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Abstract

A string-formatting function such as printf in C seemingly requires dependent types, because

its control string determines the rest of its arguments. Examples:

printf ("Hello world.\n");

printf ("The %s is %d.\n", "answer", 42);

We show how changing the representation of the control string makes it possible to program

printf in ML (which does not allow dependent types). The result is well typed and perceptibly

more efficient than the corresponding library functions in Standard ML of New Jersey and

in Caml.

1 The problem

In ML, expressing a printf-like function is not as trivial as in C. For example, we

would like that evaluating the expression

format "%i is %s%n" 3 "x"

yields the string "3 is x\n", as specified by the pattern "%i is %s%n", which tells

format to issue an integer, followed by the constant string " is ", itself followed by

a string and ended by the newline character.

What is the type of format? In this example, it is

string -> int -> string -> string

but we would like our printf-like function to handle any kind of pattern. For

example, we would like

format "%i/%i" 10 20

to yield "10/20". In that example, format is used with the type

string -> int -> int -> string

However, we cannot do that in ML: format can only have one type.
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2 Analysis

The crux of the problem is that the type of format depends upon the value of its first

argument, i.e., the pattern. This has led, for example, Shields, Sheard and Peyton

Jones (Shields et al., 1998) to propose a dynamic type system that makes it possible

to express such a formatting function by delaying type inference until the pattern is

available.

The culprit, however, is not ML’s type system, but the fact that the pattern is

represented as a string, which format in essence has to interpret (in the sense of a

programming-language interpreter).

3 A solution

Let us pursue this programming-language analogy, i.e., that format interprets the

pattern. Instead of considering the concrete syntax of each pattern – as a string, we

can consider its abstract syntax – as a data type.

Abstract syntax of patterns: the data type of patterns is composed of the following

pattern directives:

• lit for declaring literal strings (" is " and "/" above);

• eol for declaring newlines (%n above);

• int for specifying integers (%i above); and

• str for specifying strings (%s above).

In addition, we provide the user with an associative infix operator oo to glue pattern

components together.

Cosmetics: for cosmetic value, we could also provide two ‘outfix’ directives << and

>> to delimit a pattern.

We could also define the operator % to be the polymorphic identity function, so

that, e.g., %int (or even %i for that matter) would be a valid pattern directive.

Two examples: thus equipped, we can make format construct an appropriate (stati-

cally typed) higher-order function, as in the following two examples.

format (int oo lit " is " oo str oo eol) : int -> string -> string

format (int oo lit "/" oo int) : int -> int -> string

The insights: rather than making format interpret the pattern recursively, we make

the pattern construct an appropriate higher-order function inductively. In that,

we follow Harry Mairson’s observation that most of the time, our programs are

inductive, not recursive (Mairson, 1991). More concretely, we use continuation-

passing style (CPS) to thread the constructed string throughout. We also exploit the

polymorphic domain of answers to instantiate it to the appropriately typed function.

Formatting a string then boils down to supplying the initial continuation and the

initial string.

For example, the type of the eol directive reads as follows:
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(string -> ’a) -> string -> ’a

Its first argument is the continuation, which expects a string and yields the final

answer. Its second argument is the threaded string, and because it is in CPS, this

directive also yields the final answer.

For a second example, the type of the int directive reads as follows:

(string -> ’a) -> string -> int -> ’a

Its first argument is the continuation and its second argument is the threaded string.

This directive yields a function expecting an integer and yielding the final answer.

The directives: lit and eol operate in a similar way:

fun lit x k s = k (s ^ x)

(* val lit : string -> (string -> ’a) -> string -> ’a *)

fun eol k s = k (s ^ "\n")

(* val eol : (string -> ’a) -> string -> ’a *)

As for int and str, they also operate in a similar way:

fun int k s (x:int) = k (s ^ (makestring x))

(* val int : (string -> ’a) -> string -> int -> ’a *)

fun str k s x = k (s ^ x)

(* val str : (string -> ’a) -> string -> string -> ’a *)

Note that one can uncurry the directives and also change the order of their param-

eters, but the present formulation yields the simplest definition of oo.

Glueing the directives: we can implement oo, for example, as function composition

(o in ML). So glueing int together with itself, for example, yields a function of the

following type:

int oo int : (string -> ’a) -> string -> int -> int -> ’a

Initializing the computation: the job of format reduces to providing an initial con-

tinuation and an initial string to trigger the computation specified by the pattern:

fun format p = p (fn (s:string) => s) ""

(* val format : ((string -> string) -> string -> ’a) -> ’a *)

So given the pattern int oo int, the format function supplies it with an initial

continuation (the identity function over strings) and an initial string (the empty

string), yielding a value of the following type, as desired:

int -> int -> string

4 An alternative solution

Alternatively, and given an end-of-pattern directive (implemented as the identity

function), we can implement glueing as function application instead of as function

composition. In both cases, the implementation of the directives remains the same,

but the definition of format need no longer supply an initial continuation, since the

initial continuation in effect is already provided by the end-of-pattern directive:
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fun format’ p = p ""

(* val format’ : (string -> ’a) -> ’a *)

fun eod (s:string) = s

(* val eod = fn : string -> string *)

Therefore, glueing int together with itself and the end-of-pattern directive, for

example, yields a function of the following type.

int oo int oo eod : string -> int -> int -> string

More on cosmetics: implementing glueing as function application makes it simple

to implement the outfix directives << and >> mentioned in section 3. We can simply

define each of them as the polymorphic identity function:

fun << x = x

fun >> x = x

And then we can write, for example, the following:

<< int oo int >> : string -> int -> int -> string

format’ (<< int oo int >>) : int -> int -> string

5 Assessment

Formatting strings is a standard example in partial evaluation (Consel and Danvy,

1993): the formatting function can be specialized with respect to any given pattern.

Partial evaluation then removes the overhead of interpreting each pattern. So, for

example, specializing a term such as

format (int oo lit " is " oo str oo eol)

yields the following more efficient residual term:

fn (x1:int) => fn x2 => (makestring x1) ^ " is " ^ x2 ^ "\n"

The required partial-evaluation steps can be very mild: for the functional specifica-

tion described here, mere inlining (β-reduction) suffices. The back end of the ML

Kit, for example, provides the specialization just above (Martin Elsmann, personal

communication, March 1998).

Independently of partial evaluation, the functional specification is also efficient

on its own. For example, besides being type-safer, it appears to be perceptibly faster

than the resident format function in the New Jersey library Format: it is three to

four times faster if glueing is implemented as function composition. Ditto for the

resident sprintf function in the Caml library: the functional specification is two

to three times faster if glueing is implemented as function composition. In both

cases, making function composition left- or right-associative has little influence on

the overall efficiency. Finally, implementing glueing as (right-associative) function

application gives another 10% speedup both in Standard ML of New Jersey and in

Caml.

Independently of efficiency, this functional specification of format further illus-

trates the expressive power of ML, or for that matter of any functional language
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based on the Hindley–Milner static type system (Yang, 1998). It also easily scales

up to inductive types such as lists (Danvy, 1998).
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