
The Review of Symbolic Logic

Volume 16, Number 1, March 2023

GAMES AND CARDINALITIES IN INQUISITIVE
FIRST-ORDER LOGIC

GIANLUCA GRILLETTI

Institute for Logic, Language and Computation
and

IVANO CIARDELLI

Munich Center for Mathematical Philosophy

Abstract. Inquisitive first-order logic, InqBQ, is a system which extends classical first-order
logic with formulas expressing questions. From a mathematical point of view, formulas in this
logic express properties of sets of relational structures. This paper makes two contributions
to the study of this logic. First, we describe an Ehrenfeucht–Fraı̈ssé game for InqBQ and
show that it characterizes the distinguishing power of the logic. Second, we use the game
to study cardinality quantifiers in the inquisitive setting. That is, we study what statements
and questions can be expressed in InqBQ about the number of individuals satisfying a given
predicate. As special cases, we show that several variants of the question how many individuals
satisfy α(x) are not expressible in InqBQ, both in the general case and in restriction to finite
models.

§1. Introduction. According to the traditional view, the semantics of a logical
system specifies truth-conditions for the sentences in the language. This focus on truth
restricts the scope of logic to a special kind of sentences, namely, statements, whose
semantics can be adequately characterized in terms of truth-conditions. In recent years,
a more general view of semantics has been developed, which goes under the name of
inquisitive semantics (see [4] for a language-oriented introduction and [2] for a logic-
oriented one). In this approach, the meaning of a sentence is laid out not by specifying
when the sentence is true relative to a state of affairs, but rather by specifying when
it is supported by a given state of information. This view allows us to interpret in a
uniform way both statements and questions: for instance, the statement it rains will
be supported by an information state s if the information available in s implies that
it rains, while the question whether it rains will be supported by s if the information
available in s determines whether or not it rains.

In its first-order version, referred to as InqBQ, inquisitive logic can be seen as a
conservative extension of classical first-order logic with formulas expressing questions.
Thus, in addition to standard first-order formulas like Pa and ∀x.Px, we also have
formulas like ?Pa (“does a have property P?”), ∃x.Px (“what is an instance of an
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individual having property P?”) and ∀x.?Px (“which individuals have property P?”). A
model for this logic is based on a set W of possible worlds, each representing a possible
state of affairs, corresponding to a standard first-order structure. An information state
is modeled as a subset s ⊆W . The idea, which goes back to the work of Hintikka
[12], is that a set of worlds s stands for a body of information that is compatible with
the actual world being one of the worlds w ∈ s and incompatible with it being one of
the worlds w �∈ s . The semantics of the language takes the form of a support relation
holding between information states in a model and sentences of the language.

From a mathematical point of view, a sentence of InqBQ expresses a property
of a set s of first-order structures. The crucial difference between statements and
questions is that statements express local properties of information states—which
boil down to requirements on the individual worlds w ∈ s—while questions express
global requirements, having to do with the way the worlds in s are related to each
other. Thus, for instance, the formula ?Pa requires that the truth-value of Pa be the
same in all worlds in s; the formula ∃x.Px requires that there be an individual that
has property P uniformly in all worlds in s; and the formula ∀x.?Px requires that
the extension of property P be the same across s. Global properties can also take
the form of dependencies: thus, e.g., ?Pa → ?Qa requires that the truth-value of Qa
be functionally determined by the truth-value of Pa in s, while ∀x.?Px → ∀x.?Qx
requires that the extension of property Q be functionally determined by the extension
of property P in s. Thus, inquisitive first-order logic provides a language that can be
used to talk about both local and global features of an information state.

In contrast to inquisitive propositional logic, which has been thoroughly investigated
(see, among others, [1, 3, 5, 10, 19, 20, 22]), inquisitive first-order logic has received
comparatively little attention [2, 11]. In particular, a detailed investigation of the
expressive power of the logic has so far been missing. This paper makes a first, important
step in this direction.

In the classical setting, a powerful tool to study the expressiveness of first-order logic
is given by Ehrenfeucht–Fraı̈ssé games (also known as EF games or back-and-forth
games), introduced in 1967 by Ehrenfeucht [7], developing model-theoretic results
presented by Fraı̈ssé [9]. These games provide a particularly perspicuous way of
understanding what differences between models can be detected by means of first-
order formulas of a certain quantifier rank. Reasoning about winning strategies in this
game, one can prove that two first-order structures are elementarily equivalent, or one
can find a formula telling them apart.

One of the main merits of EF games is that they allow for relatively easy proofs that
certain properties of first-order structures are not first-order expressible. A classical
application of this kind is the characterization of the cardinality quantifiers definable in
classical first-order logic. This characterization says that the only cardinality quantifiers
definable in classical first-order logic are those which, for some natural number m, are
insensitive to the difference between any cardinals larger than m. This characterization
yields a range of interesting undefinability results: for instance, it implies that the
quantifiers an even number of individuals and infinitely many individuals are not first-
order definable.

The basic idea of EF games has proven to be very flexible and adaptable to a wide
range of logical settings, including fragments of first-order logic with finitely many
variables [14]; extensions of first-order logic with generalized quantifiers [15]; monadic
second order logic [8]; modal logic [24]; and intuitionistic logic [18, 25]. In each case,
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the game provides an insightful characterization of the distinctions that can and cannot
be made by means of formulas in the logic.

In this paper, we make two contributions to the study of inquisitive first-order logic.
First, we introduce an EF-style game for InqBQ and show that this game provides a
characterization of the expressive power of the logic. Second, we introduce a notion of
inquisitive cardinality quantifier, and use the game to study which of these quantifiers
are definable in InqBQ.

The notion of inquisitive cardinality quantifier is a natural generalization of the
standard notion of cardinality quantifier: besides standard quantifers like infinitely
many, which combine with a property to form a statement, we will now also have
quantifers like how many, which combine with a property to form a question. Using
the EF-game, we will be able to characterize exactly the range of cardinality quantifiers
expressible in InqBQ. The characterization is similar to the one for classical first-order
logic: the definable cardinality quantifiers are those that, for some finite threshold m,
are incapable of distinguishing between cardinalities larger than m.

The result implies that many natural kinds of questions about cardinalities are not
expressible in InqBQ. The prime example is the question how many individuals have
property P, which is supported in a state s if the extension of P has the same cardinality
in all the worlds in s. We show that this question is not expressible in InqBQ, even in
restriction to finite models. This means that a logical treatment of how many questions
in inquisitive logic requires a proper extension of InqBQ. Other examples of cardinality
questions which we show not to be expressible in InqBQ are: whether the number of P
is finite or infinite; whether it is even or odd; whether it is countable or uncountable.

From a meta-theoretical point of view, our characterization result is especially
interesting in light of the fact that it is still an open question how the expressive
power of InqBQ compares to those of first- and second-order logics. It is not known,
e.g., whether InqBQ is compact and whether an entailment-preserving translation to
first-order logic exists. Our result indicates that, at least with respect to the expression of
cardinality properties, InqBQ is much more similar to first-order logic than to second-
order logic, where quantifiers like ‘infinitely many’ and ‘an even number of ’ can be
expressed.

The paper is structured as follows: in Section 2 we provide some technical
background on the logic InqBQ. In Section 3 we describe the game and show that
it characterizes the distinguishing power of the logic. In Section 4 we characterize the
cardinality quantifiers definable in InqBQ. In Section 5 we summarize our findings and
mention some directions for future work.

§2. Inquisitive first-order logic. In this section we provide a basic introduction to
inquisitive first-order logic. For a more comprehensive introduction, the reader is
referred to [2].

Syntax. Let Σ be a predicate logic signature. For simplicity, we first restrict to
the case in which Σ is a relational signature, i.e., contains no function symbols. The
extension to an arbitrary signature, which involves some subtleties familiar from the
classical case [13], is discussed in Section 3.4. The set L of formulas of InqBQ over Σ is
defined as follows, where R ∈ Σ is an n-ary relation symbol:

ϕ ::= R(x1, ... , xn) | (x1 = x2) | ⊥ | ϕ ∧ ϕ | ϕ → ϕ | ∀x.ϕ | ϕ �

ϕ | ∃x.ϕ.
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We will take negation to be a defined operator:

¬ϕ := ϕ → ⊥.

Formulas without occurrences of

�

and ∃ are referred to as classical formulas and can
be identified with standard FOL-formulas, that is, first-order logic formulas. That is,
the set Lc of classical formulas is given by:

α ::= R(x1, ... , xn) | (x1 = x2) | ⊥ | α ∧ α | α → α | ∀x.α.
As usual, classical formulas may be viewed as formalizing statements, such as, for
instance, ‘every object has property P’. In the following, the variables α, �, � will range
over classical formulas, while ϕ,�, � will range over arbitrary formulas. If α and � are
classical formulas, then we can define: 1

• α ∨ � := ¬(¬α ∧ ¬�)
• ∃x.α := ¬∀x.¬α

The connective

�

and the quantifier ∃, referred to respectively as inquisitive disjunction
and inquisitive existential quantifier, allow us to form questions. For instance, if α is
a classical formula then the formula α

� ¬α represents the question whether α. We
abbreviate this formula as ?α:

• ?α := α

� ¬α
The formula ∃x.α(x) represents the question what is an object satisfying α(x); and the
formula ∀x.?α(x) represents the question which objects satisfy α(x).

Semantics. A model for InqBQ consists of: a set W of worlds, representing possible
states of affairs; a set D of individuals, the objects that the first-order variables range
over; and an interpretation function I, which determines at each world the extension
of all relation symbols, including identity.

Definition 2.1 (Models). A model for the signature Σ is a tupleM = 〈W,D, I 〉 where
W and D are sets and I is a function mapping each world w ∈W and each n-ary relation
symbolR ∈ Σ ∪ {=} to a corresponding n-ary relation Iw(R) ⊆ Dn—the extension of R
at w. The interpretation of identity is subject to the following condition:

Iw(=)is a congruence , i.e., an equivalence relation ∼w such that, if R ∈ Σ

and di ∼w d ′i for i ≤ n, then〈d1, ... , dn〉 ∈ Iw(R) ⇐⇒ 〈 d ′1, ... , d ′n〉 ∈ Iw(R).

As discussed in the introduction, in inquisitive logic the semantics of the language
specifies when a formula is supported at an information state s ⊆W , rather than when
a formula is true at a possible world w ∈W . As usual, to handle open formulas and
quantification, the support relation is defined relative to an assignment, which is a
function from variables to the set D of individuals; if g is an assignment and d ∈ D,
then g[x �→ d ] is the assignment which maps x to d and behaves like g on all other
variables.

1 We could in principle define ∨ and ∃ for arbitrary formulas; however, these operators are
only natural and useful when applied to classical formulas, on which they yield the standard
disjunction and existential quantifier of classical logic.
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Definition 2.2 (Support). LetM = 〈W,D, I 〉 be a model and let s ⊆W .

M, s |=g R(x1, ... , xn) ⇐⇒ ∀w ∈ s : 〈g(x1), ... , g(xn)〉 ∈ Iw(R)
M, s |=g x1 = x2 ⇐⇒ ∀w ∈ s : g(x1) ∼w g(x2)
M, s |=g ⊥ ⇐⇒ s = ∅
M, s |=g ϕ ∧ � ⇐⇒ M, s |=g ϕ andM, s |=g �
M, s |=g ϕ

�

� ⇐⇒ M, s |=g ϕ orM, s |=g �
M, s |=g ϕ → � ⇐⇒ ∀t ⊆ s :M, t |=g ϕ impliesM, t |=g �
M, s |=g ∀x.ϕ ⇐⇒ M, s |=g[x �→d ] ϕ for all d ∈ D
M, s |=g ∃x.ϕ ⇐⇒ M, s |=g[x �→d ] ϕ for some d ∈ D

As usual, if ϕ(x1, ... , xn) is a formula whose free variables are among x1, ... , xn, then
the value of g on variables other than x1, ... , xn is irrelevant. If d1, ... , dn ∈ D, we can
therefore writeM, s |= ϕ(d1, ... , dn) to mean thatM, s |=g ϕ holds with respect to an
assignment g that maps xi to di . In particular, if ϕ is a sentence we can drop reference
to g altogether. Moreover, we writeM |= ϕ as a shorthand forM,W |= ϕ and we say
that M supports ϕ.

It is easy to verify that the support relation has the following two basic features:

• Persistency: ifM, s |=g ϕ and t ⊆ s thenM, t |=g ϕ;
• Empty state property: ifM, ∅ |=g ϕ for all ϕ.

Recovering classical logic. In restriction to classical formulas, the above definition
of support gives a non-standard semantics for classical first-order logic. To see why, let
us associate to each world w ∈M a corresponding relational structure Mw , having as
its domain the quotientD/∼w and with the interpretation of relation symbols induced
by Iw(R). Then we have the following connection.

Proposition 2.3. For all classical formulas α ∈ Lc , all models M, assignments g, and
information states s:

M, s |=g α ⇐⇒ ∀w ∈ s : Mw |=g α holds in first-order logic

where g is the assignment mapping x to the ∼w-equivalence class of g(x).

Thus, as far as the standard fragment of the language is concerned, the relation
of support is essentially a recursive definition of global truth with respect to a set of
structures sharing the same domain. Notice that the standard definition of truth can
be recovered as a special case of support by taking s to be a singleton. We will also
writeM,w |=g α as an abbreviation forM, {w} |=g α.

Questions. As we just saw, evaluating a classical formula on an information state
s amounts to evaluating it at each world in s and determining whether it is satisfied
at each world. The same is not true for formulas that contain the operators

�

and
∃; typically, such formulas allow us to express global requirements on a state, which
cannot be reduced to requirements on the single worlds in the state. We will illustrate
this point by means of some examples. First take a classical sentence α and consider
the formula ?α := α

� ¬α. We have:

M, s |= ?α ⇐⇒ (∀w ∈ s :M,w |= α) or (∀w ∈ s :M,w |= ¬α).

Thus, in order for s to support ?α, all the worlds in s must agree on the truth-value of
α. In other words, ?α is supported at s only if the information available in s determines
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whether or not α is true. Thus, ?α can be taken as a formal representation of the
question “is α true?”

Next take α(x) to be a classical formula having only the variable x free, and consider
the formula ∃x.α(x). We have:

M, s |= ∃x.α(x) ⇐⇒ ∃d ∈ D such that ∀w ∈ s :M,w |= α(d ).

Thus, in order for s to support ∃x.α(x) there must be an individual d which satisfies
α(x) at all worlds in s. In other words, ∃x.α(x) is supported at s if the information
available in s implies for some specific individual that it satisfies α(x)—i.e., gives us a
specific witness for α(x). Thus, ∃x.α(x) can be taken as a formal representation of
the question “what is an object satisfying α(x)?”

Finally, let again α(x) be a classical formula having only x free, and let us denote by
Iw(α) the set of objects which satisfyα(x) at w, i.e., Iw(α) := {d ∈ D |M,w |= α(d )}.
Consider the formula ∀x.?α(x) := ∀x.(α(x)

� ¬α(x)). We have:

M, s |= ∀x.?α(x) ⇐⇒ ∀w,w′ ∈ s : Iw(α) = Iw′(α).

Thus, in order for s to support ∀x.?α(x), all the worlds in s must agree on which objects
satisfy α(x). In other words, ∀x.?α(x) is supported at s if the information available in
s determines exactly which individuals satisfy α(x). Thus, ∀x.?α(x) can be taken as a
formal representation of the question “which objects satisfy α(x)?”

Identity and cardinalities. An aspect of InqBQ which is worth commenting on is the
interpretation of identity. In InqBQ, the interpretation of identity may differ at different
worlds. This allows us to deal with uncertainty about the identity relation: e.g., one
may have information about two individuals, a and b (say, one knows Pa andQb) and
yet be uncertain whether a and b are distinct individuals, or the same. This also allows
for uncertainty about how many individuals there are. Indeed, although a model is
based on a fixed set D of epistemic individuals—objects to which information can be
attributed—the domain of actual individuals at a world w is given by the equivalence
classes modulo ∼w ; the number of actual individuals that exist at w is the number of
such equivalence classes, i.e., the cardinality of the quotientDw := D/∼w . Similarly, if
α(x) is a classical formula having at most x free, then the number of individuals that
satisfy α(x) at w is given by the cardinality of the set αw := Iw(α)/∼w .

Notice that, as a special case, we could take∼w to be the actual relation of identity on
D at each world. A model in which identity is treated in this way is called an id-model.

This section is only intended as a summary of the key definitions and features of
InqBQ and as a quick illustration of how questions can be captured by formulas in this
logic. With these basic notions in place, let us now turn to the first novel contribution
of the paper: an Ehrenfeucht–Fraı̈ssé game for InqBQ.

§3. An Ehrenfeucht–Fraı̈ssé game for InqBQ. The EF game for InqBQ is played by
two players, S (Spoiler) and D (Duplicator), using two inquisitive modelsM0,M1 as
a board. As in the classical case, the game proceeds in turns: at each turn, S picks an
object from one of the two models and D must respond by picking a corresponding
object from the other model. At the end of the game, a winner is decided by comparing
the atomic formulae supported by the sub-structures built during the game.

However, there are two crucial differences with the classical EF game. First, the
objects that are picked during the game are not just individuals d ∈ Di , but also
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information states s ⊆Wi . This is because the logical repertoire of InqBQ contains
not only the operators ∀ and ∃, which quantify over individuals, but also the operator
→, which quantifies over information states. Second, the roles of the two models in
the game are not symmetric. This is connected to the absence of a classical negation in
the language of InqBQ; unlike in classical logic, it could be that a modelM0 supports
all the formulas supported by a model M1, but not vice versa. This directionality is
reflected by the game.

3.1. The game. A position in an EF game for InqBQ is a tuple

〈M0, s0, a0; M1, s1, a1〉 ,
where:

• M0 = 〈W0, D0, I0〉 andM1 = 〈W1, D1, I1〉 are models for InqBQ;
• s0 and s1 are information states in the modelsM0 andM1 respectively; and
• a0 and a1 are tuples of equal length of elements from D0 and D1 respectively.

If not otherwise specified, a game between the models M0 and M1 starts from
position 〈M0,W0, ε;M1,W1, ε; 〉, where ε indicates the empty tuple.

Starting a round from a position 〈M0, s0, a0;M1, s1, a1〉, S can choose between the
following possible moves:2

• ∃-move: S picks an element b0 ∈ D0; D responds with an element b1 ∈ D1; the
game continues from the position 〈M0, s0, a0b0;M1, s1, a1b1〉;

• ∀-move: S picks an element b1 ∈ D1; D responds with an element b0 ∈ D0; the
game continues from the position 〈M0, s0, a0b0;M1, s1, a1b1〉; and

• →-move: S picks a sub-state t1 ⊆ s1; D responds with a sub-state t0 ⊆ s0; S
picks i ∈ {1, 0}. The game continues from 〈Mi, ti , ai ;M1–i , t1–i , a1–i 〉.

Notice the asymmetry between the roles of the two models: by performing an →-move,
S can pick an information state fromM1, but not a state inM0.

With respect to termination condition, we consider different versions of the game. In
the bounded version of the game, a pair of numbers 〈i, q〉 ∈ N2 is fixed in advance. This
number constrains the development of the game: in total, S can play only i implication
moves and only q quantifier moves (i.e., ∃-move or a ∀-move). When there are no more
moves available, the game ends. If 〈M0, s0, a0;M1, s1, a1〉 is the final position, the game
is won by Player D if the following condition is satisfied, and by player S otherwise:

• Winning condition for D: for all atomic formulas α(x1, ... , xn) where n is the
size of the tuples a0 and a1, we have:

M0, s0 |= α(a0) =⇒ M1, s1 |= α(a1). (1)

In the unbounded version of the game, no restriction is placed at the outset on the
number of moves to be performed. Instead, player S has the option to declare the game
over at the beginning of each round: in this case, the winner is determined as in the
bounded version of the game. If the game never stops, then D is the winner.3

2 In the following, the notation ab indicates the sequence obtained by adding the element b at
the end of the sequence a.

3 Here we consider games in which the rounds of play are indexed by natural numbers. To
define games of transfinite length, one would have to specify how to determine the game
position corresponding to a limit ordinal. We leave this for future work.
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M0

w0 w1

d1 • ×

d2 × •

M1

v0 v1

e1 • •

e2 × •

M N
S a1 := d1
D b1 := e2
S t1 := {v1}
D s1 := {w0}
S i := 1
S b2 := e1
D a2 := d2

Fig. 1. On the left, two inquisitive models in the signature Σ = {P}. The top row represents the
set of worlds of the models (e.g., {w0, w1} for the modelM0) and the left column represents the
domain (e.g., {d1, d2} for M0); I (P) is encoded by the entries of the table: a • indicates that
P holds, while a × indicates that P does not hold (e.g., d1 ∈ Iw0 (P) and d2 /∈ Iw0 (P)). On the
right, a run of the Ehrenfeucht-Fraı̈ssé game.

Example 3.1. Take the signature Σ = {P}, where P is a unary predicate symbol.
Given the models M0 and M1 in Figure 1, in the table we show a run of the bounded
game with 〈i, q〉 = 〈1, 2〉 between M0 and M1. At the end of the run, the position is
〈M1, {v1}, 〈e2, e1〉 ;M0, {w0}, 〈d1, d2〉〉. The winner is Spoiler, since

M1, {v1}︸︷︷︸
t1

|= P( e1︸︷︷︸
b1

) �=⇒ M0, {w0}︸ ︷︷ ︸
s1

|= P( d2︸︷︷︸
a1

).

As usual, a winning strategy for a player is a strategy which guarantees victory to them,
no matter what the opponent plays. If D has a winning strategy in the EF game of
length 〈i, q〉 starting from position 〈M0, s0, a0;M1, s1, a1〉 we write:

(M0, s0, a0) �i,q (M1, s1, a1).

We write ≈i,q for the relation �i,q ∩ �i,q . Notice that the game with bounds i, q is
finite (since the number of turns is bounded by i + q), zero-sum (as can be seen from
the winning condition) and has perfect information. Therefore, if (M0, s0, a0) �i,q
(M1, s1, a1) does not hold, then it follows from the Gale-Stewart Theorem that Spoiler
has a winning strategy in the EF game of length 〈i, q〉 starting from the position
〈M0, s0, a0;M1, s1, a1〉.

We writeM0 �i,q M1 as a shorthand for (M0,W0, ε) �i,q (M1,W1, ε).
The following two propositions follow easily from the definition of the game.

Proposition 3.2. If (M0, s0, a0) �i,q (M1, s1, a1) then for all i ′ ≤ i and q′ ≤ q it holds
(M0, s0, a0) �i′,q′ (M1, s1, a1).

Proof. We prove the result by contraposition. Suppose that Spoiler has a winning
strategy in the game EFi′,q′(M0, s0, a0;M1, s1, a1) for some i ′ ≤ i and q′ ≤ q. This
means that, no matter which choices Duplicator makes during a run, Spoiler can
perform i ′ implication moves and q′ quantifier move and force the game to end up in
a position 〈

M0, t0, a0b0; M1, t1, a1b1

〉
(case 1)

or
〈
M1, t1, a0b0; M1, t1, a1b1

〉
(case 2)
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for which there exists an atomic formula α(x, y) such that

M0, t0 |= α(a0, b0) andM1, t1 � α(a1, b1) in case 1

or M1, t1 |= α(a1, b1) andM0, t0 � α(a0, b0) in case 2.

We will show that, from this point on, Spoiler can still win the game after performing i –
i ′ additional implication moves and q – q′ additional quantifier moves: This amounts
to a winning strategy in the game EFi,q(M0, s0, a0;M1, s1, a1). We will focus here on
case 1, since the other case is completely analogous.

• Firstly, Spoiler performs i – i ′ implication moves, always picking t1 as the
information state and choosing i := 0 (that is, maintaining the order of the
models). Since Duplicator can only choose substates of t0, the position of the
game after these moves will be of the form:〈

M0, t
′
0, a0b0; M1, t1, a1b1

〉

with t′0 ⊆ t0.
• Secondly, Spoiler performs q – q′ quantification moves in an arbitrary way; no

matter what Duplicator responds, we end up in a position of the form:〈
M0, t

′
0, a0b0c0; M1, t1, a1b1c1

〉

for c0 and c1 of length q – q′.

This is indeed a winning position for Spoiler, since{
M0, t

′
0 |= α(a0, b0) (by persistency, since t′0 ⊆ t0)

M1, t1 � α(a1, b1).

Proposition 3.3. Suppose 〈i, q〉 �= 〈0, 0〉. (M0, s0, a0) �i,q (M1, s1, a1) iff the following
three conditions are satisfied:

• If i > 0, then ∀t1 ⊆ s1 ∃t0 ⊆ s0 : (M0, t0, a0) ≈i–1,q (M1, t1, a1).
• If q > 0, then ∀b0 ∈ D0 ∃b1 ∈ D1 : (M0, s0, a0b0) �i,q–1 (M1, s1, a1b1).
• If q > 0, then ∀b1 ∈ D1 ∃b0 ∈ D0 : (M0, s0, a0b0) �i,q–1 (M1, s1, a1b1).

Proof. The three conditions amount precisely to the fact that, for every move
available to Spoiler, there is a corresponding move for Duplicator that leads to a
sub-game in which Duplicator has a winning strategy. This is precisely what is needed
for Duplicator to have a winning strategy in the original game.

3.2. IQ degree and types. We define the implication degree (Ideg) and quantification
degree (Qdeg) of a formula by the following inductive clauses, where p stands for an
atomic formula:

Ideg(p) = 0 Qdeg(p) = 0
Ideg(⊥) = 0 Qdeg(⊥) = 0
Ideg(ϕ1 ∧ ϕ2) = max(Ideg(ϕ1), Ideg(ϕ2)) Qdeg(ϕ1 ∧ ϕ1) = max(Qdeg(ϕ1),Qdeg(ϕ2))
Ideg(ϕ1

�

ϕ2) = max(Ideg(ϕ1), Ideg(ϕ2)) Qdeg(ϕ1

�

ϕ1) = max(Qdeg(ϕ1),Qdeg(ϕ2))
Ideg(ϕ1 → ϕ2) = max(Ideg(ϕ1), Ideg(ϕ2)) + 1 Qdeg(ϕ1 → ϕ1) = max(Qdeg(ϕ1),Qdeg(ϕ2))
Ideg(∀x.ϕ) = Ideg(ϕ) Qdeg(∀x.ϕ) = Qdeg(ϕ) + 1
Ideg(∃x.ϕ) = Ideg(ϕ) Qdeg(∃x.ϕ) = Qdeg(ϕ) + 1
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The combined degree of a formula is defined as IQdeg(ϕ) = 〈Ideg(ϕ),Qdeg(ϕ)〉. We
define a partial order ≤ on such degrees by setting:

〈a, b〉 ≤ 〈a′, b′〉 ⇐⇒ a ≤ a′ and b ≤ b′.

We denote by Lli,q the set of formulas ϕ such that IQdeg(ϕ) ≤ 〈i, q〉 and the set of
free variables in ϕ is included in {x1, ... , xl}. We can then define the key notion of
〈i, q〉-type.

Definition 3.4 〈i, q〉-types. Let M be a model, s an information state, and a a tuple of
elements in M of length l. The 〈i, q〉-type of 〈M, s, a〉 is the set

tpi,q(M, s, a) :=
{
ϕ ∈ Lli,q

∣∣∣M, s |= ϕ(a)
}
.

We also define the following notation:

(M0, s0, a0) �i,q (M1, s1, a1)
def⇐⇒ tpi,q(M0, s0, a0) ⊆ tpi,q(M1, s1, a1)

(M0, s0, a0) ≡i,q (M1, s1, a1)
def⇐⇒ tpi,q(M0, s0, a0) = tpi,q(M1, s1, a1)

Example 3.5. Consider the models M0, M1 in Figure 1. Since P(x) ∈ L1
0,0 and

M1, {v0, v1} |= P(e1), we have (M1, {v0, v1}, 〈e1〉) ��0,0 (M0, {w0, w1}, 〈d1〉); while
M0, {w0, w1} �|= P(d1).

Notice that, if the signature is finite, there are only a finite number of non-equivalent
formulas of combined degree at most 〈i, q〉, and consequently only a finite number of
〈i, q〉-types. This can be shown inductively as follows:

• The quotient Ll0,0/≡ is a distributive lattice under the operations ∧ and
�

. Moreover, since we are working with a finite relational signature, Ll0,0
contains only finitely many atomic formulas, and the equivalence classes of these
formulas generate the whole lattice. Since every finitely generated distributive
lattice is finite, Ll0,0/≡ is finite, which means that Ll0,0 contains only finitely
many formulas up to logical equivalence.

• Formulas in Lli,q are equivalent to Boolean combinations of formulas inA ∪ B ,

for A =
{
ϕ → �

∣∣∣ ϕ,� ∈ Lli–1,q

}
and B =

{
∃x.ϕ,∀x.ϕ

∣∣∣ ϕ ∈ Ll+1
i,q–1

}
—where

we impose by definition Lli,q = ∅ if i < 0 or q < 0. By induction hypothesis, A
and B contain only finitely many non-equivalent formulas.

3.3. The EF theorem. What follows is the first main result of the paper: the relations
�i,q and �i,q coincide.

Theorem 3.6. Suppose the signature Σ is finite. Then

(M0, s0, a0) �i,q (M1, s1, a1) ⇐⇒ (M0, s0, a0) �i,q (M1, s1, a1).

Proof. We will prove this by well-founded induction on 〈i, q〉. For the basic case,
〈i, q〉 = 〈0, 0〉, we just have to verify that, if Condition (1) holds for all atomic formulas,
then it holds for all formulas ϕ ∈ Ll0,0. This is straightforward. Next, suppose 〈i, q〉 >
〈0, 0〉 and suppose the claim holds for all 〈i ′, q′〉 < 〈i, q〉. For the left-to-right direction,
proceed by contraposition. Suppose that for some ϕ ∈ Lli,q the following conditions
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hold:

M0, s0 |= ϕ(a0) M1, s1 �|= ϕ(a1).

We proceed by induction on the structure of ϕ; some cases are easy to consider:

• If ϕ is an atom, it follows (M0, s0, a0) ��0,0 (M1, s1, a1); so, by Proposition 3.2
also (M0, s0, a0) ��i,q (M1, s1, a1). Thus, in this case the conclusion follows.

• If ϕ is a conjunction � ∧ � then we have:{
M0, s0 |= �(a0) ∧ �(a0) =⇒ M0, s0 |= �(a0) andM0, s0 |= �(a0)
M1, s1 �|= �(a1) ∧ �(a1) =⇒ M1, s1 �|= �(a1) orM1, s1 �|= �(a1).

So, either � or � is a less complex witness of (M0, s0, a0) ��i,q (M1, s1, a1).
• If ϕ is a disjunction �

�

�, we can reach a conclusion analogous to the one we
reached for conjunction.

The remaining cases are those in which ϕ is of the form � → �, ∀x.� or ∃x.� (cases
⇒1, ⇒2, ⇒3 respectively). Let us consider the three cases separately.
Case ⇒1: ϕ is an implication � → �. In this case we have:

M1, s1 �|= �(a1) → �(a1) =⇒ (∃t1 ⊆ s1)
[
M1, t1 |= �(a1) andM1, t1 �|= �(a1)

]
,

M0, s0 |= �(a0) → �(a0) =⇒ (�t0 ⊆ s0)
[
M0, t0 |= �(a0) andM0, t0 �|= �(a0)

]
.

Thus there exists a state t1 ⊆ s1 with a different 〈i – 1, q〉-type than every t0 ⊆ s0—either
because it supports� or because it does not support �. So by induction hypothesis, if S
performs a →-move and chooses t1, for every choice t0 of D we have (M0, t0, a0) �≈i–1,q

(M1, t1, a1). It follows by Proposition 3.3 that (M0, s0, a0) ��i,q (M1, s1, a1) as wanted.
Case ⇒2: ϕ is a universal ∀x.�. In this case we have:

M1, s1 �|= ∀x.�(a1, x) =⇒ (∃b1 ∈ D1)M1, s1 �|= �(a1, b1),

M0, s0 |= ∀x.�(a0, x) =⇒ (∀b0 ∈ D0)M0, s0 |= �(a0, b0).

Thus if S performs a ∀-move and chooses b1, for every choice b0 of D, by induction
hypothesis we have

(M0, s0, a0b0) ��i,q–1 (M1, s1, a1b1).

It follows by Proposition 3.3 that (M0, s0, a0) ��i,q (M1, s1, a1) as wanted.
Case ⇒3: ϕ is an inquisitive existential ∃x.�. This case is similar to the previous one:
S can perform an ∃-move and pick an element b0 inD0 with no counterpart inD1, and
by Proposition 3.3 we get the result.

This completes the proof of the left-to-right direction of the inductive step. Now
consider the converse direction. Again, we proceed by contraposition. Suppose
that S has a winning strategy in the EF game of length 〈i, q〉 starting from
(M0, s0, a0;M1, s1, a1). We consider again three cases, depending on the first move
of the winning strategy (cases ⇐1, ⇐2, ⇐3 respectively).
Case ⇐1: the first move is a →-move. Suppose S starts by choosing t1 ⊆ s1. As this is
a winning strategy for S, for every choice t0 ⊆ s0 of D we have

(M0, t0, a0) ��i–1,q (M1, t1, a1) or (M1, t1, a1) ��i–1,q (M0, t0, a0).
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By inductive hypothesis, this translates to

∃�t0 ∈ tp(t0) \ tp(t1) or ∃	t0 ∈ tp(t1) \ tp(t0),

where tp(t0) := tpi–1,q(M0, t0, a0) and tp(t1) := tpi–1,q(M1, t1, a1).
Given this, there exist two families {�t0 | t0 ⊆ s0} and {	t0 | t0 ⊆ s0} such that:{

�t0 ∈ tp(t0) \ tp(t) if tp(t0) \ tp(t) �= ∅
�t0 := ⊥ otherwise{
	t0 ∈ tp(t) \ tp(t0) if tp(t) \ tp(t0) �= ∅
	t0 := � otherwise.

Moreover, we can suppose the two families to be finite, as there are only a finite number
of formulas of degree 〈i – 1, q〉 up to logical equivalence (see Section 3.2). Define now
the formula ϕ as follows:

ϕ :=
∧
t0⊆s0

	t0 →

�

t0⊆s0
�t0 .

We have: (i) IQdeg(ϕ) ≤ 〈i, q〉, (ii) ϕ /∈ tpi,q(M0, s0, a0) (since by construction ϕ is
falsified at t1 ⊆ s1) and (iii) ϕ ∈ tpi,q(M1, s1, a1) (since by construction ϕ holds at
every state t0 ⊆ s0). Thus we have (M0, t0, a0) ��i–1,q (M1, t1, a1), as we wanted.
Case ⇐2: the first move is a ∀-move. Suppose S starts by choosing b1 ∈ D1. As this is
a winning strategy for S, for every choice b0 ∈ D0 of D we have

(M0, s0, a0b0) ��i,q–1 (M1, s1, a1b1).

By induction hypothesis, the above translates to

∃�b0 ∈ tp(b0) \ tp(b1),

where tp(b0) := tpi,q–1(M0, s0, a0b0) and tp(b1) := tpi,q–1(M1, s1, a1b1).
Now the formula

ϕ := ∀x.

�

b0∈D0

�b0

has IQ-degree at most 〈i, q〉, and by construction we have ϕ ∈ tpi,q(M0, s0, a0) and
ϕ /∈ tpi,q(M1, s1, a1). Thus, we have (M0, t0, a0) ��i–1,q (M1, t1, a1).
Case ⇐3: the first move is a ∃-move. Reasoning as in the previous case, we find that
there exists a b0 ∈ D0—the element chosen by S—such that for every b1 ∈ D1

∃	b1 ∈ tp(t0) \ tp(t1).

In particular, it follows that the formula

ϕ := ∃x.
∧
b1∈D1

�b1

is a formula of complexity at most 〈i, q〉 such that ϕ ∈ tpi,q(M0, s0, a0) and ϕ /∈
tpi,q(M1, s1, a1). Again, it follows that (M0, t0, a0) ��i–1,q (M1, t1, a1).

As a corollary, we also get a game-theoretic characterization of the distinguishing
power of formulas in the 〈i, q〉-fragment of InqBQ.
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Corollary 3.7. For a finite signature Σ, we have:

(M0, s0, a0) ≈i,q (M1, s1, a1) ⇐⇒ (M0, s0, a0) ≡i,q (M1, s1, a1).

3.4. Extending the result to function symbols. The results we just obtained assume
that the signature Σ is relational. However, it is not hard to extend them to the case in
which Σ contains function symbols (including nullary function symbols, i.e., constant
symbols). In InqBQ, function symbols are interpreted rigidly: if f ∈ Σ is an n-ary
function symbol, then the interpretation function I of a model M must assign to all
worlds w in the model the same function Iw(f) : Dn → D.4

As in the case of classical logic [13] Section 3.3, the presence of function symbols
requires some care in formulating the EF game. The reason is that allowing atomic
formulas to contain arbitrary occurrences of function symbols allows us to generate
with a finite number of choices in the game an infinite sub-structure of the model—
which spoils the crucial locality feature of the game. Technically, a simple way to
circumvent the problem this is to follow [13] Section 3.3 and work with formulas which
are unnested.

Definition 3.8 (Unnested formula). An unnested atomic formula is a formula of one of
the following forms:

x = y c = y f(x) = y R(x).

An unnested formula is a formula that contains only unnested atoms.

Examples of nested formulas—i.e., non-unnested formulas—are f(x) = g(y),
R(f(x)) and f(c) = x.

We can now make the following amendments to the definition above: (i) the winning
conditions for the game are determined by looking at whether Equation (1) is satisfied
for all unnested atomic formulas, and (ii) the 〈i, q〉-types are re-defined as sets of
unnested formulas of degree at most 〈i, q〉. Other than that, the statement of the result
and the proof are the same as above.

Using identity we can turn an arbitrary formula into an equivalent unnested one
(e.g., replacing P(f(x)) with ∀y.((y = f(x)) → Py)) so the restriction to unnested
formula is not a limitation to the generality of the game-theoretic characterization;
rather, it can be seen as an indirect way of assigning formulas containing function
symbols with the appropriate 〈i, q〉-degree—making explicit a quantification which is
implicit in the presence of a function symbol.

3.5. A symmetric version of the game. As noticed before, a difference between the
Ehrenfeucht–Fraı̈ssé game for classical logic and the game introduced in Section 3 is
that the latter is asymmetric—the two models under consideration do not play the
same role. This allows us to study the relation �i,q in addition to the relation ≡i,q . This
contrast with the situation in classical first-order logic, where the relations �q and ≡q
coincide due to the semantics of negation. A natural question is whether we can define
a symmetric version of the game which directly characterizes the relation ≡i,q . In what
follows we will consider a naı̈ve modification of the game to obtain a symmetric version
and study the induced equivalence relation between models. The symmetric way is just

4 In the general case, non-rigid function symbols are also allowed; however, such symbols can
be dispensed with as usual in favor of relation symbols constrained by suitable axioms. See
Section 4.3.5 of [2] for the details.
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like the game introduced above, except that we replace the →-move and the winning
condition as follows.

• →-move. S picks a sub-state ti ⊆ si for i = 0 or 1. D responds with a sub-state
t1–i ⊆ s1–i . The game continues from 〈M0, t0, a0;M1, t1, a1〉.

Thus, in this version S is free to play a substate move in either model. This
obviates the need for swapping roles of the two models.

• Winning condition for D: for all atomic formulas α(x1, ... , xn) where n is the
size of the tuples a0 and a1, we have:

M0, s0 |= α(a0) ⇐⇒ M1, s1 |= α(a1).

Notice that, compared to the original version, the implication has become a
biconditional.

We will indicate withM0, s0, a0 ≈si,q M1, s1, a1 the existence of a winning strategy for
Duplicator in the symmetric game from position 〈M0, s0, a0;M1, s1, a1〉 with bounds
〈i, q〉; we indicate byM0, s0, a0 ≈s M1, s1, a1 the existence of a winning strategy for D in
the unbounded version of the symmetric game. We will also use notational conventions
analogous to the ones introduced for the original game. Notice that, as anticipated,
the roles of the two models in the game are interchangeable:

Lemma 3.9. ≈si,q and ≈s are symmetric relations.

Comparing this version with the original one, we clearly made Spoiler’s life much easier:
now he can perform →-moves without any restrictions on the model from which he
can choose the state; and the winning condition for Duplicator is more restrictive than
the original one. So the following result should not come as a surprise:

Lemma 3.10. IfM0, s0, a0 ≈si,q M1, s1, a1, thenM0, s0, a0 �i,q M1, s1, a1.

Proof. The idea of the proof is simple: given a winning strategy for Duplicator
in the game EFsi,q(M0, s0, a0;M1, s1, a1), this is also a winning strategy in the game
EFi,q(M0, s0, a0;M1, s1, a1). The details are left to the reader.

As an immediate corollary we obtain the following result.

Corollary 3.11. Suppose the signature Σ is finite. Then

(M0, s0, a0) ≈si,q (M1, s1, a1) =⇒ (M0, s0, a0) ≡i,q (M1, s1, a1).

However, the converse of Corollary 3.11 does not hold in general.

Proposition 3.12.

(M0, s0, a0) ≡i,q (M1, s1, a1) �=⇒ (M0, s0, a0) ≈si,q (M1, s1, a1).

Proof. Consider the models M and N in Figure 2a. We have:

• M �0,1 N : the winning strategy for Duplicator is described in Table 2b;
• M �0,1 N : the winning strategy for Duplicator is described in Table 2c;
• M �≈s0,1 N : if Spoiler picks the element d2, every move of Duplicator leads to

Spoiler’s victory.

Thus, unlike the original version, the symmetric version of the game does not
provide us with an exact characterization of the relation ≡i,q determined by the logic.
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M

w0

d1 PQ
d2 P
d3

N

v0

e1 PQ
e2 Q
e3

(A) The two models considered in Example 3.5.

S plays . . . D responds . . .

d1 e1
d2 e1
d3 e3
e1 d1
e2 d3
e3 d3

(B) Winning strategy for D in the game

EF0,1 (M,N ).

S plays . . . D responds . . .

d1 e1
d2 e3
d3 e3
e1 d1
e2 d1
e3 d3

(C) Winning strategy for D in the game

EF0,1 (N,M ).

Fig. 2.

Nevertheless, the symmetric game is still useful: if we can show that Duplicator has a
winning strategy in the symmetric game with bounds 〈i, q〉 between two models, this
suffices to show that these models are indistinguishable by formulae of degree 〈i, q〉.
This is convenient, since strategies are often easier to describe in the symmetric game
than in the original game, since we do not have to keep track of how the role of the
models gets swapped in the course of the game. Indeed, we use this strategy in the
proof of Theorem 4.5.

§4. Characterizing the cardinality quantifiers definable in InqBQ. In this section we
will use the EF-game for InqBQ to study in detail what InqBQ can express about the
number of individuals satisfying a predicate P. The sentences we are concerned with
include not only statements about the number of individuals satisfying P, like those in
(1), but also questions about the number of individuals satisfying P, like those in (2).

(1) a. There is no P.
b. There are at least three P.
c. The number of P is even.
d. There are infinitely many P.

(2) a. Are there any P?
b. How many P are there?
c. Is the number of P even, or odd?
d. Are there infinitely many P?
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Which among the statements in (1) and the questions in (2) can be expressed in InqBQ?
Instead of pursuing a direct answer to this question, we will tackle the problem from a
more general perspective. We will see that, in an inquisitive setting, all these sentences
instantiate the form Qx.Px, where Q is a quantifier which is sensitive only to the
cardinality of its argument. Thus—interestingly—in the inquisitive setting, not only
no and at least three, but also how many can be viewed as generalized quantifiers. We
can then ask which cardinality quantifers are expressible in InqBQ. In this section,
we will establish a simple answer to this question. From this answer, a verdict about
the definability of the examples above, as well as many other similar examples, can be
easily reached.

We will first look at cardinality quantifiers in the setting of standard first-order logic,
FOL, and recall the characterization of cardinality quantifiers expressible in FOL; we
will then present a generalization of the notion of a cardinality quantifier to InqBQ,
which encompasses also inquisitive quantifiers like how many; finally, we will use the
Ehrenfeucht–Fraı̈ssé game introduced in Section 3 to provide a characterization of the
cardinality quantifiers expressible in InqBQ and use this characterization to show that,
just like many interesting statements about cardinalities are not expressible in FOL, so
many interesting questions about cardinalities are not expressible in InqBQ.

4.1. Cardinality quantifiers in classical first-order logic. In classical logic, a formula
α(x), with at most the variable x free, determines, relative to a model M, a
corresponding set of individuals:

αM := {d ∈ D | M |= α(d )}.
Let K be a class of cardinals. This is an operator that can be added to classical first-
order logic by stipulating that if α(x) is a classical formula with at most x free, then
QKx.α(x) is a formula, with the following semantics (# denotes the cardinality of a
set):5

M |= QKx.α(x) ⇐⇒ #αM ∈ K.
By a cardinality quantifier we mean a quantifier which is of the formQK for some class
of cardinals K. Notice that the existential quantifier ∃ is a cardinality quantifier, since
∃ = QCard\{0}, for Card the class of all cardinals. By contrast, the universal quantifier
∀ is not a cardinality quantifier, since the condition M |= ∀x.P(x), namely, PM = D,
cannot be formulated solely in terms of #PM.6

Let �K [P] be a FOL-formula (thus, not containing QK ). We say that �K [P] defines
QK if QKx.Px ≡ �K [P]. It is not hard to see that if this is the case, then for every

5 One can, more generally, allow the formation of the formula QKx.α for any formula α,
even when α contains free variables besides x. Extending the semantic clause to this case is
straightforward: we just have to relativize the clause to an assignment function g. However,
we restrict to the case in which QKx.α is a sentence, since this does not lead to a loss of
generality for our purposes, and it is convenient not to have assignments around all the time.

6 In this paper, we focus on cardinality quantifiers of type 〈1〉, which operate on a single unary
predicate. More generally, one could consider cardinality quantifiers of type 〈n1, ... , nk〉,
which operate on k predicates of arities n1, ... , nk respectively. It seems quite possible that
the characterization result given here can be extended to this general setting. However, we
leave this extension for future work.
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formula α(x) we have QKx.α(x) ≡ �K [α]. We say that the quantifier QK is definable
in FOL if there is a FOL-formula which defines it.

The statements in (1) can all be seen as having the form Qx.Px, where Q is a
cardinality quantifier. Indeed, we have the following characterizations, where [3, ... ) is
the class of cardinals ≥ 3; Even is the set of even natural numbers; Inf is the class of
infinite cardinals.

(3) a. M |= (1.a) ⇐⇒ PM = ∅ ⇐⇒ #PM ∈ {0}
b. M |= (1.b) ⇐⇒ #PM ≥ 3 ⇐⇒ #PM ∈ [3, ... )
c. M |= (1.c) ⇐⇒ #PM is even ⇐⇒ #PM ∈ Even
d. M |= (1.d ) ⇐⇒ #PM is infinite ⇐⇒ #PM ∈ Inf.

What cardinality quantifiers are definable in classical first-order logic? That is, for
what classes K of cardinals is the quantifier QK definable? The answer is given by the
following theorem, which is an easy application of EF-games for FOL (and seems, to
the best of our knowledge, to be folklore).

Theorem 4.1. Let K be a class of cardinals. The quantifier QK is definable in first-order
logic if and only if there exists a natural number n such that K contains either all or none
of the cardinals κ ≥ n.

Consider again the statements in (1), repeated below for convenience with the
corresponding classes of cardinals given on the right. It follows immediately from
the characterization that the first two statements are expressible in classical first-order
logic, while the third and fourth are not.

(4) a. There is no P. K = {0}
b. There are at least three P. K = [3, ... )
c. The number of P is even. K = Even
d. There are infinitely many P. K = Inf

4.2. Cardinality quantifiers in InqBQ. Let us now turn to the inquisitive case. A
model M for inquisitive first-order logic represents a variety of states of affairs, one for
each possible world w. At each world w, the state of affairs is represented by the first-
order structure Mw , having as its domain the setDw := D/∼w . Let α(x) be a classical
formula with at most the variable x free. Relative to each world w, α(x) determines an
extension αw , which is a set of individuals from Dw :

αw := {d ∈ Dw | Mw |= α(d )}.
Therefore, relative to an information state s, the formula α(x) determines a
corresponding set of cardinals, {#αw | w ∈ s}. We refer to this set of cardinals as
the cardinality trace of α(x) in s.

Definition 4.2 (Cardinality trace). Let M be a model, s an information state, and α(x)
a classical formula where at most the variable x occurs free. The cardinality trace of α(x)
in s is the set of cardinals:

trs(α) = {#αw | w ∈ s}.
A cardinal κ is in trs(α) if, according to the information available in s, κ might be the
number of elements satisfying α(x); that is, if it might be the case that the extension
of α(x) has cardinality κ. Thus, trs(α) captures exactly the information available in s
about the number of individuals satisfying α(x).
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Now let K be a class of sets of cardinals. We associate with K a corresponding
quantifier QK. We can add this quantifier to InqBQ by stipulating that if α(x) is a
classical formula with at most x free, then QKx.α(x) is a formula, interpreted by the
following clause7:

M, s |= QKx.α(x) ⇐⇒ trs(α) ∈ K.

A cardinality quantifier is a quantifier which is of the form QK, where K is a class of
sets of cardinals.

Let �K[P] be an InqBQ-formula (thus, without cardinality quantifiers). We say that
�K[P] defines the quantifier QK if QKx.Px ≡ �K[P]. Again, it is not hard to see that if
this holds, then for every classical formula α(x) we have QKx.α(x) ≡ �K[α]. We say
that QK is definable in InqBQ if there is an InqBQ-formula that defines it.

In order to make the notion of a cardinality quantifier more concrete, let us see how
the statements in (1) and the questions in (2) can be seen as instantiating the form
Qx.Px where Q is a cardinality quantifier in the sense of inquisitive logic.

Consider first the statements in (1). In general, in inquisitive semantics a statement
α is supported by a state s iff the information available in s implies that α is true. This
means that α is true at all worlds w ∈ s . Keeping this in mind, we can see that the
statements in (1) have the following semantics:

(5) a. M, s |= (1.a) ⇐⇒ ∀w ∈ s : Pw = ∅ ⇐⇒ trs(P) ⊆ {0}
b. M, s |= (1.b) ⇐⇒ ∀w ∈ s : #Pw ≥ 3 ⇐⇒ trs(P) ⊆ [3, ... )
c. M, s |= (1.c) ⇐⇒ ∀w ∈ s : #Pw is even ⇐⇒ trs(P) ⊆ Even
d. M, s |= (1.d ) ⇐⇒ ∀w ∈ s : #Pw is infinite ⇐⇒ trs(P) ⊆ Inf

Let us now check that all these statements correspond to statements of the form
Qx.Px for Q a cardinality quantifier. For this, we introduce a useful notation.

Definition 4.3 (Downward closure of a class). Let K be a class. We denote by K↓ the
class consisting of all sets X such that X ⊆ K .

Thus, if K is a set, then K↓ = ℘(K). However, if K is a proper class, then K↓ will
not be a set either; moreover, K↓ will not contain K, since K is not a set.

Now consider the cardinality quantifiersQ1–Q4 determined by the following classes:

K1 = {0}↓ K2 = [3, ... )↓ K3 = Even↓ K4 = Inf↓.

We have:

M, s |= Q1x.Px ⇐⇒ trs(P) ∈ K1 ⇐⇒ trs(P) ⊆ {0} ⇐⇒ M, s |= (1.a)
M, s |= Q2x.Px ⇐⇒ trs(P) ∈ K2 ⇐⇒ trs(P) ⊆ [3, ... ) ⇐⇒ M, s |= (1.b)
M, s |= Q3x.Px ⇐⇒ trs(P)∈ K3 ⇐⇒ trs(P) ⊆ Even ⇐⇒ M, s |= (1.c)
M, s |= Q4x.Px ⇐⇒ trs(P) ∈ K4 ⇐⇒ trs(P) ⊆ Inf ⇐⇒ M, s |= (1.d )

Next, consider the questions in (2). Start with (2.a), the question whether there are
any P. This question is settled in an information state s in case the information in

7 The reason for restricting the application of QK to classical formulas is that QKx.α(x)
only looks at the semantics of α with respect to worlds. Non-classical formulas only
become significant when interpreted relative to information states; relative to single worlds,
the operators

�

and ∃ collapse on their classical counterparts ∨ and ∃. Therefore, while
extending our quantifiers to operate on non-classical formulas is not problematic, it is also
not interesting.
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s implies that there are no P, or it implies that there are some P. The former is the
case if the extension of P is empty in all worlds w ∈ s . The latter is the case if the
extension of P is non-empty in all worlds w ∈ s . Thus, the semantics of (2.a) is as
follows.

M, s |= (2.a) ⇐⇒ (∀w ∈W : Pw = ∅) or (∀w ∈W : Pw �= ∅)

⇐⇒ (∀w ∈W : #Pw = 0) or (∀w ∈W : #Pw ≥ 1)

⇐⇒ trs(P) = {0} or trs(P) ⊆ [1, ... ).

Second, consider the question (2.b), how many individuals are P. This question is
settled in an information state s if the information available in s determines exactly
how many individuals are P. This is the case if there is a cardinal κ such that at every
world w ∈ s , the extension Pw contains κ elements.8

M, s |= (2.b) ⇐⇒ ∃κ∀w ∈W : #Pw = κ

⇐⇒ trs(P) contains at most one element

⇐⇒ trs(P) ⊆ {κ} for some cardinal κ.

Next, consider (2.c), the question whether the number of P is even or odd. This is
settled in an information state s in case the information available in s implies that the
number of P is even, or that the number of P is odd.9 The former holds if the extension
of P is even at every world in s. The latter holds if the extension of P is odd al every
world in s.

M, s |= (2.c) ⇐⇒ (∀w ∈W : #Pw is even) or (∀w ∈W : #Pw is odd)

⇐⇒ trs(P) ⊆ Even or trs(P) ⊆ Odd.

Finally, consider (2.d), the question whether there are infinitely many P. This is settled
in an information state s in case the information available in s implies that there are
infinitely many P, or it implies that the aren’t infinitely many P. The former is the case
if the extension of P is infinite at every world w ∈ s , while the latter is the case if the
extension of P is finite at every world w ∈ s .

M, s |= (2.d ) ⇐⇒ (∀w ∈ s : #Pw is finite) or (∀w ∈ s : #Pw is infinite)

⇐⇒ trs(P) ⊆ Fin or trs(P) ⊆ Inf.

Now consider four cardinality quantifiers,Q5–Q8, determined by the following classes:

(6) a. K5 = {0}↓ ∪ [1, ... )↓

b. K6 =
⋃
{{κ}↓ | κ a cardinal}

c. K7 = Even↓ ∪ Odd↓

d. K8 = Fin↓ ∪ Inf↓

8 An equivalent way of formulating the same condition is to say that (2.b) is settled in s iff the
number of P is the same at all the worlds in s:M, s |=(2.b) ⇐⇒ ∀w,w′ ∈ s : #Pw = #Pw′ .

9 Notice that the question presupposes that the number of P is either even or odd. Since all
and only the finite cardinals are even or odd, the question presupposes that the number of P
is finite. About the way presuppositions of questions are interpreted in inquisitive logic, see
Section 1.3 of [2].
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Then we have:

M, s |= Q5x.Px ⇐⇒ trs(P) ∈ K5 ⇐⇒ trs(P) ⊆ {0} or trs(P) ⊆ [1, ... )
⇐⇒ M, s |= (2.a)

M, s |= Q6x.Px ⇐⇒ trs(P) ∈ K6 ⇐⇒ trs(P) ⊆ {κ} for some κ
⇐⇒ M, s |= (2.b)

M, s |= Q7x.Px ⇐⇒ trs(P) ∈ K7 ⇐⇒ trs(P) ⊆ Even or trs(P) ⊆ Odd
⇐⇒ M, s |= (2.c)

M, s |= Q8x.Px ⇐⇒ trs(P) ∈ K8 ⇐⇒ trs(P) ⊆ Fin or trs(P) ⊆ Inf
⇐⇒ M, s |= (2.d )

So, in the inquisitive setting, a new range of “inquisitive” cardinality quantifiers come
into play, which combine with a property to yield questions like those exemplified in
(2). In addition to standard cardinality quantifiers like ‘no’, ‘at least three’, ‘infinitely
many’, we also have new, question-forming cardinality quantifiers like ‘how many’ and
‘whether finitely or infinitely many’.

4.3. Characterization. What cardinality quantifiers can be expressed in InqBQ?
Given that, in the inquisitive setting, cardinality quantifiers are in one-to-one
correspondence with classes of sets of cardinals, this question can be made precise
as follows.

Question 4.4. For which classes of sets of cardinals K is the quantifier QK definable in
InqBQ?

The next theorem provides an answer to this question. In essence, what the theorem
says is that the cardinality quantifiers definable in InqBQ are all and only the inquisitive
disjunctions of cardinality quantifiers definable in classical first-order logic.10 Before
stating the Theorem, let us fix some useful notations. For any natural number n, we
let:

• [0, n] := {m ∈ Card | m ≤ n}
• [n, ... ) := {κ ∈ Card |κ ≥ n}

Moreover, we introduce an equivalence relation =n that disregards differences between
cardinals larger than n. More precisely, if κ and κ′ are two cardinals:

κ =n κ′ ⇐⇒ κ = κ′ or κ, κ′ > n.

If A and B are sets of cardinals, we write A =n B if A and B are the same set, modulo
identifying all cardinals larger than n:

A =n B ⇐⇒ ∀κ ∈ A∃κ′ ∈ B such that κ =n κ′ and

∀κ′ ∈ B∃κ ∈ A such that κ =n κ′.

10 While we have not specified a general notion of inquisitive generalized quantifier here,
a natural notion should allow as an instance the quantifier Q0 whose semantics is given
by: M, s |= Q0x.Px ⇐⇒ ∀w,w′ ∈ s : Iw(P) = I ′w(P). Informally, Q0x.Px expresses the
question “which elements are P?” Now this quantifier is definable in InqBQ by the formula
∀x.?Px, which is clearly not equivalent to an inquisitive disjunction of classical formulas.
This shows that the result we show here is really specific for cardinality quantifiers.
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Moreover, we say that a class of sets of cardinals K is:

• =n-invariant, if whenever B ∈ K and A =n B we have A ∈ K and
• downward-closed, if whenever B ∈ K and A ⊆ B we have A ∈ K.

We can now state our second main result.

Theorem 4.5 (Characterization of cardinality quantifiers definable in InqBQ). Let K
be a class of sets of cardinals. The following are equivalent:

1. The cardinality quantifier QK is definable in InqBQ.
2. K = K↓

1 ∪ ··· ∪K↓
n where for each Ki ⊆ Card there exists a natural number m

such that Ki contains either all or none of the cardinals κ ≥ m.
3. K is downward closed and =m-invariant for some natural number m.

Proof. We show that 2 ⇒ 1 ⇒ 3 ⇒ 2.
[2 ⇒ 1][2 ⇒ 1][2 ⇒ 1] Suppose K = K↓

1 ∪ ··· ∪K↓
n where for each Ki there exists a natural number

m such thatKi contains either all or none of the cardinals κ ≥ m. By Theorem 4.1, for
each Ki we have a classical formula �i such that, in classical first-order logic:

M |= �i ⇐⇒ #PM ∈ Ki.
These formulas are also formulas of InqBQ, and it follows from Proposition 2.3 that
we have:

M, s |= �i ⇐⇒ ∀w ∈ s : Mw |= �i
⇐⇒ ∀w ∈ s : #PMw ∈ Ki
⇐⇒ trs(P) ⊆ Ki
⇐⇒ trs(P) ∈ K↓

i .

Now consider the inquisitive disjunction �1

� ··· � �n. We have:

M, s |= �1

�

...

�

�n ⇐⇒ M, s |= �1 or ··· orM, s |= �n
⇐⇒ trs(P) ∈ K↓

1 or ··· or trs(P) ∈ K↓
n

⇐⇒ trs(P) ∈ K↓
1 ∪ ··· ∪K↓

n

⇐⇒ trs(P) ∈ K

⇐⇒ M, s |= QKx.Px.

This shows that the InqBQ formula �1

� ··· � �n defines the quantifier QK.
[1 ⇒ 3][1 ⇒ 3][1 ⇒ 3] Next, consider the implication from 1 to 3. Suppose QK is definable in InqBQ
by a formula ϕK. We need to show that K is downward closed and =m invariant for
some natural number m.

We firstly show that K is downward closed. Suppose A ⊆ B ∈ K. This means that
there exists a model M and an information state s such thatM, s � ϕK and trs(P) = B .
Consider now the state t := {w ∈ s | #Pw ∈ A} ⊆ s . By definition we have trt(P) = A;
and by persistencyM, t � ϕK. Thus A ∈ K, as wanted.

Next, we show that K is closed under =m for some m. We want to show that the
condition above holds form = q, where q is the quantifier degree of the defining formula
ϕK. So, suppose A ∈ K and A =q B . If we find two information models M,N such
that trWM (P) = A, trWN (P) = B andM ≈i,q N then we are done, since in this case:

A ∈ K ⇐⇒ M |= ϕK ⇐⇒ N |= ϕK ⇐⇒ B ∈ K.
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Consider enumerations of the sets A and B:11 A := {κα | α < �} and B :=
{κ′α | α < �} which both start with the same initial sequence 〈κ1, ... , κl 〉 = 〈κ′1, ... , κ′l 〉
enumerating A ∩ [0, q] = B ∩ [0, q]. LetM,N be the models defined by the following
clauses:

WM := {wα | α < �} WN := {wα | α < �} =WM

DM :=
{
dα�

∣∣∣ α < � & � < κα
}

DN :=
{
eα�

∣∣∣ α < � & � < κ′α
}

IMw� (P)
(
dα�

)
⇐⇒ α = � I Nw� (P)

(
eα�

)
⇐⇒ α = �

M is an id-model N is an id-model.

An example of these models is given in Figure 3. Notice that #IMwα (P) = κα and
#I Nwα (P) = κ′α . In particular, it follows that trWM (P) = A and trWN (P) = B . So if we
show thatM ≈i,q N then we are done. In order to show this, we present here a winning
strategy for Duplicator in the symmetric version of the EF-game between M and N
(cf. Section 3.5):

• If Spoiler plays an implication move and chooses an information state s from
either of the models, then Duplicator responds by choosing the same state s
from the other model (this is possible sinceWM =WN ).

• If Spoiler plays a quantifier move and chooses an element dα� from the model
M, we consider two separate cases:

– Ifdα� = ai for some i, that is, it has already been picked during the run—by
either Spoiler or Duplicator—then Duplicator responds by choosing bi .

– If dα� has not been previously picked, then Duplicator chooses an element
eα� (notice that the elements have the same superscript and possibly
different subscripts) which has not been previously picked during the
run. The fact that duplicator can find such an element is guaranteed
by A =q B : this means that either κα = κ′α , or else κα, κ′α > q. In the
former case the number of elements dα� and eα� is exactly the same; in
the latter case the number of elements eα� is larger than the number of
quantifier moves in the game.

• If Spoiler plays a quantifier move and chooses an element eα� from the model
N, then Duplicator applies the same strategy as in the previous case, swapping
the roles of the models M and N.

Notice that with this strategy Duplicator ensures that at the end of the run the final
position:

1. has the same state s for both models;
2. ai = aj if and only if bi = bj ;
3. corresponding elements ai , bi in the two models have the same superscripts,

that is, ai and bi are of the form dα� and eα� respectively.

11 In the enumerations, we allow for repetitions of the same elements with different indices.
This allows us to use the same cardinal � as the set of indices for both sets A and B.
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M

w0 w1 w2

d 00
d 01
d 10
d 11
d 12
d 20
d 21
d 22
d 23
d 24

N

w0 w1 w2

e 00
e 01
e 10
e 11
e 12
e 13
e 20
e 21
e 22
e 23

Fig. 3. Suppose q = 2, and consider the setsA = {2, 3, 5} and B = {2, 4}. Notice thatA =2 B .
We enumerate these sets as 〈2, 3, 5〉 and 〈2, 4, 4〉. The figure shows the models M and N derived
from this enumeration. These models are indistinguishable in the EF-game with only 2 quantifier
moves, regardless of the number of implication moves.

This is indeed a winning strategy, since:

M, s |= P(dα� ) ⇐⇒ s ⊆ {α} ⇐⇒ N, s |= P(eα� )

M, s |= ai = aj ⇐⇒ N, s |= bi = bj.

[3 ⇒ 2][3 ⇒ 2][3 ⇒ 2] Suppose K is downward closed and =m-invariant for some number m. Let
A1, ... , An be the subsets of [0, m + 1] which are contained in K. Now define:

Ki =
{
Ai if m + 1 /∈ Ai
Ai ∪ [m + 1, ... ) if m + 1 ∈ Ai .

We claim that K = K↓
1 ∪ ··· ∪K↓

n . Start with the right-to-left inclusion. Let
B ∈ K↓

1 ∪ ··· ∪K↓
n . This means thatB ⊆ Ki for some i. Now we distinguish two cases.

• Case 1: Ki = Ai . Then Ai ∈ K by definition, and since K is downward closed,
also B ∈ K.

• Case 2: Ki = Ai ∪ [m + 1, ... ). We claim that in this case, Ai =m Ai ∪ B : if so,
since Ai ∈ K and K is =m-invariant, we have Ai ∪ B ∈ K, which in turn by
downward closure yields B ∈ K. To see thatAi =n Ai ∪ B , the only non-trivial
step is to show that for all κ ∈ B there exists some κ′ ∈ Ai such that κ′ =m κ.
So, take κ ∈ B : if κ ≤ m then κ ∈ Ai (since B ⊆ Ki = Ai ∪ [m + 1, ... )), so
we can take κ′ = κ; if on the other hand κ > m, then κ =m m + 1 ∈ Ai .

Either way, we conclude B ∈ K, which gives the right-to-left inclusion.
For the converse inclusion, suppose B ∈ K. Again, we distinguish two cases.
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• Case 1: B ⊆ [0, m]. In this case, B = Ai for some i ≤ n, and thus B ∈ K↓
i .

• Case 2: B � κ for some κ > m. In this case, B =m B ∪ {m + 1}, since κ =m
m + 1. Since B ∈ K and K is =m-invariant, also B ∪ {m + 1} ∈ K. Now take
(B ∪ {m + 1}) ∩ [0, m + 1]: by downward closure, this set is in K, and since it is
a subset of [0, m + 1], it coincides with Ai for some i ≤ n. Notice thatm + 1 ∈
Ai , and thus,Ki = Ai ∪ [m + 1, ... ). Therefore,B ⊆ Ki , which impliesB ∈ K↓

i .

In either case, we conclude that B ∈ Ki for some i ≤ n, which gives the left-to-right
inclusion.

Theorem 4.5 allows us to tell immediately which among the questions in (2) are
expressible in InqBQ: (2.a), the question whether there is any P, is expressible, since it
has the formQKx.Px for the class K5 = {0}↓ ∪ [1, ... )↓, where both {0} and [1, ... ) are
definable in classical first-order logic. Indeed, the defining formula is simply ?∃x.Px,
which abbreviates ∃x.Px � ¬∃x.Px.

The remaining questions, (2.b), (2.c), and (2.d) are not expressible, since they have
the form QKx.Px for the following classes K:

K6 =
⋃

{{κ}↓ | κ a cardinal} K7 = Even↓ ∪ Odd↓ K8 = Fin↓ ∪ Inf↓.

Clearly, these classes are not the formK↓
1 ∪ ··· ∪K↓

n forK1, ... , Kn definable in classical
first-order logic. In a similar way, we can see that none of the following questions about
the cardinality of P is expressible in InqBQ.

(7) a. How many P are there, modulo k? (for k ≥ 2)
b. Is the number of P even, odd, or infinite?
c. Is the number of P a prime number, or a composite one?
d. Are there uncountably many P?

It is worth pausing to remark that, while InqBQ can express the question “what
objects are P?” (by means of the formula ∀x.?Px, see Section 2), it cannot express the
corresponding cardinality question “how many object are P?” From the perspective
of logical modeling of questions, this means that analyzing how many questions—
an important class of questions—requires a proper extension of the logic InqBQ.
Developing and investigating such an extension is an interesting prospect for future
work.

Since the proof of Theorem 4.5 is quite flexible, the characterization result can be
seen to hold also when we restrict to certain salient classes of models. For instance,
since the proof uses only id-models, we obtain the following Corollary.

Corollary 4.6. The characterization given in Theorem 4.5 holds also when we restrict
to the class of id-models.

Moreover, it is an easy exercise to adapt the proof to show the following result,
concerning the class of finite models and the class of finite id-models.

Corollary 4.7. Let K be a set of sets of finite cardinals. The following are equivalent:

1. The cardinality quantifier QK is definable in InqBQ with respect to the class of
finite models (resp. finite id-models). That is, there is a formula �K of InqBQ
such thatQKx.Px is equivalent to �K[P] in restriction to finite models (resp. finite
id-models).
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2. K = K↓
1 ∪ ··· ∪K↓

n for some sets K1, ... , Kn ⊆ N, where for each Ki there exists
m ∈ N such that Ki contains all or none of the numbers k ≥ m.

§5. Conclusion. EF games often provide an insightful perspective on a logic and
a useful characterization of its expressive power. In this paper we have described an
EF-game for inquisitive first-order logic, InqBQ, showing that it characterizes exactly
the distinguishing power of the logic, and we used the game to study the expressive
power of the logic with respect to certain cardinality properties.

In comparison to its classical counterpart, the game presents two novelties. Firstly,
the roles of the two models on which the game is played are not symmetric: certain
moves have to be performed mandatorily in one of the models. This feature reflects the
fact that InqBQ lacks a classical negation and that the theory of a model—unlike in
the classical case—can be properly included in that of another. Secondly, the objects
that are picked in the course of the game are not just individuals d ∈ D, but also
information states, i.e., subsets s ⊆W of the universe of possible worlds. This feature
reflects the fact that InqBQ contains not only the quantifiers ∀,∃ over individuals,
but also the implication →, which allows for a restricted kind of quantification over
information states.

Moreover, we introduced the notion of a cardinality quantifier in InqBQ, that is, a
quantifier which is sensitive only to the number of individuals which satisfy a given
property. As we illustrated, the inquisitive setting provides a more general perspective
on this notion: besides quantifers like infinitely many, which combine with a property
to form a statement, we now also have quantifers like how many, which combine with
a property to form a question.

Using the EF-game, we were able to characterize exactly the range of cardinality
quantifiers expressible in InqBQ. The characterization is similar to the one for classical
first-order logic: the definable quantifiers are those that, for some natural number n,
do not make any distinctions between cardinals larger than n. As we anticipated in
the introduction, this is particularly interesting as it sheds some light on the expressive
power of InqBQ, which is still poorly understood. At present, we do not know exactly
how InqBQ relates to standard first- and second-order predicate logic: we do not know,
e.g., whether InqBQ is compact and whether an entailment-preserving translation to
first-order logic exists. Our characterization result shows that, at least with respect
to the expression of cardinality properties, InqBQ is very similar to first-order logic,
sharing the same kind of expressive limitations, and very different from second-order
logic.

We also saw that the characterization result yields a number of interesting examples
of questions which are not expressible in InqBQ. Crucially, this includes the question
how many individuals satisfy P, both in the general case and in restriction to finite
models. This means that in order to capture how many questions in predicate logic, a
proper extension of InqBQ is needed. Other interesting examples of questions which
were proved not to be expressible are whether the number of P is even or odd (also in
restriction to finite models) and whether the number of P is finite or infinite.

The work presented in this paper can be taken further in several directions. Firstly,
in the context of classical logic, several variants of the EF game have been studied.
For example, [23] presents a dynamic EF game, corresponding to a more fine-grained
classification of classical structures. In the inquisitive case, an analogous refinement
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could lead to interesting insights into the structure of inquisitive models. Ehrenfeucht–
Fraı̈ssé games can also be used to compare different extensions of a fixed logic, as
shown in [15]. In this regard, the results presented in Section 4 already yield some
interesting corollaries. For example, adding to InqBQ the quantifier how many (the
operator Q5 in Section 4.2) yields a logic which is strictly more expressive than InqBQ.
More generally, the techniques introduced in this paper are likely to provide a useful
tool for a systematic study of quantifiers in inquisitive logic.

Second, as pointed out in Footnote 6, in this paper we only studied the simplest
cardinality quantifiers, namely, those that operate on a single unary predicate. In further
work, it would be natural to look at how our characterization result extends to the
general case of cardinality quantifiers operating on several predicates, possibly of arities
different from 1. This is not just a technical exercise: there are interesting cardinality
questions involving multiple predicates, such as “are there more P or more Q?”.

Finally, one major goal for future work is to look beyond cardinality quantifiers and
study generalized quantifiers in the inquisitive setting. The classical theory of generalized
quantifiers is well-established [16, 17] and an important topic across logic, linguistics,
and cognitive science. As illustrated in this paper and discussed in more detail in [6],
the inquisitive perspective leads to a more general perspective on quantifiers. Among
other things, this perspective allows us to bring interrogative words like who, which,
and how many within the purview of generalized quantifier theory (on this enterprise,
see also [21]). How does the classical theory of generalized quantifiers scale up to this
more general setting? What novelties arise? The Ehrenfeucht–Fraı̈ssé game presented
in this paper will likely prove to be a fundamental tool in answering these questions.
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