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An analytical theory is presented for linear, local, short-wavelength instabilities in swirling
flows, in which axial shear, differential rotation, radial thermal stratification, viscosity and
thermal diffusivity are all taken into account. A geometrical optics approach is applied
to the Navier–Stokes equations, coupled with the energy equation, leading to a set of
amplitude transport equations. From these, a dispersion relation is derived, capturing
two distinct types of instability: a stationary centrifugal instability and an oscillatory,
visco-diffusive McIntyre instability. Instability regions corresponding to different axial
or azimuthal wavenumbers are found to possess envelopes in the plane of physical
parameters, which are explicitly determined using the discriminants of polynomials. As
these envelopes are shown to bound the union of instability regions associated with
particular wavenumbers, it is concluded that the envelopes correspond to curves of
critical values of physical parameters, thereby providing compact, closed-form criteria
for the onset of instability. The derived analytical criteria are validated for swirling
flows modelled by a cylindrical, differentially rotating annulus with axial flow induced
by either a sliding inner cylinder, an axial pressure gradient or a radial temperature
gradient combined with vertical gravity. These criteria unify and extend, to viscous
and thermodiffusive differentially heated swirling flows, the Rayleigh criterion for
centrifugally driven instabilities, the Ludwieg–Eckhoff–Leibovich–Stewartson criterion
for isothermal swirling flows and the Goldreich–Schubert–Fricke criterion for non-
isothermal azimuthal flows. Additionally, they predict oscillatory modes in swirling,
differentially heated, visco-diffusive flows, thereby generalising the McIntyre instability
criterion to these systems.
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1. Introduction
The stability of swirling flows and their transition to turbulence represent a significant
scientific challenge due to their occurrence in diverse natural and industrial settings.

These flows appear in natural phenomena such as tropical cyclones and tornadoes
(Emanuel 1984, 2018), rotating convection (Lappa 2012; Oruba et al. 2017; Horn &
Aurnou 2018; Oruba et al. 2018; Castano, Navarro & Herrero 2021; Soward et al. 2022),
swirling vortex rings (Lifschitz & Hameiri 1993; Hattori & Hijiya 2010), meandering
rivers (Park & Ahn 2019) and astrophysical flows, including magnetic tornadoes in the
solar atmosphere (Knobloch & Spruit 1982; Busse & Pesch 2006; Wedemeyer-Böhm et al.
2012; Lopez et al. 2013; Tziotziou et al. 2023).

In engineering applications, swirling flows develop behind aircraft wingtips as trailing
vortices (Eckhoff & Storesletten 1978; Leibovich & Stewartson 1983; Eckhoff 1984;
Lucca-Negro & O’Doherty 2001; Di Pierro & Abid 2010; Billant & Gallaire 2013;
Feys & Maslowe 2016) and play a crucial role in industrial processes such as combustion
(Candel et al. 2014), isotope separation via centrifugation (Lamarsh 2017), cooling and
lubrication of rotating machinery (Kreith 1969; Lee & Minkowycz 1989; Fénot et al. 2011;
Seibold et al. 2022), wastewater purification (Ollis et al. 1991), everyday piping systems
and physiological flows (Ault et al. 2016; Baratchi et al. 2020), oil drilling operations
(MacAndrew et al. 1993), metal solidification (Vivès 1988) and crystal growth (Dhanaraj
et al. 2010).

Hydrodynamic modelling describes swirling flows as a result of the combined effects of
rotation and shear in two orthogonal directions (e.g. azimuthal and axial in cylindrical
geometry). Swirling flows can occur either in confined configurations common in
engineering applications (e.g. heat transfer systems, motor turbines, etc.) or in open
geometries typical of natural phenomena such as atmospheric flows.

The circular Couette flow (CCF), in which two coaxial cylinders can rotate
independently, is the simplest system for experimental and theoretical studies of swirling
flows (Hollerbach et al. 2023; Lueptow et al. 2023). Axial flow in this system can be
induced by various mechanisms, including the sliding motion of the inner cylinder, as in
sliding Couette flow (Deguchi & Nagata 2011); an external pressure gradient, as in annular
Poiseuille flow (Heaton 2008b; Masuda et al. 2008); or a radial temperature gradient
combined with axial gravity, as in baroclinic convection (Bahloul et al. 2000; Lepiller
et al. 2007; Wang & Chen 2022). These mechanisms yield the following different variants
of CCF with axial flow that replicate swirling flows.

(i) Spiral Couette flow (SCF): where axial flow is driven by inner-cylinder sliding
(Ludwieg 1960, 1964; Ng & Turner 1982; Ali & Weidman 1993; Meseguer &
Marques 2000).

(ii) Spiral Poiseuille flow (SPF): where axial flow is induced by an external pressure
gradient (Takeuchi & Jankowski 1981; Wereley & Lueptow 1999; Meseguer &
Marques 2002, Cotrell & Pearlstein 2004; Cotrell & McFadden 2005; Meseguer &
Marques 2005; Brockmann et al. 2023).

(iii) Baroclinic Couette flow (BCF): where a radial temperature gradient and axial gravity
cause baroclinic convection (Snyder & Karlsson 1964; Ali & Weidman 1990; Lepiller
et al. 2008; Yoshikawa et al. 2013; Guillerm et al. 2015; Kang et al. 2015, 2023).

Note that in short Couette–Taylor cells and rotating cylindrical tanks, Ekman pumping
induced by stationary or rotating endwalls can generate a secondary axial flow in the
sidewall Stewartson boundary layer, which in turn gives rise to a spiralling motion within
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this region (Hart & Kittelman 1996; Lopez & Marques 2010); see also Gelfgat et al. (1996)
and Vishnu & Sameen (2020). In the present study, however, we focus on Couette–Taylor
cells with an infinite aspect ratio.

The stability of CCF has been extensively studied experimentally, theoretically and
numerically (Hollerbach et al. 2023; Lueptow et al. 2023), as it provides a well-controlled
system for investigating the onset of turbulence. Rayleigh’s inviscid stability criterion
states that a flow with curved streamlines becomes unstable if angular momentum
decreases outward. However, this criterion must be supplemented by linear stability
analysis to account for viscosity and determine the instability threshold as a function of
the radii ratio and the relative rotation velocities of the cylinders (Chandrasekhar 1961).
Additionally, axial flows in a stationary cylindrical annulus are susceptible to wall-driven
shear instabilities, with thresholds that depend on the radii ratio (Bahloul et al. 2000;
Lepiller et al. 2007; Masuda et al. 2008; Heaton 2008b; Deguchi & Nagata 2011; Wang &
Chen 2022).

The presence of a radial temperature gradient and thermal diffusion introduces new
destabilisation mechanisms in differentially rotating azimuthal flows, such as CCF.
These include the visco-thermodiffusive extension of Rayleigh’s centrifugal instability,
known as the Goldreich–Schubert–Fricke (GSF) instability (Acheson & Gibbons 1978;
Maeder et al. 2013; Kirillov & Mutabazi 2017; Dymott et al. 2023), and the visco-
thermodiffusive oscillatory McIntyre instability (McIntyre 1970; Labarbe & Kirillov
2021). Both instabilities can destabilise Rayleigh-stable flows, including quasi-Keplerian
ones, depending on the Prandtl number and the direction of heating (Kirillov & Mutabazi
2017; Meyer et al. 2021).

A radial temperature gradient naturally arises in many applications of swirling flows.
For example, recent simulations (Oruba et al. 2017) of rotating convection between
two differentially heated horizontal plates in a shallow cylindrical domain revealed the
formation of a vertical swirling base flow with a naturally developed hot core and an
outward radial temperature gradient, consistent with observations of tropical cyclones
(Emanuel 2018). In such non-isothermal visco-thermodiffusive swirling flows, all the
previously mentioned linear instabilities may be present, along with algebraically growing
and spatio-temporal instabilities (Eckhoff & Storesletten 1978; Gallaire & Chomaz
2003a,b; Heaton & Peake 2006; Heaton 2008a; Martinand et al. 2009) and nonlinear
effects (Szeri & Holmes 1988), potentially leading to complex new interactions.

For isothermal, inviscid, incompressible swirling flows, the following three general
analytical criteria for stationary centrifugal instability have been developed in the
literature.

(i) The Ludwieg criterion for SCF in the narrow-gap limit (Ludwieg 1960, 1964).
(ii) The Leibovich-Stewartson criterion for swirling jets (Leibovich & Stewartson 1983).

(iii) The Eckhoff criterion, derived using a local geometrical optics approach (Eckhoff
1984).

The equivalence between the local and global approaches leading to these instability
conditions – commonly referred to as the Ludwieg–Eckhoff–Leibovich–Stewartson
(LELS) criterion – was formally established by Leblanc & Le Duc (2005). Emanuel
(1984) rederived the LELS criterion by identifying a plane that locally contains all the
velocity shear relative to a rotating coordinate system and performing computations in
the resulting helical coordinate system. In a later experimental study, Hart & Kittelman
(1996) used physical arguments to justify a result similar to that of Emanuel (1984), in
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the context of centrifugal instability of the helical secondary flow within the Stewartson
sidewall boundary layer in a rotating cylinder with a more rapidly corotating upper lid.

However, the LELS criterion applies only to isothermal, non-stratified and inviscid
swirling flows. In particular, by this reason it does not capture, e.g. the folded neutral
stability surface observed in SCF and SPF through numerical linear stability analysis
by Meseguer & Marques (2000, 2002, 2005), nor does it account for non-isothermal
(Cotrell & McFadden 2005; Yoshikawa et al. 2013) or stratification (Yavneh et al. 2001;
Di Pierro & Abid 2010) effects. Thus, similar to the case of rotating plane shear flows
(Oxley & Kerswell 2024), there is a strong need for a unified theory of instabilities in
swirling flows that incorporates axial shear, differential rotation, thermal stratification,
viscosity and thermal diffusion and aligns with numerical and experimental results.

The present work is a comprehensive theoretical investigation of both isothermal and
non-isothermal viscous and thermodiffusive swirling flows; it presents general criteria
of instability in analytical form. It provides the complete development of our recent
brief communication (Kirillov & Mutabazi 2024), which focused solely on centrifugal
instability. More importantly, in the present work we extend this analytical approach
to identify the conditions for oscillatory visco-thermodiffusive McIntyre instability in
non-isothermal swirling flows.

The methodology of this study is based on the local geometrical optics approach,
initially introduced in hydrodynamics for inviscid flows (Eckhoff & Storesletten 1978;
Friedlander & Vishik 1991; Lifschitz & Hameiri 1991, 1993; Mathur et al. 2014; Ionescu-
Kruse 2017) and later extended to visco-diffusive flows (Kirillov & Stefani 2013; Kirillov
et al. 2014; Kirillov 2017, 2021, 2025; Kirillov & Mutabazi 2017, 2024; Labarbe & Kirillov
2021) and to multiple-diffusive flows (Singh & Mathur 2019, 2021; Vidal et al. 2019). We
apply this approach to helical stationary solutions of the Navier–Stokes equations coupled
with the energy equation in the Boussinesq–Oberbeck approximation, which – depending
on boundary conditions – represent SCF, SPF or BCF.

We establish that the neutral stability curves in the plane spanned by the azimuthal
and axial Reynolds numbers – corresponding to both stationary (for isothermal and non-
isothermal flows) and oscillatory (for non-isothermal flows only) instabilities – form
families that possess envelopes, regardless of whether they are parameterised by the
azimuthal or axial wavenumber. Since the axial wavenumber can take any real value,
these envelopes define the boundaries of the unions of individual stationary and oscillatory
instability domains for specific values of wavenumbers.

We find that the envelopes, and thus, the instability domains, undergo splitting during
the transition from Rayleigh-unstable to Rayleigh-stable flows. Notably, this splitting
occurs at different Rossby number values for stationary and oscillatory instabilities of
non-isothermal flows. This discrepancy offers a predictive tool for determining whether
stationary or oscillatory instability will dominate in a visco-thermodiffusive swirling flow.

For Rayleigh-stable flows, as the azimuthal Reynolds number approaches infinity, an
asymptotic line to the envelope of stationary instability domains corresponds to the
inviscid LELS criterion for isothermal flows and provides an analytical expression for
the unified LELS-GSF criterion in non-isothermal flows. In the isothermal case, we derive
a compact closed-form expression for the envelope, extending the inviscid LELS criterion
to viscous swirling flows and broadening its applicability across a wide range of azimuthal
Reynolds numbers, from infinity to small but finite values. For non-isothermal flows, we
establish explicit equations that define the asymptotic lines of the instability domains,
offering a complete characterisation of their boundaries.

The paper is organised as follows. In § 2 we present the dimensionless nonlinear
equations governing swirling flows in the Boussinesq–Oberbeck approximation, identify
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Figure 1. The helical base state as a superposition of the CCF vB(R) and an axial annular flow wB(R) in a
differentially heated infinitely long cylindrical annulus.

three main helical base states (detailed in Appendix A), and derive the linearised
equations about these base states. Section 3 develops the geometrical optics asymptotic
solution to the linearised equations, leading to the amplitude transport equations for the
localised wavepacket evolving along the helical streamlines and the eikonal equation for
its wavevector. In § 4 we derive the dispersion relation and demonstrate its connection to
previous works in Appendix B. Section 5 introduces the new instability criteria, applying
them to viscous isothermal swirling flows in § 5.1 and to visco-thermodiffusive non-
isothermal swirling flows in § 5.2. Appendix C establishes the connection between our
results and the classical inviscid LELS criterion. Appendix D relates our results to the
criterion of Di Pierro & Abid (2010) for centrifugal instability in an inviscid swirling
flow with radial density stratification but without mass diffusivity. Finally, § 6 presents the
conclusions.

2. Mathematical setting

2.1. Nonlinear governing equations
We consider an incompressible Newtonian fluid with constant reference density ρ as well
as constant thermal expansion coefficient α, kinematic viscosity ν and thermal diffusivity
κ . This fluid is confined within an infinitely long cylindrical annulus with a gap width d =
R2 − R1, where R1 is the radius of the inner cylinder at temperature T1, rotating with an-
gular velocity Ω1, and R2 is the radius of the outer cylinder at temperature T2 = T1 − �T ,
rotating with angular velocity Ω2; see figure 1. We denote the ratios of radii and angular
velocities as

η = R1

R2
, μ = Ω2

Ω1
. (2.1)

The system is subjected to a uniform gravity field with acceleration g along the Z axis of
the cylindrical coordinates (R, ϕ, Z), which aligns with the common rotation axis of the
cylinders (figure 1).

We choose V0 = Ω1 R1 as the velocity scale, d as the length scale, d/V0 as the time
scale and ρV 2

0 as the pressure scale. Under the Boussinesq–Oberbeck approximation, in
which fluid properties are assumed constant except for density, which varies linearly with
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temperature in the driving forces, the dimensionless governing equations can be written as

∇·u = 0, (2.2a)

du
dt

+ ∇ p − 1
Re

∇2u +
(

γ
v2

r
er − Riez

)
θ = 0, (2.2b)

dθ

dt
− 1

RePr
∇2θ = 0, (2.2c)

where d/dt = ∂/∂t + u·∇, r = R/d and z = Z/d. Here, p is the pressure, u = (u, v, w)

is the velocity field and θ = (T − T2)/�T represents the temperature deviation from the
reference temperature T2. The parameter γ = α�T > 0 corresponds to outward heating
(T1 > T2), while γ < 0 corresponds to inward heating (T1 < T2). The velocity field satisfies
the no-slip boundary conditions at the surfaces of the cylinders.

The last two terms on the left-hand side of (2.2b) represent the centrifugal buoyancy
(γ (v2/r)er ) and Archimedean buoyancy (−Riez), respectively.

The dimensionless control parameters in (2.2) are defined as

Re = V0d

ν
, Pr = ν

κ
, S = V0

W0
, Ri = WT

W0

1
SRe

, (2.3)

where Re is the Reynolds number associated with the rotation of the inner cylinder, Pr
is the Prandtl number, W0 is the characteristic axial velocity of the flow, S is the swirl
parameter (Ali & Weidman 1990, 1993) and Ri is the Richardson number. The Richardson
number is defined using the characteristic thermal velocity (Choi & Korpela 1980):

WT = γ gd2

ν
. (2.4)

Using WT , we can also introduce the Grashof number (Gr ), which characterises the
strength of the baroclinic flow:

Gr = WT d

ν
. (2.5)

It is worth noting that if W0 = WT then S = Re/Gr , and consequently, the Richardson and
Grashof numbers are related as

Ri = 1
SRe

= Gr

Re2 . (2.6)

2.2. Helical base state
In an infinitely long cylindrical annulus, the base flow is a steady helical flow, invariant in
both the azimuthal and axial directions. The temperature and velocity field depend only on
the radial coordinate r , while the pressure varies with both r and z (Kirillov & Mutabazi
2024):

uB(r) = (0, V (r), S−1W (r)), θB(r) = Θ(r), pB(r, z) = p1(r) + zp2. (2.7a,b,c)

Explicit expressions for the radial distributions of temperature Θ(r), azimuthal velocity
V (r), axial velocity W (r) and the characteristic axial velocity W0 for various particular
helical base flows – including isothermal and non-isothermal cases, such as SCF, SPF and
BCF – are derived in Appendix A. Table 1 presents the base state profiles and their values
at the dimensionless geometric mean radius rg (A4).
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Flow Base state profile Values at rg = √
η/(1 − η)

CCF
V (r) = η

1+η

(
1−μ

(1−η)2
1
r − η2−μ

η2 r

)
Ωg =

(
V
r

)
rg

= 1−η
η

η+μ
1+η

, Rog = − η
η+μ

1−μ
1−η

BCF
V (r) = η

1+η

(
1−μ

(1−η)2
1
r − η2−μ

η2 r

)

W (r) = C1

[(
r2
2 − r2

1

) ln(r/r2)

ln η
+ r2 − r2

2

]
−
(

r2 − r2
1

) ln(r/r2)

4 ln η

C1 =
(

1−3η2
)(

1−η2
)
−4η4 ln η

16

((
1−η2

)2+
(

1−η4
)

ln η

)
Θ(r) = ln[r(1−η)]

ln η

Wg = 4η
(
η2+η+1

)
ln η−

(
η2+4η+1

)(
η2−1

)
32
(
η2−1

)(
η2 ln η−η2+ln η+1

)
DWg = −4η

(
η4+1

)
(ln η)2+2η

(
η2−1

)(
3η2−2η+3

)
ln η

16
√

η(1−η)2(1+η)
((

η2+1
)

ln η−η2+1
)

ln η

+
(
η2−4η+1

)(
1−η2

)2

16
√

η(1−η)2(1+η)
((

η2+1
)

ln η−η2+1
)

ln η

Θg = 1
2 , DΘg = 1−η√

η ln η

SCF
V (r) = η

1+η

(
1−μ

(1−η)2
1
r − η2−μ

η2 r

)
W (r) = 1+C2(1+η)

ln η
ln
(

r
r2

)
+ C2(1 − η)

(
r2 − r2

2

)
C2 = − 2η2 ln η+1−η2

(1+η)
[(

1+η2
)

ln η+1−η2
]

C2 = 0 : Wg = 1
2 , DWg = 1−η√

η ln η

C2 �= 0 : Wg =
(

1−η3+3η2+η
)

ln η+2
(

1−η2
)

2
[(

1+η2
)

ln η+1−η2
]
(1+η)

DWg =
(
η2−1

)(
η2+2η−1

)
−4η3 ln η[(

1+η2
)

ln η+1−η2
]
(1+η)

√
η

SPF
V (r) = η

1+η

(
1−μ

(1−η)2
1
r − η2−μ

η2 r

)
W (r) = 2(1−η)2 ln η

η2−
(
η2+1

)
ln η−1

[
r2 − r2

2 + 1
ln η

1+η
1−η

ln
(

r
r2

)]
Wg = (1−η)2 ln η

(1+η2) ln η+1−η2

DWg = 2
(
η2−2η ln η−1

)
(1−η)[(

1+η2
)

ln η+1−η2
]√

η

Table 1. Expressions of base flow in cylindrical annulus and their values evaluated at the geometric mean
radius rg = √

r1r2, where r1 = η/(1 − η) and r2 = 1/(1 − η), for CCF, BCF, SCF and SPF.

2.3. Linearisation
To test the stability of the base state (2.7), we introduce small three-dimensional
perturbations (u′, p′, θ ′) and linearise the nonlinear equations (2.2) about the base state
and write the linearised equations in the matrix form (Kirillov 2017, 2021)(

∂t + U + 2V
r γΘer eT

ϕ + uB·∇ − 1
Re∇2 γ V 2

r er − Riez

(∇Θ)T ∂t + uB·∇ − 1
RePr∇2

)(
u′
θ ′
)

= −
( ∇ p′

0

)
,

(2.8)
where u′ is subject to the incompressibility constraint

∇·u′ = 0. (2.9)

The gradients of the base state are given by (Kirillov & Mutabazi 2024)

U = ∇uB =
⎛⎝ 0 −Ω 0

(1 + 2Ro)Ω 0 0
1
S DW 0 0

⎞⎠, ∇Θ =
⎛⎝ DΘ

0
0

⎞⎠, (2.10)

with D = d/dr , Ω = V/r and the Rossby number defined as (Kirillov & Stefani 2013)

Ro = r DΩ

2Ω
. (2.11)
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The perturbations must vanish at the boundaries of the cylindrical annulus; that is, u′ =
0 and θ ′ = 0 at both r = r1 and r = r2. However, these boundary conditions are not applied
in the analysis that follows, as we restrict our attention to local instabilities.

3. Geometrical optics equations
Using a small parameter 0 < ε � 1, we represent the perturbations as asymptotic
expansions (Eckhoff & Storesletten 1978; Friedlander & Vishik 1991; Lifschitz & Hameiri
1991):

u′ = (
u(0)(x, t)+εu(1)(x, t)

)
e

iΦ(x,t)
ε + εu(r)(x, t, ε) + c.c.,

θ ′ = (
θ(0)(x, t)+εθ(1)(x, t)

)
e

iΦ(x,t)
ε + εθ(r)(x, t, ε) + c.c.,

p′ = (
p(0)(x, t)+εp(1)(x, t)

)
e

iΦ(x,t)
ε + εp(r)(x, t, ε) + c.c. (3.1)

Here, i = √−1 and Φ is generally a complex-valued scalar function representing the
phase of the wave or the eikonal. The quantities u(i), θ(i) and p(i), for i = 0, 1, 2, . . ., are
complex amplitudes, and the complex remainder terms u(r), θ(r) and p(r) are assumed to
be uniformly bounded in ε over any fixed time interval. The notation c.c. denotes complex
conjugate terms, included to ensure that the expansions are real-valued, consistent with
the real-valued nature of the primed quantities on the left-hand side.

Maslov (1986) observed that high-frequency oscillations exp(iε−1Φ(x, t)) quickly die
out because of viscosity unless one assumes a quadratic dependency of viscosity and
diffusivity on the small parameter ε: ν = ε2̂ν and κ = ε2κ̂ . Hence, following Maslov
(1986), we have Re = ε−2R̂e; see also Lagnado et al. (1984), Craik & Criminale (1986),
Leblanc (2003).

With the assumptions made, substitution of the asymptotic series into the
incompressibility condition (2.9) and collection of terms of the order ε−1 and ε0 yield

ε−1 : u(0)·∇Φ = 0, (3.2)

ε0 : ∇·u(0) + iu(1)·∇Φ = 0. (3.3)
A similar procedure applied to the linearised Navier–Stokes and energy equations (2.8)

yields the two systems of equations

ε−1 :
⎛⎜⎝ ∂Φ

∂t
+ uB·∇Φ 0

0
∂Φ

∂t
+ uB·∇Φ

⎞⎟⎠( u(0)

θ (0)

)
= −p(0)

( ∇Φ

0

)
, (3.4a)

ε0 : i

⎛⎜⎝ ∂Φ

∂t
+ uB·∇Φ 0

0
∂Φ

∂t
+ uB·∇Φ

⎞⎟⎠( u(1)

θ (1)

)
= −ip(1)

( ∇Φ

0

)

−

⎛⎜⎜⎜⎝
d
dt

+ U + 1
R̂e

(∇Φ)2 0

0
d
dt

+ 1

R̂ePr
(∇Φ)2

⎞⎟⎟⎟⎠
(

u(0)

θ (0)

)

−
⎛⎝ 2V

r
γΘer eT

ϕ γ
V 2

r
er − Riez

(∇Θ)T 0

⎞⎠( u(0)

θ (0)

)
−
( ∇ p(0)

0

)
, (3.4b)

where d/dt = ∂/∂t + uB·∇.
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Taking the dot product of the first of the equations in the system (3.4a) with ∇Φ under
the constraint (3.2), we find that, for ∇Φ �= 0,

p(0) = 0. (3.5)

Under the condition (3.5) the system (3.4a) has a non-trivial solution if the determinant of
the 4 × 4 matrix on its left-hand side is vanishing. This gives us a four-fold characteristic
root corresponding to the Hamilton–Jacobi equation

∂Φ

∂t
+ uB·∇Φ = 0, (3.6)

with the initial data Φ(x, 0) = Φ0(x). Taking the gradient of (3.6) yields the eikonal
equation

d
dt

∇Φ = −∇uB·∇Φ = −UT ∇Φ (3.7)

with the initial condition ∇Φ(x, 0) = ∇Φ0(x), where UT denotes the transposed 3 × 3
matrix U defined by (2.10).

Relations (3.6) and (3.7) allow us to reduce the system (3.4b) to(
d
dt

+ U + 1
R̂e

(∇Φ)2 I + 2V

r
γΘer eT

ϕ

)
u(0) +

(
γ

V 2

r
er − Riez

)
θ(0) = −i∇Φp(1),

(3.8a)

(∇Θ)T u(0) +
(

d
dt

+ 1
R̂ePr

(∇Φ)2
)

θ(0) = 0, (3.8b)

where I is the 3 × 3 identity matrix, er eT
ϕ is a 3 × 3 matrix and (∇Θ)T u(0) = ∇Θ·u(0).

Multiplying (3.8a) with the vector ∇Φ from the left and taking into account the
relation (3.2), we isolate the pressure term

p(1) = i
∇Φ

(∇Φ)2 ·
[(

d
dt

+ U + 2V

r
γΘer eT

ϕ

)
u(0) +

(
γ

V 2

r
er − Riez

)
θ(0)

]
. (3.9)

Taking into account the identity

d
dt

(∇Φ·u(0)
)= d∇Φ

dt
·u(0) + ∇Φ·du(0)

dt
= 0 (3.10)

we modify (3.9) in the following way:

p(1) = i
∇Φ

(∇Φ)2 ·
[(

U + 2V

r
γΘer eT

ϕ

)
u(0) +

(
γ

V 2

r
er − Riez

)
θ(0)

]
− i

1
(∇Φ)2

d∇Φ

dt
·u(0). (3.11)

Now using the eikonal equation (3.7) we transform the last term in (3.11) to obtain

p(1) = i
2V

r
γΘ

(∇Φ)T er eT
ϕ

(∇Φ)2 u(0) + i
(

γ
V 2

r

(∇Φ)T er

(∇Φ)2 − Ri
(∇Φ)T ez

(∇Φ)2

)
θ(0)

+ 2i
(∇Φ)TU
(∇Φ)2 u(0). (3.12)

Substituting (3.12) into (3.8a) we finally arrive at the transport equations for the leading-
order amplitudes u(0) and θ(0) of the localised wavepacket moving along the streamlines
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of the base flow written in the stationary frame (Kirillov & Mutabazi 2024):

du(0)

dt
+ |k|2

R̂e
u(0) = −

(
I − kkT

|k|2
)(

γ
V 2

r
er − Riez

)
θ(0)

−
(
I − 2

kkT

|k|2
)
Uu(0) − 2γΘΩ

(
I − kkT

|k|2
)

er eT
ϕ u(0),

dθ(0)

dt
+ |k|2

R̂ePr
θ(0) = − (∇Θ)T u(0). (3.13)

Here kkT is a 3 × 3 matrix and we denote the wavenumber of the perturbations as
k = ∇Φ. In this notation the eikonal equation (3.6) determines evolution of the wavevector
in the stationary frame

dk
dt

= −UT k (3.14)

under the constraint (following from (3.2))

k·u(0) = 0. (3.15)

Note that the equations (3.13) differ from the amplitude equations derived earlier in
Kirillov & Mutabazi 2017 by the Archimedean buoyancy term −Riez and the term
S−1 DW in the matrix U .

4. Dispersion relation
The derivative ∂k/∂t of the wavevector k = (kr , kϕ, kz) in the frame of the wavepacket,
rotating about the vertical axis with the angular velocity Ω is related to the derivative of
this vector in the stationary frame as (Eckhardt & Yao 1995)

dk
dt

= ∂k
∂t

+J k, J =
⎛⎝ 0 −Ω 0

Ω 0 0
0 0 0

⎞⎠. (4.1)

Taking into account (4.1) in (3.14), we get

∂k
∂t

=
⎛⎝ 0 −2ΩRo −S−1 DW

0 0 0
0 0 0

⎞⎠⎛⎝ kr
kϕ

kz

⎞⎠. (4.2)

Under the condition (Eckhoff & Storesletten 1978; Leibovich & Stewartson 1983; Emanuel
1984)

kϕ = −DW kz, with DW = DW

2Ω RoS
, (4.3a,b)

the components of the wavevector k are time-independent in the rotating frame:
kr = const., kϕ = const., kz = const. Note that, since the vorticity of the helical base
flow (2.7a) has two components, ωB = (0, −S−1 DW, 2Ω(1 + Ro)), we can conclude
from (4.3) that the azimuthal wavenumber of the perturbations is linked to their axial
wavenumber through the azimuthal vorticity component (−S−1 DW ) of the base flow.
These perturbations exhibit helical symmetry (Emanuel 1984), remaining invariant along
circular helices with a pitch of 2πr DW , and correspond to the most unstable and

1018 A47-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10518


Journal of Fluid Mechanics

exponentially growing three-dimensional perturbations, as demonstrated in the works of
Eckhoff & Storesletten (1978), Leibovich & Stewartson (1983), Eckhoff (1984), Billant &
Gallaire (2013).

Note that perturbations violating the constraint (4.3) were shown already by Eckhoff &
Storesletten (1978) to grow algebraically and to be weaker than those satisfying the
constraint. For this reason, the former have been a less popular subject of investigation
in the context of swirling flows; however, see the works of Heaton & Peake (2006),
Di Pierro & Abid (2010) for more details on this subject. These weaker instabilities also
lie outside the scope of the present paper.

Under the condition (4.3) the amplitude equations (3.13) are autonomous in the
rotating frame. Following the standard procedure (see, e.g. Eckhardt & Yao (1995) and
Friedlander & Vishik 1995) we write explicitly the material derivative d/dt = ∂/∂t +
uB·∇ on the left-hand side of equations (3.13) and explicitly compute their right-hand
side, exploiting the relation

|k|2 = k2
r + k2

z

[
1 + DW

2]
. (4.4)

Since uB(r) = (0, V (r), S−1W (r)), the left-hand side of the resulting linear equations
with constant coefficients does not contain the derivative with respect to r . This allows us
to seek for their solution in the modal form u(0), θ (0) ∼ est+imϕ+ikz z , where s = σ + iω,
σ, ω ∈R, is the complex growth rate, and m = kϕr and kz are the integer azimuthal and
real axial wavenumbers. This yields the system of linear algebraic equations

λu(0)
r = − DW

SRo
kr kz

|k|2 u(0)
r − |k|2

R̂e
u(0)

r + 2Ω(1−γΘ)

(
1 − k2

r

|k|2
)

u(0)
ϕ

−
(

γ rΩ2
(

1 − k2
r

|k|2
)

+ Ri
kr kz

|k|2
)

θ(0), (4.5a)

λu(0)
ϕ = −2Ω

(
Ro + k2

r + k2
z

|k|2
)

u(0)
r − |k|2

R̂e
u(0)

ϕ + (1 − γΘ)
DW

SRo
kr kz

|k|2 u(0)
ϕ

−
(

γ rΩ2 − Ri
kz

kr

)
1

2Ω

DW

SRo
kr kz

|k|2 θ(0), (4.5b)

λu(0)
z = −|k|2

R̂e
u(0)

z − DW

SRo

(
Ro + k2

z

|k|2
)

u(0)
r − 2Ω(1 − γΘ)

kr kz

|k|2 u(0)
ϕ

+ γ rΩ2 kr kz

|k|2 θ(0) + Ri

(
1 − k2

z

|k|2
)

θ(0), (4.5c)

λθ(0) = −DΘu(0)
r − |k|2

PrR̂e
θ(0), (4.5d)

where

λ= σ + i
(

ω + mΩ + kzW

S

)
. (4.6)

The generalised eigenvalue λ includes the Doppler frequency ωD = mΩ + kzW/S of
the fluid particle moving along the helix around the cylindrical annulus at the radius r ∈
[r1, r2]. One can see that multiplying (4.5a) with kr/kz , subtracting the result from (4.5b)
multiplied with DW , and taking into account (3.15) yields (4.5c), which is therefore
decoupled from the first two. The remaining equations (4.5a), (4.5b) and (4.5d) result
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in the matrix eigenvalue problem for the 3 × 3 matrix H with the eigenvalue parameter λ
given by (4.6), where (Kirillov & Mutabazi 2024)

H=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
− DW

S Ro

kr kz

|k|2 − |k|2
R̂e

2Ω(1 − γΘ)

(
1 − k2

r

|k|2
)

−
(

rγΩ2
(

1 − k2
r

|k|2
)

+Ri
kr kz

|k|2
)

−2Ω

(
Ro + k2

r + k2
z

|k|2
)

(1 − γΘ)
DW

S Ro

kr kz

|k|2 −|k|2
R̂e

−
(

rγΩ2 − Ri
kz

kr

)
1

2Ω

DW

S Ro

kr kz

|k|2

−DΘ 0
|k|2
R̂e

Pr − 1
Pr

− |k|2
R̂e

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(4.7)

We find the dispersion relation by computing the characteristic polynomial of H, i.e.

p(λ) = − det(H− λI) = a3λ
3 + a2λ

2 + a1λ+ a0, (4.8)

with the real coefficients

a3 = 1, (4.9a)

a2 = kr kz

|k|2
DW

SRo
γΘ + 2Pr + 1

Pr
|k|2
R̂e

, (4.9b)

a1 = Ω2
(

1 − k2
r

|k|2
){

4

[
Ro + k2

r + k2
z

|k|2
]

(1 − γΘ) − γ r DΘ

}
+ Pr + 2

Pr
|k|4
R̂e2

− (DW )2

S2 Ro2

k2
r k2

z

|k|4 (1 − γΘ) − Ri
kr kz

|k|2 DΘ + Pr + 1
Pr

DW

SRo

kr kz

|k|2
|k|2
R̂e

γΘ, (4.9c)

a0 = DΘ DW

SRo

k2
z

|k|2 Ri(1 − γΘ) − kr kz

|k|2
|k|2
R̂e

Ri DΘ

+ |k|2Ω2

R̂ePr

(
1 − k2

r

|k|2
){

4

[
Ro + k2

r + k2
z

|k|2
]

(1 − γΘ) − γ r DΘPr

}

+ |k|2
R̂ePr

( |k|2
R̂e

− kr kz

|k|2
DW

SRo
(1 − γΘ)

)( |k|2
R̂e

+ kr kz

|k|2
DW

SRo

)
. (4.9d)

In view of Ri = (WT /W0)(1/SR̂e) the coefficients (4.9) and the matrix (4.7) reduce to
those derived by Kirillov & Mutabazi (2017) in the limit S → ∞, as shown in Appendix B.

5. Local linear stability analysis of swirling flows
In the following we derive general stability conditions of the base flow by applying
the Liénard–Chipart stability criterion (Kirillov & Mutabazi 2017; Kirillov 2021) to the
characteristic polynomial (4.8) with the coefficients (4.9). This criterion guarantees λ (4.6)
to have only a negative real part:

a0 > 0, a2 > 0, a1a2 − a0 > 0. (5.1a,b,c)

We first examine isothermal flows (γ = 0, Ri = 0), such as spiral Couette and spiral
Poiseuille flows, where the coefficients (4.9) simplify enough to allow for a fully analytical
treatment. Next, we explore the most general scenario, involving both radial heating and
Archimedean buoyancy, which includes BCF. For the sake of simplicity of notation in § 5,
we omit the hat over the Reynolds numbers.
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5.1. Viscous isothermal swirling flows

5.1.1. Viscous extension of the LELS centrifugal instability criterion
Assuming that γ = 0 and Ri = 0 in (4.9) automatically satisfies the condition a2 > 0. This
leaves only two inequalities, (5.1a) and (5.1c), to determine stability. The condition a0 = 0
following from the inequality (5.1a) defines the neutral stability curve as

4Ω2
(

1 − k2
r

|k|2
) [

Ro + k2
r + k2

z

|k|2
]

− k2
r k2

z

|k|4
DW 2

S2 Ro2 + |k|4
Re2 = 0, (5.2)

where |k| is given by (4.4). The swirl parameter

S = Re
Rez

(5.3)

is now defined via the axial Reynolds number Rez = W0d/ν, based on the characteristic
axial flow velocity W0 for isothermal flows. The details of its definition for SCF and SPF
base flows are given in Appendix A.

Taking into account relations (4.3) and (4.4), we can rewrite (5.2) as

4Ω2k2
z

(
DW

2
Ro + Ro + 1

)
Re2 + (

DW
2
k2

z + k2
r + k2

z

)3
4Ω2Re2(DW

2
k2

z + k2
r + k2

z

) = 0, (5.4)

which, given the positivity of its denominator, leads to an equation

q(kz) = 0, (5.5)

where

q(kz) = (
DW

2 + 1
)3

k6
z + 3k2

r

(
DW

2 + 1
)2

k4
z

+ [
3
(
DW

2 + 1
)
k4

r + 4Ω2Re2(DW
2
Ro + Ro + 1

)]
k2

z + k6
r (5.6)

is a real polynomial of degree six in kz . Using the explicit expression (4.3b) for DW
and (5.3) for the swirl parameter S, we can interpret (5.5) as defining a family of neutral
stability curves in the (Rez, Re) plane.

Masuda et al. (2008) observed, using global numerical linear stability analysis, that
the neutral stability curves of three-dimensional perturbations in plane Poiseuille flow
with streamwise system rotation share a common envelope in the plane defined by the
axial Reynolds number and the rotation number. This envelope exhibits both vertical
and horizontal asymptotes at large values of these parameters. They further hypothesised
that a similar envelope is likely to exist for SPF between concentric cylinders with
η = 0.5 (Meseguer & Marques 2002). Since (5.5) describes the family of neutral stability
curves corresponding to the onset of centrifugal instability in isothermal swirling flows –
including both SCF and SPF – we aim to test this hypothesis and search for an envelope
of the family defined by (5.5).

To determine the envelope, we can compute the discriminant of the polynomial (5.6),
using a standard tool in any modern computer algebra system:

Disckz (q) =
[
27
(
DW

2 + 1
)
k4

r + 16Ω2Re2(DW
2
Ro + Ro + 1

)]2

× (
DW

2
Ro + Ro + 1

)4
(DW

2 + 1)9(−16384)Re8Ω8k6
r . (5.7)

1018 A47-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10518


O.N. Kirillov and I. Mutabazi

Since the envelope corresponds to a portion of the discriminant set of the polynomial,
given by Disckz (q) = 0 (Hartman & Wintner 1953; Bruce & Giblin 1992), we focus only
on the first factor in (5.7). Introducing the Rayleigh discriminant

N 2
Ω = 4(1 + Ro)Ω2, (5.8)

we express Ro in terms of N 2
Ω and set the first factor in (5.7) to zero, obtaining a compact

analytical expression that defines the envelope of the neutral stability curves (5.2) for
isothermal viscous swirling flows (Kirillov & Mutabazi 2024):

E(Rez, Re) = N 2
Ω

Ω2 − 4DW
2

1 + DW
2 + 27

4Ω2
k4

r

Re2 = 0. (5.9)

Alternatively, the envelope (5.9) can be derived using the classical approach (Hartman &
Wintner 1953; Bruce & Giblin 1992) by first differentiating (5.5) with respect to kz ,
resulting in a biquadratic equation in kz . Solving this equation explicitly and substituting
the solution back into (5.5) leads directly to the envelope equation (5.9).

According to Hull (2020) (see also Bonnans & Shapiro 2000, Milgrom & Segal 2002),
the determination of an envelope can be formulated as a parametric optimisation problem.
To illustrate this third approach, we present an example of such a problem that leads to the
envelope (5.9).

First, we note that (5.4) can be rewritten as

Re =
(
k2

r + (
1 + DW

2)
k2

z

)3/2

2Ωkz
(− 1 − Ro

(
1 + DW

2))1/2 . (5.10)

Since the right-hand side of (5.10) contains Re through the swirl parameter (5.3), which
itself is embedded in DW (4.3b), this equation implicitly defines a neutral stability curve
in the (Rez, Re) plane. Alternatively, for a fixed S, we can treat (5.10) as defining Re as a
function of kz and seek to minimise it with respect to the axial wavenumber.

At the minimiser, given by

kz,c = kr
[
2
(
1 + DW

2)]−1/2
, (5.11)

the minimal Reynolds number is

Rec = 3
√

3k2
r

2Ω

(
4DW

2

1 + DW
2 − N 2

Ω

Ω2

)−1/2

= 3
√

3k2
r

4Ω

(
DW

2

1 + DW
2 − (1 + Ro)

)−1/2

.

(5.12)
Through straightforward algebraic manipulations, the condition Re = Rec leads directly

to the envelope equation (5.9), in which we, again, should take into account (5.3)
and (4.3b).

The azimuthal component, −S−1 DW , of vorticity ωB due to the axial flow destabilises
the azimuthal flow in the annulus: it decreases the threshold of the Rayleigh-unstable flows
(1 + Ro < 0) whereas the Rayleigh-stable flows are destabilised by the axial flow, if

0 < 1 + Ro <
DW

2

1 + DW
2 (5.13)
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or

N 2
Ω

Ω2 − 4DW
2

1 + DW
2 < 0. (5.14)

In (5.14) we recover the inviscid LELS instability criterion of isothermal swirling flow
at Re → ∞; see Appendix C.

In the absence of the axial flow (DW = 0), the inequality E(Rez, Re) < 0 exactly
reproduces the result of Eckhardt & Yao (1995) for the centrifugal instability of the viscous
Couette–Taylor flow:

N 2
Ω

Ω2 + 27
4Ω2

k4
r

Re2 < 0. (5.15)

5.1.2. Growth rate of the centrifugal LELS instability of isothermal viscous swirling flows
The dispersion relation (4.8) factorises for isothermal viscous swirling flows as(

λ2 + 2
|k|2
Re
λ+ |k|4

Re2 + 4Ω2 k2
z

|k|2
(
1 + Ro

(
1 + DW

2))) (
λ+ |k|2

RePr

)
, (5.16)

where |k|2 is defined in (4.4). The simple root associated with the second factor is always
negative and corresponds to damped modes of the perturbation. The other two roots,

λ= −|k|2
Re

± 2Ω
kz

|k|
√

−1 − Ro
(
1 + DW

2)
, (5.17)

determined by the quadratic polynomial in the first factor, can exhibit positive real parts if
and only if Re exceeds the marginal value specified on the right-hand side of (5.10), which
was derived from the condition a0 = 0. In this case, one mode is damped and the other is
amplified with a frequency mΩ + (kzW/S), according to (4.6).

This analysis confirms that a0 < 0 is the sole instability condition following from
the three inequalities of the criterion (5.1) for viscous isothermal swirling flows. The
envelope (5.9) of the individual instability domains specified by the inequality a0 < 0
yields a viscous extension of the inviscid LELS instability criterion (5.14) for isothermal
swirling flows.

The growth rate of the centrifugal instability can be estimated analytically at any
position within the annulus using (5.17), particularly at the geometric mean radius, for
which the expressions for DWg are provided in table 1.

Specifically, for CCF (W = 0), we obtain

λ= −|k|2
Re

± 2Ω
kz

|k|
√−1 − Ro. (5.18)

Hence, the marginal stability condition for Rayleigh-unstable CCF (1 + Ro < 0) is
given by

ReCC F
m = ±|k|3

kz

1

2Ω
√−1 − Ro

. (5.19)

For Rayleigh-stable CCF (1 + Ro > 0), the epicyclic frequency is given by NΩ =
2Ω

√
1 + Ro.
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5.1.3. Spiral Couette flow
To illustrate the inviscid LELS criterion (5.14) and its viscous extension, E(Rez, Re) < 0,
with E given by (5.9), we consider the enclosed SCF as a base flow. Then, W0 = W1,
i.e. the sliding speed of the inner cylinder, the dimensionless axial velocity W (r) is given
by (A17) and (A18), while V (r) is defined by (A2); see table 1.

Parameterisation by the axial wavenumber kz: the neutral stability curves (5.5) for the
enclosed SCF with W (r) given by (A17) and (A18), η = 0.4 and kr = 2

√
2 are shown

in the (Rez, Re) plane in figure 2 for different values of kz and μ as black solid curves
bounding the greenish centrifugal LELS instability domains. All computations for the
SCF are performed at the geometric mean radius (A4).

For Rayleigh-unstable flows (N 2
Ω < 0 or Ro < −1), their envelope (5.9) is a single curve,

shown as a red thick curve in figure 2(a) for μ = 0. The envelope has a maximum Re = Re0
when Rez = 0 and a horizontal asymptote Re = Re∞ as |Rez| → ∞, where

Re0 = 3
√

3k2
r

4Ω
√−Ro − 1

, Re∞ = 3
√

3k2
r

4Ω
√−Ro

. (5.20a,b)

The asymptotes Re = Re∞ are shown in figure 2 by the black dot-dashed lines.
As Ro → −1, Re0 → ∞, and for Rayleigh-stable flows (−1 < Ro < 0), the envelope

splits into two curves, each with vertical tangents at Rez = ±Remin
z , where

Remin
z = 3

2

√
3k2

r

DW

(
1 + √

Ro + 1
)

(5.21)

is the minimal critical axial Reynolds number destabilising Rayleigh-stable isothermal
azimuthal flows. The vertical solid lines in figure 2(c) show ±Remin

z ≈ ±27.43.
Additionally, in figure 2(c) the classical inviscid LELS criterion (5.14) is represented

by the oblique black solid lines touching the upper parts of the envelope (5.9) as
Re → ∞. While (5.14) does not apply to Rayleigh-unstable flows, its viscous extension,
E(Rez, Re) < 0, defines the stability boundary in this case, as given by the envelope (5.9);
see figure 2(a).

We can interpret these results as indicating that the axial flow induced by the sliding
inner cylinder introduces a destabilising mechanism into the Couette–Taylor flow. The
value Re∞ corresponds to the minimum rotation rate below which the sliding of the inner
cylinder is no longer able to destabilise the SCF.

Expressing DW from the envelope equation (5.9), substituting the result into (5.11)
and subsequently utilising the explicit expressions provided in (5.8) and (5.20) for
isothermal swirling flows, we derive the following analytical expression, which describes
the dependence of the critical axial wavenumber kz of the perturbations on the critical
Reynolds number Re along the envelope (5.9):

|kz|(Re) = kr

√
2

2

√√√√√√1 −
(

Re∞
Re

)2

1 −
(

Re∞
Re0

)2 . (5.22)

In particular, it implies that |kz| → 0 as Re → Re∞ and reaches its terminal value at
Re = Re0,

kterm
z =

√
2

2
kr , (5.23)
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Figure 2. Isothermal enclosed SCF with η = 0.4 and kr = 2
√

2. (a,c) Greenish centrifugal LELS instability
domains in the (Rez, Re) plane, parameterised by kz , and their envelope (5.9) (thick red curves) for
(a) μ = 0 and Re∞ ≈ 18.78, and (c) μ = 0.5 and Re∞ ≈ 17.71. (b) Variation of kz from 0 to the terminal value
kterm

z = (
√

2/2)kr = 2 according to (5.22) as Re increases from Re∞ ≈ 18.78 (dot-dashed line) to Re0 ≈ 29.70
(dotted line) for μ = 0. (d) Variation of kz from 0 to the terminal value kterm

z = (
√−2Ro/2)kr ≈ 1.217

according to (5.22) as Re increases from Re∞ ≈ 17.71 (dot-dashed line) to infinity for μ = 0.5.

for Rayleigh-unstable flows (figure 2b), and

kterm
z =

√−2Ro

2
kr , (5.24)

as Re → ∞ for Rayleigh-stable flows (figure 2d), agreeing with numerical studies by
Ludwieg (1964), Ng & Turner (1982), Ali & Weidman (1993) and Meseguer & Marques
(2000).

Additionally, figure 2(b,d) shows that the spectrum of axial wavenumbers for
perturbations differs between Rayleigh-unstable and Rayleigh-stable flows. In Rayleigh-
unstable flows (figure 2b), the destabilising centrifugal force broadens the wavenumber
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range, whereas in Rayleigh-stable flows (figure 2d), it is limited to lower kz values. Long
axial wavelength perturbations are favoured as Re approaches Re∞ (and Rez → ∞).

From (5.9), we determine that at the points of the envelope,

Re = Re∞

(
1 + 27k4

r

8DW 2Re2
z

+ · · ·
)

(5.25)

as Rez → ∞, where Re∞ is defined by (5.20b).
Substituting (5.25) into (5.22), we find the relation between axial and radial

wavenumbers on the stability boundary,

kz = 3
4

√−6Ro

DW

k3
r

Rez
+ O

(
Re−3

z

)
, (5.26)

as Rez → ∞, which confirms the numerical result from Ali & Weidman (1993) that
kz ∼ 1/Rez in this limit; cf. figure 11 of their work. Unlike Ali & Weidman (1993) however,
we have explicitly derived the coefficient of Re−1

z , showing its dependence on the flow
properties. Indeed, substituting Ro evaluated at the mean geometric radius for μ = 0
from (A3) to (5.26), we obtain

kz = 3
√

6
4DW

√
1 − η

k3
r

Rez
+ O

(
Re−3

z

)
. (5.27)

Thus, we confirm that the coefficient of Re−1
z increases as η → 1, in agreement with the

numerical findings of Ali & Weidman (1993); cf. equation 9 and table II of their work.

Parameterisation by azimuthal wavenumber m: utilising the relationship (4.3) between the
azimuthal and axial wavenumbers, with m = rkϕ , we can interpret (5.5) as defining a
family of curves parameterised by the azimuthal wavenumber m ∈R. Although in this
parametrisation the individual neutral stability curves (5.5) in the (Rez, Re) plane look
different (cf. figures 2 and 3), they have the same envelope (5.9), as verified either through
direct calculation of the envelope or by minimising the critical Reynolds number in (5.10)
with respect to m. Specifically, considering the relation (5.3), we find that the neutral
stability curves (5.5), parameterised by m, exhibit horizontal asymptotes in the (Rez, Re)
plane as Rez → ∞:

Re∞(m) =
(
k2

r r2 + m2)3/2

2|m|Ωr2
√−Ro

. (5.28)

In figure 3(a,c) the greenish domains of centrifugal instability bounded by the solid
black neutral stability curves (5.5), parameterised by m, are shown in the (Rez, Re)
plane for the isothermal enclosed SCF with W (r) given by (A17) and (A18), η = 0.4
and kr = 2

√
2 for various values of m and μ. The neutral stability curves are flattening

as Rez → ∞, thus confirming the asymptotes (5.28). The oblique black solid lines in
figure 3(c) indicate the inviscid LELS criterion (5.14). Vertical solid lines in figure 3(c)
show ±Remin

z ≈ ±27.43 given by (5.21). All computations for the SCF are performed at
the mean geometric radius (A4).

By differentiating (5.28) with respect to m, we determine the minimiser of Re∞(m), i.e.

mmin = ±
√

2
2

rkr , (5.29)
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Figure 3. Isothermal enclosed SCF with η = 0.4 and kr = 2
√

2. (a,c) Greenish centrifugal LELS instability
domains in the (Rez, Re) plane, parameterised by m, and their envelope (5.9) (thick red curves) for
(a) μ = 0 and Re∞ ≈ 18.78, and (c) μ = 0.5 and Re∞ ≈ 17.71. (b) The asymptotic value Re∞(m) (5.28) for
individual neutral stability curves when μ = 0.5, showing a minimum equal to Re∞ ≈ 17.71 (green circle),
given by (5.20b), at m = mmin ≈ 2.108, as given by (5.29) or (5.30). (d) Variation of mmin with η for μ = 0.5,
according to (5.30), where the green circle indicates the minimal value m ≈ 2.108 at η = 0.4.

which thus defines the terminal azimuthal wavenumber as the floor of mmin , mterm =
± �|mmin|
 ∈Z, previously known only through numerical computations (Ali & Weidman
1993) (cf. figure 5 and table II of their work) and Meseguer & Marques (2000) (cf. figure 2
of their work). Substituting (5.29) into (5.28) yields the minimal value of Re∞(m), exactly
matching the limiting value Re∞ in (5.20b); see figure 3(a,b).

At the mean geometric radius (A4), (5.29) takes the form

mmin = ±kr

2

√
2η

1 − η
, (5.30)

allowing us to find the terminal azimuthal wavenumber mterm = ± �|mmin|
 at different
ratios of the cylinder radii, η; see figure 3(d). Comparing figure 3(d) with figure 13 from
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Ali & Weidman (1993), one can see full qualitative and very good quantitative agreement
between our analytical formula (5.30) and their earlier numerical results.

For example, using the parameters from figure 3, namely η = 0.4 and kr = 2
√

2,
in (5.30), we find that mmin ≈ 2.108. This yields a terminal axial wavenumber of
mterm = 2. In figure 3 the neutral stability curve for azimuthal wavenumber m = 2 is
nearly indistinguishable from the envelope at large Rez , unlike the curves for m = 1, 3
and 5. This is because the terminal Reynolds number Re∞(2) ≈ 17.74, as given by (5.28),
is very close to the horizontal asymptote of the envelope Re∞ ≈ 17.71 for the Rayleigh-
stable case with μ = 0.5 (figure 3c), and Re∞ ≈ 18.78 for the Rayleigh-unstable case with
μ = 0 (figure 3a), as given by (5.20b). The horizontal asymptotes Re = Re∞ are shown in
figure 3(a,c) by black dot-dashed lines.

Explicit expression for the neutral stability surface in (Rez, Re2, Re) space: note that
the envelope equation (5.9) is universal for all isothermal swirling flows. For example,
for flows between differentially rotating cylinders, the following relationship between the
ratio of the angular velocities of the cylinders and the ratio of their radii, defined in (2.1),
holds, i.e.

μ = η
Re2

Re
, Re = R1Ω1d

ν
, Re2 = R2Ω2d

ν
, (5.31a,b,c)

where Re and Re2 are the Reynolds numbers of the inner and outer cylinders, respectively
(Meseguer & Marques 2000, 2002). This reformulates the azimuthal velocity (A2) and
the expressions (A3) evaluated at the mean geometric radius (A4), which incorporate the
parameter μ, in terms of Re2. As a result, (5.9) yields the explicit analytical expression for
the neutral stability surface within the (Rez, Re2, Re) space:[

(1 + η)DWgRez

2(Re − ηRe2)

]2

+ 27k4
r (1 + η)2 − 16(1 − η)(Re + Re2)(ηRe − Re2)

27k4
r (1 + η)2 − 16(1 − η)(Re + Re2)(Re − ηRe2)

= 0. (5.32)

To the best of our knowledge, such a closed-form equation has not previously been reported
in the literature on isothermal swirling flows, where numerical results are prevailing.

Note that the ‘individuality’ of an isothermal swirling flow enters (5.32) only by means
of the radial derivative, DWg , of its axial velocity evaluated at the mean geometric
radius (A4). The expressions for DWg derived in Appendix A are presented in table 1
for the SPF (A29), as well as for both open (A22) and enclosed (A21) SCFs.

In the case of the open SCF the expression for DWg given by (A22) is especially simple:
DWg = (1 − η)/(

√
η ln η). The surface (5.32) and its cross-sections are shown in figure 4

for the open SCF with kr = π and η = 0.5 to facilitate comparison with the numerical
results of Meseguer & Marques (2000). All computations for the open SCF are performed
at the mean geometric radius (A4).

At Rez = 0, the surface yields the neutral stability curve of the Couette–Taylor flow
obtained by the same local stability analysis by Eckhardt & Yao (1995), i.e.

(Re + Re2)(ηRe − Re2) = 27
16

(1 + η)2

1 − η
k4

r , (5.33)

which yields, at large Re2,

Re = 1
η

Re2 + 27
16

1 + η

1 − η

k4
r

Re2
+ O

(
Re−3

2
)
, (5.34)
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Figure 4. Open SCF with DWg given by (A22), with kr = π and η = 0.5. (a) Folded surface of the
envelope (5.32) in (Rez, Re2, Re) space. (b) For Re2 = 200, the thick solid red line shows the envelope (5.32)
in the (Rez, Re) plane. Shaded areas indicate individual instability domains defined by (5.5) and (4.3),
corresponding to m = 0.07, 1, 2, 3. (c) Cross-sections of the instability domain (shaded regions) defined by
the envelope surface (5.32) in the (Re2, Re) plane, covering a range of Rez values from 0 to 55. (d) Shaded
cross-sections of the surface (5.32) indicating instability domains at various Re values in the (Rez, Re2) plane
that, for Re > 51.28, touch the thick red curve (5.40) that features a cusp point at (43.79, 48.21) shown by the
open circle.

meaning that (5.33) has the inviscid Rayleigh line

Re = η−1Re2 (5.35)

as its asymptote shown by the thick dashed straight line in figure 4(c).
In another limit, Rez → ∞, the surface (5.32) produces a different neutral stability

curve,

(Re + Re2)(Re − ηRe2) = 27
16

(1 + η)2

1 − η
k4

r , (5.36)

1018 A47-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10518


O.N. Kirillov and I. Mutabazi

which yields, at large Re2,

Re = ηRe2 + 27
16

1 + η

1 − η

k4
r

Re2
+ O

(
Re−3

2
)
, (5.37)

providing the line of solid-body rotation

Re = ηRe2 (5.38)

as the asymptote to the curve (5.36), shown by the thick solid straight line in figure 4(c).
Cross-sections of the instability domains (shaded regions), defined by the envelope

surface (5.32) in the (Re2, Re) plane and shown in figure 4(c), span a range of Rez
values from 0 to 55. They demonstrate that the axial velocity component destabilises the
Rayleigh-stable base flow and elucidate, in detail, the transition of the asymptotes to the
stability boundaries from the Rayleigh line to the solid-body rotation line, as illustrated in
figure 4(c).

A similar phenomenon occurs in the standard magnetorotational instability of
magnetohydrodynamics, known as the Velikhov–Chandrasekhar paradox (Balbus &
Hawley 1991). In this case, the stability boundary of magnetised Couette–Taylor flow
drops below the Rayleigh line and approaches the solid-body rotation line when an
axial magnetic field is applied, provided that the magnetic Prandtl number (the ratio of
kinematic viscosity to magnetic diffusivity) differs from unity (Willis & Barenghi 2002;
Kirillov et al. 2011; Kirillov & Stefani 2011).

Folds, pleat and cusp of the envelope surface for the open SCF: the transition between
the Rayleigh line and the solid-body rotation line arises from the two folds of the
surface (5.32), visible in figure 4(a), which converge at the pleat located at the point
(43.79, 48.21, 51.38) in the (Rez, Re2, Re) space. These folds are projected onto a thick
red curve in the (Rez, Re2) plane, which exhibits a cusp at (43.79, 48.21), highlighted in
figure 4(d) by the open circle. The open circle at (48.21, 51.38) in figure 4(c) marks the
projection of the pleat onto the (Re2, Re) plane. The neutral stability surface with a pleat
for the open SCF was first computed numerically by Meseguer & Marques (2000); our
model now provides an explicit equation (5.32), allowing for the analytical computation
of this surface’s projections, pleat and cusp points.

Indeed, differentiating (5.32) with respect to Re and setting the result to zero yields the
projection of the surface folds onto the (Re2, Re) plane:

729(1 + η)4k8
r + 432(1 − η)(1 + η)2(Re + Re2)

(
Re2η

2 − 2Reη + Re2
)
k4

r

−128(1 − η)2(Re + Re2)
2(Re − Re2η)

(
Re2η

2 − 2Reη + Re2
)= 0. (5.39)

Interpreting (5.32) as a family of curves in the (Re2, Rez) plane parameterised by Re,
we compute its discriminant as a polynomial in Re to obtain the folds and pleat projection
onto the (Re2, Rez) plane for the open SCF flow (A22):

9
(

k4
r + 2Re2

2
27

)
Re8

z + 126(ln 2)2Re2
2

(
k4

r + 5Re2
2

63

)
Re6

z

+ 2(ln 2)4 (27k4
r − 4Re2

2
) (

243k8
r − Re2

2
(
27k4

r + 4Re2
2
))

Re4
z

− 118098(ln 2)6Re2
2

(
k4

r + 4Re2
2

27

)2 (
k4

r + 4Re2
2

243

)
Re2

z

+ 4782969(ln 2)8
(

k4
r + 4Re2

2
27

)4

k4
r = 0. (5.40)
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By differentiating (5.39) with respect to Re, solving the resulting cubic equation and
substituting the roots back into (5.39), we find Re2 at the cusp (and pleat) point for
η = 0.5, i.e.

Re2 = 3
√

(48
√

3 + 207)2/3 − (48
√

3 + 207)1/3 + 33

2(48
√

3 + 207)1/6
k2

r ≈ 4.88k2
r , (5.41)

which, for kr = π , gives Re2 ≈ 48.21. Then, from (5.40), Rez ≈ 43.79, and from (5.39),
Re ≈ 51.38, locating the cusp and pleat points for the open SCF with kr = π and η = 0.5
as shown in figure 4.

In addition, figure 4(b) shows, in the (Rez, Re) plane, the greenish individual instability
domains defined by (5.5) and (4.3) for azimuthal wavenumbers m = 0.07, 1, 2, 3. The
boundaries of these domains are tangent to the envelope (5.32) shown as a thick red line,
but intersect in such a way that point A at (133.67, 299.53) lies at the intersection of
the neutral stability curves for m = 1 and m = 2, while point B at (122.59, 174.45) lies
at the intersection of those for m = 2 and m = 3. This implies that the m = 1 mode is
critical before point A; m = 2 is critical between points A and B; and m = 3 becomes
critical after point B, as illustrated in figure 4(b). The azimuthal mode m = 3 is terminal,
as indicated by (5.30) and consistent with (Meseguer & Marques 2000). The instability
domain corresponding to m = 0.07 is also shown; as m → 0, this domain reduces to the
semi-infinite interval [Re0, ∞), where Re0 is given by (5.20a).

5.2. Visco-diffusive non-isothermal swirling flows – BCF

5.2.1. Stationary centrifugal instability as a combination of GSF and LELS instabilities
In general, a0 = 0 with a0 given by (4.9d), defines a family of marginal stability curves for
the BCF in the (Gr, Re) plane, parameterised by the axial wavenumber kz (or equivalently
m via (4.3)), as shown in figure 5.

Envelope of the family of centrifugal instability domains: the individual marginal sta-
bility curves of the BCF have an envelope determined by computing the discriminant
of the expression (4.9d), treated as a polynomial in kz or m (Hartman & Wintner 1953;
Bruce & Giblin 1992; Hull 2020).

Modified Rayleigh line: the envelope, independent of the chosen parameterisation, sepa-
rates the domain of unstable modes from the stability zone. It consists of two distinct sym-
metric curves that can intersect at Gr = 0 and Re = Re0, as shown in figure 5(a), where

Re0 = 3
√

3k2
r

2Ω

1√
4(RoR − Ro)(1 − γΘ)

(5.42)

and RoR is the modified Rayleigh line for non-isothermal flows:

RoR = −1 + r DΘγ Pr
4 (1−γΘ)

. (5.43)

In the isothermal case (Θ ≡ 0), RoR = −1, and the expression (5.42) reduces to (5.20a).
Moreover, rewriting (5.42) in terms of the Taylor number T a = (2ReΩ/3

√
3k2

r ) exactly
reproduces the result obtained in (Kirillov & Mutabazi 2017) for CCF with a radial
temperature gradient.

At the geometric mean radius (A4) the modified Rayleigh line (5.43) takes a convenient
form for Couette–Taylor applications:

μR = η2
2(γ − 2) ln η +

(
1 − 1

η

)
γ Pr

2(γ − 2) ln η + (1 − η)γ Pr
. (5.44)
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Figure 5. The BCF with W (r) given by (A12) and (A13), and η = 0.8, Pr = 5.5, γ = 0.0004 and kr = 4
√

2
the neutral stability curves a0 = 0 with a0 given by (4.9d) in the (Gr, Re) plane, parameterised (a–c) by kz
or (d–f ) by m for the three different μ: (a,d) Rayleigh-unstable flow, μ = 0; (b,e) modified Rayleigh line,
μ = μR ≈ 0.63935 (from (5.44)); and (c, f ) Rayleigh-stable flow, μ = 0.8. The thick red curves show their
envelope that has a horizontal asymptote Re = Re∞ for m > 0 with (a,d) Re∞ ≈ 24.66, (b,e) Re∞ ≈ 55.13
and (c, f ) Re∞ ≈ 83.99; cf. Figure 7. In (a,d) the two envelope branches intersect at Re = Re0, where Re0 ≈
187.14 is given by (5.42). The oblique black solid lines in (c, f ) indicate the new unified visco-thermodiffusive
extension (5.46) of the LELS criterion. All computations for the BCF are performed at the mean geometric
radius (A4).
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This relation shows that due to the temperature gradient, μR can substantially deviate from
the isothermal Rayleigh line μ = η2.

Rayleigh-unstable flow and intersection of envelope branches at Gr = 0: in the
Rayleigh-unstable regime (Ro < RoR or μ < μR), the envelope in the (Gr, Re)
plane can be approximated by its tangent lines computed at the intersection point
(Gr, Re) = (0, Re0), i.e.

Re
Re0

= 1 ± √
2

2DΘPrRo − 3γΘ DW k2
r

27Rok4
r

Gr, (5.45)

where Re0 is given by (5.42). This result demonstrates that the temperature gradient
plays a pivotal role in the existence of two distinct branches of the envelope for non-
isothermal flows. These branches merge into a single curve in the case of isothermal
Rayleigh-unstable flows, as established in the previous section; see figures 2 and 3.

In the absence of vertical gravity, as in the case of SPF with a radial temperature
gradient (SPFRT) considered by Cotrell & McFadden (2005), the term 2DΘPrRo is
absent in (5.45), and the splitting is primarily governed by the parameter γ , which is
often very small in practical situations (Kirillov 2025). As shown in Kirillov (2025),
when |γ | � Pr, the envelope splitting becomes negligible, allowing for a zeroth-order
approximation in γ , which yields a smooth curve closely matching the exact envelope.

The condition a0 < 0 defines the instability regions for each kz (or m). The union of
these regions for kr = 4

√
2 and kz = ±0.2, ±0.8, ±4 and ±7.3 is represented as the green

shaded area in figures 5(a) and 5(b). The boundaries of the individual instability domains,
corresponding to the terminal values of the axial wavenumber, touch the envelope at Gr =
0 and Re = Re0. These terminal values are kterm

z = 4 (dashed) and −kterm
z = −4 (solid), as

determined by (5.23), which follows directly from (4.9d) evaluated at Gr = 0 and Re =
Re0, where Re0 is defined by (5.42).

For |kz| > kterm
z , the instability regions lie entirely within the green shaded area, as

shown by dashed lines for kz = 7.3 and by solid lines for kz = −7.3 in figure 5(a). In
figure 5(c) the dashed and solid curves mark the boundaries of the individual instability
domains (their union is shown as a shaded green area) for kz = 1 and 3.5, and kz = −1 and
−3.5, respectively.

While intersecting for μ < μR , the envelope branches have vertical asymptotes at the
modified Rayleigh line (5.44), delimiting the zone where no instability modes can be
obtained (figures 5b and 5e).

Rayleigh-stable flow and unified LELS-GSF centrifugal instability criterion: in the
Rayleigh-stable regime (Ro > RoR or μ > μR), the asymptotes to the envelope are
inclined, placing the instability domains within the half-planes (Kirillov & Mutabazi
2024)

N 2
Ω

Ω2 (1 − γΘ) + Pr
N 2

Ω2 <

(
DW (2 − γΘ) − PrDΘ

2k2
r ΩS

)2

1 + DW
2 , (5.46)

defined by the asymptotes to the external branch, shown by oblique solid lines in
figure 5(c, f ):

Re = ± DW

2Ω Ro

√√√√√Ω2
(

2 − γΘ − PrDΘ Ro
k2

r DW

)2 − N 2
Ω(1 − γΘ) − PrN 2

N 2
Ω(1 − γΘ) + PrN 2

Gr. (5.47)
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Here N 2
Ω is the Rayleigh discriminant (5.8), S = Re/Gr and

N 2 = −γΩ2r DΘ (5.48)

is the square of the centrifugal Brunt–Väisälä frequency (Kirillov & Mutabazi 2017).
The inequality (5.46) yields the inviscid LELS criterion (5.14) in the isothermal case

(γ = 0, DΘ = 0) (Leibovich & Stewartson 1983), and the GSF criterion

N 2
Ω(1 − γΘ) + PrN 2 < 0 (5.49)

in the limit of azimuthal flow S → ∞ (Maeder et al. 2013; Kirillov & Mutabazi
2017; Dymott et al. 2023). Thus, (5.46) presents a novel unified LELS-GSF centrifugal
instability criterion for viscous and thermodiffusive swirling flows, incorporating the
effects of Prandtl number (Pr) and temperature variation (DΘ).

Note that a similar criterion for an inviscid isothermal incompressible swirling flow
with radially varying density follows from the result by Eckhoff & Storesletten (1978) for
compressible fluids, as shown by Di Pierro & Abid (2010); see Appendix D for details.

For completeness, we also present the equation for an asymptote to the internal branch
of the envelope in the Rayleigh-stable case:

N 2
Ω

Ω2 (1 − γΘ) + Pr
N 2

Ω2 = 4(1 − γΘ)

(
DW − PrDΘ

2k2
r ΩS

)
DW

1 + DW
2 . (5.50)

The envelope in figure 5 closely matches the critical states curve from both numerical
linear stability analysis and experiments (Lepiller et al. 2008; Yoshikawa et al. 2013;
Guillerm et al. 2015; Kang et al. 2015, 2023), for example, cf. our figure 5(a,d) and
figure 1(a) in (Yoshikawa et al. 2013). The envelope, unlike individual neutral stability
curves, has a horizontal asymptote at Re = Re∞ as |Gr | → ∞. This explains the seemingly
smooth and nearly Gr -independent stability boundary observed in Lepiller et al. 2008,
Yoshikawa et al. 2013, Guillerm et al. 2015 and Kang et al. 2015, 2023 for μ = 0, although
this boundary is actually piecewise smooth, with each neutral stability curve touching
the common envelope, which flattens at large |Gr | where shear instability dominates.
Despite the Rayleigh–Fjörtoft shear instability mechanism due to an inflection point in
the axial velocity profile (Drazin 2002) leading to axisymmetric perturbations (Bahloul
et al. 2000; Lepiller et al. 2007), rotation ensures that the critical modes of the BCF are
three-dimensional with kz �= 0 and m �= 0 (Dubrulle et al. 2005).

Selection of unstable modes through envelope branches: figure 5, in conjunction with
relation (4.3) demonstrates how the envelope selects the critical modes. The lower left
branch of the envelope corresponds to the left spiral modes (kz > 0, m > 0), while the
lower right branch corresponds to the right spiral modes (kz < 0, m > 0). This is consistent
with numerical findings by Ali & Weidman (1990). The modes with m < 0 touch only the
upper parts of the envelope and define the instability domains lying entirely within the
green shaded area in figure 5, corresponding to the union of the instability regions with
different values of m.

Parameterisation by m and determination of horizontal asymptotes to envelope
branches: when parameterised by m, the neutral stability curves a0 = 0 with a0 given
by (4.9d), corresponding to different values of m = kϕr have horizontal (not depending
on Gr ) asymptotes in the (Gr, Re) plane; see figure 5. The exact asymptotic values of the
Reynolds number Re∞(m) for a particular m are determined by the quadratic equation,
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Figure 6. The BCF with W (r) defined by (A12) and (A13), and parameters η = 0.8, Pr = 5.5, γ = 0.0004
and kr = 4

√
2, (red thick line) the asymptotic values of Re as |Gr | → ∞ are shown for the neutral stability

curves parameterised by m, based on (5.51), for the following cases: (a) Rayleigh-unstable flow, μ = 0;
(b) modified Rayleigh line, μ = μR ≈ 0.63935 (from (5.44)); and (c) Rayleigh-stable flow, μ = 0.8. The
minimum of Re∞(m) for m < 0 corresponds to the horizontal asymptote of the upper branch of the envelope,
while the minimum for m > 0 corresponds to the horizontal asymptote of the lower branch of the envelope, as
illustrated in figure 5. The thin green parabola represents the approximation from (5.53).

following from a0 = 0 in the limit |Gr | → ∞:

q(m, Re∞) := 4Ω2m2r4(1−γΘ)

× [(
k2

r r2 + m2)(1 + RoR − Ro)DW + r2RoDΘPr
]
Re2∞

− 2Ωmkrr3(k2
r r2 + m2)[r2RoDΘPr − γΘ DW

(
k2

r r2 + m2)]Re∞
− DW

(
k2

r r2 + m2)4 = 0. (5.51)

In the isothermal case (γ = 0, DΘ = 0), RoR = −1 and (5.51) reduces to

− DW
(
k2

r r2 + m2)[4RoΩ2m2r4Re2∞ + (
k2

r r2 + m2)3]= 0, (5.52)

which yields expression (5.28) determining Re∞(m) for the isothermal flows.
As m → ∞, the positive root of (5.51) asymptotically behaves as

Re∞(m) ∼ m2

2Ωr2√(1 + RoR − Ro)(1 − γΘ)
. (5.53)

In contrast, as m → 0, it follows that Re∞(m) ∼ m−1. This behaviour indicates the
existence of a minimum value of Re∞ at some finite value of m.

Solving simultaneously the equation q(m, Re∞) = 0 given by (5.51) and
∂mq(m, Re∞) = 0, we can find the pairs of mmin and Re∞(mmin) determining the
minimiser and the minimal value of Re∞, which is the horizontal asymptote to
the envelope in the non-isothermal case. For instance, choosing the parameters of
figure 5 corresponding to the BCF with η = 0.8, Pr = 5.5, γ = 0.0004 and kr = 4

√
2,

evaluating (5.51) at the mean geometric radius (A4) and applying the procedure just
described, we find the pairs shown in figure 6.

5.2.2. Visco-thermodiffusive oscillatory McIntyre instability
The critical Reynolds number and the modified Rayleigh line for purely azimuthal flow:
in the absence of axial flow (DW = 0), we consider the equation a1a2 = a0, derived from
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the stability condition (5.1c), as a polynomial in kz . Computing its discriminant provides
the envelope of the neutral stability curves for oscillatory instability in the (Pr, Re) plane,
expressed as Re = Re′

0, where

Re′
0 = 3

√
3k2

r

2Ω

1 + Pr
Pr

1√
4(Ro′

R − Ro)(1 − γΘ)

(5.54)

and

Ro′
R = −1 + 1 + Pr

8Pr
r γ DΘ

1 − γΘ
(5.55)

defines the modified Rayleigh line. Notably, Ro′
R = RoR and Re′

0 = 2Re0 at Pr = 1.
Rewriting (5.54) in terms of the Taylor number T a = (2ReΩ/3

√
3k2

r ) exactly
reproduces the result of Kirillov & Mutabazi (2017), obtained for CCF with a radial
temperature gradient.

At the geometric mean radius (A4), the expression (5.55) takes a form well suited for
Couette–Taylor applications:

μ′
R = η2

4Pr(γ − 2) ln η +
(

1 − 1
η

)
γ (Pr + 1)

4Pr(γ − 2) ln η + (1 − η)γ (Pr + 1)
. (5.56)

Similar to (5.44), the presence of a temperature gradient can cause μ′
R to deviate

significantly from the isothermal Rayleigh line μ = η2.
The envelope of oscillatory instability domains for visco-thermodiffusive swirling

flows: for DW �= 0, we plot the neutral stability curves a1a2 − a0 = 0, which bound
the oscillatory instability domains in the (Gr, Re) plane for different fixed values of kz .
These we show alongside the neutral stability curves a0 = 0, which bound the stationary
instability domains in the same plane.

Figure 7 presents the results of this computation for a range of Rayleigh-unstable
and Rayleigh-stable BCF. Both the stationary and oscillatory instability domains form
families parameterised by kz , with their envelopes depicted as thick red curves (oscillatory
instability) and thick blue curves (stationary instability). Each envelope consists of two
branches, which may intersect at Gr = 0 and Re = Re0 for the stationary instability and at
Gr = 0 and Re = Re′

0 for the oscillatory instability. Here, Re0 is given by (5.42) and Re′
0 is

defined by (5.54). Recall that (5.42) indicates that the intersection point (Gr = 0, Re =
Re0) exists if Ro < RoR (or μ < μR), where RoR (or μR) is determined from (5.43)
(or (5.44)).

Similarly, the intersection point (Gr = 0, Re = Re′
0) of the branches forming the

envelope of the oscillatory instability domains exists, as follows from (5.54), if Ro < Ro′
R

(or μ < μ′
R), where Ro′

R (or μ′
R) is determined from (5.55) (or (5.56)). At this intersection

point the linear approximation to the branches is given by

Re
Re′

0
= 1 ±

√
2

243

× γ 2 (Pr−1) Re′2
0 Ω2rΘ DΘ DW+9k2

r (1 + Pr)
(
RoDΘ−3γΘk2

r DW
)

Rok6
r (1 + Pr)2 PrGr.

(5.57)

1018 A47-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10518


Journal of Fluid Mechanics

–7500 –5000 –2500 0

0.6 –0.6 0.2 –0.2
–0.2

–0.50.5

0.2
–1

–1

–1

–2

–3

–33

3

1

2

1

1

0.1 –0.1

–0.50.5
–1.5

–1.5

–3

1.5

1.5

–0.6

–3 3

3

0.6

–0.6

–4

–4

–2

0.6

4

4

2

–0.6

–44

4–4

kz = –4 kz = 4

kz = 2 kz = –2

kz = 0.1kz = –0.1

kz = 4 kz = –4

–22

2 –20.6

0

250

500

750

1000

1250

1500

2500 5000 7500

Gr

–7500 –5000 –2500 0
0

100

0

250

500

750

1000

1250

200

300

400

2500 5000 7500

Gr
–7500 –5000–2500 0 2500 5000 7500

Gr

Re

–4000 –2000 0
0

2000

4000

6000

8000

10 000

2000 4000

Gr

Re

Re Re

(a) (b)

(c) (d)

Figure 7. Green-shaded regions represent stationary (LELS-GSF) instability domains touching the thick
blue envelope, while purple-shaded regions above them correspond to oscillatory (McIntyre) instability
domains touching the thick red envelope. Dashed black lines indicate neutral stability curves for kz >

0, and solid black lines indicate neutral stability curves for kz < 0. (a) Rayleigh-unstable BCF (η = 0.8,
μ = 0) with radial wavenumber kr = 4

√
2, Prandtl number Pr = 5.5, outward heating (γ = 0.0004) and

kz = ±0.6, ±2, ±4; (b) Rayleigh-stable BCF (η = 0.8, μ = 0.8) with kr = 3
√

2, Pr = 5.5, γ = 0.01 and kz =
±0.1, ±0.5, ±0.6, ±1.5, ±3; (c) Rayleigh-unstable BCF (η = 0.8, μ = 0.62) with kr = 4

√
2, Pr = 4, γ = 0.01

and kz = ±0.6, ±2, ±4; (d) Rayleigh-stable BCF with a quasi-Keplerian azimuthal velocity profile (η = 0.99,
μ = η3/2), kr = 2

√
2, Pr = 0.5, inward heating (γ = −0.01) and kz = ±0.2, ±0.5, ±1, ±2, ±3.

Note that (5.57) presents an analytical expression for the onset of a visco-diffusive
McIntyre oscillatory instability in a visco-thermodiffusive swirling flow with a radial
temperature gradient and natural gravity, valid for an arbitrary Prandtl number, which,
to the best of our knowledge, has not previously been reported in the literature.

By comparing the values of Re0 and Re′
0, we can predict which type of instability will

define the critical Re near Gr = 0. For the Rayleigh-unstable flow with an outward heating
(γ > 0) in figure 7(a), we find that Re0 ≈ 187.14 and Re′

0 ≈ 221.10, indicating that the
flow is more likely to experience stationary instability. This is confirmed by the domain of
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Figure 8. (a) Growth rates and (b) frequencies of stationary (green curves) and oscillatory McIntyre (purple
curves) instabilities for the Rayleigh-stable BCF with a quasi-Keplerian azimuthal velocity profile (η = 0.99,
μ = η3/2), kr = 2

√
2, Pr = 0.5, inward heating (γ = −0.01), Gr = 500 and kz = −1.

oscillatory instability, shown in purple in figure 7(a), being contained entirely within the
green-shaded domain of stationary instability. This result agrees with the numerical and
experimental results by Yoshikawa et al. (2013) and Guillerm et al. (2015), respectively.

In contrast, the Rayleigh-unstable BCF with an outward heating in figure 7(c) exhibits
Re′

0 ≈ 1049.11 < Re0 ≈ 1326.27, indicating that oscillatory instability dominates over
stationary instability within a finite range of Gr near Gr = 0. Notably, the red envelope
of the oscillatory instability domains intersects with the blue envelope of the stationary
instability domains, forming two codimension-2 points for Gr < 0 and Gr > 0, as shown
in figure 7(c). This suggests that a sufficiently large temperature gradient may favour the
stationary modes.

For the Rayleigh-stable BCF with an outward heating in figure 7(b), the stationary and
oscillatory instability domains are distinctly separated. Specifically, for the parameters
used in figure 7(b), μ = 0.8 > μ′

R ≈ 0.6381 (μ = 0.8 > μR ≈ 0.6224), indicating that
Ro > Ro′

R in (5.54) and Ro > RoR in (5.42). Consequently, the self-intersection points for
both envelopes do not exist at Gr = 0. The domain of oscillatory instability lies entirely
within the domain of stationary instability, with the latter being dominant for the BCF
shown in figure 7(b).

Finally, the Rayleigh-stable quasi-Keplerian BCF with inward heating (γ < 0) shown
in figure 7(d) is characterised by the stationary instability domain being split into two
parts, as μ ≈ 0.9850 > μR ≈ 0.9825. In contrast, the envelope of the oscillatory instability
domains exhibits a self-intersection point at Gr = 0, as μ ≈ 0.9850 < μ′

R ≈ 0.9874. As a
result, oscillatory instability dominates over stationary instability within a finite range near
Gr = 0, and the envelopes of the oscillatory and stationary instability domains intersect,
forming two codimension-2 points, as shown in figure 7(d). This behaviour qualitatively
agrees with findings by Cotrell & McFadden (2005) for SPF with a radial temperature
gradient; see also (Kirillov 2025).

Figure 8 illustrates the behaviour of the growth rate Re(λ) and frequencies Im(λ) for
the Rayleigh-stable BCF with a quasi-Keplerian azimuthal velocity profile (η = 0.99,
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μ = η3/2), kr = 2
√

2, Pr = 0.5, inward heating (γ = −0.01), Gr = 500 and kz = −1,
corresponding to the stability map shown in figure 7(d).

Figure 8(a) shows that, as the azimuthal Reynolds number increases, the green curve
corresponding to Im(λ) = 0 rises from negative values, crosses the line Re(λ) = 0 at
some critical Re, becomes positive (indicating instability), reaches a maximum and then
decreases again to negative values (restoring stability).

This interval of instability corresponds to the crossing of the green centrifugal instability
domain in figure 7(d), which has both lower and upper critical Reynolds numbers.
According to (4.6), Re(λ) = σ , i.e. the growth rate of the instability, and Im(λ) = 0
corresponds to the frequency of the unstable mode given by ω = −mΩ − (kzW/S). Thus,
the marginal mode is stationary in a reference frame attached to the helical streamlines
around the annular axis (Kirillov & Mutabazi 2024).

With a further increase in Re, the green curve in figure 8(a) attains increasingly negative
values until it meets another branch, forming a double negative real root (Re(λ) < 0,
Im(λ) = 0). This root then splits into two complex conjugate λ roots with Re(λ) < 0,
which, upon a continued increase in Re, eventually intersect the line Re(λ) = 0, as shown
in figure 8.

Hence, the unstable mode acquires a non-trivial frequency, in contrast to the critical
mode of the centrifugal instability, whose frequency is merely the Doppler shift. The
growth rate and frequency of the complex conjugate pair are shown as purple curves in
figure 8, and it is evident that the oscillatory instability is weaker than the stationary one,
as its growth rate is an order of magnitude smaller, which is typical for dissipation-induced
instabilities (McIntyre 1970; Labarbe & Kirillov 2021; Kirillov 2021). The growth rate of
the oscillatory instability remains positive as long as the system remains within the purple
domain of oscillatory instability; see figure 7(d).

As established in the earlier work by McIntyre (1970), the visco-diffusive oscillatory
instability is significantly enhanced when the Prandtl number deviates from unity (Pr �= 1).
In figure 9 a reduction of the Prandtl number to Pr = 0.03 reveals a richer and
more intricate geometry of the envelope delineating the neutral stability boundaries of
oscillatory instability domains, shown in purple. The two thick red branches of this
envelope, which define the critical values of the control parameters Re and Gr , intersect
not only at Gr = 0 and Re = Re′

0 as in figure 7(a,c), but also at two additional non-zero
values of Gr , symmetrically located with respect to the vertical axis.

This behaviour is illustrated in figure 9(a), corresponding to a Rayleigh-stable BCF
configuration with η = 0.8, kr = 3

√
2, Pr = 0.03, inward heating (γ = −0.01) and μ =

0.692. Moreover, the thick red branches corresponding to oscillatory instability domains
intersect the thick blue branches associated with stationary centrifugal instability domains
depicted in greenish hues. As a result, the white stability domain enclosed by these
envelopes takes on a distinctive diamond-like shape with five codimension-2 points
(figure 9(a)) – a phenomenon that, to the best of our knowledge, has not been previously
reported in the literature.

Increasing μ from 0.692 to 0.8 in figure 9(b), while keeping all other parameters
identical to those in figure 9(a), reveals that the two self-intersection points of the thick
red branches – defining the envelope of the oscillatory instability domains – persist
even though the central intersection at Gr = 0 and Re = Re′

0 disappears. In figure 9(b)
the two thick red branches exhibit distinct asymptotic directions as Re → ∞. This
indicates that one branch governs the stability boundary for lower values of Re before
the codimension-2 point, while the other dominates after the intersection, in the limit
Re → ∞. This asymptotic divergence complicates the formulation of an analytical stability
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Figure 9. Green-shaded regions represent stationary (LELS-GSF) instability domains touching the thick
blue envelope, while purple-shaded regions above them correspond to oscillatory (McIntyre) instability
domains touching the thick red envelope for the Rayleigh-stable BCF with η = 0.8, kr = 3

√
2, Pr = 0.03,

inward heating (γ = −0.01) and (a) μ = 0.692, kz = ±0.04, ±1.5, ±3, ±10, ±20; and (b) μ = 0.8, kz =
±0.02, ±1.5, ±3, ±5, ±15. Dashed black lines indicate neutral stability curves for kz > 0 and solid black
lines indicate neutral stability curves for kz < 0.

criterion analogous to the LELS-GSF criterion for centrifugal instability (5.46), making
the development of a corresponding theoretical framework significantly more challenging.

Indeed, the equation a1a2 = a0, derived from the stability condition (5.1c) and governing
the neutral stability curves that bound the domains of oscillatory instability, can be
expressed as a polynomial in kz:

c1k3
z Re3 + k2

z

(
c2k4

z + c3k2
z + c4

)
Re2 + kz

(
c5k6

z + c6k4
z + c7k2

z + c8
)
Re

+ c9k10
z + c10k8

z + c11k6
z + c12k4

z + c13k2
z + c14 = 0. (5.58)

By computing the discriminant of the polynomial (5.58), we find that in the Rayleigh-
stable regime the asymptotic directions of the envelope bounding the domains of
oscillatory instability in the (Gr, Re) plane, as Re → ∞, are determined by the roots of
the equation in terms of the swirl parameter S = Re/Gr , i.e.

6912c3
9c4

1c7
2
(
27c2

1c2
14 − 18c1c4c8c14 + 4c1c3

8 + 4c3
4c14 − c2

4c2
8
)= 0, (5.59)

where

c1 = 2DWΩ3Pr2SΘγ 2krr
[
4DW

2
Ω2(1 − γΘ

)
− (

1 + DW
2)(

N 2
Ω(1 − γΘ) + N 2)],

c2 = − Ω2PrSγ r
(
1 + DW

2)2
× [(

1 + DW
2)(

2Pr(1 − γΘ)N 2
Ω + (Pr + 1)N 2)− 8DW

2
Ω2Pr(1 − γΘ)],

c4 = −ΩPrk2
r {ΩSγ k2

r

(
2Pr

(
1 + DW

2)(
1 − γΘ

)
N 2

Ω

+ [
4DW

2
Ω2Θ2γ 2 + (1 + DW

2
)N 2](Pr + 1

)− 8DW
2
Ω2Pr(1 − γΘ)

)
r

+ 2N 2 DW Pr},
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c8 = − k5
r

(
Pr + 1

)(
2SΩ3Θγ 2 DW k2

r

(
3Pr + 1

)
r + N 2Pr

)
,

c9 = − 2S
(
Pr + 1

)2(
1 + DW

2)5
rγΩ2,

c14 = − 2S
(
Pr + 1

)2
k10

r rγΩ2. (5.60)

The prefactors in (5.59) yield the conditions c1 = 0 and c2 = 0, which correspond to
possible asymptotic directions. These lead to the expressions

N 2

Ω2 + (1 − γΘ)

(
N 2

Ω

Ω2 − 4DW
2

1 + DW
2

)
= 0 (5.61)

and

Pr + 1
2Pr

N 2

Ω2 + (1 − γΘ)

(
N 2

Ω

Ω2 − 4DW
2

1 + DW
2

)
= 0, (5.62)

respectively. Additional possible asymptotic directions arise from the vanishing of the
bracketed term in (5.59). Which of these asymptotic directions is realised in a given regime
depends on the specific parameter values entering the coefficients defined in (5.60).

This complex structure simplifies considerably in the asymptotic limit Pr → 0,
relevant for astrophysical and geophysical contexts. In particular, such values of Pr
are typical in solar and stellar convection zones, where Pr ∼ 10−6, as well as in
certain liquid metals, where Pr ∼ 10−3 (Käpylä 2021). In this limit, the envelope of
the oscillatory instability domains reduces to a single curve in the Rayleigh-unstable
case, and to two symmetric, non-intersecting curves in the Rayleigh-stable case. Under
these conditions, the bracketed term in (5.59) determines the unique asymptotic line
as Re → ∞, yielding the following criterion for the onset of the oscillatory McIntyre
instability:

N 2
Ω

Ω2 − 4DW
2

1 + DW
2 <

1 + DW
2

16DW
2
(1 − γΘ)γ 2Θ2

[
N 2

Ω2 − 4DW
2

1 + DW
2 γ 2Θ2

]2

. (5.63)

6. Conclusion
Adapting the geometrical optics method to visco-thermodiffusive flows, we have
developed a unified analytical framework for the local linear short-wavelength instabilities
of both isothermal and non-isothermal swirling flows.

Within this framework, we showed that isothermal viscous swirling flows support only
stationary centrifugal instabilities. We derived a closed-form expression for the growth rate
and an explicit analytical stability criterion that generalises the classical LELS criterion
by incorporating viscosity. This result recovers known limits, including the Rayleigh and
Eckhardt–Yao criteria, and provides a theoretical basis for the observed transition between
Rayleigh-stable and Rayleigh-unstable regimes.

A key innovation of our work lies in identifying and analytically constructing the
envelope of the neutral stability curves using the connection between envelopes and
polynomial discriminants. This geometric insight enables precise determination of
terminal wavenumbers and critical states relevant to both experiments and numerical
simulations.

Extending the analysis to non-isothermal swirling flows, we uncovered the existence
of both stationary instability – arising from a combination of the LELS and GSF
instabilities – and an oscillatory instability. The latter, a visco-thermodiffusive

1018 A47-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10518


O.N. Kirillov and I. Mutabazi

generalisation of the McIntyre instability, is governed by a new analytical criterion
unifying the effects of radial stratification, rotation and diffusion. We further developed
an algorithm to predict the dominant instability mode as a function of flow parameters,
particularly the Prandtl number.

Our results align well with previous experimental and numerical studies of spiral
Couette, spiral Poiseuille and baroclinic Couette flows, and provide a theoretical tool for
guiding future investigations and experimental design.
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Appendix A. Isothermal and non-isothermal helical base states
We seek the steady-state solution (2.7) of the nonlinear governing equations (2.2).
From (2.2b), it can be shown that the azimuthal velocity, V (r), must satisfy the following
second-order differential equation, subject to standard no-slip boundary conditions:

d2V

dr2 + 1
r

dV

dr
− V

r2 = 0, V (r1) = 1, V (r2) = μ

η
. (A1)

Here, r1 and r2 are determined by the expressions r1 = η/(1 − η) and r2 = 1/(1 − η),
respectively, where the parameters η and μ are defined according to (2.1). By solving the
boundary value problem (A1), we obtain the classical Couette–Taylor velocity profile

V (r) = η

1 + η

(
1 − μ

(1 − η)2
1
r

− η2 − μ

η2 r

)
; (A2)

see figure 10(a). As in Kirillov & Mutabazi (2017), we provide expressions for the angular
velocity Ω = V/r , the Rossby number and their product

Ωg = 1 − η

η

η + μ

1 + η
, Rog = − η

η + μ

1 − μ

1 − η
, Ωg Rog = μ − 1

η + 1
(A3)

evaluated at the mean geometric radius

rg = √
r1r2 =

√
η

1 − η
. (A4)

Similarly, the steady-state temperature distribution, Θ(r), is governed by a boundary
value problem derived from (2.2c). The corresponding differential equation, subject to
boundary conditions, is given by

d2Θ

dr2 + 1
r

dΘ

dr
= 0, Θ(r1) = 1, Θ(r2) = 0. (A5)

Solving the boundary value problem (A5), we obtain the temperature distribution

Θ(r) = ln[r(1 − η)]
ln η

; (A6)
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Figure 10. Radial profiles of the base BCF for a rotating inner cylinder (μ = 0 and η = 0.2): (a) azimuthal
velocity V (r) as described by (A2), (b) temperature distribution Θ(r) from (A6), and (c) axial velocity W (r)

as given by (A12).

see figure 10(b). At the mean geometric radius (A4) the temperature distribution and its
radial derivative are

Θg = 1
2
, DΘg = 1 − η√

η ln η
. (A7)

Finally, the axial velocity distribution, W (r), is governed by the following differential
equation, derived from (2.2b):

d2W

dr2 + 1
r

dW

dr
= SRep2 − WT

W0
Θ(r). (A8)

Here Θ(r) is defined by (A6) for non-isothermal base flows and Θ(r) ≡ 0 for isothermal
flows. For each specific helical base flow, we must further define the characteristic axial
velocity W0, along with the boundary conditions at r1 and r2. In the subsequent sections,
we will derive explicit expressions W (r) for the BCF, SCF and SPF.

A.1. Baroclinic Couette flow
In this non-isothermal helical base flow, we assume that the characteristic axial velocity,
W0, is equal to the thermal velocity, WT , as defined by (2.4):

W0 = WT . (A9)

Substituting the temperature distribution Θ(r), given by (A6), into the governing equation
(A8), we can solve for the axial velocity, subject to the boundary conditions:

W (r1) = 0, W (r2) = 0. (A10)

The resulting axial velocity W (r) depends on an unknown constant pressure gradient p2,
which is determined by imposing the zero axial mass flux condition∫ r2

r1

r W (r)dr = 0. (A11)

Solving this yields the expression for the axial velocity W (r) as found by Ali & Weidman
(1990):

W (r) = C1

[(
r2

2 − r2
1
) ln(r/r2)

ln η
+ r2 − r2

2

]
− (

r2 − r2
1
) ln(r/r2)

4 ln η
. (A12)

1018 A47-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
51

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10518


O.N. Kirillov and I. Mutabazi

Here the constant C1 is given by

C1 =
(
1 − 3η2)(1 − η2)− 4η4 ln η

16
((

1 − η2
)2 + (1 − η4) ln η

) ; (A13)

see figure 10(c). Evaluating the axial velocity (A12) and its radial derivative at the mean
geometric radius (A4), yields

Wg = 4η
(
η2 + η + 1

)
ln η − (

η2 + 4η + 1
)(

η2 − 1
)

32
(
η2 − 1

)(
η2 ln η − η2 + ln η + 1

) ,

DWg = −4η
(
η4 + 1

)
(ln η)2 + 2η

(
η2 − 1

)(
3η2 − 2η+3

)
ln η+(η2−4η+1

)(
1−η2)2

16
√

η(1 − η)2(1 + η)
((

η2 + 1
)

ln η − η2 + 1
)

ln η
.

(A14)

A.2. Spiral Couette flow
In the absence of gravity and a radial temperature gradient, the axial sliding of the inner
cylinder generates an isothermal SCF. In this scenario, it is reasonable to assume that the
characteristic axial velocity W0 equals the velocity of the inner cylinder, W1:

W0 = W1. (A15)

By substituting the temperature distribution Θ(r) ≡ 0 into the governing equation (A8),
we can solve for the axial velocity W (r), subject to the boundary conditions:

W (r1) = 1, W (r2) = 0. (A16)

The resulting axial velocity W (r) depends on an unknown constant pressure gradient p2,
which is determined by enforcing the zero axial mass flux condition (A11). This leads to
the following expression for the axial velocity:

W (r) = 1 + C2(1 + η)

ln η
ln
(

r

r2

)
+ C2(1 − η)

(
r2 − r2

2
)
. (A17)

Here the constant C2 is given by

C2 = − 2η2 ln η + 1 − η2

(1 + η)[(1 + η2) ln η + 1 − η2] (A18)

for the enclosed SCF flow (Ali & Weidman 1993; Meseguer & Marques 2000) and

C2 = 0 (A19)

for the open SCF flow (Meseguer & Marques 2000); see figure 11(a). Evaluating the axial
velocity (A17) and its radial derivative at the mean geometric radius (A4), yields

Wg =
(
1 − η3 + 3η2 + η

)
ln η + 2

(
1 − η2)

2
[(

1 + η2
)

ln η + 1 − η2
]
(1 + η)

(A20)

and

DWg =
(
η2 − 1

)(
η2 + 2η − 1

)− 4η3 ln η[(
1 + η2

)
ln η + 1 − η2

]
(1 + η)

√
η

(A21)
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Figure 11. Radial profiles of the axial velocity W (r): (a) for open and enclosed SCF with μ = 0 and η = 0.4
as described by (A17), and (b) for SPF with μ = 0 and η = 0.4 as described by (A27).

for the enclosed SCF. For the open SCF, we obtain

Wg = 1
2
, DWg = 1 − η√

η ln η
. (A22)

A.3. Spiral Poiseuille flow
In this isothermal helical base flow, the axial velocity is driven by an axial pressure
gradient. Substituting the temperature distribution Θ(r) ≡ 0 into the governing equation
(A8), we can solve for the axial velocity W (r), subject to the boundary conditions (A10):

W (r) = ReSp2r2

4

[
(1 − η)

(
r2 − r2

2
)+ 1 + η

ln η
ln
(

r

r2

)]
. (A23)

Introducing the mean velocity Wm of the axial flow (Meseguer & Marques 2002),

Wm

W0
= 2

r2
2 − r2

1

∫ r2

r1

r W (r) dr = ReSp2r2

4
η2 − (

η2 + 1
)

ln η − 1
2(1 − η) ln η

, (A24)

we can determine p2 in terms of Wm and write the dimensionless axial velocity as

W (r) = Wm

W0

2(1 − η)2 ln η

η2 − (
η2 + 1

)
ln η − 1

[
r2 − r2

2 + 1
ln η

1 + η

1 − η
ln
(

r

r2

)]
. (A25)

Choosing the mean velocity Wm as a characteristic axial velocity, i.e.

W0 = Wm, (A26)

we obtain the final expression for the axial velocity in SPF (Takeuchi & Jankowski 1981;
Meseguer & Marques 2002, 2005; Cotrell & Pearlstein 2004), i.e.

W (r) = 2(1 − η)2 ln η

η2 − (
η2 + 1

)
ln η − 1

[
r2 − r2

2 + 1
ln η

1 + η

1 − η
ln
(

r

r2

)]
; (A27)
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see figure 11(b). Evaluating the axial velocity (A27) and its radial derivative at the mean
geometric radius (A4), yields

Wg = (1 − η)2 ln η(
1 + η2

)
ln η + 1 − η2

(A28)

and

DWg = 2
(
η2 − 2η ln η − 1

)
(1 − η)[(

1 + η2
)

ln η + 1 − η2
]√

η
. (A29)

A.4. The SPF and SCF with a radial temperature gradient (SPFRT and SCFRT)
By neglecting gravity but retaining the temperature gradient in the governing
equations (2.2), we can readily identify two additional non-isothermal helical base states.
The SPFRT has been studied previously, for instance, by Cotrell & McFadden (2005)
and recently revisited by Kirillov (2025). In this flow, the azimuthal velocity is described
by (A2), the temperature distribution by (A6), the axial velocity by (A27) and the
characteristic axial velocity by (A26). Likewise, the SCF with a radial temperature
gradient (SCFRT) shares the same azimuthal velocity and temperature distributions.
However, it differs in its axial velocity distribution, which is described by (A17), and in its
characteristic axial velocity, given by (A15).

Appendix B. Connection to Kirillov & Mutabazi (2017)
In the particular case when S → ∞, corresponding to a pure azimuthal flow with a radial
temperature gradient in the zero-gravity environment, we have Ri = (WT /W0)(1/SR̂e) →
0, DW/SRo → 0 and |k|2 = k2

r + k2
z . With this, (4.7) reduces to

H=

⎛⎜⎜⎜⎜⎝
−|k|2

R̂e
2Ω

k2
z

|k|2 (1 − γΘ) −rΩ2γ
k2

z
|k|2

−2Ω (1 + Ro) −|k|2
R̂e

0

−DΘ 0 |k|2
R̂e

Pr−1
Pr − |k|2

R̂e

⎞⎟⎟⎟⎟⎠. (B1)

Let us now show that (B1) reproduces the result by Kirillov & Mutabazi (2017). First,
note from (4.6) that in the limit S → ∞ we have λ= s + iΩkϕr . Then, we write the
eigenvalue problem Ha = λa as H1a = sa, where

H1 =

⎛⎜⎜⎜⎜⎝
−iΩkϕr − |k|2

R̂e
2Ω

k2
z

|k|2 (1 − γΘ) −rΩ2γ
k2

z
|k|2

−2Ω (1 + Ro) −iΩkϕr − |k|2
R̂e

0

−DΘ 0 −iΩkϕr − |k|2
R̂ePr

⎞⎟⎟⎟⎟⎠. (B2)

Taking into account that DΘ = 2Θ Rt/r , Rt = r DΘ/2Θ , denoting β = kz/|k|, and
introducing the Taylor number T a = R̂eΩβ/|k|2, we write (B2) as

H1 = βΩ

⎛⎜⎜⎝
−i kϕr

β
− 1

Ta 2β(1 − γΘ) −rΩγβ

− 2
β

(1 + Ro) −i kϕr
β

− 1
Ta 0

−2Θ Rt 1
rβΩ

0 −i kϕr
β

− 1
T a Pr

⎞⎟⎟⎠. (B3)
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Finally, denoting n = kϕr/β and introducing the matrix R= diag(1, 1, 1/r), we get

R−1H1R= βΩ

⎛⎜⎝ −in − 1
Ta 2β(1 − γΘ) −γβΩ

− 2
β

(1 + Ro) −in − 1
Ta 0

−2Θ Rt 1
βΩ

0 −in − 1
T a Pr

⎞⎟⎠, (B4)

which exactly reproduces (4.9) in Kirillov & Mutabazi (2017).

Appendix C. Connection to Ludwieg (1960), Eckhoff (1984) and Leibovich &
Stewartson (1983) criteria (LELS)
Ludwieg (1960) developed an analytical narrow-gap theory for the stability of inviscid,
incompressible SCF, which showed good agreement with his subsequent experiments
(Ludwieg 1964). Within this framework, he derived the stability criterion (Equation 7
in Ludwieg 1960)

dVϕ

dr

r

Vϕ

−
(

dVz
dr

)2 (
r

Vϕ

)2

1 − dVϕ

dr
r

Vϕ

> −1, (C1)

where Vϕ(r) and Vz(r) are the azimuthal and axial velocity components, respectively, in
the (r, ϕ, z) cylindrical frame, treated as arbitrary functions of the radial coordinate r .

Using our notation,

dVz

dr
= DW,

Vϕ

r
= Ω,

dVϕ

dr
= Ω(2Ro + 1), (C2)

we can rewrite (C1) as

2Ro + 1 + 2Ro
DW 2

4Ω2 Ro2 > −1. (C3)

Introducing the normalised shear parameter

DW = DW

2Ω Ro
, (C4)

we further transform (C3) into

1 + Ro
(
1 + DW

2)
> 0. (C5)

Finally, expressing the Rossby number Ro in terms of the squared epicyclic frequency
N 2

Ω as defined in (5.8), we reduce the stability condition (C5) to

N 2
Ω

Ω2 − 4DW
2

1 + DW
2 > 0, (C6)

which is simply the reversed inequality (5.14), corresponding to the inviscid and
incompressible LELS instability criterion.

Eckhoff & Storesletten (1978) extended the instability criterion (5.14) to inviscid and
compressible flows using geometric optics stability analysis. Later, Eckhoff (1984) derived
an elegant formulation of this criterion in the incompressible limit:

V

r

(
DV − V

r

)(
DV 2 + DW 2 − V 2

r2

)
< 0. (C7)
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Here DV and DW are the radial derivatives of the azimuthal (V (r)) and axial (W (r))

velocity components, respectively.
Using (C2), where we set Vϕ = V , the inequality (C7) simplifies to

2Ω2Ro
(
4Ω2Ro(Ro + 1) + DW 2)< 0, (C8)

which, when expressed in terms of DW (C4) and N 2
Ω (5.8), precisely reproduces (5.14)

and, with the reversed inequality, (C6).
Leibovich & Stewartson (1983) derived a criterion for the instability of columnar

vortices in an inviscid, incompressible fluid:

2V DΩ
[
D(r V )DΩ + DW 2]< 0. (C9)

Here V = Ωr , D(r V ) = d(r V )/dr and V (r) and W (r) are the azimuthal and axial
velocity components, respectively, treated as arbitrary functions of the radial coordinate.

By computing D(r V ) and DΩ and expressing these quantities in terms of V in (C9),
we reduce this criterion to (C7), and consequently, to (5.14).

Appendix D. Connection to Di Pierro & Abid (2010)
Di Pierro & Abid (2010) derived the following criterion for centrifugal instability in an
inviscid swirling flow with radial density stratification but without mass diffusivity:

G2(W ′2 + r2Ω ′2)− 2rΩΩ ′(rΩ ′Θ + W ′2)> 0. (D1)

Here r denotes the radial coordinate, ′ = d/dr , W (r) is the axial velocity profile of the
base flow, V (r) its azimuthal velocity, Ω = V/r the angular velocity, Θ = V ′ + Ω and

G2 = −V 2

r

ρ′
b

ρb
(D2)

is the squared Brunt–Väisälä frequency, with ρb(r) denoting the radial density profile of
the base flow.

Using (2.11) and denoting DW = dW/dr , we transform (D1) into

G2(DW 2 + 4Ω2 Ro2)− 4Ω2Ro
(
4Ω2 Ro(Ro + 1) + DW 2)> 0. (D3)

Subsequently, by applying (5.8) and (C4), we obtain, from (D3),

G2(1 + DW
2)− (

N 2
Ω + 4Ω2RoDW

2)
> 0, (D4)

and further reduce it to

G2(1 + DW
2)− (

N 2
Ω + (

N 2
Ω − 4Ω2)DW

2)
> 0. (D5)

Rearranging terms in (D5), we obtain(
G2 − N 2

Ω

)(
1 + DW

2)+ 4Ω2 DW
2
> 0, (D6)

which finally leads to

N 2
Ω

Ω2 − G2

Ω2 − 4DW
2

1 + DW
2 < 0. (D7)
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In our study, we define the Brunt–Väisälä frequency as in Kirillov & Mutabazi (2017),
i.e.

N 2 = dρ

dr

V 2

r
, (D8)

which, for ρ(r) = 1 − γΘ(r), yields (5.48). Thus, G2 has the opposite sign to N 2, and in
terms of N , (D6) becomes

N 2
Ω

Ω2 + N 2

Ω2 − 4DW
2

1 + DW
2 < 0. (D9)

Comparing (D9) with our LELS-GSF instability criterion (5.46), we find that both
share the same structure, differing only by terms specific to thermal density stratification,
viscosity and diffusivity.
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