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SUMMARY

High overall vaccination levels sometimes hide pockets of poor coverage. We adopted a

meta-population framework to model local aggregation of populations, and used this to

investigate the effects of vaccination heterogeneity. A recent survey of antibody levels in a

community with low vaccination levels in The Netherlands enabled us to assess the relative

importance of local and long-range infective contacts, and thus identify feasible levels of

aggregation in the meta-population model. In the aggregated model, we found that heterogeneity

in vaccination coverage can lead to a much increased rate of infection among unvaccinated

individuals, with a simultaneous drop in the average age at infection.

INTRODUCTION

When protecting populations from disease, immuniz-

ation policies aim for high national levels of coverage

[1]. Often, a high overall vaccination level can mask

a low coverage in certain regions [2–4]. Communities

with low vaccination levels can then experience dra-

matic outbreaks [5] in contrast to that witnessed in

well-vaccinated communities. Although it has been

shown that carefully targeted heterogeneous vacci-

nation policies can be advantageous [1, 6], the effect of

intrinsic heterogeneity in vaccine coverage has been

less studied. In the context of the current WHO

initiative to eradicate measles in Europe by 2007 [7],

an understanding of the impact of aggregation of

susceptibles on levels of infection is highly important.

A series of continuous-time models based on the

SIR (Susceptible–Infective–Recovered) framework

have successfully captured both the recurrent pre-

vaccination dynamics of measles epidemics and the

impact of vaccination [1, 8, 9]. Recently, there has

been increasing focus on the population implications

of waning of immunity [10–12]. In particular, we

have developed an antibody model to describe both

waning and boosting of immunity, and applied it to

investigate the decrease in virus circulation that

accompanies the onset of mass vaccination [13]. In a

spatial context, the changes following the onset of

vaccination are further complicated by spatial hetero-

geneity in vaccine uptake. We address that issue in

this paper.

In order to model variability in local measles

vaccination coverage, we adopted meta-population

model. The meta-population framework is a well-

established concept in population ecology [14, 15] that

is increasingly being applied in epidemiology [16–18].

It allowed us to split a large population into a collec-

tion of local communities or patches. We inserted a

disease transmission model into this framework, and

could then specify the fraction of each individual’s

infectious contacts that must occur within the local

community. Throughout this paper, we refer to the

local communities as ‘patches ’, and the fraction of

infectious contacts that occur within the patch as the* Author for correspondence.
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‘aggregation parameter ’. We refer to populations

with a large number of local contacts as being ‘highly

aggregated’.

Meta-populations have been used to model measles

transmission at a number of different scales. One ob-

vious application of the meta-population model is to

split a country into its many cities. At this scale, the

size of a city is extremely important for determining

persistence of disease [16, 19], demonstrating the im-

portance of mixing within cities. Conversely, analysis

of spread of infection indicates that mixing between

cities occurs rapidly [20]. An examination of the epi-

demic correlations between regions in England and

Wales shows a complex urban–rural pattern in the

pre-vaccination era [21], and a drop in the correlation

of epidemics between major cities after the introduc-

tion of vaccination [22]. The strong seasonal forcing

of epidemics associated with schooling is also a com-

plicating factor in the interpretation of correlations

[20, 23]. At a much smaller scale, mathematical

analysis of meta-populations of households has

shown that both the epidemic threshold [24] and the

critical immunization coverage [25] differ consider-

ably from that of a homogeneously mixing popu-

lation. In this paper, we consider mixing rates at an

intermediate scale, similar to the resolution adopted

by Bartlett [26]. Here, our meta-population represents

a large city or municipality, and each patch represents

a school and its local community.

One approach to modelling spatial heterogeneity

of measles is the lattice-based model [26–29], where

mixing rates are determined by relative positions in

the lattice. Here, we do not impose any explicit spatial

structure on the meta-population, but rather assume

that local mixing leads to a greater risk of trans-

mission within the local patch. In this way, the level

of aggregation in the meta-population can be varied

using a single ‘aggregation parameter ’. The remain-

ing difficulty lies in estimating the value of this par-

ameter, as it incorporates demographic information

on rates of mixing and movement that are extremely

difficult to measure.

In modelling measles dynamics post-vaccination, it

is important to consider both loss of vaccine-induced

immunity, and boosting of immunity on contact with

infection. We incorporated a previously developed

measles antibody model [13] into the meta-population

framework, which models the immune dynamics of

the population. By applying this model, we were able

to measure levels of immunity in different patches

of the meta-population, and compare these model

predictions with data. A recent sample of antibody

levels in The Netherlands found significant differ-

ences between groups with high- and low-vaccine

coverage within the same municipality [4]. Compari-

son of model simulations with data allowed us to

obtain bounds on the aggregation parameter, and

then use these values in turn to simulate the effect of

vaccine heterogeneity of disease incidence.

METHODS

The meta-population model

We adopted a simple meta-population model consist-

ing of N patches of size M as shown in Figure 1. As

measles infection largely occurs in children, we ident-

ified patches with the local community surrounding

City

Meta-population

Patch

ε1

ε2

ε3

Fig. 1. Diagram representing the meta-population model
on N patches of size M. The parameters determining the
degree of isolation and aggregation are e1, e2 and e3 with
e1+e2+e3=1 to ensure that R0 remains constant through-

out. The unaggregated case corresponds to e3=0, and the
patches become completely isolated from one another if
e2=0.

676 K. Glass, J. Kappey and B. T. Grenfell

https://doi.org/10.1017/S0950268804002080 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268804002080


a school, so that the meta-population as a whole

forms a large city or municipality. Each individual in

the meta-population has a fraction

e1 of contacts with individuals outside the meta-

population;

e2 of contacts with randomly chosen individuals

within the meta-population;

e3 of contacts with individuals within the patch;

where e1, e2 and e3 sum to 1. We assumed that there is

a reservoir of infection outside the meta-population

that can enter via parameter e1. This immigration

term has little effect on the dynamics of large meta-

populations, but is important for ensuring persistence

when the population size is at or below the critical

community size of 250 000–300 000 individuals [19].

A recent analysis [30] of mixing between populations

is particularly relevant to this parameter, which is

concerned with movement between cities. Within the

meta-population, we assumed a slightly different mix-

ing mechanism – rather than moving between school

communities, we assumed that all individuals spend

some fraction of their time in a general region (per-

haps the town centre, local cinema or sports ground),

where they can encounter any individual in the meta-

population.

To simplify the number of parameters in the model,

we assumed a fixed value for e1 of 0.005, and a fixed

patch size of 1000. The degree of aggregation is then

completely determined by the aggregation parameter,

e3. If e3=0, the meta-population becomes one hom-

ogeneouslymixedpopulation, and if e3=1xe1=0.995,

the patches become entirely disconnected from one

another. The seasonality in contact rate induced by

the school term is modelled by assuming that the

transmission parameter varies annually as b(t). The

form of forcing function chosen (sinusoidal [31, 32] or

term-time [8]) has little effect on the results ; we

adopted the former.

The antibody model

A valuable opportunity for measuring the effects

of population aggregation is provided by antibody

data collected in areas with low vaccine coverage in

The Netherlands [33]. Although national vaccination

coverage is high (94%), there are a number of re-

gions in which vaccination levels are low (62–84%)

[4]. These low-vaccine communities (LVCs) contain

geographically aggregated groups who refuse vacci-

nation for religious reasons [33], and whose antibody

levels differ significantly from the national levels. A

further distinction is made within the LVC by classi-

fying individuals as either orthodox (who refuse

vaccination) or non-orthodox.

In order to compare this antibody data with model

simulations, we incorporated into the meta-popu-

lation a modified version of a SIR model that includes

immunity of individuals. The model is described in

Figure 2, and further details may be found in [13].

Each individual in the model has an antibody level

that is determined by that individuals’s prior infec-

tious contacts. In the absence of infection, the anti-

body level decays exponentially to a limit value.

On contact with infection, a vaccinated or recovered

individual will become subclinically infected if their

antibody level is below a threshold level, and this

subclinical infection induces a boost to their antibody

level. Susceptible individuals have an antibody level

of zero, which is then raised to a maximum value by

(clinical) infection. To ensure population heterogen-

eity, antibody levels are log-normally distributed

about the mean values described by the antibody

decay equations.

As discussed in [13] this model, with parameters

assigned as in Figure 2, reproduces the national

antibody-age profile seen in [4] very well. Figure 3a

presents the national data, reproduced from [4], and

Figure 3b the corresponding profile for a sample of

100 000 individuals from a simulation of 4 million.

At the time that the antibody data were collected,

vaccination had been in place for approximately 20

years. To reproduce the changes in immunity induced

by the introduction of vaccination, the model is simu-

lated for 100 years without vaccination, followed by

20 years with 90% vaccination. In Figure 3c, the

comparison of data from the national and LVCs is

reproduced from [4]. Individuals in the LVCs are

identified as being either orthodox (light grey) or

non-orthodox (dark grey). Observe that antibodies in

the orthodox community are significantly lower than

in both the national and non-orthodox samples for

the 1–4 years age group, and significantly higher for

age groups 10–14, 15–19 and 20–24 years. Significant

differences between national and non-orthodox anti-

body levels can also be seen in the 1–9 years and 15–24

years age groups.

In our later simulations, we assumed a population

size of 1 million. This is likely to be greater than

the LVC municipalities surveyed in [4]. Although our

simulations demonstrate the same broad results for

smaller population sizes, the stochastic nature of the
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model leads to a fair degree of variability between

replicates. We have chosen to present results from the

model with a relatively large population, because this

provides a more representative (and reproducible)

picture of the typical behaviour of the model.

RESULTS

When modelling post-vaccination measles dynamics,

it is important to include the effects of waning im-

munity and subclinical infection. By introducing the

antibody model (see Fig. 2) into the meta-population

model, we were able to compare levels of immunity

in different patches of the meta-population. Surveys

of vaccination coverage in LVCs in The Netherlands

estimated coverage within the orthodox community

of 44% and within the non-orthodox community of

96%, while overall vaccination levels ranged from 62

to 84% [4]. We used our model to simulate a LVC

with an overall average of 62% vaccination, split

into 650 ‘orthodox’ patches with low vaccination

(44%) and 350 ‘non-orthodox’ patches with high

vaccination (96%). We expected that the significant

Antibody decay equations

Clinical infection
Vaccination
Subclinical infection

(xI − lR)e−c It + lR
(xV − lV)e−cVt + lV
(xC − lR)e−c It + lR

Clinically infected individuals
Transmission rate

Transmission rate

b 477.31 1.0
Recovery rate

Recovery rate
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0.2
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Antibody decay rate

Fraction vaccinated
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(AR)[b(I/N)+b(C/N)]Rf ˆ

m(1–p)N

mpN

Vf (AV)[b(I/N)+b(C/N)]ˆ
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Fig. 2. Diagram, rates and parameters for the antibody model.
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differences between the two communities to be in in-

dividuals below the age of 25 years, as the older

individuals would be expected to have had measles

before the onset of vaccination. When we compared

the output of the model with the data collected in

The Netherlands, we found that the age group most

sensitive to changes in aggregation is the 10–14 years

group. Figure 4 compares the data with the model

simulations for increasing values of the aggregation

parameter (e3). We see that without aggregation, the

orthodox community has significantly lower antibody

levels than that of the non-orthodox community –

entirely the reverse of the data.

As the aggregation increases, unvaccinated ortho-

dox individuals become more likely to be infected,

and their overall geometric mean titre increases.

Meanwhile, non-orthodox individuals become better

protected from both clinical and subclinical infection,

and their titres decrease. For e3o0.5, the model re-

produces the pattern of the data, and all significant

differences between the various communities ident-

ified in the other age groups.

Our results suggest that significant levels of aggre-

gation are required to explain the high antibody levels

in areas of low vaccine coverage. Within this context,

patchiness in vaccination uptake can have a noticeable

effect on infection dynamics, as susceptibles become

grouped together. We test the effect of increasing the

discrepancy between high- and low-vaccine regions in

a meta-population with a fixed overall vaccination

level, and a fixed level of local contacts. Figure 5 gives

the results of simulations of 1000 patches of size 1000

for a population with 90% vaccination and e3=0.6

with increasing heterogeneity of vaccination.

In all plots, values for each of the 1000 patches are

represented by dots, while the overall average for the

meta-population is shown with an asterisk. Thus, the

first panel shows the manipulation of vaccination

coverage performed in the simulation. When hetero-

geneity (h) is at 0, all patches have 90% vaccination.
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Fig. 3. Comparison of the antibody model (b) with data reproduced from [4] [(a) and (c)]. Panel (a) gives the geometric mean

titre with age for the national sample, and panel (c) compares the national sample (black) with samples from an area with low
vaccine coverage, where individuals are further split into orthodox (light grey) and non-orthodox (dark grey) communities.
Panel (b) gives the antibody-age profile of 100 000 individuals from a simulation of 4000 patches of size 1000, 20 years after

introducing vaccination. For each figure, error bars give the 95% confidence interval for the mean. Note that while the units
in (a) and (c) are IU/ml, the simulations use a dimensionless measure, calibrated by the parameters in Figure 2.
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As h is increased, vaccination decreases in 100 of the

patches, and increases in the remaining 900 to main-

tain the overall vaccination at 90%.

We see from Figure 5 that increased heterogeneity

in vaccination leads to an overall increase in the risk

of infection. In the model with homogeneous vacci-

nation, on average 50% of susceptibles are infected,

with individual patches ranging from 40 to 60%. As

h increases, individuals in patches of low vaccination

coverage become increasingly likely to become in-

fected. We do see a simultaneous drop in the prob-

ability of infection of susceptibles in high vaccination

areas, but as these susceptibles represent a decreasing

fraction of the total susceptible population, this does

not counteract the overall trend. A consequence of

the increase in infection is a decrease in the average

age at infection, led by the low-vaccination patches.

The rise in frequency of fadeouts suggests that out-

breaks become more sporadic and thus also more

dramatic.

DISCUSSION

Standard models of measles transmission within

urban communities assume that individuals mix

homogeneously, even at population sizes in which

some degree of aggregation of contacts must occur.

Nevertheless, these models have been remarkably

successful in reproducing measles dynamics, particu-

larly the pre-vaccination time-series [34–36]. Our

results suggest that this is because moderate levels of

aggregation have only a small effect on the dynamical

properties of measles in the pre-vaccination era, or

when vaccination is homogeneous.
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Fig. 4. Antibody levels of 10–14 years old orthodox and non-orthodox individuals in the low-vaccine community from [4],
compared with output of the meta-population model with increasing level of aggregation (represented by the parameter e3).
For each plot, the error bars give the 95% confidence interval for the mean. The antibody scale for the data is IU/ml, while

the model uses a dimensionless scale described by the parameters in Figure 2.
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The situation changes when vaccination becomes

patchy – low vaccine areas become infection hot-

spots, with more dramatic outbreaks and a drop in

the average age at infection. Data gathered from

individuals in LVCs in The Netherlands [4] provides

us with an opportunity to estimate the degree of ag-

gregation present in these communities. We find that

the antibody-age profiles can only be reproduced if

we assume moderate to high levels of aggregation.

Our model of immunity is very simple, assuming a

single transmission rate between all age groups, and

ignoring the effects of maternal immunity. Neverthe-

less it is able to reproduce all significant differences

noted in The Netherlands data.

With the levels of aggregation estimated from the

data, we then experiment with varying the patchiness

in vaccination coverage within a hypothetical city

with 1 million inhabitants, 10% of which are poorly

vaccinated. We found that increasing vaccination

heterogeneity leads to an increase in the average

fraction of susceptibles infected, from approximately

50 to 90% in a highly heterogeneous population.

Standard models predict that vaccination of young

children should significantly increase the mean age at

infection of measles [1, 37, 38]. Our results indicate

that strong spatial or social heterogeneity in vaccine

uptake can mitigate this effect – we see a drop in the

age at infection from y20 (h=0) to y6 (h=0.95).

Clearly, the very high levels of heterogeneity represent

an extreme case that is rarely seen, however the mean

age at infection is reduced by even moderate levels

of heterogeneity. These results are consistent with

empirical findings – a recent outbreak of measles at

an orthodox school in The Netherlands saw an attack

rate of 91% among susceptibles, with 78% of the

138 cases occurring in children between the ages of

2 and 8 years [5]. It is clear that unvaccinated chil-

dren face a much greater risk of infection when their
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local community has a low vaccine coverage. Such

LVCs face a constant danger of large outbreaks of

infection, even when national levels of vaccination are

high.

Throughout this paper, we have adopted the sim-

plest form of meta-population model and ignored the

effect of spatial structure. In future work we will

look at models in which each patch mixes preferen-

tially with its neighbours, and consider the effect that

clustering of patches has on the meta-population

dynamics.
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36. Finkenstädt BF, Grenfell BT. Time series modelling

of childhood diseases : a dynamical systems approach.
Appl Statist 2000; 49 : 187–205.

37. Grenfell BT, Anderson RM. The estimation of
age-related rates of infection from case notifi-

cations and serological data. J Hyg Camb 1985; 95 :
419–436.

38. Yang HM.Modeling directly transmitted infections in a

routinely vaccinated population – the force of infection
described by a Volterra integral equation. Appl Math
Comp 2001; 122 : 27–58.

Patchy vaccination in measles models 683

https://doi.org/10.1017/S0950268804002080 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268804002080

