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Abstract. Let Mµ be the uncentered Hardy–Littlewood maximal operator with a
Borel measure µ on R. In this note, we verity that the norm of Mµ on Lp(R, µ) with
p ∈ (1,∞) is just the upper bound θp obtained by Grafakos and Kinnunen and reobtain
the norm of Mµ from L1(R, µ) to L1,∞(R, µ). Moreover, the norm of the “strong”
maximal operator Nn

~µ on Lp(Rn, ~µ) is also given.

1. Introduction

Let µ be a Borel measure on Rn; that is, every Borel set is µ-measurable and µ(K) <∞
for any compact set K ⊂ Rn. For a µ-locally integrable function f : Rn → [0,∞], the
uncentered maximal function of f with respect to µ is defined by

Mµf(x) := sup
B3x

1

µ(B)

∫
B

fdµ, x ∈ Rn,(1.1)

where the supremum is taken over all open balls B containing x. The integral average in
(1.1) is equal to f(x) if µ(B) = 0.

As we know, when n = 1, the operator Mµ always maps L1(R, µ) into the Lorenz space
L1,∞(R, µ) and maps Lp(R, µ) into itself for 1 < p ≤ ∞; see [1, 10]. It is therefore natural
to investigate the best constant Cµ

1 such that for any f ∈ L1(R, µ) and λ > 0,

µ({x ∈ R : Mµf(x) > λ}) ≤ Cµ
1

λ
‖f‖L1(R,µ),(1.2)

as well as the best constant Cµ
p such that for any f ∈ Lp(R, µ),

‖Mµf‖Lp(R,µ) ≤ Cµ
p ‖f‖Lp(R,µ).(1.3)

In their remarkable work [7], Grafakos and Montgomery-Smith showed that when µ
is the n-dimensional Lebesgue measure, the norm of the “strong” uncentered maximal
operator on Lp(Rn) for p ∈ (1,∞) tends to ∞ as n → ∞. Moreover, when n = 1, they
also showed that the best constant Cµ

p for p ∈ (1,∞) is the unique positive solution to
the equation

(p− 1)xp − pxp−1 − 1 = 0.(1.4)

When µ is a non-zero Borel measure satisfying the following assumption:
Assumption (A): for any point a ∈ R, µ({a}) = 0,

Bernal [1] proved that the best constant Cµ
1 in (1.2) is 2. On the other hand, Grafakos

and Kinnunen in [6] showed that for a general Borel measure µ on R, the best constants
in (1.2) and (1.3) respectively have upper bounds 2 and θp with 1 < p < ∞, where θp
is the unique positive solution of the equation (1.4); see Lemma 2.1 below. Recently,
there are still scholars actively engaged in this field. Jia Wu et al. [11] obtained the best
constant of truncated Hardy-Littlewood maximal function on L1(R). Moyan Qin et al.
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[9] established the limiting weak type behaviors of the strong maximal operators. There
are numerous papers on the best constants of maximal functions; see [4, 8, 2].

The purpose of this note is twofold. For p = 1, by an alternative method, we reobtain
the result of Bernal in [1]. That is, we have the conclusion as follows.

Theorem 1.1. Let µ be a non-zero Borel measure on R that satisfies Assumption (A).
Then Cµ

1 = 2.

The second purpose of this note is to study the best constant Cµ
p of Mµ with a Borel

measure µ for p ∈ (1,∞). Under some additional assumptions, we verity that the upper
bound θp obtained in [6] is just the norm of Mµ. More precisely, we have the following
result.

Theorem 1.2. Let µ be a Borel measure on R that satisfies Assumption (A) and
Assumption (B): there exists a non-negative locally integrable function w on R, such

that for any subset A ⊂ R, µ(A) =
∫
A
w(t)dt, and∫ 0

−∞
w(t)dt =

∫ ∞
0

w(t)dt =∞.

Then Cµ
p = θp, where θp is the unique positive solution of the equation (1.4) with 1 < p <

∞.

Remark 1.3. (i) It is not clear whether Assumption (B) is necessary.
(ii) Let w ∈ Ap, the class of Muckenhoupt weights; see, for example, [5]. It is not

difficult to see the Borel measure µ = wdx satisfies Assumption (A) and (B). This implies
that for a given w ∈ Ap, the norm of Mµ on Lp(R, µ) or from L1(R, µ) to L1,∞(R, µ) is
independent of w.

We mention that when p = 1, by the result in [6], the best constant Cµ
1 ≤ 2 (see

Lemma 2.1 below). Thus to show Theorem 1.1, it suffices to prove the reverse inequality.
A novelty of this note is that we take a new method to achieve this aim by finding some
suitable “test functions”. This method is also used to prove Theorem 1.2.

At the end of this paper, we also briefly discuss the “strong” maximal operator Nn
~µ

with the measure ~µ on Rn. By an argument similar to Theorem 1.2, we show that the
operator norm of Nn

~µ on Lp(Rn, ~µ) is θnp , 1 < p < ∞. Moreover, we point out that θnp
grows exponentially with n, as n→∞.

2. Proofs of Theorems 1.1 and 1.2

In this section, we firstly provide the proofs of Theorems 1.1 and 1.2, and then we
consider the n-dimensional maximal operator Nn

~µ in the end. Let Mµf , Cµ
1 and Cµ

p be as
in (1.1), (1.2) and (1.3), respectively, and θp be the unique positive solution of (1.4). For
convenience, we write Mf := Mµf , C1 := Cµ

1 and Cp := Cµ
p . We begin with recalling the

following result by Grafakos and Kinnunen in [6].

Lemma 2.1. Let µ be a Borel measure on R and p ∈ (1,∞). Then C1 ≤ 2 and Cp ≤ θp.

Theorem 1.1 is a consequence of Lemma 2.1 and the following proposition.

Proposition 2.2. Let µ be a non-zero Borel measure on R satisfying Assumption (A).
Then there exists a collection {(ai, bi)}∞i=1 of open intervals such that

ai < ai+1 < bi+1 < bi,

∫ bi

ai

dµ > 0, lim
i→∞

∫ bi

ai

dµ = 0,(2.1)
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and

lim
i→∞

sup
t>0

tµ({x ∈ R : Mχ(ai,bi)(x) > t})

µ((ai, bi))
= 2.

Proof: We claim that there exists x0 ∈ R, such that µ(I) > 0 for any open interval
I 3 x0. Otherwise, for any x ∈ R, there exists an open interval Ix 3 x such that
µ(Ix) = 0. By the Lindelöf covering theorem, we deduce that there exists a countable
collection {Ij}∞j=1 of open intervals, such that µ(Ij) = 0 for any j ∈ N, and

R =
⋃
j∈N

Ij.

Therefore,

0 < µ(R) = µ
(⋃
j∈N

Ij

)
≤

∞∑
j=1

µ(Ij) = 0,

which yields a contradiction. From this claim, we see that there exists a collection
{(ai, bi)}∞i=1 of open intervals satisfying (2.1).

Let fi(x) := χ(ai,bi)(x), where i ∈ N and x ∈ R. We then see that for x < ai,

Mfi(x) = sup
ai≤y≤bi

∫ y
ai
dµ∫ y

x
dµ

=

∫ bi
ai
dµ∫ bi

x
dµ
.

We can treat similarly when x > bi. Therefore we conclude that for any i,

Mfi(x) =



∫ bi
ai
dµ∫ bi

x dµ
, x < ai;

1, ai ≤ x ≤ bi;

∫ bi
ai
dµ∫ x

ai
dµ
, x > bi.

By (2.1), we see that µ((ai, bi)) ∈ (0,∞). Without lost of generality, we may further
assume that

γi := max{
∫ bi
ai
dµ∫ bi

−∞ dµ
,

∫ bi
ai
dµ∫∞

ai
dµ
} < 1.

Moreover, since Mfi is continuous, increasing on (−∞, ai), and decreasing on (bi,∞),
we have that

Ei := {x ∈ R : Mfi(x) = λ} 6= ∅ for γi < λ < 1.

Let

αi := inf{y : y ∈ Ei},
βi := sup{y : y ∈ Ei}.

Then by the continuity of Mfi, we see that

αi < ai, βi > bi,

αi, βi ∈ Ei,
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ai

dµ = λ

∫ bi

αi

dµ,

∫ bi

ai

dµ = λ

∫ βi

ai

dµ,

and

{x ∈ R : Mfi(x) > λ} = (αi, βi).

These facts imply that

λµ({x ∈ R : Mfi(x) > λ}) = λ

∫ βi

αi

dµ

= λ

∫ bi

αi

dµ+ λ

∫ βi

ai

dµ− λ
∫ bi

ai

dµ

= (2− λ)

∫ bi

ai

dµ.

Hence

sup
λ>0

λµ({x ∈ R : Mfi(x) > λ}) ≥ sup
γi<λ<1

λµ({x ∈ R : Mfi(x) > λ})

= sup
γi<λ<1

(2− λ)

∫ bi

ai

dµ

= (2− γi)µ((ai, bi)).

By letting i→∞, we deduce that

lim
i→∞

sup
λ>0

λµ({x ∈ R : Mχ(ai,bi)(x) > λ})

µ((ai, bi))
≥ lim

i→∞
(2− γi) = 2.(2.2)

On the other hand, from Lemma 2.1, we also have

lim
i→∞

sup
λ>0

λµ({x ∈ R : Mχ(ai,bi)(x) > λ})

µ((ai, bi))
≤ 2.

This together with (2.2) yields that Proposition 2.2 holds and the proof is finished. �

To present the proof of Theorem 1.2, we also need the following proposition.

Proposition 2.3. Let T (x) := x
1− 1

p+1
x+1

, x > 0 and 1 < p <∞. Then the maximum value

of the function T is p−1
p
θp.

Proof: We firstly see that

T ′(x) =
−1
p
x1−

1
p + (1− 1

p
)x−

1
p − 1

(x+ 1)2
, x > 0.

It is not difficult to prove that there exists a unique point x0 > 0 such that T ′(x0) = 0
and max

x>0
T (x) = T (x0). Therefore

max
x>0

T (x) =
x
1− 1

p

0 + 1

x0 + 1
=

x
1− 1

p

0 +
1
p
x
1− 1

p
0

(1− 1
p
)x
− 1

p
0 −1

x0 +
1
p
x
1− 1

p
0

(1− 1
p
)x
− 1

p
0 −1

=
p− 1

p
x
− 1

p

0 .
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Since x
− 1

p

0 > 0 satisfies (1.4), we set θp := x
− 1

p

0 , which implies

max
x>0

T (x) =
p− 1

p
θp.

�

Next, we give the proof of Theorem 1.2.

Proof of Theorem 1.2: Let 1 < p <∞ and

f(x) :=

∫ x

0

w(t)dt, F (x) := |f(x)|−
1
p , x ∈ R.

From assumptions on µ, we see that f is well-defined, continuous and increasing on R
and absolutely continuous in any closed interval on R. Also let

A := {H : H is a maximal closed interval such that
∫
H
w(t)dt = 0},

E := ∪H∈AH, and Ec := R \ E. Obviously, A is a countable set, and µ(E) = 0.
By Proposition 2.3 and Assumption (B), we see that for any x ∈ Ec∩ (0,∞), f(x) > 0

and

MF (x) = sup
a<x<b

∫ b
a
F (t)dµ(t)∫ b
a
w(t)dt

≥ sup
a<0

∫ x
a
F (t)dµ(t)∫ x
a
w(t)dt

= sup
a<0

p

p− 1

|f(x)|1−
1
p + |f(a)|1−

1
p

|f(x)|+ |f(a)|

=
p

p− 1
F (x) sup

a<0

| f(a)
f(x)
|1−

1
p + 1

| f(a)
f(x)
|+ 1

=
p

p− 1
F (x)

p− 1

p
θp

= θpF (x).

The above inequality also holds for x ∈ Ec ∩ (−∞, 0). Hence

MF (x) ≥ θpF (x), µ− a.e. x ∈ R.

Observe that F /∈ Lp(R, µ). So instead, we consider the following function

Fε(x) := F (x) min{|f(x)|ε, |f(x)|−ε} ∈ Lp(R, µ), ε > 0.(2.3)

We claim that

MFε(x) ≥ 1

ε+ 1
p′

Fε(x)
1 + θ1−p−εpp

1 + θ−pp
, µ− a.e. x ∈ R.(2.4)

In fact, assume that x ∈ Ec ∩ (0,∞), and set

ϕ(u) := sup{t : f(t) ≤ uf(x)}, u ∈ R.(2.5)
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We denote by m the Lebesgue measure. From the property of f , ϕ(u) is well-defined,
strictly increasing, right continuous, and m − a.e. differentiable on R. We can further
verify the following fact,

ϕ(1) ≥ x,

f(ϕ(u)) = uf(x), u ∈ R,

w(t) = 0, m− a.e. t ∈ [x, ϕ(1)],

and

w(ϕ(u))ϕ′(u) = f(x), m− a.e. u ∈ R.
From these facts, we deduce that

MFε(x) ≥ sup
y≤0

∫ x
y
Fε(t)dµ(t)∫ x
y
w(t)dt

≥ sup
y≤0

∫ x
y
|f(t)|−

1
p min{|f(t)|ε, |f(t)|−ε}w(t)dt

|f(x)|+ |f(y)|

= sup
y≤0

∫ ϕ(1)
y
|f(t)|−

1
p min{|f(t)|ε, |f(t)|−ε}w(t)dt

|f(x)|+ |f(y)|

≥

∫ ϕ(1)
ϕ(−θ−p

p f(x))
|f(t)|−

1
p min{|f(t)|ε, |f(t)|−ε}w(t)dt

|f(x)|+ |θ−pp f(x)|

=

∫ 1

−θ−p
p
|u|−

1
p |f(x)|−

1
p min{|uf(x)|ε, |uf(x)|−ε}f(x)du

|f(x)|+ |θ−pp f(x)|

= |f(x)|−
1
p

∫ 1

−θ−p
p
|u|−

1
p min{|uf(x)|ε, |uf(x)|−ε}du

1 + θ−pp

= |f(x)|−
1
p min{|f(x)|ε, |f(x)|−ε}

∫ 1

−θ−p
p
|u|−

1
p
min{|uf(x)|ε,|uf(x)|−ε}
min{|f(x)|ε,|f(x)|−ε} du

1 + θ−pp

≥ Fε(x)

∫ 1

−θ−p
p
|u|ε−

1
pdu

1 + θ−pp

=
1

ε+ 1
p′

Fε(x)
1 + θ1−p−εpp

1 + θ−pp
,

where in the fifth equation, we use integration by substitution with t = ϕ(u); see [3].
When x ∈ Ec ∩ (−∞, 0), we can treat similarly. Therefore the claim holds.

Then from (2.4), it follows that

lim
ε→0

‖MFε‖Lp(R,µ)

‖Fε‖Lp(R,µ)
≥ p′

1 + θ1−pp

1 + θ−pp
= θp,

which means Cp ≥ θp. Hence we complete the proof of Theorem 1.2. �

Finally, we briefly discuss the n-dimensional case. Following the method of Grafakos
and Montgomery-Smith [7], we present a complete adaptation of their argument here for
completeness. Denote by x := (x1, . . . , xn) in Rn. For a non-negative locally integrable
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function f on Rn and wj(t) on R, j = 1, . . . , n, satisfying the conditions in Theorem 1.2,
we define the “strong” maximal function on Rn, by

Nn
~µ (f)(x) := sup

a1<x1<b1

· · · sup
an<xn<bn

∫ bn
an
. . .
∫ b1
a1
f(y)d~µ(y)∫ bn

an
. . .
∫ b1
a1
d~µ(y)

,

where d~µ(y) := w1(y1) · · ·wn(yn)dy1 · · · dyn. Clearly N1
~µ = Mµ. Moreover, observe that

Nn
~µ ≤M (1)

µ ◦ · · · ◦M (n)
µ ,

where M
(j)
µ denotes the maximal operator Mµ on R applied to the xj coordinate. This

implies that the operator norm of Nn
~µ on Lp(Rn, ~µ) is less than or equal to θnp , 1 < p <∞.

By considering the function

Gε(x) :=
n∏
j=1

Fε(xj), x ∈ Rn

where Fε is as in (2.3), and using an argument similar to Theorem 1.2, we can obtain the
reverse inequality. We state this result as follows.

Corollary 2.4. For 1 < p <∞, the operator norm of Nn
~µ on Lp(Rn, ~µ) is θnp .

Furthermore, it is easy to verify p
p−1 < θp <

2p
p−1 , which implies that the operator norm

of Nn
~µ on Lp(Rn, ~µ) grows exponentially with n, as n→∞.
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