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Limiting stress states in granular avalanches
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ABSTRACT. The Savage-Hutter theory for granular avalanches assumes that the
granular material is in either of two limiting stress states, depending on whether the
motion is convergent or divergent. At transitions between convergent and divergent
regions, a jump in stress occurs, which necessarily implies that there is a jump in the ava-
lanche velocity and/or its thickness. In this paper, a regularization scheme is used, which
smoothly switches from one stress state to the other, and avoids the generation of such
singular surfaces. The resulting algorithm is more stable than previous numerical meth-
ods but shocks can still occur during rapid convergence in the run-out zone. Results are
presented from two-dimensional calculations on complex geometry which illustrate that
some necking features observed in laboratory experiments can be explained by the regu-

larized Savage—Hutter model.

INTRODUCTION

The material properties of dense-llow avalanches, of snow,
ice or rocks, are described by a simple Mohr—Coulomb
criterion (Savage and Hutter, 1989, 1991). This provides suffi-
cient information to determine the limiting normal pressures
within the flowing avalanche but provides no information
about the transition between these limiting states or which
limiting state is associated with a given deformation. In this
paper, a regularization process is introduced which provides
smooth well-defined transitions between the various states.

GOVERNING EQUATIONS

In the extended Savage—Hutter theory for granular free-
surface flows over complex topography (e.g. Gray, in press),
a slope-fitted curvilinear coordinate system Ozyz is gener-
ated by a reference surface that follows the “mean” down-slope
chute topography. The z and y axes are oriented in the
down-slope and cross-slope directions to the reference sur-
face and the z axis is normal to it. The complex shallow
three-dimensional chute topography over which the ava-
lanche flows is then defined by its elevation z = b(z,y)
above the reference surface.

To leading order, the depth-integrated mass balance

reduces to
dh du v
el oy (pasiaielboina & = ' 1
dt * L(Bx_i_c?y) ()

where h is the avalanche thickness, v and v are the depth-
averaged velocity components in the down-slope and cross-
slope directions and the total derivative d/dt = d/dt
+ud/dx + vd/dy. The leading-order depth-integrated mo-
mentum balance components are

du st K f)th ab

-7 — Qp — §Cos T ,
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where g is the gravitational acceleration, ¢ is the local slope-

https://doi.org/10.3189/1998A0G26-1-272-276 Published online by Cambridge University Press

272

inclination angle, K, and K, are the down- and cross-slope
earth-pressure coefficients and 9b/dz and 0b/dy arc the
basal-topography gradients. The gravity-acceleration and
basal-drag terms are combined into net driving forces

a, = gsin¢ — (u/|u|) tan 8(gcos ¢ + ku?),
Oy = — (v/|u]) tan (g cos ¢ + Ku?),

(3)

in down- and cross-slope directions, respectively, where
lu| = (w? + ¢ )% is the modulus of the velocity components,
8 is the basal Coulomb dry-[riction angle and & is the local
curvature of the reference surface.

The earth-pressure coefficients K, and K, relate the
limiting in-plane stresses to the normal stress within the ava-
lanche. For avalanches whose motion is predominantly in
the down-slope direction, Hutter and others (1993) showed
that

Ko = 2 sec” ¢(1 F /1 — cos? ¢ sec? 6) -1, (4)

L :
K .. =% (Ix,r +1F \/(}J —1)* + 4 tan rﬁ) (5)

where ¢ is the internal angle of friction in the Mohr—Cou-
lomb criterion. The subscripts act and pas denote active- and
passive-stress states, respectively. Greve and others (1994) in-
troduced the following ad hoc definitions to decide which of
the stress states should be associated with a given deforma-
ton
Ke .. Oufdr >0,

K:=\k,., ouox<o, (6)

K, dufdx >0, Ov/dy>0,

K2, ouf/dz <0, Ov/dy=>0, 7

e, Oufdx >0, dv/dy <0,

K, ufdx <0, Ov/dy<0.

K.u =

Active-stress states are associated with a dilation of the ma-
terial, whilst passive-stress states are associated with a com-
pression. In Figure 1, the down- and cross-slope carth-
pressure coefficients are plotted as functions of the internal
angle of friction.
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Fig. 1. The down-slope ( top panel) and cross-slope ( battom
panel) earth-pressure coefficients are plotted as a function of
the internal angle of friction ¢. The various active and passive

states are indicated by differing line styles. Nole, that neither
K, nor Ky are defined for p < 6 = 30°

REGULARIZATION OF THE THEORY

The earth-pressure coeflicients jump from active to passive
states when either Qu/dxr =0 or dv/dy = 0. It follows that
there is a jump in the in-plane stress between convergent
and divergent regions and that there must also be a corres-
ponding jump in the avalanche velocity, and/or the thick-
ness, in order to balance the tractions on either side of the
interface. Such transitions where the variables jump are
called singular surfaces (e.g. Chadwick, 1976).

A proper integration of the Savage-Hutter theory
requires the solution of jump conditions on multiple non-mate-
rial moving boundaries between evolving regions of conver-

Uy

Fig. 2. The down-slope earth pressure is regularized by intro-
ducing a smoothly varying monotonically decreasing function
of the down-slope divergence Ou/ O, which approaches the
limiting values, K, and K, for large divergence and con-

vergence, respectively. At Ou/Ox = O the down-slope earth
pressure equals K.
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gent and divergent motion. This is a truly formidable task.
An alternative approach is to regularize the theory by intro-
ducing a smooth transition between the various limiting
stress states, This is illustrated schematically in Figure 2 for
the down-slope earth-pressure coefficient. For large down-
slope convergence K, approaches K, —and for large
down-slope divergence K, approaches K. . Between these
two limiting states there is a smooth monotonically decreas-
ing transition, which crosses the du/dr =0 line at
g IS L

To formalize the regularization of the Savage—Hutter
model, new down- and cross-slope earth-pressure coeffi-
cients are introduced

I(.r = (I{-.J"m, 7 Kr.rl‘,h)/g + F( I\r.rm.. ¥ h’:r;,m )/21

Rry = (;‘ry...‘ A R’y.u.-‘)/g =T G(I"ym = ‘Ky,m,\)/Q

where the functions F' and G are now dependent on the
down- and cross-slope velocity gradients u, = du/dx and
v, = Jv/dy, respectively. The nature of these functions is
somewhat subjective. Tor the purposes of this paper F' and
(7 are assumed to be the monotonically decreasing functions

24

F = (o, — ug) /{1 + (@uz — ug, )},

274

G = (avy — vy, ) /{1 + (avy, — v, )P

where the parameter « determines the steepness of the

transition. The constants u,, and v,, are chosen so that at

the origin K|, _y = K, and K|, _, = K, which implies
that '

(8)

(9)

un, = — Fo/(1 = F)"?, ag)
v, = — Go/(1- G2
where
Fy = 2Kz — Koy = Koy ) /(Ko — Ky

Gy = (ZK_;,” - I\,.f,"..' - Ku;m,)/(ﬁif}.'.‘-

The values at the origin are an important feature of the reg-
ularized Savage—Hutter model. A natural partitioning of
the active- and passive-stress states is achieved when the
down- and cross-slope earth-pressure coeflicients cross the
origin at

o K.Un..\ ) :

K =2sec’¢p—1, K™=1, (12)

since K, < K} < K, and K, < K)" <K, forall
values of the internal and basal friction angles. In general,
other models are possible and three situations are consid-
ered here

(1. & =K Ky, = K3,

(B): Ky =8 +2 Ky=hy +& (13)

(3} B, = Beo—8 By=Ky, —€

where £ is a small parameter that is introduced to ensure
that the transition occurs close to the origin. The first of
these models shall be referred to the naturally regularized
model, the second as the active model and the third as the
passive model.

NUMERICAL CONSIDERATIONS

It is appropriate at this point to discuss briefly some of the
finer points involved in a numerical algorithm to solve the
two-dimensional regularized Savage-Hutter theory. In
many respects, the algorithm adopted here is similar to that
used in existing Lagrangian schemes to solve the standard
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Savage Hutter model (e.g. Koch and others, 1994). The
important difference arises in the way in which the earth-
pressure coefficients at a gridpoint are calculated from the
velocity gradients at a given time-step.

In existing schemes, the velocity gradients are computed
for a triangular gridcell and the appropriate earth-pressure
values for that gridcell are determined from relations (6)
and (7). Once this has been performed for all gridcells the
earth-pressure coefficients at a gridpoint are determined
by volumetric grideell averages

- (-K'r ce V;'Pll
(I\.r)pnint - Z:z:+l:]ﬂ (14)
K.? ol Vt"u
(I(!,‘)pnim = lz‘}% (15)

where the summations are performed over the set of adja-
cent gridcells to the point and Ve is the volume of the grid-
cell. At gridpoints that lie close to singular surfaces, this
scheme has the property that the volumetric mean earth
pressure lies between the active and passive values. It follows
that the earth-pressure cocfficients are implicitly smoothed
by the algorithm.

In the algorithm proposed here, the order of the opera-
tions is interchanged. First the velocity gradients ()i
and (?)y)puiul are calculated by a volumetric average of
(1) oy and (). at adjacent grideells and then the carth-
pressure coefficients (K)o and (K)o,
directly. It follows that there is no implicit smoothing of the
earth-pressure coefficients near a singular surface and this
method is therefore appropriate for the regularized model.

¢ are calculated

EXPERIMENTAL COMPARISON

To test the regularized Savage Hutter theory and the new
numerical method, a comparison of the results is made with
a carefully controlled laboratory experiment, which has
already been successfully modelled using the standard
method (Gray, 1997).

The chute geometry consists of a channel, inclined at
¢ =407 to the horizontal, which is connected to a horizontal
plane run-out zone by a smooth transition. This is illustrated
in Figure 3. The channel profile is parabolic with a radius of

Fig. 3. The basal-chute geomelry eonsists of an the inclined
section (white) with shallow parabolic cross-slope profile,
which opens out on lo a horizontal plane (dark grey). A
smooth transition region ( light grey) connects the two zones.
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curvature of 110 cm and the avalanche is released from a cap
that has a spherical free surface and which is fitted to the
hasal chute topography. The cap radius is 32 cm and the
maximum height of the cap above the free surface is 22 cm.

The experimental data in this paper are taken from ex-
periment V02 (e.g. Gray, 1997), which used quartz granules
(mean diameter 2—4mm) that are characterized by an
internal angle of friction ¢ = 40" and a basal angle of fric-
tion & = 27-30°. In numerical results presented in this
paper, 6 is assumed to equal 287 at the front of the avalanche
and linear bed-friction angle reduction (Gray, 1997) is used
to obtain the correct tail speed.

Fig. 4. Avalanche-thickness contours computed using the reg-
ularized Savage—Hutter model are plotted using stope futled
curvilinear coordinates at a sequence of lime-steps and the
thick line shows the position of the experimental avalanche
boundary. The time is shown in seconds in each plot and all
sizes are in centimetres. The solid lines at & =175 and
215 em indicate the position of the transition zone and the
y = Ocm line corresponds to the centre of the channel. The
avalanche moves down-slope from left to right.

The predicted avalanche thickness and a comparison
with the experimental avalanche boundary is shown at a se-
quence of time-steps in Figure 4. The avalanche moves
down-slope from left to right, starting on the inclined chan-
nel in the top panel and coming to rest on the {lat run-out
plane in the bottom panel. Initially, there is a strong cross-
and down-slope expansion of the avalanche as the cap is
raised but the cross-slope spreading is rapidly balanced by


https://doi.org/10.3189/1998AoG26-1-272-276

the cross-slope topography gradients in the channel and
spreading continues predominantly in the down-slope di-
rection. As the avalanche enters on to the run-out plane,
the lateral confinement ceases and the avalanche develops
a characteristic tadpole form at t =1.51s, belore coming to
rest at £ =179s. At each time-step, the predicted and
observed boundaries are in very good agreement, confirm-
ing that the regularized Savage—Hutter theory is at least as
good if not better than the standard model.

In the laboratory experiment V02, a constriction or
necking of the avalanche is observed in the transition zone
at £t =1.2ls, as shown in Figure 5. That is, the maximum
width of the avalanche is smaller in the transition zone
than in either the channel section or run-out plane. The
reason for this behaviour is due to the complex interplay
between the chute geometry and material properties of
the avalanche as it moves [rom the channelized to uncon-
fined flow regimes.

Fig. 5. Necking of the avalanche as observed in experiment
12,

The necking problem provides an interesting test case
for both the theory and the numerical methods. Four cases
are considered here. The first model is the standard Savage—
Hutter theory using the original numerical method, the sec-
ond is the naturally regularized Savage-Hutter theory and
the third and fourth models illustrate what happens with
the standard Savage—Hutter theory when the new numeri-
cal method is used. It should be noted that in the ad hoc
earth-pressure coefficient definitions, Equations (6) and (7),

https://doi.org/10.3189/1998A0G26-1-272-276 Published online by Cambridge University Press

dai and Gray: Limiting stress stales in granular avalanches

the cases when either u, =0 or v, = 0, are not defined. Two
possibilities are to define
(&) A= e,
Ky =K. =0,
(16)
(b Ke=0s., =10,
K, =K,  v,=0.

The first of these cases is asymptotically similar to the active
regularized model for large v and small £, and the second is
asymptotically similar to the passive regularized model,
both of which are defined in Equations (13). These models
shall therefore be termed the active-jump and passive-jump
models, respectively.

In Figure 6 the results of the standard, naturally regu-
larised, active-jump and passive-jump models are illus-
trated, at time f =1.2ls when necking in the transition
zone 1s observed. There is no sign of a constriction in the
transition zone with the standard Savage Hutter model
(top panel) but the naturally regularized theory is able to
reproduce this phenomenon (upper middle panel). This
provides further evidence that the regularization of the
earth-pressure coeflicients 1s at least qualitatively correct,

Fig. 6. A sequence of four avalanche-thickness conlours are
shown for the standard model ( top ). the naturally regularized
model (upper middle), the activesjump model ( lower

middle) and the passive-jump model (bottom) al
t=121s

The standard Savage Hutter model results were pro-
duced using the active-jump model (Equations (16)) and
the old numerical method. When the passive-jump model
is used instead, the results are almost identical. However,
when the new numerical method is used, the results for the
active-jump model (lower middle panel) are completely
different to those obtained with the passive-jump model
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(bottom panel). Indeed, the results for the passive-jump
case are similar to experiments performed on unconfined
chutes (Koch and others, 1994), where there is no cross-slope
curvature, The reason for this is that for a large part of the
avalanche motion the cross-slope basal-topography gradi-
ents are almost in exact balance with the cross-slope spread-
ing terms in Equations (2) and that the cross-slope velocity
and velocity gradients are zero to double precision accuracy.
As a result

nahnz@ K?}@Nab
Yoy oy

U gy —B_‘y’ (17)
where the superscript a and p are used (o denote active-
jump and passive-jump models, respectively. It follows from
this that

ont , Oh?

gk (18)

Ry ;
v By

vy
implying that the horizontal thickness gradients in the
active-jump model are larger than those in the passive-jump
model, since Ky < KJ. The active-jump model therefore
produces a much narrower avalanche than the passive-jump
model in the channelized section of the chute. These results
demonstrate the danger of using a jump function in numer-
ical methods that implicitly assumes the existence of smooth
differentiable solutions, as small changes to the nature of the
jump can have a large effect on the solution.

CONCLUSIONS

The regularized Savage Hutter theory provides a well-
defined method of switching from one limiting stress state
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to another during the avalanche deformation and elimi-
nates the jumps present in the original theory. A compari-
son of the model results with a carefully controlled
laboratory experiment (V02) confirms the superiority of
the method over previous schemes.
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