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PERIODIC SOLUTIONS AND GALERKIN APPROXIMATIONS
TO THE AUTONOMOUS REACTION-DIFFUSION EQUATIONS

ARNOLD DIKANSKY

The assumption that a Galerkin equation of the reaction-diffusion system of high
order has an asymptotically orbitally stable time-periodic solution implies that the
full reaction-diffusion system has a nearby asymptotically orbitally stable time-
periodic solution with asymptotic phase.

1. INTRODUCTION

In order to compute numerically solutions to the reaction-diffusion equation the
first step is to replace the reaction-diffusion equation with a finite-dimensional Galerkin
approximation. The Galerkin equations to the reaction-diffusion equation are finite
dimensional systems which are obtained from the reaction-diffusion equation by pro-
jecting the equation on the linear space spanned by the first m eigenfunctions of the
Laplacian with corresponding boundary conditions and by truncating the remaining
parts of the solutions in nonlinear terms. It is very desirable to relate the behaviour
of solutions of the initial-boundary value problem for the reaction-diffusion equation to
the behaviour of solutions of a finite-dimensional Galerkin approximation.

For the Navier-Stokes equations Constantin, Foias and Temmam [3] showed that
if a Galerkin equation of high order, defined in terms of the Stokes operator, has an
asymptotically stable stationary solution, then there exists a nearby asymptotically
stable stationary solution to the Navier-Stokes equation. Titi [11] gave explicit appli-
cable estimates for conditions established in [3]. Kloeden [8], using Lyapunov's second
method, obtained a result similar to that of Constantin, Foias and Temam, consider-
ably simplifing their proofs. Dikansky [4, 5] obtained a similar result for the reaction-
diffusion equations using Lyapunov's second method as well as spectral properties of
linear operators. Titi [12] obtained the existence of a stable time-periodic solution to
the Navier-Stokes from the existence of a stable time-periodic solution to the Galerkin
education of sufficiently high order. In [9] Kloeden considered relations between the
existence of attractors and their stability properties for the Navier-Stokes equation and
its Galerkin approximation.
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128 A. Dikansky [2]

Our aim here is to show that the existence of an orbital stable time-periodic solution
with an asymptotic phase to a Galerkin equation of sufficiently high order for the
autonomous reaction-diffusion system implies the existence of a nearby orbital stable
time-periodic solution with an asymptotic phase to the boundary value problem for the
reaction-diffusion system. To prove this it is shown (similarly to [4]) that the projection
of a solution on the subspace QL2 , complimentary to the finite-dimensional space PL2
spanned by the first m eigenfunctions of the operator £>A with corresponding boundary
conditions, is small if m is large enough. Therefore the projection of the reaction-
diffusion equation on PL2 can be considered as a perturbed Galerkin equation. That
allows the well-developed technique for the perturbed differential equation to be used to
prove the existence of the periodic solution when the unperturbed ordinary differential
equation has a noncritical periodic solution (see [6, 10, 2]). Finally the statement on
orbital stability is proved.

2. PRELIMINARIES

Throughout this article, the following notations will be used.

Let K n denote Euclidean n-space. For v £ R", let ||u|| be any norm in R n . For
an n x n matrix A = {aij) define the norm of A, \\A\\ by ||A|| = sup ||J4.V||, where

Hl=i
v £ R n .

Consider a system of ordinary differential equations

(i) £-*•>.
Let p(t) be a periodic solution of (1) with period lit. Let z = v —p and let the matrix

with columns {dF/dvi)(p{t)) be denoted by F'(p{t)). Then

= F'(p(t))+g(t,z),

where, by theorem of the mean, g(t, z) = o(||.z||) for small ||z||. If g is omitted from
(2), we have the linear system

(3) §=F'(P(0)y,

which is called the variational equation with respect to the solution p(t). The variational
equation determines the nature of the stability of the solution p(t) of (1). According
to the Floquet theorem there exists a nonsingular transformation of variables w =
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[3] Autonomous reaction-diffusion equations 129

P(t)y which transforms the linear periodic equation (3) into an equation with constant
coefficients

,4 , * . , . .

A monodromy matrix of (3) is a nonsingular matrix C associated with a fundamental
matrix solution X(t) through the relation X(t + 2TT) = X(t)C (X(t) - P(t)eBt) . The
eigenvalues p of a monodromy matrix are called the characteristic multipliers of (3),
and any A such that p = eX2* are called characteristic exponents of (3).

If it assumed that p(t) is a periodic solution of (1), p'(t) = F(p(t)). On differen-
tiating this equation, it follows that p'(t) is a solution of the variational equation (3).
Thus the characteristic exponent associated with a solution of the linear system (3) may
be taken as zero. The solution v = p{t) may be regarded as a closed curve with t as a
parameter. If n — 1 characteristic exponents of (3) have negative real parts, then the
closed orbit is asymptotically stable in the sense that any solution of (1) which comes
near a point of the orbit tends to the orbit as t —> oo. This is called asymptotic orbital
stability.

There is a generalisation of the Floquet theory on parabolic partial differential
equations (see, for example [7]).

Let fi denote an open bounded set of Kn with boundary T. For (x, t) G Cl x R+
we consider the following reaction-diffusion system involving a vector function u —
( « i , u2, . . , . .

(5) ^ = DAu + F(u).

Here D = diag(dj, d2, ..., dN), where each dj > 0 is a constant and F: RN —> RN is
a C2-function.

Equation (5) is supplemented with an initial condition

(6) u(x, 0) = uo(x), xen

and a boundary condition of either Dirichlet type or of Neumann type

(7) Bu(x, 0 = 0, x G T, t > 0.

In the case of zero Dirichlet boundary conditions one imposes a compatibility con-
dition F(0) = 0.

A solution of the initial-boundary value problem (5), (6), (7) will be denoted by
u(x,t;u0).
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130 A. Dikansky [4]

As usual L°°(£l) will denote the space of functions defined on fl which are bounded
almost everywhere with norm |-| ioo • Let H — £2(0) be the space of square integrable
functions defined on fi with the norm |-|H.

P will be used to denote the space of continuous, 27r-periodic functions from R
into R." with the norm: ||g||0 = supt ||s(i)||, and (u, v) is the usual inner product
defined on vectors u, v € R™.

Denote by A the linear positive self-adjoint operator on H given by Au = — Au
supplemented by boundary conditions (7) with domain D(A) = {<j> € W2'2(Cl), (7) holds}.
Then A is a sectorial operator and one can define the fractional powers Aa of A, 0 ^ a
and the space Xa = D(Aa) with the graph norm \-\xa . If n < 3, 3/4 < a < 1, then
Xa C L°°{p.) with continuous inclusion:

(8) I » ( - ) I L - O K - ) I X « . v(x)exa.

Denote by P(0, 27r;Xa) the space of continuous, 27r-periodic in t functions g(x, t)
for each t belonging to Xa and equipped with the norm

IsljT",0 =suPl3(-> Olxo •
t

Since we are interested in the long-time behaviour of the solutions of (5) we modify
the nonlinearity in equation (5) near 00. Assume further that the nonlinear term F(u)

satisfies the following condition:
There is a Ri > 0 such that

(9) F(u) = 0 for |u|LOO ^ Ri.

Denote

(10) JVj = sup{|F(u)|}, N, = sup{|F'(u)|}, N3 = s u p { | F » | } .

One can then show that the initial-boundary problem for the reaction-diffusion
equation (5), (6), (7) defines a local C1'1 semigroup St on Xa defined by 5tUo =
u(t, X;UQ). For linear semigroups with generator L we shall use the exponential nota-
tion eLt. It is well known that the operator A is self-adjoint as an operator in L2(£l)
and the spectrum of A consists of an infinite sequence of eigenvalues 0 ^ Ai ^ A2 ^
Because the matrix D is diagonal, each eigenvalue of A, Ai, corresponds to N eigen-
values of the operator DA so there are N eigenvalues Aj(D), A?(D), . . . , Af(D) of
the operator DA with corresponding eigenfunctions y j ^ s ) , IP\<D(X)I ••••> Pi^oi.1)-
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[5] Autonomous reaction-diffusion equations 131

(i = 1, 2, . . . ) . Fix an integer m and denote by Pm the projection in L2(^) onto the
space spanned by the first m eigenvectors of A, and we set Qm = / — Pm. We recall
that Pm and Qm commute with DA. If u(x, t) is a solution of (5), (6), (7) we write
p = Pm, q = Qm, so that u(x, t) = p(x, i) + q(x, t). Whenever it is possible we shall
omit the index m . Let Xa — PXa © QXa. Projecting equation (5) with boundary
condition (7) on the invariant subspaces PXa and QXa, it is found that p and q are
solutions for t ^ 0 of the coupled system of equations

(11) ^

(12) ^ = DAq + QF(Pq), 9(0) = ?o = Qu0.

Here p(x, t) = (p^x, t), ..., pN(x, t)) , where pk(x, t) = £

(k = 1, 2, . . . , N), and p*(<) satisfies the following system of equations

Using the variation of constant formula for (12) we rewrite equation (12) as

(13) q(x, t) = eLtq0(x) + f eW-'^QFfr + q)]ds.
Jo

Here eLt is the linear semigroup corresponding to the problem

(14) ^ = DAv

in QXa.

From [7, Theorem 1.5.4], the estimate

(15) \eLtu{-)\xa < de-^+tW K)|Xa , u(x, t) e QXa, t > 0,

follows.

The Galerkin approximation to the reaction-diffusion equation (5) leads to the
following system of ordinary differential equations

(16) ^ = KDum + PmF(um),

(17) «m(0) =Po= u0.

It will be assumed that the Galerkin equation (16) possesses a periodic solution of period
T. To change the period T to 2TT we introduct the frequency w by setting T = 2ir/w.
After changing the independent variabe t to t/u>, the Galerkin equation (16) becomes

(18) u ; ^ = ADum + PF{um).
at
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132 A. Dikansky [6]

3. MAIN RESULT

THEOREM . For every e > 0 sufficiently small, there exists a natural number M =
M(e) such that if the Galerkin equation (18) for some m ^ M has an asymptotically
orbitally stable time-periodic solution um(t) with frequency w, um(t + 2n) = um(t),
then

(a) there exists a time-periodic solution u(x, t), with frequency u of the

boundary value problem for the reaction-diffusion equation (5), (7) such

that

(b) the solution u(x, t) is asymptotically orbitally stable with asymptotic

phase, that is if

min\uo{x)-u(x,t)\xa < p, p > 0,

then the solution through ua(x) exists for all t > 0 and, moreover, there

exists 6* > 0 such that

(20) |u(x, t;uo)-u(x, t-9*)\xa < pe"7', 7 > 0, t ^ 0.

PROOF: First consider the following linear periodic g-equation:

(21) -7^ = Aqi + f(x, t), qi(x, 0) = 9i,0(x),

where f(x, t) G -P(0, 27r; Xa), \f\Xa 0 ^ K and the constant K does not depend on

m.

Using the variation of constants formula a solution of the initial-boundary problem

(21) is represented as

,t

(22) qi(x,t) = eLtqlfi(x)+ eL{t~')f(x, s)ds.
Jo

Since the solution qi(x, t) is periodic in t with period 2TT,

(23) «!,„(*) = e"'9l,o(*) + / * eL ( 2—'/(*, »)*»•
Jo

Muliplying both sides of (23) by the inverse operator to the operator [/ — eL2*} we find

(24) qlfi(x) = [I- e"*]" 1 / e^2*—)/(*, ')ds.

https://doi.org/10.1017/S0004972700015537 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015537


[7] Autonomous reaction-diffusion equations 133

Thus taking into consideration the estimate (15) one has from (24) the following esti-

mate for 9i,o(as):

(25) \9iA-)\x- < CiKtCu

where Kx = f »-ae~'da% & = L{\m+l{D)y\
Jo

and the constant C4 does not depend on m.

From (25) taking M sufficiently large one obtains the following estimate for all

(26) l9i.o|jf« < e,

where e is a sufficiently small number.

The second term in (22) is estimated similarly. Therefore we have the following
estimate for |gi |^Q 0

 :

(27) l9ilx*,o<C5e.

Because we want to prove the existence of a periodic solution of system (11), (12)
of (unknown) period T we introduce the (unknown) frequency w by setting T = 2n/u>.
After changing the independent variable t to t/u>, system (11), (12) becomes

(28) ^

(29) ^

where now the existence of w and a periodic solution of (28), (29), of fixed period 2n

is to be proved.

Let p(t) - um(t) + (tS/u)p(i), w = w+(3, in (28). Then if w ̂  0, p, (3 satisfy the

following equation:

(30) w^ ^

where one used the assumption that w, um(t) satisfy equation (18), and the following
notations:

(31) A(t, um)w = ADwP[Fv(um(x, t))w],

(32) R(f, g, t) = PF(p + q)- PF(um) - P[Fv{um)p]
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It will be proved that for some /?*, equation (28), (29) has a periodic solution p~*(t),

q*(x,t) withp*(< + 27r) = p*(0 . q*(x,t

Define N CRxTx P(0 , 2TT; Xa), by

N = {(/?, p, q): \/3\ < S ,

where it will be required that Si < w. Define a map T on the space R x P x
P(0 , 27r ;Xa) , T((3, p, q) = {(3U p2, q2) as follows:
Given (/3, j>, q) £ N, let </!(/?, p, g ) = i?(p, q, t). Take

(33) fc = hjj(5i(/?> p> 9)(s)> Vo(s))rfs • [h C
- l

where VQ(S), \\vo\\2 = 1> denotes the unique periodic solution of the linear adjoint
equation

(34) L0~T' = ~J4*(*> um)v0-

Therefore 92\P, Pi q, Pi) = 5i(/3, P, q) — P\~r

satisfies the orthogonality condition:

, 2 *

(35) / {ga(fi, P, q, Pi)(s), vo(s))ds = 0,
Jo

which guarantees the existence of a unique periodic solution of equation (36). Let p2, q2

denote a unique periodic solution of the following linear system:

fne*\ T-r * " A i //D — O \

1*50) u/ := J\.p2 -\- Q2\0, Pj C, P i )•

(37) ^

satisfying

(38)

(39) l92|Xo,o^e.

Due to the assumption on the characteristic multipliers of the matrix A(t, um), the

orthogonality condition (35) and estimate (27), such p2, q2 exist.

It is clear that T(/3, p, q) = {0i,p2, q2) £ R x P x P(0, 2w;Xa). Now it will be

shown that (/3, p, q) £ N implies that |/3i| ^ 8\, \\p2\\0 ^ 62, \q2\x<* o ^ e- F r o m the

definition of g\ one obtains

(40) ||ffi(/3, p, g)||0 < T Z - ^ - T ( I I P I I O ) 2 + c** + =-*•
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[9] Autonomous reaction-diffusion equations 135

where due to condition (9) the constants C do not depend on m . From (33) and the

Schwartz inequality it follows that

(41) l /?i |^Cio| |<7i03,P,g) | | o -

Therefore from (38), (40) one obtains the following estimates:

(42) IAIOI,

Taking M — Af(e) large enough one has Si = ^i(e) small enough and therefore the

mapping T maps N into itself.

Now because the map T is a compact mapping of R x P x P(0, 2TT; Xa) into itself

the existence of the desired fixed point /3*, p*, q* of equation (36), (37) follows from

the Schauder theorem.

So the existence of a solution u = um + p* + q*, w = W + w* of equation (11), (12)

with estimates (19) has been proved.

It is left to show that the solution u(x, t) is asymptotically orbitally stable with

asymptotic phase. Changing the variables

applied to (5) yields

(43) ^

where

(44) g{t, 0) = 0, \

if | 2 i | ^ a , |̂ 2\x<* ^ P as p —» 0. Consider the corresponding linearised equation

(45) ^ -

Let U(t) denote the Poincare map, U(t) = W(t + T, i), W{t, s) being the evolution

operator of (45) and T the period of the solution u(x, t). Note that because u(x, t)

is the solution of the autonomous differential equation, {1} is a spectral set of the

spectrum a{U{t)). By results of [7] we have the decomposition Xa = Xi(t) ® X2{t),

where X\(t) = span{u(z, <)} and

(46) a(U(t)) Ul( t )= a = {1}, a(U(t)) \Xj{t)= a(U(t)) - au

Xi(t), X2(t) are invariant and if t ^ s we have W(t, s): Xi(s) = Xi(t), is one-to-one

and onto.
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Consider equation (45) on X2:

(47) ^-=DAu2+F'{u(x,t))u2.

Projecting equation (47) on the subspaces PmX2, QmX2 one has the following system

of equations

(48) ^-=ADp2+P[F'(u)(p2(x,t) + q2(x,t))}, p2(O)=p2,o,
at

(49) ^=Aq2 + Q[Fl(u)(p2(x,t) + q2(x,t))}, q2(0) = q2,0.

Using the variation formula for equation (49) and estimate (15) one deduces the
following estimate

+ C,N2 f (t - ,)-e-Wd»(*-> i^^ s)
Jo

Defining for 0 < a < Xm+i(D)

from (21) for q(t) one deduces the estimate

q(t) ^ C1e-(*«+^D)-»)^(0)

(51) + C,N2 m1'2 Jl (t - s)-ae-(

+ kCxN2 |n|1/2 eat [\t - s)-a

Jo

where P2{t) — sup ||p2(s)||. Therefore from (51) for

q(t) = sup q(s)

one obtains for 0 ̂  3 ^ t that

(52) q(t) ̂  C1e(A-+i(d>-")<g(0) + <!,(<) + (,2e
atp2{t),

where K2 = I s~ae \ A m+l ( D ) / ds,
Jo

7|1/2 (Am+1(X>))a-\

| 1 / 2 (Xm+1(D))a-\
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[11] Autonomous reaction-diffusion equations 137

Inequality (52) implies that

(53)

Therefore

(54) | f t ( . , t)\
x .

if £i < 1. So taking M large enough £i and £2 will be small enough and from (54)
one deduces the estimate

(55) \q2{; t)\xa < C^e""1 |ft,o(-)lx« + C

where 77 = O(A^^a(.D)) is sufficiently small when M is large enough.

We rewrite equation (48) as

(56) ^
(0) =P2,0

Let X(t) be the fundamental matrix solution of the linearised Galerkin equation:

(57) ^ p i = ADum,2 + P[F'(um)um,2}.
at

The Floquet representation for the linearised Galerkin operator implies X(t) = Y(t)eBt,
where all eigenvalues of the constant matrix B have negative real parts, and Y(t) is a
periodic nonsingular matrix with ||y(<)||, lly"1^)!! ^ C14. Due to (19) the constant
C14 does not depend on m for all m ^ M. Furthermore, the transformation p2 —
Y(t)p2 apphed to (56) yields

(58) ^f = BP2 + Y-'itttPWW ~ F'(um))Y(t)p2] + P[F'(u)g2]}

with KSp(B) ^ 7 1 > 0 .

Because of (19) one has

(59) \\F'(u)-F'(um)\\^N3\n\1/2e.

Applying the variation of constants formula for the equation

dv
— = Bv
dt
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to (58), and taking into consideration (55) one has

(60) ||pa(t)|| < Clse-^ ||pli0|| + eC16 f e - ^ * - > \\p2{s)\\ ds
Jo

+ C17 f e~^t-'>\q2(;3)\xad3.
Jo

From standard considerations on small perturbations of the resolvent (see for ex-
ample, the proof of Theorem 1.3.2 in [7]) it follows that the constant Cis (and therefore
all other constants in (60)) does not depend on m, m ̂  M. From (55) and (60) for

«(«) =' sup e*'1 ||p2(<)|| , (0 < a2 < crx < 7 l ) .

one obtains the estimate

(61) w(t) ̂  C15e~^ -*»)*w(0) + (3K3u,(t) + Cue~^ ~^K3 | f t i 0(-) | *a,

with 3̂ small enough when e is small enough and M is large enough, and

K» = [°°e'^-^'ds.
Jo

Because 3̂ is small enough inequality (61) implies that

(62) | |p 2 (*)K<? 1 9 e-<^M-,0) | x , , .

Substituting (62) in (55) we get

(63) \g2(; OIJC- < C2oe-^ |u2(-, 0 ) | x . .

Finally from (62) and (63) we have

(64) M - , t)\xa < Cne-»* M - , 0 ) | x . , 7s > 0.

Therefore we have the estimates for vi G X2

(65) \W(t, s)v2\xa ^ Cne-nl*-* \v2\xa , C,2(t - ^ " e " 1 " 1 1 " ' 1 \v\H ,

where 72 > 0. From (65) it also follows that the Poincare map W has only one
characteristic multiplier equal to 1 and all other characteristic multipliers have modulus
less than 1 (characteristic exponents have negative real parts).
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Also, for Vi £ Xi(s), there is C23 such that we have the estimate

(66) \W(t, a)Vl \ x . ^ Cne-1*1'-) ||«i | | , a 2 t,

with 74 > 0. This estimate follows from the finite dimensionality of Xi(s).

We define the following map z —* G{z) by

(67) (Gz)(t) = W(t, 0)a + / W(t, s)E2(s)g(s, z(a))da
J

- f°° W{t, s)E1(s)g(s, z(s))ds
Jt

where Ei, E2 are the projections associated with Xi(s),

Choosing p > 0 so small that

(68)
• " \74

with ei > 0 small enough, the map z —» G(z) is a contraction on the Banach space of
continuous maps z: (0, oo) —> Xa equipped with the norm

1*1. a =
t>o

provided o £ ^ ( 0 ) , W\x<* ^ P/C24 • Let z*(x, t;d) be the unique fixed point of the
above contraction. Then clearly u*(x, t;a) = u(x, t) + z*(x, t;a) is a solution of the
differential system (5). To prove estimate (20) it will be shown that all solutions near
u* are given in the above form. Following [1] the implicit function theorem will be a
tool.

Given a solution of (5), (6) if the initial function b(x) is sufficiently close to uo(x)

then the solution with u(T, b) = b, t > T exists on the interval [0, 2T]. We shall show
the existence of 6* > 0 and a* £ X2, with |0*| and la'l^-a small enough, such that

(69) u{x, 0*;b) =u*(x, 0;a*), t ^ 0*.

and therefore

\u(x,t;uo)-u(x,t-e*)\xa £pe-T*, 7 > 0.

Let

H(8, a; b) = u(x, B; b) - z'(x, 0; a) + 0 - u(x, t) - 6u't(x, 0).

Then (69) is equivalent to

(70) a - 6u't{x, 0) = H{6, a; b).
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Let

G(0, a;b) = a- 9ut{x, 0) - H(0, a; b).

Then

dG _ (u't(x,0) 0
(a,6)~\ 0 I2d(

is an isomorphism.

Applying the implicit function theorem yields the claimed statement. The theorem
has been proved. D
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