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ABSTRACT. A mathematical model is presented for the stability of sheet flow of water beneath a temperate 
glacier. Enhanced viscous heat dissipation in thick parts of the sheet tends to make sheet flo w unstable. the 
instability increasing as sheet thickness and pressure gradient increase. However, incipient channels may be 
destroyed as the glacier slides over protuberances on its bed . Quasi-stable sheet flow may be possible for sheets up 
to several millimeters in thickness, especially beneath glaciers that have relatively gentle surface slopes and slide at 
moderate to high speeds. Such water sheets may somewhat reduce the effective roughness of glacier beds. but 
probably not enough to allow surge initiation . Furthermore, the presence of numerous water-filled cavities at the 
glacier bed will tend to reduce the sheet thickness and lessen the degree of " lubricatio n" of the glacier bed by the 
water sheet. 

RESUME. Stabilite d'un ecoulement en nappe d'eau sous des glaciers temperes et consequences sur les 
debacles glaciaires. On presente un modeJe mathematique pour la stabilite d' un ecoulement en nappe d'eau sous 
un glacier tempere . La dissipation de chaleur par viscosite dans les parties epaisses de la nappe tendent a rendre 
I'ecoulement en nappe instable, I' instabilite croissant lorsque I'epaisseur de la nappe et le grad ient de pression 
s'accroissent. Cependant les chenaux affiuents peuvent et re detruits par le gli ssement du glacier sur les 
protuberances de son lit. Un ecoulement en nappe quasi -stable est possible pour des nappes allant jusqu'a 
plusieurs millimetres d'epaisseur. specialement sous les glaciers qui ont une pente de surface rel ati vement moderee 
et glissent a des vitesses moderees it fortes. De telles nappes d 'eau peuvent parfo is reduirc la rugosite efficace des 
fonds rocheux, mais probablement pas assez pour permettre le debut d'une crue rapide. De plus, la presence de 
nombreuses cavites pleines d'eau sur le lit glaciaire tendra.it reduire I'epaisseur de la nappe et de minimiser le degri: 
de "Iubrification" du lit glaciaire par la nappe d'eau . 

Z USAMMENFA SSUNG. Slabilitiit des Schichtflusses van Wasser unler temperiertel1 Glelschem II/Id 
Auswirkungen aul Gletscherausbriiche. Fur die Stabilitiit des Schichtflusses von Wasser unter temperi erten 
Gletschern wird ein mathematisches Modell vorgelegt. Erhiihter viskoser Wiirmea ustausch in dickeren Teilen der 
Eismasse verursacht Instabilitaten im Schichtfluss, die mit wachsender Eisdicke und wac hsendem 
Druckgradienten zunehmen. Immerhin kiinnen neu gebildete Kanale zerstiirt werden, wenn der Gletscher uber 
H iicker auf seinem Bett gleitet. Ein quasistabiler Schich tfluss kann sich fUr Schichten bis zur Dicke von einigen 
Millimetern ausbilden , besonders under Gletschern mit relativ sanfter Oberfl achenneigung und mass ige r bis hoher 
Gleitgeschwindigkeit. Solche Wasserschichten kiinnen die effektive Rauhigkeit des Gletscherbettes urn einiges 
verringern, vermuthlich jedoch nicht genug, urn einen Ausbruch zu verursachen. Des weiteren kommt es durch 
das Vorhandensein vieler wassergefuller H o hlrii ume am Gletscherbett zu einer Verringerung der Eisdick e und zu 

einer Abnahme der "Schmier"-Wirkung der Wasse rschicht auf das Gletscherbett. 

INTRODUCTION 

The mode of flow of water at the beds of temperate glaciers has been of considerable interest 
to glaciologists, particularly because of apparent relationships between subglacial hydrology and 
temporal variations in sliding velocity (e.g. Weertman, 1972, p. 288-89 ; Hodge, 1974, 1979; 
R6thlisberger and others, 1979). A number of recent field studies of existing glaciers have yielded 
important data on subglacial hydrology (Mathews, 1964, 1973; Meier, 1965; Stenborg, 1969, 
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1973; Hodge, 1976, 1979; Engelhardt, 1978; Engelhardt and others, 1978; Iken and others, 
1979; Rothlisberger and others, 1979). Water-level soundings in bore holes drilled to glacier beds 
clearly indicate the existence of channels in which the water pressure may be substantially less 
than the overburden pressure. Fluctuations in bore-hole water levels have been attributed to 
variations in both melt-water input and the geometry of the subglacial drainage system. 
Furthermore, the probability of bore holes connecting to subglacial water channels may vary 
widely from year to year at any point on a glacier. These studies have also provided estimates of 
the amount of water stored within glaciers and the speed at which water moves through the ice. 

Studies of recently deglaciated rock surfaces have also provided important data on the 
geometry of subglacial drainage networks. Walder and Hallet (1979) and Hallet and Anderson 
(in press) mapped systems of interconnecting channels and cavities comprising about 20- 40% of 
the former beds of two small cirque glaciers. Variation in the subglacial hydraulic network 
through time was clearly indicated by the fact that many channels incised into the rock by 
turbulent subglacial melt water were also coated with CaC03 precipitate that forms only where 
the rock is in intimate contact with sliding ice (Hallet, 1979). The mapping by Walder and Hallet 
(1979) further revealed 5-10 m wide zones, paralleling the former direction of ice flow, which 
were thoroughly striated and nearly devoid of the precipitate. Apparently, the bed in these zones 
had been covered by a water sheet accommodating a water flux sufficient to inhibit the build-up 
of the solute concentration to the saturation point. Hallet (1979) has estimated from the size 
distribution of rock fragments in the subglacial precipitate, that over most of the bed of the 
glacier studied, the water sheet was typically no thicker than several tens of micrometers, 
possibly thickening at times to c. 100 ,um. 

The picture of the subglacial drainage system arising from these various studies is similar to 
that envisioned by Nye (1973): a thin water sheet over most of the bed, co-existing with but 
relatively independent of discrete channels that drain most of the melt water. Furthermore, both 
channelized and sheet flow are variable in time and space. Theoretical models should account for 
these observations. Significant progress toward the development of such models has been made 
by Rothlisberger (1972) and Shreve (1972), who showed independently that channelized flow 
tends to become concentrated, with larger channels growing at the expense of smaller ones, 
forming an arborescent network. Both of these authors argued that the stable form of subglacial 
water passages should be tunnel-like rather than sheet-like. However, Weertman (1972) showed 
that discrete channels at the glacier bed might not be efficient melt-water collectors, due to the 
effective linearization of the creep law for ice in the particular case of tunnel closure when the 
relatively high shear stress at the bed is explicitly considered. Weertman showed that this 
linearization of the creep law could result in pressure gradients that would actually drive water 
away from channels at the glacier bed. He therefore concluded that primary drainage of melt 
water at the beds of temperate glaciers must be through a widespread, relatively thick sheet of 
water. Nye's (1976) study of ajokulhlaup, however, has led him to conclude otherwise. Although 
Nye did not explicitly determine the temperature distribution , and hence the heat flow, in a sheet 
of water at the bed of a temperate glacier, he argued that heterogeneous heat production in a 
water sheet of variable thickness should lead to flow localization. Nye's argument serves as a 
starting point for the analysis presented here. 

In this paper, I have analyzed in detail the stability of sheet flow of water at the bed of a 
temperate glacier with respect to perturbations in the sheet thickness. I also discuss the 
implications of the results for the well-known water-lubrication theory of glacier surges 
(Weertman, 1962, 1964, 1966, 1969). 
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2. OUTLINE OF THE ANALYSIS 

Sheet flow of water beneath a temperate glacier tends to be unstable with respect to 
variations in the sheet thickness, i.e. such variations tend to become enhanced. Physically this 
effect arises from the greater viscous heat dissipation due to water flow, and concomitant higher 
melting rate, where the sheet is thickest, as compared to where it is thinnest. In idealized sheet 
flow, two processes tend to counteract the instability: cross-stream heat flow within the sheet and 
" plastic" sagging of the ice. Furthermore, incipient channels may be destroyed as the glacier 
slides over protuberances on its bed (Nye, 1973). The central issue to be addressed is therefore 
the rate of growth of perturbations in the water sheet. 

In section 3, I present solutions for the fluid flow and heat transfer within a subglacial water 
sheet that varies slightly in thickness along a direction normal to the flow. The analysis is 
rigorous to first order in the small thickness perturbation. Adoption of the sheet-flow 
approximation is tantamount to assuming that the glacier bed is smooth on a scale large 
compared with the sheet thickness. Formal incorporation of the effects of glacier bed 
irregularities and subglacial drift would greatly complicate the model , but would be unlikely to 
alter our picture of the fundamental physics involved. 

Sagging of the ice is analyzed in section 4 by considering the ice-water contact to be the 
interface between two linear viscous fluids and studying the relaxation behaviour of 
perturbations on an otherwise planar interface, following the method of Fletcher (1977). In 
section 5. I discuss how the roughness of real glacier beds may be incorporated into the model in 
an approximate fashion, as well as the implications of my results for Weertman's (1962, 1964, 
1966, 1969) water-lubrication theory of glacier surges. 

3. FLUID FLOW AND HEAT TRANSFER IN THE WATER SHEET 

In this section, I derive expressions for the flow velocity and temperature distribution in a 
subglacial water sheet of variable thickness. Several simplifying assumptions are made about the 
geometry. Water flow is assumed to be steady, one-dimensional, and parallel to the ice flow. The 
bed is considered to be essentially planar, with the surface slope a of the ice providing a constant 
pressure gradient driving the flow. The water pressure is assumed to be equal to the ice over
burden pressure p. In reality, sliding of the ice over bedrock protuberances will result in regions 
of high pressure where the water sheet is largely squeezed out. Water will then tend to flow 
around these regions, resulting in a slightly lower average pressure gradient in the sheet 
(Weertman, 1972, p. 311-12), as well as two-dimensional flow. Again, this effect is unlikely to 
alter the results of the simple model fundamentally. 

The coordinate system and idealized water-sheet geometry are depicted in Figure I, with x 
representing distance along the bed in the flow direction, y perpendicular to x and along the bed 
(the "lateral" direction), and z perpendicular to the bed. The glacier bed, assumed impermeable, 
is at z = O. The water-ice interface is described by the expression 

z = zo(y) = h(l + s sin Icy) (1) 

where h is the average thickness of the sheet and s <{ 1. The amplitude A of the perturbation 
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x FLO W DIRECTION 

Fig. I. Coordinate system and idealized water-sheet geomell)' for the theoretical analysis. 

therefore equals eh. The Navier-Stokes equations for steady flow reduce to (Bird and others, 
[C 1960], p. 80) 

(2) 

where u is the flow velocity, Pg = - op/ox is the pressure gradient driving the flow, the sign 
chosen as to make Pg > 0, and rJw is the viscosity of water. 

I now assume that the flow velocity can be expressed as a mean flow plus a small 
perturbation: 

u(y, z) = uo(z) + w, (y, z). (3) 

Substituting Equation (3) into Equation (2) and separating terms of O( 1) and O(e) leads to the 
two differential equations 

d2uo Pg 

dz 2 - rJw 

0 2U, a2u, 
--+--- 0 

The boundary conditions on the flow are 

u=o 

oy2 az2 - . 

onz = O,z=zo(y)· 

(4a) 

(4b) 

(5) 

These are to be satisfied to O(e). The following velocity distribution in the sheet, which satisfies 
these boundary conditions, is derived in Appendix B: 

Pg h2 
[ Z2 z sinh kz sin kY ] 

u(y,z)=-- --+-+e . 
2rJw h2 h sinh kh 

(6) 

This expression is used in computing the temperature field in the water sheet. The thermal energy 
equation for steady-state, incompressible, one-dimensional flow is (Bird and others, [C 1960], 
p. 315) 

PwCw U ~: = kw V2T + rJw [( ~:r + ( ~:r] (7) 

where T is the water temperature; V2 is the three-dimensional Laplacian operator in Cartesian 
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coordinates, Pw, cw, and kw are the density, constant-volume specific heat, and thermal 
conductivity, respectively, for water at the melting point. 

In Appendix C, it is shown by dimensional analysis that both down-stream and lateral heat 
conduction, corresponding respectively to the terms kw a2T/ax2 and kw a2T/a/, are negligible 
in the overall heat balance in nearly all instances, including the interesting case of a sheet thick 
enough substantially to affect bed roughness. However, the small, but finite, amount of lateral 
heat conduction might be expected to affect the growth rate of perturbations; hence the term 
kw a2T/a/ will be retained in the thermal energy balance. 

One further simplification is made to permit an analytic solution to Equation (6). The 
temperature of the water in a thin sheet is expected to differ only very slightly from the pressure
melting temperature, hence the approximations 

(8) 

where T m is the pressure-melting temperature and C t = - aT m/op, the choice of sign making 
Ct > O. Since a constant pressure gradient has been assumed, aT/ax is constant in this 
approximation. Substituting Equations (8) into Equation (7) and neglecting down-stream 
conduction, the thermal energy equation reduces to 

(9) 

where Y= PwCwCt = 0.316 is a dimensionless constant that arises from the pressure-melting 
behaviour of ice (Rothlisberger, 1972). 

The temperature field is now decomposed into a mean and a small perturbation: 

T(x, y, z) = To(x, z) + eTI (y, z). 

The boundary conditions on the temperature field are 

T(z =zo)= Tm(x) = - CtP(X)} 
aT 

- kw -(z=O)=qa , 
az 

(10) 

(11) 

where qa is the geothermal heat flux at the bed. Equation (9) can be transformed into two 
equations to be solved independently for To and T 1 , subject to the boundary conditions of 
Equations (ll). Details of the rather lengthy analysis are given in Appendix D. The quantity of 
greatest interest for the stability analysis is the heat flux from the water sheet into the basal ice, 
- k aT/on where n is the local upward normal from the ice-water interface. Applying the chain 
rule for differentiation and noting from Equation (I) that the slope ozo /ay of the interface is G(e), 
it follows that, to G(e), 

oT oT 
on OZ 

(12) 
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The heat flux into the basal ice, denoted Qzo' is given by Appendix D: 

{ 
P;h3(I -Y)} {P;h

3
(1- Y) . } 

Qzo = qo + + e Sin ky -
12~w 4~w 

{ [ 
P

2
h

3
(I_ Y) ] } 

- g 6~w + qo ~h2e sin ky (13) 

where I have introduced the approximation kh ~ 1, i.e. the wavelength (= 2n/ k) of the 
perturbation is large compared with the sheet thickness. For such values of kh , the functional 
form of the heat flux is most readily understood. 

In Equation (13), the heat flux has been separated into three bracketed members. The first is 
the mean heat flux, composed of terms representing geothermal heat and viscous dissipation. The 
factor (1 - y);:::: j corrects for the net down-stream advection of heat that maintains the water 
at the pressure-melting temperature. 

The second bracketed member of Equation (13) is the locally enhanced viscous heat 
production in the water sheet, again corrected for down-stream advection. Heat flow into the ice, 
and therefore melting, is greater in the thick parts of the sheet (sin ky > 0) than in the thin parts 
(sin ky < 0). This is now clearly seen to be the source of instability. 

Finally, the third member of Equation (13) accounts for heat conducted laterally from thick 
to thin parts of the sheet, as a result of the warping of the isotherms in the sheet, relative to the 
unperturbed case. This quantity is seen to be O(k2 h2

) and thus of negligible importance for 
kh ~ 1, in agreement with the scaling arguments of Appendix B. 

The rate at which perturbations grow due to melting can now be examined. The melting rate 
of the basal ice is QZo/PiL , where Pi is the density of ice and L is the heat of fusion . Neglecting 
the mean heat flux , which causes equal amounts of melting everywhere on the ice-water 
interface and does not atTect perturbations, the speed Wm at which the interface moves due to 
melting is found to be 

(14) 

in the next section, the speed at which the ice-water interface moves due to sagging of the ice is 
determined. The sum of that speed and Wm will then determine the growth rate of perturbations. 

4. SAGGING OF THE ICE AND GROWTH RATE OF PERTURBATIONS 

The relaxation of the perturbed ice-water interface can be analyzed by treating the interface 
as one between two fluids of different densities and viscosities. This approach is widely used in 
the theory of folding of layered materials; I apply here the particular method developed by 
Fletcher (1977). In this formulation, the fluids are assumed incompressible and quasi-static, i.e. 
accelerations are ignored. The rheology is taken as linear viscosity. The choice of rheology is 
particularly suitable for this model, because for incipient channels at the glacier bed the 
difference between ice and water pressures will not be large compared to the shear stress, thus 
effectively linearizing the creep law (Weertman, 1972, p. 299-306). Stresses and velocities are 
then each decomposed into a mean and a small perturbation. In this particular model, the mean 
stress is hydrostatic pressure, while the mean velocities are identically zero. Velocity components 
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v and ware associated with the relaxation process and correspond to the y - and z-directions, 
respectively. Boundary conditions on stresses and velocities are satisfied to first order in the slope 
of the perturbed interface, i.e. to O(kA), where kA ~ 1 is assumed. 

In practice, the effective viscosity of ice is so much larger than that of water, that the analysis 
reduces to a determination of the speed at which perturbations relax on a free surface. The 
quantity of interest is wp , the speed at which the interface moves due to viscous sagging. From 
Appendix E, Equation E-3, 

(Pw - Pi)gA . k 
wp = - SIn Y 

21Jik 
(15) 

where g is the acceleration due to gravity and ''li is the effective viscosity of ice. 
The mean rate of melting of the basal ice maintains an average sheet thickness of h; 

heterogeneities in melting and sagging rates cause the amplitude of the thickness perturbation to 
change quasi-statically, but without any change in the mean thickness of the water sheet. 
Adopting this view, points on the interface z = Zo can be considered as remaining on the 
interface. Mathematically, this is expressed as (Fletcher, 1977, p. 600) 

D 
-[z-zo(y, t)]=O 
Of 

on z=zo (16) 

where Oj Ot=(ojot) + v(ojoy) + w(a;oz) is the total time derivative. Expanding Equation (16) 
yields 

oZo oZo 
--=wp + Wm - v(zo)--· at ay (17) 

Substituting Equations (I), (14), and (15), recalling that A = hc, and noting from Appendix E 
that v is of O(kA), I find to O(kA), after rearranging: 

where 

I dA 1 222 I I 22 
- -=-(1 - 1k h ) - - - -(k h) 
A dt !I !2 !3 

p;h2(l- y) 

411wPiL 

(pw -Pi)g 

211i k 

(18) 

and kh ~ 1. Table I lists values of Ij!), Ij !2 , and Ij !3 for several choices of Pg, h, and k; the 
values of the other physical constants are in Appendix A. It is clear that 1/ !3 is negligible in all 
instances and that 1/ !2 ~ lj!1 unless hand k are very small. Neglecting these cases and noting 
the restriction kh ~ 1, Equation (18) can be closely approximated as 

1 dA 
(19) 

The amplitude of small perturbations in the water sheet therefore grows exponentially with time 
constant ! I. The strength of the instability increases with increasing Pg and h. Figure 2 shows !I 
as a function of h for three reasonable choices of Pg, the term k 2 h2 being neglected. 
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TABLE I. TIME CONSTANTS DESCRIBING RATE OF G ROWTH OF WATER 

SHEET PE RTURBATIONS 

Pg (bar m - I) I /r l 

~ 10 - 3 5 X 10 - 3 10 - 2 
a- I - I - I a a 

0.1 9. l x lO - 4 2.2 x 10 - 2 9. l x lO - 2 

0.5 2.2 x 10 - 2 5.6 x 10 - 1 2.2 
I 9. l x lO - 2 2.2 9.1 
5 2.2 5.6 x 10 1 2.2 X 10 2 

10 9. 1 2.2 x 102 9.1 X 10 2 

50 2.2 X 102 5.6 X 103 2.2 x 10 4 

k l / r2 h I / T3 
m - I a - I mm a -I 

0.1 4.3 x 10- 2 0.1 1.6 x 10 - 6 

0.5 8.8 x 10 - 3 0.5 3.3 x 10 - 1 

4.3 X 10 - 3 1 1.6 x 10 - 1 

8.8 X 10 - 4 5 3.3 X 10 - 8 

10 4.3 X 10 - 4 10 1.6 X 10 - 8 

50 8.8 X 10 - 1 50 3.3 X 10 - 9 

5. EFFECTS OF BED ROUGHNESS AND IMPLICATIONS FOR GLACIER SURGING 

The analysis above demonstrates that sheet flow on a planar glacier bed would be unstable 
with respect to perturbations in sheet thickness. The roughness of actual glacier beds will alter 
this simple result in two ways, however. First, perturbations in the water sheet, also referred to as 
"incipient channels", may be destroyed as the glacier slides over protuberances on the bed 
(cf. Nye, 1973). Second, sub-glacial cavities on the lee sides of bed protuberances may capture 
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Fig. 2. Characteristic growth and decay times (rl and rd respectively) Jor water-sheet perturbalions. 
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significant amounts of melt water and limit the thickness of water sheets (Walder and Hallet, 
1979; Hallet and Anderson, in press). 

The rate at which incipient channels in the basal ice encounter bed protuberances must 
generally increase as sliding velocity and bed roughness increase. The criterion for sheet stability 
used herein is that the sheet will be considered quasi-stable when the average time between 
encounters with bed protuberances, hereinafter referred to as the "decay time" rd , exceeds the 
characteristic time for growth of sheet perturbations. 

A rigorous analysis of the rate at which incipient channels are destroyed by encounters with 
bed protuberances would involve coupling glacier sliding physics with that of water flow in a 
"sheet" of complex geometry and spatially variable pressure gradient. Such is beyond the scope 
of this paper. Nonetheless, a reasonable first approximation to the solution of this problem may 
be found by adopting a glacier bed model of small hemispheres distributed on a plane. This 
model was used by Lliboutry (1978) in his formulation of glacier sliding theory. As the glacier 
slides, incipient channels in the basal ice will encounter these bed irregularities and may be 
destroyed if the irregularities are neither very small nor very large compared to R*, the 
"transition obstacle size" in Lliboutry' s (1978) glacier sliding theory. Very small irregularities 
would be submerged by the water sheet, whereas the glacier would slide over large protuberances 
predominantly by plastic deformation with very little regelation. In the latter case, flow lines in 
the ice would be very nearly parallel to the bed; hence, the form of the incipient channel could be 
preserved. 

Following Lliboutry (1978, p. 152), I assume a "non-dimensional" bed, such that the fraction 
of the bed covered by hemispherical bed irregularities with radii in the range (R, R + dR) is equal 
to j.1 dR / R where j.1, a constant, is a measure of the bed roughness . The fraction of the bed 
covered by all irregularities is thus j.1ln (Rmax /Rmin), where Rmax and R min are, respectively, the 
maximum and minimum radii of bed irregularities. This fraction is assumed to be «; l. Lliboutry 
suggests R min = 1 j.1m, Rmax = 10 m, hence In (Rmax / Rmin)-;:::; 16 and j.1 must be «; 10. Due to the 
logarithmic dependence, R max and R min may vary significantly from these suggested values 
without appreciably affecting the constraint on f.1. 

As discussed above, bed irregularities with radii near R * are most "effective" at destroying 
incipient channels. I will use the following form for the "relative efficiency" : 

2RR* 
E=--:--~ 

R2 +R~' 
(20) 

which is quite similar to the expression found by Watts (unpublished) for the drag on a sphere 
moving through temperate ice. The chosen functional form of E has the properties that 
E(R *) = 1, and that E approaches zero as R approaches zero or infinity. 

The number of bed irregularities per unit area of the bed, with radii in the range (R, R + dR), 
is (Lliboutry, 1978, p. 152) 

f.1dR 
dV=--3-' 

nR 
(21) 

hence, the "effective" number v. of bed irregularities per unit bed area, i.e. the number that may 
actually destroy an incipient channel , is 

(22) 
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where the lower limit of integration reflects the size of the smallest bed irregularities that " block" 
an incipient channel of width W. 

The average number of the " effective" irregularities along the flow direction in a rectangular 
bed area of length I along the flow direction, width W, is vel W. Because the average spacing of 
these irregularities is Il ve/W, the average time between encounters with such irregularities can be 
expressed as 

Td = 2:~*W { ~ + RI. [tan -
I
( 2:.) -~ J} - I (23) 

where I have evaluated the integral in Equation (22). Lliboutry (1978, p. 152) suggested that 
R * = 0.16 U- I

/
2

, for R. in meters, U in meters per year. Although the coefficient of 0.16 is 
probably incorrect, due to the fact that Lliboutry's (1978) glacier sliding model does not fully 
satisfy thermal boundary conditions at the glacier bed (recognized by Lliboutry (I979, p. 80)), 
increasing or decreasing this coefficient by a factor of two can be shown not to affect the results 
presented herein substantially. Hence, using Lliboutry 's expression, Equation (23) becomes 

Td=( 0.08n ){~+6.25UI/2[tan - I(3.12WUI/2) - ~]} - 1 
~WU~ W 2 

(24) 

The width W of an incipient channel can be identified with the wavenumber k of the water 
sheet perturbation by the relationship W = nk - I 

; i.e. W is the perturbation half-wavelength. The 
analysis for the growth of perturbations is valid for kh ~ I ; hence, the width of incipient channels 
that can be examined by the present analysis is constrained by the relationship W~ nh. A 
reasonable minimum value for W is therefore 30h. Using this value, I can rewrite Equation (24) 
as 

(
0.84){O.067 [ n]}-I 

Td = hU3/2 -h-+ 6.25UI/2 tan - I (93.75hU 1/2)-2 

�or-----------------------~~--.}l 

5 

- 3 
E 
E 

(/) 
(/) 
w 
z 
" '" I 
c-
c- 0 .5 
w 
w 
iJi 03 

0 .1 LI -------:-3--~5:----1":-0-------:3-:-0---='50::------:=-'IOO 

DISTANCE ALONG GLACIER (km) 

(25) 

Fig. 3. Thickness oj water sheet as a junction of distance along the icejlow direction, assuming all melt water flows 
in the sheet. 
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where h is expressed in meters, U in meters per year, Td in years, and 11 = 0.01 in accord with the 
constraint discussed above. This relationship has been plotted in Figure 2 for three choices of U. 
The values of Id computed from Equation (25) are minimum values, because Id increases with 
w. The criterion for water-sheet stability used here is that Id < II for the specified values of Pg 
and U; hence, by using Equation (25) for Td, the probability of sheet stability is maximized. 

It appears from Figure 2 that, for reasonable choices of Pg and U, the stability criterion can be 
met only for h < c. 1--4 mm. Sheets of greater thickness will tend to be unstable. Weertman 
(1962, 1964, 1966, 1969) argued that a water sheet thick enough substantially to reduce effective 
bed roughness will cause an increase in sliding velocity of one to two orders of magnitude, i.e. a 
glacier surge. He approximated bed roughness by cubes, with those of side A being most 
important in causing drag on the sliding ice. The homologous quantity in L1iboutry's (1978) 
theory is R. , which can be expressed in terms of U. If a sheet of thickness h > R. is stable to 
thickness perturbations, then Weertman 's mechanism might operate. 

Table 1I gives values of hma. fR., where hma• is the maximum stable thickness, for several 
choices of Pg and U. In all cases examined, encompassing the great majority of actual glaciers, 
hma. fR* is much less than unity; the largest values of hma. fR* are found when Pg is relatively 
small and U relatively large, i.e. for gently sloping, fast-moving glaciers. Hence, the conclusion 
reached from the present model is that the Weertman water-lubrication mechanism is unlikely to 
be effective for surge initiation. However, this mechanism may be effective at maintaining surges 
once high sliding velocities are achieved. Caution must be taken with this conclusion, however. If 
bed irregularities of width R < 1 W can cause destruction of incipient channels, then rd could be 
reduced considerably from that given by Equation (25) with the result that thicker sheets could 
be stable. 

An independent and fundamentally important consideration in evaluating the water
lubrication theory of surges is whether sufficient melt water is ever available at the bed to cause 
thick water sheets. The thickness of such a sheet at the glacier bed may be computed by 
assuming that uniform melting of thickness M per unit time occurs everywhere on the base of the 
glacier, and that all melt water flows at the bed. The sheet thickness is then (Weertman, 1969, 
p. 953) 

h=( 12p~X) 1/ 3 (26) 

where X = 0 is the point farthest from the glacier terminus. Figure 3 shows h as a function of x 
for several values of M and Pg , the latter also expressed as surface slope a. For typical values of 
geothermal heat flux (c. 0.05 J m - 2 s - I), a bed shear stress of c. 1 bar, and sliding velocity U up 
to several tens of m a - I, M = c. 15 mm a - I. Figure 3 shows that with such a melting rate, 
h ~ 2 mm for glaciers less than c. 100 km long, regardless of surface slope. Such a value of h is 

TABLE 11. RATIO OF THE MAXIMUM STABLE SHEET THICKNESS hmax 

TO TH E TRANSITION OBSTACLES SIZE R. 

Pg (bar m- I) hmu. /R. 
~ 10 - 3 5 X 10 - 3 10 - 2 

mma - I 

10 0.06 0.02 0.01 
50 0.17 0.08 0.05 

100 0.27 0.12 0.08 
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less than estimates of the height of the most important bed-roughness elements. Thus, "normal" 
melting rates are very unlikely to produce water sheets thick enough to substantially reduce bed 
roughness. 

In order for h to reach even 5 mm, a likely lower limit for the "controlling obstacle size" , M 
must be considerably larger than 15 mm a - I. Studies of intergranular vein structures in 
temperate glacier ice (Raymond and Harrison, 1975), and of ice chemistry (Berner and others, 
1978), suggest that as much as c. 100 mm a - I of melt water can percolate to the glacier bed 
through intergranular veins. However, even for an effective melting rate of M = 120 mm a - I , an 
eight-fold increase from the "normal" melting rate, h will be increased by a factor of only two 
and will therefore still be less than 5 mm for glaciers of lengths less than c. 100 km. 

It appears that other distributed sources of large amounts of melt water are necessary if the 
subglacial water sheet is to become thick enough to initiate surges. As shown in Figure 3, an 
effective melting rate of 2 m a - 1 could produce a sheet of thickness c. 5 mm for glaciers with 
lengths c. 10-50 km and surface slopes of c. 0.5-4.0. A number of surging glaciers have these 
dimensions (Meier and Post, 1969). It is clear that water flows through englacial and subglacial 
conduits, as well as through intergranular veins (Mathews, 1964; Rothlisberger, 1972; Shreve, 
1972; Weertman, 1972; Nye, 1973, 1976; Vivian and Zumstein, 1973; Hodge, 1974, 1976, 
1979; Raymond and Harrison, 1975 ; Engelhardt, 1978 ; Engelhardt and others, 1978; 
Rothlisberger and others, 1979; Walder and Hallet, 1979), but estimates of the magnitude of 
such flows are not available. Furthermore, it is possible that melt water reaching the bed through 
such conduits would remain channelized, rather than spreading out (Shreve, 1972). The fact that 
bore holes drilled to glacier beds often encounter channels suggests that such melt water does not 
join a subglacial water sheet. Considerably more information is needed about the hydrology of 
temperate glaciers before it can be established that major distributed water sources can actually 
supply a subglacial water sheet. 

A final consideration, related to the above discussion of melt water supply, is the amount of 
water flow through subglacial cavities. Walder and Hallet (1979) and Hallet and Anderson (in 
press) have shown that cavities may comprise as much as 20-40% of the ice-rock interface 
beneath two small cirque glaciers. Hallet and Anderson have calculated that the potential water 
storage in an exhumed cavity network at Castleguard Glacier, Alberta, would be equivalent to a 
sheet of water 63 mm thick, if all cavities were filled. Hodge (1974) estimated that the water 
stored at the beds of Nisqually Glacier and South Cascade Glacier, later released during 
jokulhlaups, could amount to an equivalent water layer approximately 1 m thick. Furthermore, 
because the subglacial cavities are regions of relatively low water pressure, they tend to act as 
continual "sinks" for subglacial melt water. The total of the water stored in subglacial cavities, 
plus the through-flow of water in the cavity-channel network (Walder and Hallet, 1979), could 
amount to a significant fraction of the total annual melt-water production. The water sheet 
thickness shown in Figure 3 must therefore be considered an upper limit, applicable only in the 
absence of numerous subglacial cavities. Hence, the presence of water-filled subglacial cavities 
reduces the possibility that the water lubrication mechanism for glacier surges can operate. 

6. CONCLUSIONS 

I have presented a model for the stability of sheet flow of water at the base of a temperate 
glacier, with respect to perturbations in sheet thickness. Sheet flow is nearly always unstable on 
planar glacier beds, but the roughness of real beds may result in quasi-stable sheet flow for sheets 
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of thickness no greater than c. 4 mm. However, the choice of model for bed roughness has a 
strong influence on the values determined for maximum stable sheet thickness. 

Quasi-stable subglacial water sheets are apparently not thick enough to cause drastic 
reductions in bed roughness and thereby initiate surges, but may cause some increase in sliding 
velocity or maintain surges once started. 

Regardless of the model chosen for bed roughness, the necessary conditions for a thick water 
sheet at temperate glacier beds are: 

(i) Water-filled subglacial cavities must be rare. 
(ii) Large quantities of surface melt water must penetrate to the glacier bed. 
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ApPENDIX A. SYMBOLS AND VALUES OF CONSTANTS 

Qn , bn,Cn , d n 

A 
A', 8 ', C', D' 
A, S 
C, 

Cw 

Co(x), Cl (x) 
E(R) 

j o, go 
F(z) , G(z) 

g 
h 
hmu 

k 
I 
L 
M 
11 

P 
Pg 
(Pr) 

qo 
Qzo 
R 

R* 
(Re) 

integration constants 
amplitude of perturbation of water-sheet thickness 
constants 
integration constants 
change of melting temperature with pressure = 7.S x 10 - 8 deg J - 1 ml 

specific heat capacity of water at constant value = 4.22 x 103 J kg - 1 deg - I 

integration "constants" 
"efficiency" with which bed irregularities of radius R destroy incipient channels 
integration constants 
functions in sheet temperature analysis 
acceleration due to gravity = 9.8 m S- 2 

average water-sheet thickness 
maximum stable sheet thickness 
wavenumber of water-sheet perturbations 
arbitrary length along x direction 
specific heat of fusion of ice = 3.34 x 105 J kg - I 
melting rate at glacier base 
direction of upward normal to the water- ice interface 
water pressure, assumed equal to ice overburden pressure 
pressure gradient in water sheet 
Prandtl number for water at Doe = 13.7 
geothermal heat flux at glacier bed, c. 5 x 10 - 2 J m - 2 s - 1 

heat flux from water sheet into basal ice 
radius of hemispherical bed irregularities in Lliboutry 's theory 
transition obstacle size of Lliboutry 's theory 
Reynolds number for water sheet 
time 
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u, u, w 
u', v', w' 
Uo 
UI 

U 
O, W 
Vr , Wf 

W 
Wm 

Up , Wp 

x,y, Z 

x',y', Z' 

ZO(y) 
et 

e 
I)f 

I)i 

I)w 

A 
A 

f.l 
v 
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water temperature 
dimensionless water temperature 
pressure melting temperature 
mean water temperature 
water temperature perturbation 
velocity of water flow in x, y, z directions, respectively 
dimensionless water velocities 
mean water velocity 
water velocity perturbation 
glacier sliding velocity 
characteristic water velocities 
fluid relaxation velocities 
width of incipient channels 
speed at which ice-water interface moves due to melting 
speed at which ice- water interface moves due to sagging 
Cartesian coordinates 
dimension less Cartesian coordinates 
position of ice-water interface 
ice surface slope 
dimension less perturbation parameter, assumed much less than unity 
fluid viscosity, used in Appendix E 
apparent Newtonian viscosity ofice = 3.2 x 10 12 kg m - I S- I 
viscosity of water at Doe = 2 x 10 - 3 kg m - I S- I 
characteristic length in y direction 
controlling obstacle size of Weertman's sliding theory 
dimensionless roughness parameter 
number of irregularities on glacier bed per unit area 

v, number of irregularities on glacier bed per unit area that are effective at destroying water-sheet 
perturbations 

Pi 
pw 
Gyz,Ozz 
rd 

!I 

[2 

!3 

<l>v 

density ofice=917 kg m - 3 

density of water at Doe = 999.84 kg m- 3 

stress perturbations 
characteristic "decay time" of incipient channels 
time constants for growth of perturbations by melting 
time constant for decay of perturbations by sagging 
time constant describing effect of geothermal heat flux on perturbations 
viscous dissipation function 

ApPENDIX B. FLUID FLOW IN THE PERTURBED WATER SHEET 

Steady, incompressible flow in the water sheet is described by the equations 

pw( U ou + W OU) =Pg + I)w V 2u, 
ox oz 

ou OW 
-+-=0, 
ox OZ 

(B- 1) 

(B- 2) 

where v = D has been assumed as has a constant pressure gradient. The velocity IV is very small compared with u, but 
not exactly zero, unless the sheet thickness is constant. 

Equations (B-1) and (B-2) can be put in the dimension less forms 

( 
02 ou' Ow OU') _( I 0 2U' 1 iu' 1 02U') 
-u' -+--w'-- -P + wU ---+---+ --

pw I ox' h OZ' - g I) P OX,2 ,1.2 oy,2 11 OZ,2 ' 
(B- 3) 
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o ou' W OW' 
--+--=0, 
l ax' h az' 
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(8-4) 

where 0 and Ware characteristic velocities, I is a characteristic length scale in the x direction, x' and z' are 
dimensionless Cartesian coordinates, u' and w' are dimension less velocities, and other symbols are defined in 
Appendix A and correspond to usage in the text. Since the dimensionless functions and their derivatives are of O( I), 
Equation (8-4) demonstrates that W::::; Oh/ I. Using this estimate of W, Equation (8-3) can be rewritten as 

(8- 5) 

where (Re) = Pw Oh/ llw is the Reynolds number for true sheet Row; thi s is expected to differ very little from (Re) for a 
slightly perturbed sheet. In Equation (8- 5), the left side represents inertial effects, while the term in brackets on the 
right side represents viscous effects. It is shown in Appendix C that (Re) ~ c. 103 for nearly all cases of interest ; hence, 
viscous effects dominate inertial effects if the terms in brackets in Equation (8-5) have a value exceeding c. 10 4

. This 
condition is satisfied if I/ h > c. 104

. For h < c. 10 mm, this requires I> c. 0.1 km, a restriction that is virtually always 
met, since I may be taken as the glacier's length. Hence, it is justifiable to neglect inertial terms in the equation of 
motion, which reduces, in dimensional form, to 

(8-6) 

I now assume that u may be expressed as a mean plus a small perturbation. viz . 

u(y, z)= uo(z) + WI(Y. z) (8- 7) 

where e ~ I. Substituting Equation (8- 7) into Equation (8- 6) and sepa ra ting terms of O( 1) and O(e) leads to the two 
equations: 

Equation (8- 8a) can be integrated directly: 

d2uo Pg 
---;--r = - -, 
dz IJw 

0 2UI a2
UI 

-;::-r + ~ = o. ay oz 

p
g
z2 _ _ 

Uo = - --+Az + B 
2IJw 

(8-8a) 

(8-8b) 

(8- 9) 

where A and fj are constants. The perturbation u 1 satisfies the two-dimensional Laplace equation and will have the 
well-known form, 

U 1 = L sin nky(an sinh nkz + bn cosh hkz) + L cos nky(cn sinh nkz + dn cosh nkz), (8-10) 
'1=1 n=1 

where the an , bn, Cn, and dn are constants to be evaluated. 

The boundary conditions to O(e) are 

u=o on z = 0, z = h( 1 + e sin ky). (8-11) 

The solution for u satisfying these boundary conditions is 

U = Pg h
2 

( _ z2 +.:. + e sinh kz sin kY ) . 
2IJw }1 h sinh kh 

(8- 12) 

Equation (8- 12) is used for computing the viscous dissipation $, (8ird and others, re 1960 J, p . 316): 

(8- 13) 
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where I have assumed one-dimensional, incompressible flow. From the earlier discussion , all/ox is assumed to vanish; 
hence, from Equation (B-12), I can compute 

all Pgh1k sinh kz cos ky 
-=£ --- ------
ay 211w sinh kh 

all = Pgh ( I _ 2Z). 
OZ 217w h 

(B- 14) 

Thus, to 0(1:) 

(
all ) 2 

<1>. = I1w OZ (B- 15 ) 

ApPENDIX C. DIMENSIONAL ANALYSIS OF THE THERMAL ENERGY EQUATION 

A solution to the complete thermal energy equation can rarely be obtained in closed form. Nontheless, appropriate 
scaling of the equation can elucidate the important physical processes and show which terms may be neglected. 

The complete thermal energy equation for one-dimensional , steady, incompressible flow is (Bird and others, 
[< 1960], p. 315) 

pwCwll ~: =kw V2 T + I1w[( ~: ) 2 +( ::) 2] (C- I) 

where all symbols are defined in Appendix A. This equation can be put into dimensionless form with the scalings 

z=hz', 

11=011', 

(C- 2) 

Thus (x' , y', z') are dimensionless Cartesian coordinates, 11 ' is dimensionless velocity , and T' is dimensionless 
temperature. This choice of scalings is appropriate as long as "entrance effects", i.e. very small values of x. are not of 
interest. 0 is a characteristic velocity, here chosen to be the mean Row velocity. Substituting Equation (C-2) into 
Equation (C-I) yields, after rearrangement, 

aT' ( I ) 1 02T' 2 02T' 02T' (I1W 0
2

)[ 2( all') 2 ( 011') 2] 
11' -;;;;= (Re)(Pr) a;;r+(kh) if+az;r+ qoh (kh) ay' + OZ' (C- 3) 

where (Re) = PwhO/ l1w, (Pr) = I1 wCw/ kw . 
The dimensionless derivatives are 0(1), so the relative importance of the various terms is determined by the 

magnitude of the dimensionless constants. Consider first the factor [(Re)(Pr)] - l. (Pr) , the Prandtl number, is a 
material constant equal to 13.7 for water at O°C, while the Reynolds number (Re) depends upon the flow. In the steady 
state, melting up-glacier of a point is balanced by discharge, i.e. 

(C-4) 

Therefore (Re) = PwMx/ l1w. Table C - I gives (Re) for several values of M and x. The transition to turbulent Row occurs 
at (Re)=c. 5 x 10J (Stuart, [<1963]), so sheet flow ought to be laminar for all cases considered. 

If Re > 0.73, the term [(ReXPr)] - l < 10 - 2
, hence down-stream conduction is quite negligible compared to vertical 

conduction. Even for 0.23 < (Re) < 0.73, the term is < 0 . 1 and can still be safely neglected. It may be seen from Table 
C-I that only for very short glaciers and very low melting rates will down -stream conduction need to be included in 
the thermal energy equation. 
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TABLE C -1. REYNOLDS NUMBER (Re) FOR SUBGLACIAL SHEET FLOW 

AS A FUNCTION OF MELTING RATE M AND DISTANCE X ALONG THE 

ICE-FLOW DIRECTION 

x (km) (Re) 
~ 10 100 
mma - I 

15 0.24 2.4 24 
100 1.6 16 160 

2000 32 320 3200 
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The factor (kh/ appears twice in Equation (C- 3). Assuming that the wavelength (= 271/ k) of water-sheet 
perturbations is much greater than h, kh must be much less than unity ; hence, terms multiplied by (kh)2 are negligible 
in the overall energy balance. 

Equation (C- 3) can now be interpreted physically. Basically, geothermal heat at the bed and viscous energy losses 
in the water sheet are available for melting of the basal ice. Part of this energy is not conducted across the film but 
rather advected down-stream. Corrections for down-stream and lateral conduction are usually extremely small. 

ApPENDIX D. TEMPERATURE DISTRIBUTION IN THE PERTURBED WATER SHEET 

The complete thermal energy equation for one-dimensional , steady, incompressible flow is (Bird and others, 
[' 19601, p. 315) 

pwCwu ~: = kwV
2
T + 17W[ ( ~; r + ( ~:) 2] (0- 1) 

where all symbols are as used in the text and defined in Appendix A. Equation (0- 1) can be considerably simplified. 
Oown-stream conduction is neglected in accordance with the results of Appendix C. Furthermore, the water 
temperature is assumed to differ from the pressure-melting temperature by a small enough amount for the following 
approximations to be valid: 

(0- 2) 

Since Pg has been assumed to be constant in the solution of the flow problem (Appendix B), aT/ax is also constant. 
This is consistent with the neglect of the term in a2T/ax2. Finally, the term (au/ay/ is dropped. since as shown in 
Appendix B, it is negligible compared to the term (au/az)2. With these approximation, Equation (0- 1) reduces to 

( 
a2T a

2
T) ( au) 2 yPgu = kw ---;;--y +---;;--y + I/ w -

ay az az 
(0- 3) 

The term a2T/ai has been kept, even though small compared to the other conduction term, because cross-stream 
conduction might be expected to affect the sheet stability. I assume that the temperature field can be decomposed into 
a mean and a perturbation, viz. 

T(x, y, z) = To(x, z) + cTI(y, z) (0- 4) 

where e <1[ I. Substituting Equation (0-4) into Equation (0- 3), using Appendix B, Equation (B- I I) for the term 
au/az, and separating terms of O( I) and 0(0), the following two equations are found : 

d
2 

To ypi 2 pi (2 h
2 

) 
k W --2- =--(- Z + hz) +- - z + hz -- . 

dz 2~w ~w 4 
(0- 5) 

kw --2 + -2- = Y g sin ky sinh kz + g (2z - h) sin ky cosh kz. ( 
a2TI a

2
TI) P

2
h

2 
P

2
kh

2 

ay az 217w sinh kh 21/w sinh kh 
(0- 6) 

The boundary conditions on the temperature are 

T(zo) = T m (x) = - Ct p(x), (0- 7a) 
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o T 
- kw -(z=O)=qo . 

OZ 
(D- 7b) 

Since p(X) = p(x= O) - Pgx, Equation (D-7a) can be rewritten as 

T(z = zo) = Tmo + C,Pgx (D- 7a ') 

where Tmo = - c,P(x=O) is the pressure· melting temperature at x=O. Equation (D- 5) can be integrated with respect 
to z to yield 

ypi ( Z4 hzJ) pi ( Z4 hz
J 

h2Z2) 
To = --- - -+- +-- --+----- + CO(X)Z + CI(X) 

21lwkw 12 6 Ilwkw 12 6 8 
(D- 8) 

where Co(x) and Cl (x) are, in general , functions of x to be evaluated by use of boundary conditions. 
The temperature perturbation TI will have the form 

TI = F(z) cosh kz sin ky + G(z) sinh kz sin ky (D- 9) 

where F(z) and G(z) are chosen to satisfy Equation (D- 6). Substituting Equation (D- 9) into (D- 6), one find s 

Pih2(l - y) 
F(z) =/0 z, (D- 10a) 

41lwkwk sinh kh 

Pih
2 

2 
G(z) = go + (z - hz), 

41lwkw sinh kh 
(D- 10b) 

where /0 and go are constants to be determined. 
The evaluation of Co (x), Cl (x) , /0 , and go is extremely tediou s, involving lengthy algebraic manipulations. I 

present here only their values: 

qo 
Co(x )= - - , 

kw 

go 
4llwkwk' sinh kh . 

(D- ll) 

The heat flux at the ice-water interface can now be found by substituting the expressions (D- ll) into Equations (D- g) 
and (D- 9), computing the derivatives o Toloz and OTI /OZ, and evaluating at Z = Zo. The resultant heat flux Qzo can be 
shown to be 

{ 
pihJ(I -y) tanh kh (kh I)} 

qokh tanh kh + - - - . (D- 12) 
41lw 3 kh 

If kh <{ 1, this can be rewritten by using the expansion of tanh kh for small kh: tanh kh = kh - k J h J 13 + O(k l h\ With 
this approximation, the heat flux Qzo can be written in the form of Equation (15) of the main text. 

ApPENDIX E. VISCOUS RELAXATION OF THE ICE- WATER INTERFACE 

Sagging of the basal ice when the ice-water interface is perturbed is analyzed by the method of Fletcher (1977). 
Both ice and water are assumed to be incompressible, linear-viscous fluids. The unperturbed state is hydrostatic 
equilibrium. Imposition of a gentle waviness on the interface results in small changes in the stress state in the fluids , 
which flow quasi -statically in response to the altered stress condition. The stresses and velocities associated with the 
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perturbation can be written in a form analogous to Fletcher's equations ( 17a-d) : 

azz = 217rk{fA' + B 'k(h - z)] ek(h - z) - [ C' + D'k(h - z)] e -k(h-z)} sin ky, 

ayz = - 2IJrk{[A ' + B'(l + kh - kz)] ek(h - z) + [C - D'(I - kh + kz)] ek(h - z)} cos ky, 

vr= - {[A' + B'(I +kh - kz)J ek(h - z) _ [C _ D'( I _ kh + kz)] e - k(h - z) } cos ky, 

IVr = ([A' + B' k(h - z)] ek(h - z) + [C' + D'k(h - z)] e - k(h - z)} sin ky. 

291 

(E-I) 

where Vr and Ivr are velocities in the y and z directions , respectively , the interface is at zo(y) = h + A sin ky, and the 
slope kA ·" I. A ', B', C, D' are integration constants , and IJr is the fluid viscosity. Equations (E- I) are exact to O(kA). 
One such set of four equations can be written for each fluid. The boundary conditions used to determine the total of 
eight integration constants can be stated as follows: 

(i) Normal and shear stresses and normal velocities in the two fluids must match at z =zo(y), 
(ii) v = IV = 0 in the water on z = 0 , 

(iii) v-> O, 111->0 in the ice as z-> 00. 

The problem of determining the integration constants can be reduced to the solution of a system of four 
simu ltaneous algebraic equations. These equations are solved by standard, though tedious techniques. 

Due to the extreme viscosity contrast between ice and water, the solution efTectively reduces to that for the 
relaxation of perturbation on a free surface of ice . The quantities of most interest. the velocities, can' be expressed to an 
excellent approximation as 

(E- 2) 

IVp = (pw - Pi)gA [I k(h )] k(h - z) . k - - z e Sill)" 
211ik 

where Vp and hip are the velocities in the ice and 'Ii is the efTective ice viscosity. On the interface z = zo(y) these reduce 
to 

(Pw - Pi)gA. 2 2 
Vp = (kA Sill ky) cos ky + O(k A ) 

2IJik 
(E-3) 

hip = (Pw - Pi)gA . k O(k2A 2) 
Sill y+ , 

211ik 

where I have expanded the exponentials as power series in kA. Equations (E- 3) are the result used in the main text. 
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