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In Global Positioning System/Inertial Navigation System (GPS/INS) integrated navigation,
the low sampling rate of GPS receivers reduces the observability of state variables. GPS ob-
servation expansion is proposed to enhance the GPS/INS integrated navigation system.
During the process of observation expansion, the state variables are updated by the same
GPS information repeatedly. According to uncertainty theory, the probability density function
of GPS observation information is analysed to demonstrate the feasibility of GPS observation
expansion. The formula and calculation method of an adaptive filter algorithm are presented
to control the uncertainty of GPS observation expansion. Furthermore, an experiment is per-
formed to validate the new algorithm. The results indicate that compared with GPS/INS inte-
grated navigation without observation expansion, the enhanced GPS/INS integrated
navigation system can improve the position, velocity and attitude accuracy significantly, espe-
cially while a land vehicle is in slow motion. At the same time, the adaptive filter factor is
introduced into the new algorithm, which can control the uncertainty caused by the expanded
GPS observation.
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1. INTRODUCTION. The use of the measurements from Global Positioning
System (GPS) receivers and Inertial Navigation Systems (INS) provides a complemen-
tary method to absorb their advantages while overcoming their individual drawbacks
(Hasan et al., 2009). Hence, this arrangement is often the core of a modern multi-
sensor integrated navigation system. A Kalman Filter (KF) is the most commonly
used technique for the fusion of different types of measurements. In a GPS/INS inte-
grated navigation system, the KF performs measurement updates by using the GPS
observations. The low sampling rate of GPS receivers decreases the observability of
the system state vector (Hong et al., 2005) and has a negative impact on the navigation
accuracy between two GPS epochs. Specifically, the Micro-Electromechanical Sensor
(MEMS) Inertial Measurement Unit (IMU) endows large bias errors and poor
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stability. Its position error can reach metre level in one second navigation time (Brown
and Lu, 2004). A GPS receiver with high sampling rate may correct the MEMS-IMU
errors in time and guarantee navigation accuracy. However, it will increase the cost of
an integrated navigation system.
For the processing of a GPS-aided INS, many enhancement methods have been

proposed to increase navigation accuracy and system stability. GPS/INS integrated
navigation systems with other aiding sensors such as odometer, magnetometer and
so on (Seo et al., 2006) can improve the observability of the state vector. Some con-
straints based on the vehicle’s movement and environmental conditions can also be
applied as additional observations, which are able to improve navigation precision
when GPS partial outages are encountered (Chai et al., 2011). In the odometer-
aided inertial navigation system (Yan, 2006), the horizontal position offset can be
less than 25 m in 50 km or 50 min trajectory with the position fixes. The fusion of
GPS-aided INS with a magnetometer can prevent the filter from diverging during
GPS outages and ensure accurate attitude information (Wang and Zhang, 2006).
Because more sensors are utilised in the integrated system, more filters were proposed.
The performance of the two-dimensional (2-D) navigation solution by integrating a
GPS receiver, a MEMS gyroscope and an odometer using a mixture particle filter
once with the parallel cascade identification model and once with the autoregressive
stochastic model was tested in a land vehicle (Georgy et al., 2010). Under some specific
kinematic conditions, part of the state variables were able to be satisfiedwith some spe-
cific constraints, which are the basis to construct certain virtual measurements and
were often used during GPS outages (Godha and Cannon, 2007). The relevant re-
search work focused on adding the virtual observation by minimising the physical
property of the vehicle’s motion, which can provide equivalent external velocity mea-
surements to correct the navigation solution (Bloch et al., 1992). However, it aimed at
improving the accuracy of few state variables and was not able to increase the obser-
vability of the whole navigation system (Dissanayake et al., 2001). At the same time,
more sensors may increase the filter complexity and decrease the system filter stability.
In order to improve the observability of the state vector and not increase the navi-

gation system complexity, the GPS observation expansion method is proposed in
this paper and applied in GPS/INS integrated navigation. The GPS observation expan-
sion method is mainly suitable for urban land vehicles. The urban land vehicle will
often be driving at low speeds. If there is traffic, the vehicle will be in one place for
an extended period of time. In general, the sample frequency of INS is much higher
than GPS. The sample period of INS and GPS are 0·01 s and 1 s in this paper, respect-
ively. The INS navigation result will be updated by GPS information at the time of T.
If the vehicle is at low speed or stays in one place, the INS self-navigation result of the
next sample period should also be updated by the GPS information at the time of T.
In theory, the INS self-navigation result of every sample period should be updated
by the GPS information at the time of T until the next epoch GPS information is
obtained. The INS resolution is updated by the same GPS information repeatedly
during the process of observation expansion, when the vehicle is driving at low
speed or stationary.
The observations of various sensors have different errors and data features and the

outlier exists in observation during filtering. So the adaptive filter is often applied to
resist the influence of disturbance and improve the accuracy of model parameters
(Wu et al., 2012). It is important to construct an appropriate adaptive factor in an
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adaptive filter. In GPS-aided inertial integrated navigation, the adaptive factor was
typically the function of the state discrepancies and the predicted residuals (Wu and
Yang, 2010). Meanwhile, the adaptive Kalman filtering by using the residual sequences
to adapt the stochastic properties of the filter (Hide et al., 2003) and two-step adaptive
robust Kalman filtering (Wu et al., 2012) were proposed, which was able to prevent the
filter diverging. Because the observations from other sensors or virtual measurements
are less accurate than the GPS measurements, the adaptive factor should be con-
structed based on the less accurate information.
The proposed GPS observation expansion will improve the system observability but

it will also increase the data uncertainty. So the uncertainty is the key of GPS observa-
tion expansion. The information entropy is introduced to describe the uncertainty of
GPS observation expansion quantitatively. A new adaptive filter method is constructed
based on the uncertainty information in the paper. The proposed filter method is to
control the uncertainty introduced by the GPS observation expansion. Following
this introduction, GPS/INS loosely coupled navigation integration is reviewed in
Section 2. Section 3 describes the principle and method of the GPS observation expan-
sion. The proposed adaptive filter methodwith GPS observation expansion is shown in
Section 4. Section 5 reveals the land vehicle test and result analysis and conclusions are
given in the last section.

2. GPS/INS LOOSELY COUPLED INTEGRATION.
2.1. Dynamics Model. The system error dynamic model of integrated navigation

used in the Kalman filter is designed based on the INS error equations. The insignifi-
cant terms are neglected in the process of linearization (Titterton and Weston, 2004).
The psi-angle error equations of INS are as follows (Li et al., 2014):

δ _r ¼ �ωen × δrþ δv ð1Þ
δ _v ¼ �ð2ωie þ ωenÞ × δv� δψ × f þ η ð2Þ

δ _ψ ¼ �ðωie þ ωenÞ × δψþ ε ð3Þ
where δr, δv and δψ are the position, velocity and orientation error vectors, respect-
ively. ωen is the rate of navigation frame with respect to Earth, and ωie is the rate of
Earth with respect to inertial frame. The system error dynamics of GPS/INS integra-
tion are obtained by expanding the accelerometer bias error vector η and the gyro drift
error vector ε.
The accelerometer bias error vector η and the gyro drift error vector ε are regarded

as the random walk process vectors, which are modelled as follows (Wang et al., 2003):

_η ¼ uη ð4Þ
_ε ¼ uε ð5Þ

where uη and uε are white Gaussian noise vectors.
Combining Equations (1) to (5), the system dynamical model becomes:

δ_r ¼ �ωen × δrþ δv
δ _v ¼ �ðωie þ ωinÞ × δv� δψ × f þ η
δ _ψ ¼ �ωin × δψþ ε
η ¼ uη
ε ¼ uε

8>>>><
>>>>:

ð6Þ

1043AN ENHANCED GPS/ INS INTEGRATED NAVIGATION SYSTEMNO. 5

https://doi.org/10.1017/S0373463315001083 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315001083


which can be generalized in matrix and vector form:

_X ¼ ΦXþ u ð7Þ
where X is the error state vector, Φ is the system transition matrix, and u is the process
noise vector.

2.2. Observation Model. The observation model in GPS/INS integrated naviga-
tion is composed of the position and velocity difference vector between the GPS solu-
tions and the INS computation value (Titterton and Weston, 2004):

ZrðtÞ ¼ rGPSðtÞ � rINSðtÞ

¼ rGPSðtÞ � rINSðt� ΔtÞ þ vINSðt� ΔtÞ � Δtþ 1
2
αðtÞ � Δt2

� � ð8Þ

ZvðtÞ ¼ vGPSðtÞ � vINSðtÞ
¼ vGPSðtÞ � vINSðt� ΔtÞ þ αðtÞ � Δtð Þ ð9Þ

where Zr(t) is the position error measurement vector at t time, Zv(t) is the velocity
error measurement vector, rGPS(t) is the GPS position vector, rINS(t) is the INS
position vector, vGPS(t) is the GPS velocity vector, vINS(t) is the INS velocity vector,
α(t) is the acceleration vector determined by the INS alone and Δt is the sample
time of INS.
The generic measurement equation system of the Kalman filter can be written

as:

Zk ¼ ZrðtÞ
ZvðtÞ

� �
¼ BkXþ τr

τv

� �
ð10Þ

where Bk is the observation matrix, and τ is the measurement noise vector,
assumed to be white Gaussian noise.

3. GPS OBSERVATION EXPANSION. In order to increase the observability of
state vector X, the GPS observation expansion method is proposed. Suppose that
the data sampling rate of GPS and INS are 1 Hz and 100 Hz, respectively, in a
GPS/INS integrated navigation system and the system acquires the GPS observation
(xT, yT) at a time instant T. Accordingly, a filter update of the integrated system can
be performed using the current GPS observation (xT, yT). At the times of T + 0·01 s,
T + 0·02 s…T+ 0·99 s, position information can be accumulated by INS alone
without real-time GPS correction. If the vehicle is at a low speed of less than 20 km/h,
from T to T + 0·01 s, the travelling distance of the vehicle is 0·055 m, which is much
smaller than the GPS single point position error. The position of vehicle at T +
0·01 s is close to the position at T. Therefore, we can try to filter and update the INS
state variables at T + 0·01 s using the GPS observation values (xT, yT), which realizes
the GPS observation expansion. In the observation expansion, the GPS observation
values (xT, yT) are regarded as the input of the observation model of filter at the time
of T + 0·01 s.
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From the perspective of error ellipse, the Probability Density Function (PDF) of
GPS observation can be written as (Wolf and Ghilani, 1997):

f ðx; yÞ ¼ 1

2πσxσy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
� exp �1

2ð1� ρ2Þ
ðx� uxÞ2

σ2x
� 2ρ

x� ux
σx

� y� uy
σy

þ ðy� uyÞ2
σ2y

" #( )
ð11Þ

In which ux and uy are the mathematical expectation of position in X and Ydirection
respectively and ρ is the correlation coefficient, which is computed:

ρ ¼ σxy
σxσy

ð12Þ

in which σx and σy are the mean square error of position in the X and Ydirection, re-
spectively and σxy is the covariance between σx and σy.
The mean square errors of GPS position can be assumed to be spatially homoge-

neous, denoted by σ. According to current studies, the errors of GPS observation in
the X and Y directions do not have a significant correlation (Li et al., 2008). So the
value of σxy can be regarded as zero. At the time of T, with the mathematical expect-
ation of the position (xT, yT), the PDF of GPS position solution can be simplified to:

f ðx; yÞ ¼ 1
2πσ2

� exp � 1
2

ðx� xTÞ2 þ ðy� yTÞ2
σ2

" #( )
ð13Þ

Under the consideration of only the horizontal GPS position, the longer the distance
between the current point and its mathematical expectation is, the smaller the PDF is.
Regarding the distance as an independent variable, the PDF of horizontal GPS pos-
ition is a descent function. Under the conditions that x= xT and y= yT, the PDF is:

fT ¼ 1
2πσ2

ð14Þ

At the time of T + 0·01 s, the vehicle travels 0·055 m. If the value (xT, yT) is regarded as
the mathematical expectation at T + 0·01 s, which indicates that the GPS observation
(xT, yT) is regarded as input of observation model of filter at T + 0·01 s, the PDFof T
+ 0·01 s can be computed:

fTþ0:01s ¼ 1
2πσ2

� exp � 0:0552

2σ2

� �
ð15Þ

By comparing fT with fT+0.01s, one obtains the ratio q:

q ¼ fTþ0:01s

fT
¼ exp � 0:0552

2σ2

� �
ð16Þ

In GPS/INS integrated navigation, the mean square error of GPS position obtained
by single point positioning is more than 1 m. So the ratio q is larger than 0·998.
This means that the value fT+0.01s is close to fT. The probability of the single point
(xT, yT) in a small integration area around the time T is similar to that around the
time T + 0·01 s. When the position information (xT, yT) is as the Kalman filter input
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at T and T + 0·01 s, the reliability is about the same. So the method using the GPS
position information (xT, yT) to filter and update the states at time T+ 0·01 s, T + 0·02 s,
… is feasible. The block diagram of GPS observation expansion is presented in
Figure 1.
It can be seen that the principle of the proposed GPS observation expansion is

similar to the principle of the Zero Velocity Update (ZUPT) algorithm. The two
methods are used to provide additional observation information according the
moving condition of a vehicle. In the ZUPT method, the zero velocity point is
employed to update the state parameters in the Kalman filter when the vehicle is iden-
tified to be motionless. In the proposed GPS observation expansion method, the pos-
ition information is employed to update the state parameters in the Kalman filter when
the vehicle is identified to be only slowly moving. When the vehicle is motionless, the
GPS observation expansion method will also be employed in the filter update. From
this perspective, the GPS observation expansion algorithm is an extension of the
ZUPT method. A comparison between ZUPT and GPS observation expansion is
shown in Table 1. Comparedwith the ZUPTalgorithm, the proposed method is applic-
able in more situations. Nevertheless, the reliability of the new method is reduced
because the judgment condition is slow moving, not motionless as in the ZUPT algo-
rithm. The difference between the position used in the filter update and the real pos-
ition after a small movement will cause systematic errors in the GPS observation
expansion method. Therefore an adaptive Kalman filter based on the uncertainty prin-
ciple is proposed and employed in the GPS observation expansion to control the influ-
ence of systematic errors.

4. ADAPTIVE KALMAN FILTERWITH GPS OBSERVATION EXPANSION
4.1. Kalman Filter in GPS/INS Integrated Navigation. The Kalman filter is the

most common method to realise the data fusion of different sensors. The optimal esti-
mates of the state vector from the Kalman filter can be reached through a time update
and a measurement update at a time instant:

X̂k ¼ X̂k;k�1 þGkðZk � BkX̂k;k�1Þ ð17Þ
Gk ¼ Pk;k�1BT

k ðBkPk;k�1BT
k þ RkÞ�1 ð18Þ

X̂k;k�1 ¼ Φk;k�1X̂k�1 ð19Þ
Pk;k�1 ¼ ΦkPk�1Φ

T
k þQk ð20Þ

Pk ¼ ðI�GkBkÞPk;k�1 ð21Þ
where Gk is the gain matrix of Kalman filter at time k, Pk is the covariance matrix of
state vector at time k, Rk is the covariance matrix of measurement noise vector at time
k,Qk is the covariance matrix of process noise at time k, and the subscript k,k-1 repre-
sents the state and covariance estimates forward from time k-1 to time k.
In a closed loop integration scheme, a feedback loop is used for correcting the sys-

tematic errors. In this way, the mechanisation performs a simple navigation calculation
under the assumption of small errors. In this case, the error states will be reset to zero
after every measurement update (Godha, 2006). Thus, the navigation resolution is
expressed by:

X̂k ¼ Pk;k�1BT
k ðBkPk;k�1BT

k þ RkÞ�1Zk ð22Þ
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4.2. Uncertainty of GPS Observation Expansion. GPS observation expansion is
able to increase the filter frequency, while it brings the data uncertainty to the
GPS/INS integrated navigation. To control the uncertainty of GPS observation expan-
sion, it should be described quantitatively. Although it is feasible to apply the GPS pos-
ition information (xT, yT) to filter and update the states at time T + 0·01 s, T + 0·02 s,
the PDF at the time T + 0·01 s, T + 0·02 s … is decreasing with respect to the PDF
at time T. This indicates that the uncertainty of the expanded GPS observation of
T + 0·01 s, T + 0·02 s,… increases. The uncertainty growth of the GPS positionswill de-
crease the filter accuracy. In order to know the depth of uncertainty well, the informa-
tion entropy can be used to describe the uncertainty of the expanded GPS observation.
The information entropy is used to measure how much information is in an event.

The larger uncertainty a variable has, the more complex information it will contain,
or it will have a larger information entropy. The information entropy can be defined
as (Xu et al., 2011):

H ¼ � ∫∫R f ðx; yÞ � ln jf ðx; yÞjdxdy ð23Þ

From Equations (13) and (23), the information entropy of GPS position observation is

H ¼ ln
1

2πσ2
� r2

2σ2
� 1

� �
� e r2

2σ2 � ln
1

2πσ2
þ 1 ð24Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xTð Þ2 þ y� yTð Þ2

q
is the distance between the current position

(x, y) and its mathematical expectation (xT, yT).

Figure 1. The GPS observation expansion.

Table 1. Comparison between ZUPT and GPS observation expansion.

Method ZUPT GPS observation expansion

Information Velocity Position
Situation Motionless Small-moving
Reliability High Low
Range of application Small Large
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The derivative of Equation (24) is given by

H 0 ¼ � r
σ2

� e r2
2σ2 ln

1
2πσ2

� r2

2σ2

� �
ð25Þ

if σ is larger than 1=
ffiffiffiffiffi
2π

p
, and the derivative H′ is bigger than zero. In GPS/INS inte-

grated navigation, the σ of GPS position from single point positioning is larger than
one metre, which implies that the information entropy of expanded GPS observation
is the increasing function of the variable r. During the GPS observation expansion, the
further the expansion of the observation is with respect to the mathematical expect-
ation, the larger uncertainty it will have.

4.3. Adaptive Filter with GPS Observation Expansion. In order to control the in-
fluence of growing uncertainty in GPS observation expansion, the adaptive filter can
be deployed. The common adaptive filter resolution is generally expressed as:

X̂k ¼ X̂k;k�1 þ �GkðZk � BkX̂k;k�1Þ ð26Þ
where �Gk is the adaptive Kalman filter gain matrix (Yang and Gao, 2006):

�Gk ¼ 1
αk

Pk;k�1BT
k ð

1
αk

BkPk;k�1BT
k þ RkÞ�1 ð27Þ

with a feedback loop, the adaptive filter resolution can be simplified to:

X̂k ¼ 1
αk

Pk;k�1BT
k ð

1
αk

BkPk;k�1BT
k þ RkÞ�1Zk ð28Þ

in which αk is the adaptive factor.
During GPS observation expansion, the expansion information due to the uncer-

tainty will bring outlier disturbance. Thus, αHk is introduced to decrease or even elim-
inate the outlier disturbance. On the basis of the uncertainty of the expanded GPS
position observations, αHk is defined by:

αHk ¼ 1�H ð29Þ
where H is the uncertainty in current time.
Except where the adaptive factor can decrease or eliminate the abruptness of GPS

observation expansion, it can also be used to inhibit the influence of gross errors on
the GPS observation. Accordingly, the adaptive factor αek is introduced based on pre-
dicted residual (Mohamed and Schwarz, 1999):

αek ¼
1 jΔVkj � c
c

jΔVkj jΔVkj> c

8<
: ð30Þ

where c is a constant between 0·85 and 1·0.
The learning statistic ΔVk is constructed as follows

ΔVk ¼ VT
kVk

trðBkPk;k�1BT
k þ RkÞ

ð31Þ

Vk ¼ Zk � BkX̂k;k�1 ð32Þ
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The following should be noted about the proposed filter method. Firstly, when the
GPS observation contaminated by gross error at the time of T is used to implement the
filter update as GPS observation expansion, the Kalman filter solution suffers from
gross error and outlier disturbance due to observation expansion, which can easily
lead to a filter divergence. Hence, the GPS observation expansion should not be per-
formed at the time T + 0·01 s, T + 0·02 s…in the case that GPS observation is affected
by gross error at the time of T. Secondly, because the vertical accuracy of a GPS pos-
ition is much lower than the horizontal accuracy, GPS observation expansion only
makes use of horizontal position. Thirdly, if the position at the current time is far
away from the position at the time of T, the expanding observation with large uncer-
tainty is used to perform the measurement update of the states, which may easily lead
to a major outlier. In that case, the GPS observation expansion may be counter-pro-
ductive. Therefore, the GPS measurement expansion with large uncertainty should
be rejected by setting up a threshold β.
We schematically present a block diagram in Figure 2 to outline the fundamental

mechanism of the proposed adaptive filter method. The flow of the proposed adaptive
filter with GPS observation expansion can be summarised as follows:

1) At the time T, resolve the navigation result by the adaptive filter with the GPS
observation (xT, yT) using the adaptive factor αek (αk ¼ αek);

2) For the further time instants from T + 0·01 s to T + 0·99 s, if αek < 1 at time T, the
navigation results only make use of the free inertial navigation solution without
observation expansion;

3) If αek ¼ 1 at the time T, calculate the distance r between the current position with
(xT, yT) and obtain the uncertainty H using Equation (16);

Figure 2. The proposed adaptive filter with GPS observation expansion
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4) If H≤ β, calculate the adaptive factor αHk and perform the adaptive filter update
using the expanded GPS observation (αk ¼ αHk ). Otherwise, only the inertial self-
navigation is introduced;

5) If H> β, the integrated navigation does not perform any measurement update
using GPS observation expansion, until the GPS receiver delivers the new pos-
ition information, and then repeats the steps above.

According to the above description, the adaptive factor αek is only used at the timewhen
the GPS observation inputs and the adaptive factor αHk is only applied during GPS ob-
servation expansion. The two kinds of factor are not used at the same time to avoid
filter divergence. If one compares the adaptive filter using GPS observation expansion
with the standard Kalman filtering, one can find the following: (1) GPS observation
expansion increases the frequency of the observation updates for the time between
two GPS observation epochs; (2) the adaptive filter with GPS observation expansion
can not only control the effect of GPS measurement errors on the states, but also
lessens the influence of outliers due to GPS observation expansion; (3) the proposed
GPS observation expansion is based on the dynamic characteristics of a vehicle itself,
which relies on the velocity of the vehicle. The Kalman filter will be processed more
times in the proposed method and the corresponding amount of calculation will be
increased. Not too many conditions meet the requirements of GPS observation expan-
sion, so the overall calculation burden will not be significantly increased. On the other

Figure 3. The trajectory of test one.
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hand, the key of navigation work is real-time performance. So the different operations
in GPS/INS integrated navigation have been set on different priorities. The GPS ob-
servation expansion algorithm is one assisting method and its priority is the lowest
to make sure that it will not impact the real-time performance.

5. FIELD TEST AND ANALYSIS.
5.1. Test One. To test the efficiency of the proposed method, a land vehicle field

test was carried out. The field test was conducted in the Daxing district of Beijing. An
overview of the test trajectory is given in Figure 3. The road condition is complex and
diverse including city circular road, street area and bridge overpass. The whole test
lasts about half an hour. The MEMS IMU ran at the data rate of 100 Hz and its

Table 3. The reference value accuracy.

Position (m) Velocity (m/s) Attitude (°)

PVA Single point L1/L2 RT-20 Velocity Roll Pitch Yaw

Accuracy 1·2 0·2 0·02 0·015 0·015 0·050

Table 2. The MEMS-IMU’s technical data.

Sensors Gyroscope Accelerometer

Bias 30°/h 4 mg
Scale factor 500 ppm 800 ppm
Random walk 0·035°/sqrt(h) 60 mg/sqrt(Hz)

Figure 4. Trajectory comparison of different schemes.
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technical data is shown in Table 2. The GPS receiver was used at the data rate of 1 Hz.
A SPAN-CPT (Synchronous Position, Attitude and Navigation combined GNSS and
INS) product by NovAtel Inc., together with the MEMS-IMU was installed in the
vehicle. One GPS antenna was installed on the roof of the vehicle and another GPS
receiver was set on a known point as the dynamical differential GPS reference
station. The post-processed differential GPS solutions were used as the position refer-
ence value and the post-processed SPAN-CPT outputs were used as the velocity and
attitude reference value and their accuracies are shown in Table 3.
In the data processing, the initial parameters of the Kalman filter for the integrated

navigation were determined based on experience. The initial position errors were 3 m,
3 m and 5 m and the initial velocity errors were 0·1 m/s, 0·1 m/s and 0·5 m/s in NED
(North-East-Down) directions, respectively. The initial platform alignment errors
were 0·01°, 0·01°, 0·1°. The initial standard deviations of gyro and accelerometer
biases were 10°/h and 500 mg, respectively. The initial standard deviation of GPS pos-
ition and velocity were 3·3 m and 0·1 m/s. The alignment information can be obtained
with INS and GPS information in static condition. The initial position, velocity and
attitude are set the same for different schemes to obtain a better comparison
performance.

Figure 5. Trajectory comparison of different motion regions (enlargement): (a) High-speed
straights region; (b) High-speed corners region; (c) Low-speed straights region; (d) Low-speed
corners region.
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In order to test the efficiency of the new method, three calculation schemes are
performed:

Scheme 1: the standard Kalman filter,

Scheme 2: the adaptive Kalman filter without GPS observation expansion (Yang
and Gao, 2006),

Scheme 3: the enhanced GPS/INS integrated navigation system with GPS observa-
tion expansion (the proposed method in this paper).

The whole analysis focuses on four road conditions: 1. High-speed (velocity
⩾ 40 km/h) and straight road, 2. High-speed and curving road, 3. Low-speed (velocity
< 40 km/h) and straight road, 4. Low-speed and curving road.
Figure 4 shows the trajectory chart of the reference and three schemes. One local

area of the four road conditions mentioned above was chosen and shown in
Figure 5. In order to compare the error in different regions of Figure 5, the horizontal
position error series of three schemes is shown in Figure 6. Whether on straight roads
or on curving roads, the navigation solution of three schemes in high speed conditions
was almost the same. However, the navigation result from Scheme 3 was better than the

Figure 6. Horizontal position error comparison of different motion regions: (a) High-speed
straights region; (b) High-speed corners region; (c) Low-speed straights region; (d) Low-speed
corners region.
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Figure 7. The position error for different schemes: (a) position error in north; (b) position error in
east; (c) position error in down.

Table 4. Comparison of three schemes in terms of position error.

RMS (m) MAX (m)

Scheme North East Down North East Down

1 2·745 2·885 1·126 8·822 9·720 3·623
2 1·573 1·657 1·066 6·293 5·595 3·272
3 0·852 0·946 0·951 4·327 3·888 2·956

Table 5. Comparison of three schemes in terms of velocity error.

RMS (m/s) MAX (m/s)

Scheme North East North East North East

1 0·557 0·576 0·119 2·098 2·137 0·541
2 0·431 0·442 0·119 2·091 1·914 0·540
3 0·304 0·304 0·118 1·990 1·549 0·539
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result from Scheme 1 and Scheme 2 when the vehicle was driven at low speed. This was
due to the fact that the vehicle in high-speed conditions was leaving from the position
at the time T in a short time span. The expanding GPS observations were very few or
even non-existent, which would weaken the effect of the GPS observation expansion.
Figure 7 shows the time series of position error from three schemes vs. dynamical

differential GPS solution in the NED directions. A statistical summary of the Root
Mean Square errors (RMS) and maximum value for position error is presented in
Table 4. From the whole trajectory, the navigation accuracy with Scheme 2 was
little better than the accuracy with Scheme 1. The navigation accuracy for Scheme 3
was superior to the accuracy from Scheme 1 and Scheme 2. The adaptive filter
(Scheme 2) could resist the impact of dynamics model outliers on the state estimates.
The GPS observation expansion (Scheme 3) could not only increase the measurement
update rate, but also inhibit the negative effect of the growing uncertainty from the
expanding GPS observation, which can improve the navigation accuracy and
prevent the filter from diverging. The results show that the position of Scheme 3 can
achieve an accuracy of 0·852 m, 0·946 m and 0·951 m in the north, east and down co-
ordinate components, respectively. Compared with Scheme 1, the position accuracy in
the north, east and down directions is improved by 69%, 67% and 16% for Scheme 3
respectively. Compared with Scheme 2, the position accuracy in the north, east and
down directions are improved by 43%, 43% and 11% for Scheme 3 respectively.

Figure 8. The velocity error for different schemes: (a) velocity error in north; (b) velocity error in
east; (c) velocity error in down.
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Because only the horizontal coordinate is brought in the GPS observation expansion,
δrN and δrE are the directly measurable variables and δrD is the indirectly measurable
variable. So the accuracy improvement in the north and east directions is larger than
that in the down direction.
Table 5 shows the velocity improvement realized by the enhanced GPS/INS inte-

grated navigation system with GPS observation expansion proposed in the paper.
Figure 8 plots the integrated system velocity errors in north, east and down directions
respectively. The results show that the velocity of Scheme 3 can achieve an accuracy of
0·304 m/s, 0·304 m/s and 0·118 m/s in the north, east and down coordinate compo-
nents, respectively, which is a better performance than Scheme 1 and Scheme 2.
Compared to Scheme 1, the proposed enhanced GPS/INS integrated navigation

Table 6. Comparison of three schemes in terms of attitude error.

RMS (°) MAX (°)

Scheme Roll Pitch Yaw Roll Pitch Yaw

1 0·168 0·098 3·763 0·399 0·261 6·005
2 0·143 0·085 3·254 0·390 0·239 5·491
3 0·126 0·074 2·709 0·304 0·194 4·701

Figure 9. The attitude error for different schemes: (a) attitude error in roll; (b) attitude error in
pitch; (c) attitude error in yaw.
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system improves all the velocity errors in the north, east and down direction by 45%,
47% and 1% RMS, respectively. The velocity accuracies of three schemes are almost of
the same level in the down direction. Because the velocity is very small in the north
direction for land vehicles, the velocity value is set to zero at the beginning of the
INS self-navigation computation period, which is one non-holonomic constraint for
land vehicles.
The roll, pitch and yaw errors of Scheme 1, Scheme 2 and Scheme 3 are given in

Figure 9 and Table 6. It can be seen that the attitude accuracy has been improved
with Scheme 3. In terms of RMS, compared with Scheme 1 (3·763°) and Scheme 2
(3·254°), the error from Scheme 3 dropped down to 2·709°in yaw attitude. The
largest attitude errors of roll, pitch and yaw angles are 0·399°, 0·261° and 6·005°, re-
spectively, when Scheme 1 is used. By contrast, the largest attitude errors are 0·304°,
0·194° and 4·701° when the proposed approach is applied, which are considerably
smaller.

5.2. Test Two. Longer field tests were conducted to evaluate the performance of
the proposed method. The test systems are the same as test one. The field test was con-
ducted in China University of Mining and Technology of Xuzhou. An overview of the

Figure 10. The trajectory of test two.
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test trajectory is given in Figure 10.The whole time of the test was about two hours.
The three calculation schemes of test one were performed.
Shown in Figure 11 are time series of position solution differences with respect to the

reference value from different schemes. Table 7 illustrates RMS and maximum values
of position error. The results of test two are similar to those of test one. The results
show that the position of Scheme 3 can achieve an accuracy of 0·845 m, 0·768 m
and 2·399 m in the north, east and down coordinate components, respectively.
Comparedwith Scheme 1, the position accuracy in the north, east and down directions
are improved by 62%, 56% and 51% for Scheme 3 respectively. The result shows that
the enhanced GPS/INS integrated navigation system with GPS observation expansion
is able to realise better performance in longer term navigation work.

Figure 11. The position error for different schemes: (a) position error in north; (b) position error in
east; (c) position error in down.

Table 7. Comparison of three schemes in terms of position error.

RMS (m) MAX (m)

Scheme North East Down North East Down

1 2·201 1·763 4·899 7·954 5·610 16·325
2 1·172 1·003 2·957 5·153 3·125 10·534
3 0·845 0·768 2·399 4·346 2·708 8·473
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6. CONCLUSIONS. On the basis of the PDFof random variables, the GPS obser-
vation can be expanded by being bound on the dynamics of a land vehicle. The infor-
mation entropy has been deployed to describe the uncertainty of the expanded GPS
observations using their PDFs. The uncertainty has been used to calculate the adaptive
factor for the Kalman filter. The enhanced GPS/INS integrated navigation system with
the GPS observation expansion can increase the rate of the measurement updates
without other aiding sensors and inhibit the influence of the growing uncertainty on
the expanding GPS observation. The results for a land vehicle have shown that the pro-
posed method could improve the accuracy of the position, velocity and attitudes effect-
ively, especially in the urban area where the land vehicle could be driven at varying
speeds. Comparison with the standard Kalman filter and the classical adaptive filter
has shown its advantages. At the same time, combining the new proposed method
with other methods, such as using more sensors, the GPS/INS integrated navigation
system should obtain even better performance, and this is work for the future.
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