principles for certain functions denned for solutions of semilinear elliptic
equations

(1.1) Au + / (z ,u) = 0
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in some boundary region D of En, subject to a mixed or Robin boundary condition.

In order to motivate our work, let us first look at the one-dimensional problem

(1.2) » . .+/(*,») = 0.

If we multiply (1.2) by ux we get

that is

1 /""
(1.3) -ux + I f(x, s)ds — H(x, u) — constant,

^ Jo

where H(x, u) satisfies: Hx(x, u) = J* fx(x, s)ds. Thus we conclude that the function

(1.4) P = u\ + 2 / f(x, s)ds - 2H(x, u)
Jo

is just a constant, where u is a solution of (1.2). It is obvious that P satisfies a
maximum principle.

Let u be a solution of (1.1). We look for functions P of the form

(1.5) P = |V«|2 + 2 / f(x, s)ds - 2H{x, u),
Jo

where H(x, u) satisfies:

B,i(x, u)= fti{x, s)ds.
Jo

The goal is to find conditions such that (1.5) satisfies a maximum principle.

2. THE MAIN RESULT AND ITS PROOF

In order to prove the theorems, we first give the following result.

LEMMA. Let u be a C3(D) solution of (1.1) with f e CX{D x R), D C EN,
N ^ 2 . T ien t i e function P defined by (1.5) takes its maximum either on dD or at a
critical point of u.

PROOF: By differentiating (1.5) we obtain

(2.1) P,i = 2ttju,i,- + 2fu,i
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and

(2.2) AP = Ptii = 2u,ijuiij + 2uijU>iij + 2fAu + 2/,,-u,,-.

Now

(2.3) A« = - / ,

(2-4) «,«,- = ~f.i-

This allows us to rewrite (2.2) as

(2.5) AP = 2u, i j i i 1 < r2 / 2 .

From (2.1) and Schwarz's inequality, it follows that

(2.6) {P,i - 2/u,i)(Pi - 2/ti.O = lujiuju^u,.

Consequently, by (2.5) and (2.6), we can write

(2.7) AP + ^ - £ ̂  0,

where

Lh=2fnlh--Plk.

Hopf's first maximum principle [3] implies the Lemma. u

REMARK. One could prove the same result for

P = g{u) \Vu\2 + 2 r f{x, s)g(s)ds - 2H(x, u)
Jo

under suitable assumptions on g(u), as shown in [4].

2.1 MIXED BOUNDARY CONDITIONS.

THEOREM 2 . 1 . Let u be a C3(D) -solution of the problem

Art + f(x, u) = 0 in D,

u = o on Tj, -^ = o on r2 , i \ u r2 = 9D,
ou
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where f £ C1(D x R), D is a convex damian in E2 and | ^ denotes the outward
normal derivative. Then the function P defined by (1.5) takes its maximum at a
critical point of u.

PROOF: We shall show that P cannot attain its maximum on dD unless it is
attained at a critical point of u which is on F2.

Suppose that P takes its maximum at M € Fi. Then M cannot be a critical
point of u. Since u = 0 on Fi , we have |Vu| = |f^| and

dP
(2.8) — = 2unwnn + 2fun,on

where un denotes the outward normal derivative. By introducing normal coordinates
in the neighbourhood of the boundary, we can write

(2.9) Au = unn + kun = -f,

where k denotes the curvature of the boundary. Thus it follows that

(2-10) f = -2h*

and since D is convex, ^ ^ 0 at M. This contradicts Hopf's second maximum
principle [5].

We now suppose that P takes its maximum at M £ T2 and that M is not a
critical point of u. Since | ^ = 0 on F2, we have |Vu| = | | y | and

dP
(2.11) — = 2Uju.n,

On

where u, denotes the tangential derivative of u. In terms of normal coordinates in the
neighbourhood of the boundary, we have

(2.12) u.n = un. - ku.,

so that on F2

dP

Thus we again arrive at a result contradicting the second maximum principle when D

is convex. The Lemma, together with our calculation above, yields Theorem 2.1. U

REMARK. Theorem 2.1 is also valid for n > 2. In this regard, see [4].
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2.2 ROBIN BOUNDARY CONDITIONS.

THEOREM 2 . 2 . Let u be a C3(D) -solution of the problem

Au + f{x, u) -0 in D,

(213) du
— + au = 0 on 3D, a > 0,
on

where D is a convex plane domain, / G C1(D x R) and / > 0. Tien P, given by

(1.5), takes its maximum at a critical point of u.

PROOF: We shall find that P cannot attain its maximum on 3D.

We write

P=(vi + u\) + 2 / " /(«, *)<fc - 2H(x, u)
Jo

and compute
8P
— = 2(ununn + u.u,n) + 2fun.
On

By introducing normal coordinates, we can write

Au = un n + kun + u,, = - / ,

which together with (2.12) and (2.13), results in
8P

(2.14) — = -2a2ifcu2 + 2auu.. - 2(a + k)u].
an

Now suppose that P takes its maximum at M on dD. Then at M

where

8P
(2.15) — = 2(un«n, + u.u,,) + 2fu.

= 2u.(a2u + u..+f).

Either u, = 0 or the expression in the braces vanishes at M.

CASE 1. Suppose u, ^ 0 at M. In this case

(2.16) u.. = -(a2u + f).

By virtue of the fact that / > 0, it follows from (1.1) and (2.13) that u ^ 0 in DUdD.

Hence from (2.16), we have u.. ^ 0 and from (2.14), f £ ^ 0 at M.
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CASE 2. Suppose u, = 0 at M. Under the assumption that P takes its maximum at
M on 3D, we know that P,, ^ 0, where

Q2p
P.. = " ^ 7 = 2u.,{a2u + u.. + f).

Hence, either

(i) u>s ^ 0 and a2u + u,, + f ^ 0,

or

(ii) u,, < 0 and a2u + u,, + f ^ 0.

In case (i), because / > 0, then u ^ 0 in D U dD. Under these conditions (i) is
impossible, since if ua, ^ 0, then

Thus we conclude that (ii) holds, that is u,, ^ 0. From (2.14) we again deduce that

^ ^ 0 at M. Therefore, by the second maximum principle [5], we conclude that P

cannot take its maximum at M on 3D.

The Lemma, in conjunction with our calculations above, yields Theorem 2.2. u

REMARK. Theorem 2.2 can be extended to nonlinear boundary conditions | ^ + a(u) =

0, under suitable assumptions on cr(u) > 0.

3. CONCLUDING REMARKS

Obviously the principles and applications in [1, 4] are covered when f(x, u) = f(u)

here. One may give extensions of the maximum principles for a uniformly elliptic
equation Lu + / ( s , u) = 0 under suitable assumptions, as shown in [4].

Let us now consider a simple illustration in which we determine a bound for the
gradient of the solution of a nonlinear Dirichlet problem at any point in the plane
bounded domain, in terms of the maximum value of the solution function, the solution
function and the diameter of the domain. Let u be a positive C3^D)-solution of the
problem

!

Au + 4u - {x\ + x\) exp (a2 - x\ - x\) = 0 in D,

u = 0 on dD,

where D = {x = (xi, x2) \ \x\ < a} . With

/(as, u) = 4u - {x\ + x\) exp (a2 - x\ - x\),
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it follows from Theorem 2.1 that

|Vu|2 + 2 / (4s - {x\ + x\) exp (a2 - x\ - x\))ds - 2H(x, u)
Jo

2 / (4s - (x\ + x\) exp (a2 - x\ - x\))ds - 2H(x, u)\
Jo J

or

|Vu|2 < max [4u2 - 2{x\ + x\) exp (a2 - x\ - x\)u]
(3.2)

-\Au2 - 2{x\ + x\) exp (a2 - x\ - x\)u).

Prom (3.2), we have

where UM is the maxmum value of u in D U 3D.
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