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1. Introduction. Given a variety si of lattice-ordered algebras, a lattice L is said to
be a relative si-lattice if every closed interval [a, b] of L may be given the structure of an
algebra in si (in other words, is the reduct of a member of si—not necessarily unique).
This paper discusses the characterisation in terms of forbidden substructures of finite
relative .stf-lattices. We treat a large class of varieties si of distributive-lattice-ordered
algebras. For these varieties, the finite algebras can be described dually in terms of finite
ordered sets, so that order-theoretic results and techniques prove valuable.

Our study was prompted by a desire to set in a wider context the following
characterisations of relative de Morgan lattices and of relative Stone lattices.

THEOREM 1.1. (J. C. Varlet [24]) Let L be a finite distributive lattice. Then the
following are equivalent:

(1) L is a relative de Morgan lattice;
(2) L has no closed interval isomorphic to 1 © 22 or to 22 © 1;
(3) L is a direct product of chains.

THEOREM 1.2. (G. Bordalo [9]) Let L be a finite distributive lattice. Then the
following are equivalent:

(1) L is a relative Stone lattice;
(2) L has no closed interval isomorphic to 1 © 22;
(3) the ordered set of join-irreducible elements of L is a disjoint union of trees.

Thus when si is either the variety of de Morgan algebras or the variety of Stone
algebras the finite relative .si-lattices have a characterisation which can be neatly
expressed in terms of the poset of join-irreducible elements (condition (3) in Theorem 1.1
being equivalent to the poset of join-irreducible elements of L is a disjoint union of
chains). Alternatively, these lattices can be described via forbidden substructures (in each
case, forbidden intervals of small cardinality)—a technique which has proved valuable in
graph theory, order theory and lattice theory. More degenerately, a similar characterisa-
tion is available when si = B, the variety of Boolean algebras; see A. Bjorner [4] for a
discussion of lattices (not necessarily distributive) with 3 as a forbidden interval.

One is naturally led to ask whether Theorems 1.1 and 1.2 are specific to the varieties
to which they refer, or whether there are analogous results for other varieties of
distributive-lattice-ordered algebras. A natural setting for such an investigation is the
lattice of subvarieties of the variety O of Ockham algebras, to which Boolean algebras, de
Morgan algebras and Stone algebras all belong. An Ockham algebra is an algebra (L; v ,
A , 0, 1) of type (2,2,1,0,0), where (L; v , A , 0, 1) is a bounded distributive lattice
and ~ is a dual endomorphism. The identity ~2 a = a and the identities a A ~a =0 and
~a v ~2a = 1 define respectively the subvarieties M (of de Morgan algebras) and S (of
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48 G. BORDALO AND H. A. PRIESTLEY

Stone algebras). Two other Ockham varieties play an important role in our investigations:
Sd (dual Stone algebras) and K (Kleene algebras). The algebra (L; v, A, ~, 0, 1) is in Sd

if and only if (Ld; v, A, ~, 0, 1) e S; Ld denotes the order dual of L. The variety K is the
subvariety of M defined by the identity a A ~a =£ b v — fr. It is well known that the lattice
of (non-trivial) subvarieties of M is a 3-element chain: B c K c M .

Given a variety si of lattice-ordered algebras, we denote its lattice of subvarieties by
A(si) and by Kf(si) the subset of A(si) consisting of those varieties which are generated
by a single finite algebra.

The lattice A(O) has a rich structure, without being intractable. Its basic structure,
and relation to A^(O), was revealed by A. Urquhart ([22,23]), following pioneering work
by J. Berman [3] (see Section 4 for more details). Further contributions were made by
M.S. Goldberg in [15] and [16]. In addition, a number of particular subvarieties close to
the bottom of A(O) have been intensively investigated, including the variety of
MS-algebras studied by T. S. Blyth and J. C. Varlet et al. (see [1], [5], [6], [7] and [8] for
basic facts and further references).

The complexity of A(O) is such that the determination of the finite relative
j^-algebras for every si e A(O) is too big a project for a single paper. We therefore
concern ourselves here primarily with a more restricted problem, which is most
conveniently presented by considering an equivalence relation = on A(O). For si,
SB e A(O), define si = 98 if and only if the class of finite relative j^-algebras coincides with
the class of finite relative 98-algebras. We can then state our immediate goal as being to
calculate the equivalence classes of B, M, S and Sd (or at least their intersections with
Af (O)). In Section 3 we shall give a general description of these equivalence classes. This
work makes use only of the most basic facts about the varieties already mentioned. Our
main result is Theorem 3.6. In the following section we describe in greater detail the
members of each equivalence class. There, all Urquhart's and Goldberg's results come
into play, and we need to look carefully at the architecture of parts of the lattice of
Ockham varieties.

The four equivalence classes above by no means exhaust A(O). In Section 5 we
exhibit a principal filter 9 in the lattice such that for every si e &, every finite distributive
lattice is the reduct of an algebra in si. In addition, we include a discussion of the finite
relative (S v Sd)-lattices, as an indication that the analysis of further ^-equivalence classes
raises interesting order-theoretic questions (involving the important classes of N-free and
series-parallel posets ([17], [21])). We shall pursue these questions in a subsequent paper.

Stone algebras lie at the confluence of two families of varieties—varieties of Ockham
algebras and of distributive p-algebras. We conclude with some brief comments on finite
relative jtf-algebras when si is one of the subvarieties Bn of B^, the variety of all
distributive p-algebras. (These varieties form a chain with Bo = B and B, = S.) For n s* 2 it
transpires that no worthwhile description in terms of forbidden subintervals is available.
We obtain a similar negative result for S v Sd: finite relative (S v Srf)-lattices cannot be
characterised by the exclusion of certain lattices as subintervals.

2. Preliminaries. The techniques used in [24] and [9] are purely algebraic. We
shall use duality methods throughout. A topological duality for Ockham algebras was
developed by A. Urquhart in [22], based on the duality for bounded distributive lattices.
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RELATIVE OCKHAM LATTICES 49

Since we are concerned in this paper only with finite algebras, topology plays no role, and
we summarise the results we need in the special, purely order-theoretic, forms that
pertain to the finite case. For a general survey of duality techniques, see B. A. Davey and
D. Duff us [13] (which includes an introduction to Ockham algebras) or [19]. These
articles give proofs of the unreferenced assertions below, or references to their proofs.
We follow the terminology and notation of [19] when dealing with ordered sets. In
particular, given an ordered (= partially ordered) set P, and a subset Q of P, we let

lQ = {xeP:3yeQ such that x^y}

and call Q decreasing (an alternative term is order ideal) if [Q = Q. We write jjt in place
of [{x}. We define analogously \Q, Q increasing and \x.

Underlying all that follows is the (full) duality between the category of finite
distributive lattices (with {0, l}-preserving lattice homomorphisms) and the category of
finite ordered sets (with order-preserving maps). At the object level this is just Birkhoff s
classic representation theorem: any finite distributive lattice L is isomorphic to the lattice
of decreasing sets of XL, where XL is the set J(L) of join-irreducible elements of L with
the induced order. Given any ordered set X we denote by 2 (X) the lattice of sets
consisting of all decreasing subsets of X. Thus we have, for any finite distributive lattice L,
that L = 3)(XL). We shall henceforth identify L with 9>{XL).

Now let L and M be finite distributive lattices. Then there is a bijective
correspondence / •-> (j>f between lattice homomorphisms (always assumed to preserve 0, 1)
f:L—*M and order-preserving maps <j>f:XM^>XL, with f(a) = <f)~l(a) for all aeM.
Further, / is one-to-one if and only if (j>f is onto, and / is onto if and only if ty is an
order-embedding.

A finite Ockham algebra L is a finite distributive lattice with an additional dual
homomorphic operation ~. We should therefore expect to obtain, by restricting the
duality described above, a duality between the finite members of O and a suitable
category of finite ordered sets—sets X equipped with additional structure which defines ~
on 2 (X). The appropriate dual category is that of finite Ockham spaces; we denote it by
<8/. We say (X; g) is an object in this category if A" is a finite ordered set and g: X—* X is
an order-reversing map (that is, x^y implies g{x)^g{y), for x, yeX). Then 3)(X)
becomes an Ockham algebra once we define, for all a e 3)(X),

~a=X\g-1(a).

In the opposite direction, every finite Ockham algebra L yields an order-reversing map
defined on XL which satisfies the equation above. Morphisms in the dual category (called
g-morphisms) are the order-preserving maps <f> such that (p°g — g°<f). Proof that these
definitions really do lead to a category equivalence can be found in [22].

Under this duality, the finite members of any subvariety si of O will correspond to a
suitable (full) subcategory <3fs' of 9. In every case the subcategory is specified by
order-theoretic restrictions on the g-map. For Section 3 we need only the duals for the
best known Ockham varieties, all of which are individually well known. Proposition 2.1
collects these together. See [1] for a systematic treatment of the process of translation
between equational bases for Ockham varieties and g-inequalities on the spaces in the
dual categories.
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PROPOSITION 2.1. Let L be a finite Ockham algebra with dual space (X;g) e 'Sf. Then
(1) Left if and only ifg(x) = x for all x e X';
(2) L e S if and only if x^ g(x) = g2(x) for allxeX;
(3) L 6 Sd if and only ifx^ g(x) = g\x) for allxeX;
(4) L e M if and only ifx= g2(x) for allxeX;
(5) L e K if and only if x = g2{x) and x is comparable to g(x) for all x e X.

Now suppose (X;g) e $7 is the space dual to the finite algebra LeO. We adopt the
notation introduced by M. S. Goldberg ([15,16]) and denote by G(X) the collection of
g-closed subsets of X (Y is g-closed if y e Y implies g(y) e Y) and by M(X) the collection
of g-morphic images of X (that is, images of X by morphisms in <Sf). The spaces in G(X)
are the duals of the algebras in H(L), the homomorphic images (in O) of L and
correspond to Ockham congruences on L, while M(X) consists of spaces dual to elements
of S(L), the Ockham subalgebras of L.

It follows from the observation made above concerning congruences that the algebra
L is subdirectly irreducible if and only if its dual space (X;g) is such that

AT = {g*(e): k = 0, 1, 2 , . . .} for some eeX;

any such e is known as an end of X. For details, see [22] or [16].
Each of the five varieties in Proposition 2.1 is of the form si = HSP(A), where A is a

finite subdirectly irreducible Ockham algebra. For such a variety si, we denote by
5"* = (X*, g*) the dual of the generating algebra A of si. For the aforementioned
varieties we can depict these spaces as follows:

SB S M SK

Figure 1

3. Relative Ockham lattices. Let us begin by establishing some notation connected
with the concepts introduced in Section 1.

DEFINITION 3.1. Let si be a variety of Ockham algebras and let L be a finite
distributive lattice. Then L is a relative si-lattice if and only if every interval [a, b]of L can
be given the structure of an algebra in si. The class of finite relative si-lattices is denoted by
2*. The equivalence relation « is defined on A(O) by si « 98 if and only if 2* = S6*. The
equivalence class of si is denoted by [si].

Lemma 3.2, which appears not to have been recorded in the existing literature,
provides the key to handling subintervals in finite distributive lattices. Before stating this

https://doi.org/10.1017/S0017089500009058 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009058


RELATIVE OCKHAM LATTICES 51

lemma, we draw attention to two different ways in which one ordered set may lie inside
another. Let P and Q be (finite) ordered sets. We say that

(i) P has Q as a subposet if there exists an order-embedding r\ of Q into P,
(ii) P has Q as a convex subposet if there exists an order-embedding rj: Q —> P such

that r)(Q) is a convex subset of P.
(A subset 5 of an ordered set P is convex if u, v eS, x e P and u =£x =£ v imply * e5.)

We shall adopt the notational convention due to I. Rival [21] and use alphabetic
symbols for certain ordered sets. Accordingly, the letters N and V are used to denote
respectively

and

In the same way we shall use I and A for, respectively,
o

and

To illustrate our definitions, we observe that the ordered set in Fig. 2 has N as a
subposet but not as a convex subposet.

Our characterisations of classes of relative Ockham lattices will initially be in terms
of the exclusion of certain ordered sets from the dual spaces of the lattices concerned,
either as subposets or as convex subposets.

LEMMA 3.2. Let L be a finite distributive lattice.
(1) Let M = [a, b] be a closed subinterval of L. Then XL has XM as a convex

subposet.
(2) Let Q be a convex subset of P. Then there exists a closed subinterval M of L such

that XM is order -isomorphic to Q.

Proof. Take decreasing subsets a and b of XL with a c i . We first claim that b\a is a
convex subset of P. Suppose u, v eb\a and u =s x =s v. Since b is decreasing and contains
v, the point x must lie in b. On the other hand, because the complement of a is increasing
and contains u, we must have x $ a. This establishes the convexity of b\a.

Figure 2
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We next show that 3)(b\a) is isomorphic to M = [a, b]. For each c e 9i{b\a), define
f(c) = c U a. Then it is easily seen that f(c) is decreasing and that a s / ( c ) c b, so that
/(c) e M. Further / is a one-to-one map with image M, and is trivially a lattice
homomorphism. This completes the proof of (1).

Conversely, take a convex subset Q of P. Convexity of Q is equivalent to the
condition Q = \Q D ]Q. Hence

Q = IQ\(IQ\Q)

The sets b = [Q and a = jQ H (A^Xf £)) are both decreasing. Thus <2 is order-isomorphic
to XM, where M = [a, b]. •

We note that the correspondence Lemma 3.2 establishes between intervals of L and
convex subposets of XL is not one-to-one. Many different intervals may give rise to the
same convex set.

We shall say that a class % of finite ordered sets is convex-closed if whenever P
belongs to %, every convex subposet of P also belongs to *&.

It is now possible to outline our fundamental strategy. A finite distributive lattice L is
a relative jtf-lattice (si e A(O)) if and only if every convex subposet of XL can be
endowed with a g-map making it into a space in <$/**. We seek a family {£,},<=/ of ordered
sets, in some sense minimal, such that none of the sets £, can be made into a space in
<&**. We may then consider the class % of ordered sets which fail to have any of the sets £,
as a convex poset. Suppose that every member of % can be made into a member of fy**
and that % is convex-closed. Then we can conclude that the finite relative ^-lattices are
exactly those L for which XL e %. Actually we can assert a little more. The lattices L
with XL e % will be the finite relative 9B-algebras for any variety 96 containing si which is
such that no set £, can be made into the dual of an algebra in 98. It is this last observation
which will enable us to describe certain equivalence classes under the equivalence
relation « .

To handle the varieties B, S, Sd and K we need to consider I, A and V as excluded
posets. Our first observation is a triviality, which we state as a lemma to bring it into line
with the slightly less trivial lemmas which follow it.

LEMMA 3.3. Let P be a finite ordered set. Then the following are equivalent:
(1) P is an antichain;
(2) P fails to contain I as a subposet;
(3) P fails to contain I as a convex subposet.

The class of all finite antichains is convex-closed.

LEMMA 3.4. Let P be a finite ordered set. Then the following are equivalent:
(1) P is a disjoint union of trees (that is, ^x is a chain for each x e P);
(2) P fails to contain A as a subposet;
(3) P fails to contain has a convex subposet.

The class of all disjoint unions of finite trees is convex-closed.

Proof. Trivially (1) is equivalent to (2) and (2) implies (3). We prove that (3) implies
(2) by showing that if P contains points x, u, v with x>u, x>v and u\\v (u, v are
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incomparable) then P also has a convex subposet order-isomorphic to A.
Let x' be a minimal element of the (non-empty) set J,JC D (|u n ]v). Then x'> u,

x' > v and there does not exist y such that x' > v, y > u and y > v. Now choose u' to be a
maximal element of (j;c'\{;t'})n fu and (similarly) v' to be a maximal element of
(J,JC'\{JC'}) fl \v. We claim Q = {x', u', v'} is convex as a subset of P and is isomorphic to
A. The convexity is a consequence of the maximality conditon on u', v'. We have
x' > u' 2* u and x' > v' 2= v, by construction. We require u' || v'. Suppose otherwise. Then
without loss of generality u' 3= v'. In this case u' e |M f~l |u n \,x', which is impossible by
the minimality condition on x'. •

Lemma 3.4 has an obvious (order-theoretic) dual, concerning the exclusion of V. If
we combine this dual version with Lemma 3.4 we get the next lemma.

LEMMA 3.5. Let P be a finite ordered set. Then the following are equivalent:
(1) P is a disjoint union of chains;
(2) P fails to contain either A or V as a subposet;
(3) P fails to contain either A or\l as a convex subposet.

We can now prove the main theorem of this section.

THEOREM 3.6.
(1) [B] = {si e A(O) :s i3B, sij>K, sA $S and slj>Sd};
(2) [K] = {rf e A(O): si 3 K, s&j> S and si £ Sd};
(3) [S] = {si e A(O): si 2 S and si £Sd};
(4) [Sd] = {sde A(O): si => S" and si ^S}.

Proof. (1). Let P be a finite ordered set. Then P fails to be an antichain if and only if
P contains I as a convex subposet. There are three possible g-maps on I. These make it
into XK, Xs or Xs". But for any 98, Xm belongs to # * if and only if 98 c si. (This is
simply the dual of the assertion that if si. is any variety, an algebra A belongs to si if and
only if HSP( / l ) s^ . )

Suppose P is an antichain. Then P becomes an element of XB if it is endowed with
the identity map asg-map. Hence P is the dual of an algebra in si for any variety si^B.

(2). We need to consider the possible g-maps on A . Consider an ordered set
Q = {x, u, v) with x>u, x>v and u \\ v. Suppose g:Q-»<2 is order-reversing. If
g(x) = x, then necessarily g(u) = g(u) = JC. If g(x) = u, then g(u) = u or g(w) = x. In each
of these cases we may have either g(u) = u or g(v) = x. Consequently we have five
different g-maps on A , as shown in Fig. 3.

Each of these Ockham spaces has Xs"1 as a g-morphic image.

Figure 3
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Suppose P has A as a convex subposet and is the dual of a relative jrf-lattice. Then
(by Lemma 3.5) it must be possible to make A into the dual of an algebra M in si. When
this is done, si contains every Ockham subalgebra of M, and one of these subalgebras
must be the generating algebra for Sd. It follows that si 3 Srf. Thus if si ^ Sd, the dual of
any finite relative j#-lattice fails to contain A. In the same way, if si ^ S, the dual of any
finite relative .stf-lattice fails to contain V. We conclude that if si contains neither S nor
Sd then every finite relative j#-lattice L is such that XL is a disjoint union of chains.

Let P be the chain l < 2 < - < £ . Define g by g(i) = k-i + l. Then g is
order-reversing and such that g2 is the identity. Trivially each point is comparable to its
g-image. Now suppose P is a disjoint union of finite chains. Then a g-map can be defined
on P by using the construction above on each order component. Proposition 2.1 now
implies that any disjoint union of finite chains can be made into the dual space of a
Kleene algebra. This completes the proof of (2).

(3) Note that any disjoint union of finite trees can be made into the dual of an
algebra in si whenever si is an Ockham variety containing S. The appropriate g-map
simply takes every element to the (unique) minimal point of its order component. The
remainder of the argument required to prove (3) is as in the proof of (2).

(4) This final part is merely the order dual of (3). •

Our final goal in this section is to give an algebraic description of SBM for si in any of
the equivalence classes in Theorem 3.6. The constructive characterisation of finite relative
Stone algebras provided by Theorem 3.7(iii) appears not to have been stated before.

THEOREM 3.7. Let si e A(O) and L be a finite distributive lattice.
(i) Ifste [B], then LeSB* if and only if L is Boolean;
(ii) If si e [K], then L e SB1* if and only if it satisfies any of the following equivalent

conditions:
(1) L is a direct product of chains;
(2) L fails to contain either 22 © 1 or 1 © 22 as a subinterval;
(3) L fails to have either 22© 1 or 1 ©22 as a homomorphic image;

(iii) If sie [S], then SB* is defined in the following way:
(a) the trivial algebra and the 2-element chain are in SB1*,
(b) any finite direct product of elements of SB* is in SBM,
(c) if Le SB*, then l © L e ^ ,
(d) any element of SB* can be constructed by repeated application of (a), (b) and

(c).
Further, L e SBM if and only if it satisfies either of the following equivalent conditions:

(1) L fails to contain 22 © 1 as a subinterval;
(2) L fails to have 22 © 1 as a homomorphic image.

(iv) Ifsie [Sd], then Xs* is defined in the following way:
(a) the trivial algebra and the 2-element chain are in £*,
(b) any finite direct product of elements of Xs* is in 5B1*,
(c) ifLe 2*, then L © 1 e Xs*,
(d) any element of £* can be constructed by repeated application of (fl)-(c).

Further, L e SB1* if and only if it satisfies either of the following equivalent conditions:
(1) L fails to contain 1 © 22 as a subinterval;
(2) L fails to have 1 © 22 as a homomorphic image.
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Proof. Almost all the assertions in the theorem are dual versions of earlier results.
Only the first part of (iii) and the first part of (iv) need proof, and it is enough to prove
the former. For this it is sufficient to show that the class & of finite ordered sets generated
by the duals of (a)-(d) in (iii) is exactly the class of disjoint unions of finite trees. We have
that 3~ is the smallest class of ordered sets containing the empty set and any singleton,
and closed under disjoint unions and the operation of adjoining a universal minimal
point. An elementary inductive argument shows that the ordered sets so defined are
indeed just the disjoint unions of finite trees. •

The starting point for our investigations was Varlet's characterisation of finite relative
de Morgan lattices. Since the variety M contains K but neither S nor Sd, it belongs to [K].
Theorem 3.6(2) and Theorem 3.7(2) encompass Varlet's result, and show that M plays no
special role in the general scheme of relative Ockham lattices. The next section addresses
the question of exactly which Ockham varieties comprise the various equivalence classes
so far considered.

We remark that each of the equivalence classes we have described has a smallest
element, which we have taken as the representative of the class. Let % denote any of
these four varieties. Then every lattice in i?* can be made into an algebra in ^ in just one
way. This is not true in general. The lattice 3 x 3 belongs to i?M and has two de Morgan
structures, one making it into an element of K and another making it an element of M\K.
The second is specified by the g-map on the dual 2U2 shown in Fig. 4.

4. The lattice of Ockham subvarieties. In Section 3 we needed very little
knowledge of the lattice A(O). We now seek to gain a greater insight into those results by
investigating the structure of A(O) more closely.

Underpinning what follows is one key fact: O is congruence-distributive. This can be
proved in a number of ways. It is, in particular, an immediate consequence of the fact
that the join operation in the congruence lattice of any algebra A e O is the same as the
join operation in the (distributive) congruence lattice of the distributive lattice reduct of
A; see [22]. Congruence-distributivity allows the application of J6nsson's lemma and its
many consequences (see [18]).

Any element of Ay(O) may be presented in any one of the following equivalent ways:

(1) si = HSP(y4,, . . . , Ak), where Au . . . , Ak are finite subdirectly irreducible
Ockham algebras.

(2) jtf = HSP04,) v . . . vHSP(>U), where Au...,Ak are finite subdirectly ir-
reducible algebras.

(3) si = HSP(/4), where A is finite, but not necessarily subdirectly irreducible.

Figure 4
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For the third one, just consider (Ax x . . . x Ak). In any congruence-distributive variety s&
a subvariety generated by a finite algebra is of finite height in A(j#). We note in passing
that in [23] A. Urquhart shows the converse also holds in O.

The next theorem contains many of the essential tools for working with Ar(O). It is
an amalgam of results from M. S. Goldberg [16, Section 2] and B. A. Davey [12].

THEOREM 4.1. Suppose si = HSP(^4i, A2, • . . , Ak) (where Alt . . . , Ak are sub-
directly irreducible) belongs to A/(O). Then the set Si(si) of subdirectly irreducible
algebras in si coincides with HS{Al, . . . , Ak).

Let S\(si) be ordered by A^B if and only if A e HS(B). Then the lattice A(st) of
subvarieties of A is isomorphic to 3)(Si(s4)).

As observed in Section 2, the finite Ockham algebra A is subdirectly irreducible if
and only if its dual space has an end. Let {e, g(e),.. . ,gm~\e)}, with g"(e) = gm(e)
(m>n2s 0), be such a dual space. This space may carry any order relation with respect to
which g is order-reversing. When the order is discrete, the corresponding algebra is
denoted Lm „ and the variety it generates by Pm_„. These varieties are important in that
they form a 'skeleton' for A/(O): every element of A/(O) lies in some Pm n{m >n 3=0).
Equationally the variety Pm „ is defined within O by

~ma = ~na (m-neven)

~mflA~"a = 0 and ~mav~"a = l (m-nodd)

(see A. Urquhart [22] and M. S. Goldberg [16]). In the case m — n even, the varieties
Pm„ were introduced and studied earlier by J. Berman [3], using the notation Kpq for
p
*2p+q,q-

The variety of MS-algebras is the subvariety of P3 x consisting of algebras satisfying
a^~2a. Its lattice of subvarieties was obtained by T. S. Blyth and J. C. Varlet in [7],
using Theorem 4.1. From the diagram of A(MS) in [7] we see immediately that all the
non-trivial MS-subvarieties lie in [S] except B and the four varieties K, M, K] ajid
M v Kj, each of which lies in [K]. Here K, is the variety generated by the 4-element chain
0<a<b<l with ~a = ~b = b; the dual space of this chain is the 3-element chain
g2(e)<e<g(e)=g\e).

Applying Theorem 3.6 directly in this way is only practical for very small subvarieties
of O. The size of A(Pm „) grows extremely rapidly with m and n. Already A(P3,) has 403
elements (see [5]).

We therefore seek to analyse the equivalence classes under « determined by
Theorem 3.6 without recourse to drawing sublattices of Ay(O). Let Ax, . .. ,Ak and B be
finite subdirectly irreducible Ockham algebras. Then, by the first part of Theorem 4.1 and
duality, we have HSP{Au ..., Ak) 2 HSP(B) if and only if XBeGM(XA.) for some
i = 1,.. . , k. (Here GM(^) denotes the set of g-closed subsets of g-morphic images of
the Ockham space X; because O has the Congruence Extension Property, GM(AT) =

Take X = {e, g(e),. . . , gm~\e)}, with g"(e) = gm(e), to be the dual of some finite
subdirectly irreducible algebra. The set {g"(e), . . ., gm~\e)} is called the loop of X, and
{e, g(e),..., g"~x(e)} the tail. From the following observations about G M ^ ) we can
determine under what circumstances each of XK, Xs and Xs"1 belongs to GM(Ar).
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(1) G(X) consists of the empty set and the sets {gr(e),.. . , gm~l(e)}, for 0 =s r =£ n.
(2) Any g-morphism with domain X maps the loop of X onto the loop of the image

space, and the size of the image loop divides m — n.
(3) If m - n is odd, then the loop of X is discretely ordered. If m - n is even, then

the loop is of height at most one [A. Urquhart [22], or see M. S. Goldberg [16]].
(4) Call a point gr(e) of X trapped if there exist distinct k, I with n^k, / =£ m — 1

such that gk(e)^gr(e)^g'(e). The set of trapped points is a g-closed subset of X
containing the loop. Contracting all trapped points to a single point yields a g-morphic
image of X.

The significance of trapping is that if the loop is contracted to a point, as it must be if
Xs or Xsd is to be obtained as an element of GM(A'), then all trapped points perforce map
to the same point. The simplest example of non-trivial trapping of an end is provided by
the dual space of the generating algebra of the MS-variety Kj mentioned above.

LEMMA 4.2. Let X be as above, \X\ 3= 2.
(i) XK belongs to GM(Ar) if and only if m — n is even.
(ii) Neither Xs nor Xs belongs to GM(AT) if and only if the end of X is trapped.
(iii) Xs belongs to GM(Jf) but Xs* does not if and only if n = 1 and, with respect to

the order on X, the end is a maximal point which is not also a minimal point (and dually).

Proof. Parts (i) and (ii) are direct consequences of the observations (l)-(4) above.
For (iii), note that if neither e nor g(e) is trapped, then {g2(e), . . . , gm~x(e)} can be

contracted to a point. Then the resulting space Y is such that both Xs and Xs* lie in
GM(Y) and so in GMpf). Now suppose that e is the only point which is not trapped.
Contracting A"^*} to a point yields one of Xs, Xs'', or XVl-K We deduce that we have
both X*eGM(X) and Xsd$GM(X) only if e lies above some point in
{g(e), . . . , gm~1(e)} and is maximal. Because g is order-reversing, g(e) must then be
minimal. By hypothesis it is trapped, so g(e) actually belongs to the loop. Thus n = 1. The
converse is obvious. •

The rather mysterious conditions in (ii) and (iii) above translate into algebraic
conditions involving congruences. The congruence lattice of a finite Ockham algebra is
anti-isomorphic to the lattice of g-closed subsets of its dual space, via 0>-»Ge, where
a = b(d) if and only if a D Ge = b D G0; see [22]. The congruence class of a under 6 is
denoted by [a]e.

LEMMA 4.3. Let A be as above and let 6 be any non-trivial congruence on A. Then
(i) HSP(A) contains neither S nor Sd if and only if \[O]0\ = |[l]e | = 1;
(ii) HSP{A) contains S but not Sd if and only if |[0]e| = 2 and |[l]e | = 1.

Proof. Let 6 be any non-trivial congruence. For (i) note that |[0]e| = 1 is a way of
expressing the condition that every non-empty increasing subset of the dual of A
intersects every non-empty g-closed subset. The second part uses the fact that [l]e

contains two elements precisely when the g-closed subset corresponding to 6 misses
exactly one maximal point. •

PROPOSITION 4.4. Let si e A^(O). Then si e [B] if and only if si is a finite join of
varieties of the form Pmfi with m odd.
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Proof. Write si = HSP^O v . . . v HSP(.4*) and suppose si e [B]. Theorem 3.6 and
Lemma 4.2(i) imply that the dual of each At must have a loop which is of odd length and
discretely ordered. By Lemma 4.2(ii) we also require that each of these spaces has a
trapped end. This happens if and only if each space is itself a loop. Hence si has to be of
the stated form. The converse is obvious. •

The varieties arising in Proposition 4.4 have a number of alternative descriptions.
Note that if m is odd then the join-irreducible elements of A(Pm0) are exactly the
varieties YkQ where k divides m. This implies that the members of [B]DA/(O) are
precisely those varieties which lie in some Pm>0 (nt odd) or, equivalently, are the varieties
Pm 0 (m odd) and their lower covers in A(O). (These equivalences are essentially due to
A. Urquhart [22] and M. S. Goldberg [15].)

The situation for other equivalence classes is more complicated because there is a
multitude of ways in which points of the dual of a finite subdirectly irreducible algebra can
get trapped. We do not attempt to present a complete list of the elements of [si] D A^(O)
for si = K, S or Sd. However it is easy to use Lemma 4.2 to exhibit varieties which lie in
the various classes.

Suppose next that X satisfies the conditions of Lemma 4.2(iii) and assume in addition
that the loop of X is an antichain. For some r with m > r s = l , e>g'{e). This implies
g(e)=£gr+1(e), whence g(e) = gr+1(e) since both points belong to the loop. Hence we
must have r = m — l, and this choice is certainly allowable. Let si(m) be the variety in [S]
generated by the subdirectly irreducible algebra whose dual is X.

Now suppose m is odd, m = 2p + 1. The techniques collected together in [1] reveal
that jtf(2p+1) is the subvariety MS(p) of P^+i.i given by a =s ~2P a. We have here just the
family of varieties of generalised MS-algebras introduced by M. Ramalho and M.
Sequeira in [20]; p = 1 gives the MS-algebras. (The restriction that m be odd is not
essential. However the variety arising from X has a different form of equational base in
case m is even.)

PROPOSITION 4.5. [S] n A/(O) contains MS(p) for every p. A variety si lies in
[S]flA/(O) // and only if it is a finite join of varieties each of which is a non-trivial
subvariety of some si^m\m 3= 1) generated by a single subdirectly irreducible algebra the
end of whose dual space is not trapped.

Proof. Almost everything follows from Theorem 3.6 and Lemma 4.2. The proof is
completed by showing that any space X meeting the conditions of Lemma 4.2(iii) must be
a g-morphic image of a space {e, g(e),. . . , gm~1(e)} in which the only comparability is
e >gm~l(e). When m is even X is itself such a space, so assume m is odd. There exists r
with 1 =£ r s= m - 1 such that e > gr(e). Since e is maximal, gk(e) is minimal if k is odd and
maximal if k is even. Hence r is odd, so gm~r is order-preserving. Therefore
gm~r(e)^gm(e) = g(e). Because g(e) is minimal, gm~r(e) =g(e). This forces r = m - l ,
whence X must be of the required form. •

Finally we look at varieties in the equivalence class of K.

PROPOSITION 4.6. [K] fl A/(O) contains all varieties Pm 0 (m even). More generally, it
contains any variety which is a finite join of non-trivial varieties each of which is a
subvariety (other than B) of some Pm 0 (m even). In addition, for each s 3= 3, [K] fl A/(O)
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contains a variety generated by a subdirectly irreducible algebra which is a chain with s
elements.

Proof. The first part is derived from Theorem 3.6 and Lemma 4.2. For the second
part we just need to construct an Ockham space with s -I elements which is a chain,
which has a trapped end, and which has a 2-element loop. Suppose s = 2q and define a
g-map on the chain k, where k = 2q — 2, by

= (
\

2* - ' " 1 if k e {0, • • • , q - 1} U {2q - 1}
2q-i-2 iike{q,...,2q-2}

(here ^ — 1 is the end). The case that s is odd is handled similarly.
A. Urquhart proves in [23] that A(O) is uncountable. On the other hand, A/(O) is

countably infinite, since each finite Ockham algebra lies in some Pm „. It follows from the
results above that each of the equivalence classes [B], [K], [S] and [Sd] intersects A/(O) in
a countably infinite set. Further, each class contains elements of A(O) of arbitrarily large
finite height. Each also contains elements which are joins of join-irreducibles forming
arbitrarily large finite antichains in A(O).

We can say still more. Let {9Bp}pS1 denote any of the following families of varieties:
{I*2p+i,o}> {I*2p,o}> {MS(p)}. Then, when ordered as a subset of the join-irreducible
elements of A/(O), {9Bp}pS, contains a copy of {1,2,. ..} ordered by divisibility. This
ordered set in turn contains a copy of 2* for every k^l. Thus all the equivalence classes
we have considered are, in a strong sense, 'large'.

5. Other Classes of Relative Ockham Lattices. We begin with an extremely
elementary result, but one which contrasts sharply with those in Section 3.

PROPOSITION 5.1. Let j#eA(O) and suppose si 3P2,i- Then every finite distributive
lattice is a relative si-lattice.

Proof. Let P be any non-empty finite ordered set. Fix any point y of P and define g
by g(x) = y for all x e P. Clearly g2 = g, so P has been made into the dual of an algebra in
P2.i- •

Proposition 5.1 implies that every finite distributive lattice is a relative Pm n-lattice
whenever m > n s* 1 (cf. Propositions 4.4 and 4.6).

We observe that in general the dual X of a finite subdirectly irreducible Ockham
algebra is such that Xv" e GM(A") if and only if the end of X is an order component.
Algebraically this means that $ieAf(Q) contains P2,i if and only if some finite
subdirectly algebra in si has 2 as a direct factor.

We take up in a later paper the question of whether the Ockham varieties si for
which S61* is the class of all finite distributive lattices are precisely those containing P2,i.

Describing the lattice of subvarieties of P2,i is entirely straightforward using Theorem
4.1 (see M. S. Goldberg [15]). The lattice shown in Fig. 5 is obtained.

In view of the contrast between Proposition 5.1 and Theorem 3.7 we are now
immediately led to seek 3?wS". It turns out that the variety S v Sd nicely illustrates the
sort of order-theoretic arguments that can arise when one considers other Ockham
varieties, and helps to put the results of Section 3 into perspective.
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OP3,l

o
Figure 5

Equationally, the variety S v Sd is given, as a subvariety of P2 1, by

a A ~a =£ b v ~b.

This identity holds in an Ockham algebra A if and only if every point x of the dual space
of A is comparable to its g-image g(x) (see [1]).

LEMMA 5.2. A non-empty finite ordered set P can be made into the dual space of an
algebra in S v Sd if and only if it is the disjoint union of sets of the form [x U ]x(x e P),
that is, if and only if every order-component of P has a node.

Proof. On a set

P= U

a g-map may be defined by g(x)=X(, whenever x is comparable to JC,-. Then g is
order-reversing, g2 = g, and each point is comparable to its g-image.

Conversely, suppose (P; g) is the dual space of a finite algebra in S v Sd. Let
Z = {g(x):x eP}. Then Z is an antichain (since g = g2). Because each point is
comparable with its g-image, P = [Z U |Z . It follows that P is of the desired form. •

We now need to characterise those finite ordered sets all of whose non-empty convex
subsets are as in Lemma 5.2. We do this in two stages. First we prove a lemma which
shows that no ordered set of the kind we require can contain N as a subposet, and then
we use Lemma 3.2 to identify the appropriate subclass of ordered sets of this type.

LEMMA 5.3. Suppose X is the dual of a finite relative (S v Sd)-lattice. Then (the
underlying ordered set of) X has no subposet isomorphic to N.
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Proof. Suppose X has N as a subposet, so there exist elements {u, v, x, y) such that
u <x, x >y, y <v, u \\v, u\\y and x \\ v.

We claim that X has as a convex subposet an ordered set Q of the following form.
There exist points {a, b, c, d) such that Q = {a, b) U [d, c], a-<.c, b>-d, d<c, a || b,
a\\d and c \\b. To find such a subposet we first consider

This set contains x, so is non-empty. If it contained an element below v, then u =£ v,
contrary to hypothesis. Take xx to be a minimal element of Xx. Then {u, xx, y, v) is still a
subposet isomorphic to N. Now consider X2 = [xx D (X\]y) n (Ar\J,_y) n fu; X2 contains
u, so is non-empty. Choose U] to be a maximal element of X2. If ux =£ v, then u « v, a
contradiction, and if we had ux 3= v, we would have x^v, which is also impossible. By
construction, « 1 | | } \ We claim Mi-<;ti. Suppose there were a point u2 such that
ux < u2<xx. We have u^ux< u2, so u2 e f«. If u2 e f u, then xx 3= fu, which is false. We
already know u2$\y, M2eJ,jiCi, and M2S=W. Finally, if u2e{y, then uxe{y. These
observations show that u2 lies in X2 and we have a contradiction to the maximality of ux.
Carrying out the same process dually on the other arm of N, we arrive at the required
set Q.

Take a subposet Q = {a, b, c, d) in X forming an N as above, so Q = {a, b) U [d, c],
a-ic, b)-d, d<c, a \\ b, a \\d and c || b. Suppose (for contradiction) that g could be
defined on Q to make it the dual of an algebra in S v Sd. Necessarily g(a) = a or g(a) = c.
Suppose the former. Then g(c) = a and g(d) s* g(c), so that g(d) = a or c. Also (because
of the comparability condition on g), g{d) is d or b, so we are forced to have g{d) = a and
g(b) = d. But then g(b)¥=g2(b). The same argument rules out g{b) = b. Now assume
g(a) = c and g(b) = d. The condition g2 = g entails g(c) = c and g(d) = d, and we see that
g cannot be order-reversing. (Alternatively, we may appeal to Lemma 5.2.) •

We shall denote by N the distributive lattice shown in Fig. 7; it is the lattice dual
toN.

The finite distributive lattices which fail to have W as a homomorphic image are
exactly those whose duals fail to contain N as a subposet, while those which do not have
N as an interval are those whose duals are N-free, that is, fail to have N as a convex
subposet. Both these classes of ordered sets play an important role in order theory, as
shown by M. Habib and R. H. Mohring [17] and I. Rival [21].

As Lemma 5.3 indicates, it is the class of ordered sets not containing N as a subposet
which is of relevance to our investigation of relative (S v Sd)-lattices. A result independ-
ently discovered by many authors shows that this class coincides with the class of
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Figure 7

series-parallel posets (see [17] and [21] for references and further characterisations). A
finite ordered set is said to be series-parallel if it is the empty set or can be constructed
from singleton sets using the operations of disjoint sum and linear sum. We thus have that
the dual spaces of algebras in gSvSd are series-parallel posets. It is easy to see that not all
series-parallel posets arise this way: Lemma 5.2, or the same sort of argument used in the
last part of the proof of Lemma 5.3, shows that the four element ordered set, X , shown
in Fig. 8 cannot be made into an (S v Sd) dual space.

Clearly, X! is series-parallel—it is the linear sum of two 2-element antichains. It
turns out that the exclusion of XI is exactly what we need.

PROPOSITION 5.4. Suppose that P is a non-empty finite series-parallel poset. Then
the following are equivalent:

(1) P is such that every order-component has a node;
(2) P does not have X as a convex subposet;
(3) in the construction of P from singletons, the following are permitted: (i) disjoint

union, (ii) linear sum, with the proviso that the formation of Px © P2 is permitted only
when Px has a largest element or P2 has a smallest element, or both.

Proof. We have already observed that (1) implies (2). To show (2) implies (3), we
argue by contradiction. If (3) fails, then at some stage of the series-parallel construction
of P, a linear sum /\ © P2 is formed in which |max Px\ s* 2 and |min P2\ > 2. We can then
form X as a convex subposet of Px © P2 using two maximal points of Px and two minimal
points of P2. Now note that convexity is not destroyed by later stages of the series-parallel
construction.

Finally we show that (3) implies (1). Suppose we consider finite series-parallel posets
built up under the restriction imposed in (3). We prove by structural induction that every

Figure 8
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such ordered set is such that every order-component has a node. Suppose that P is a finite
series-parallel poset such that its substructures have this property. Let Q be any convex
subposet of P. There are two cases. If P is the disjoint union of substructures Px and P2,
then QC\PX and Q n P2 are convex subposets of Px and P2 respectively, and every
order-component of each has a node, by hypothesis. In the other case, P is the linear sum
P, ©P2 of substructures P, and P2. If g c P , or Qc.P2, we can apply our inductive
hypothesis. Otherwise, QnPt¥^0 and Q n P2¥=0. Then the largest element of P, or the
smallest element of P2, whichever exists, provides the required node for Q (which in this
case is necessarily connected).

We remark that the convexity restriction cannot be removed from condition (2) in
Proposition 5.4. Consider X, the ordered set with underlying set {a, b, c, d, x} and order
given by a -< x -< b, c-ix-cd. The subset obtained by removing x is isomorphic to X .

Theorem 5.5 translates Proposition 5.4 into algebraic terms. Given finite lattices Lx

and L2, we denote their reduced linear sum by Li©L2; this is obtained by taking the
linear sum of Lx and L2 and identifying the top element of Lx with the bottom element of
L2. The non-trivial finite distributive lattices whose duals are series-parallel posets are
those which can be built up from 2-element chains using direct product and reduced linear
sum.

THEOREM 5.5. Let L be a finite distributive lattice. Then the following are equivalent.
(1) Le^s",
(2) L is a member of the class <S defined as follows:

(a) the trivial algebra and the two element chain are in <#,
(b) the direct product of two members of *# is in <€,
(c) if Ly and L2 are in <€ U {0}, then Lx © 1 © L2 is in <€,
(d) every member of ^ is obtained in a finite number of steps using (a), (b), (c).

(3) L does not have N as a homomorphic image and L contains no subinterval
isomorphic to 22©22.

Criterion (2) fits neatly with the constructive descriptions in Theorem 3.7 of finite
relative Stone and relative dual Stone lattices. For the varieties si considered in Section
3, Xs* could be described either by excluded subintervals or by excluded quotients.
However, already for S v Sd, condition (3) in Theorem 5.5 suggests that we must abandon
the hope that finite relative Ockham lattices can generally be characterised via a set of

Figure 9
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excluded subintervals. This is confirmed by the following argument. Suppose that iPSvS</

could be characterised by the exclusion of certain lattices as subintervals. Then there
would be a class 3T of ordered sets such that the duals of algebras in ifSvS'/ would be
precisely those finite ordered sets which fail to contain any member of 3f as a convex
subposet. Now consider the ordered set P depicted in Figure 9.

Here Y represents the underlying ordered set of any non-trivial algebra in ,2*vS''.
This set P is not the dual of a relative (S v Sd)-lattice. Its non-empty proper convex
subsets either are convex subsets of Y or have a maximum or a minimum element. Clearly
none of these can lie in Z£, since all can be made into (S v Sd) dual spaces. Therefore P
itself must be in 2E. Thus not only could 3T not be finite but it would of necessity contain a
family of sets in one-to-one correspondence with the sets whose characterisation is being
sought. This circularity shows that no worthwhile 'excluded subintervals' result can exist
in this case.

We remark in conclusion that the same sort o~f situation occurs elsewhere. We have
regarded the variety S as a variety of Ockham algebras. It can also be considered as a
subvariety of the variety B^ of pseudocomplemented distributive lattices. It is the variety
Bj in the chain of subvarieties

B_! c Bo c Bj = S c B2 c . . . c B,,,

of B^. (See, for example, [2] for details and background.) The variety Bn consists of those
algebras A in B^ which are such that each prime ideal of A contains at most n minimal
prime ideals. The following result, noted independently by W. H. Cornish [10] and B. A.
Davey [11], is the natural generalisation of Theorem 1.2, condition (2): a finite
distributive lattice is a relative Bn -lattice if and only if it does not have 2"+1 © 1 as a
homomorphic image. Equivalently, a finite distributive lattice is a relative Bn-lattice if and
only if its dual space does not contain as a subposet n + 1 © 1 , where k denotes a
A:-element antichain.

Figure 10
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The fundamental reason that excluded subintervals can be used to describe Xs*, for
si = B, K, S, and Sd, is that each of I, V and A has the highly special property that it
occurs as a convex subposet of a finite ordered set if it occurs at all. This property fails to
extend to n + 1 © 1 for n 3= 2, and it is a straightforward matter to show that, for n 5= 2,
no useful characterisation of finite relative Bn-lattices by excluded subintervals is possible.
One argues in the same way as for S v Sd, using ordered sets of the form shown in Figure
10, where Y is any ordered set dual to a relative Bn-lattice.
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