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Abstract. Let G be a finite group. The symmetric crosscap number ~��ðGÞ is the
minimum topological genus of any compact non-orientable surface (with empty
boundary) on which G acts effectively. We first survey some of the basic facts about
the symmetric crosscap number; this includes relationships between this parameter
and others. We obtain formulas for the symmetric crosscap number for three
families of groups, the dicyclic groups, the abelian groups with most factors in the
canonical form isomorphic to Z2, and the hamiltonian groups with no odd order
part. We also determine ~��ðGÞ for each group G with order less than 16. The groups
with symmetric crosscap numbers 1 and 2 have been classified. We show here that
there are no groups with ~�� ¼ 3; this affirms a conjecture of Tucker.

2000 Mathematics Subject Classification. Primary 57M60; secondary 20H10,
30F50.

1. Introduction. In connection with group actions on compact surfaces, there
are several natural parameters associated with each finite group. Here we consider
one of the newer ones, the symmetric crosscap number. A finite group G can be
represented as a group of automorphisms of a compact non-orientable surface (with
empty boundary); that is, G acts on a non-orientable surface. The symmetric cross-
cap number ~�� Gð Þ is the minimum topological genus of any non-orientable surface on
which G acts. Two important related parameters are the symmetric genus and the
strong symmetric genus.

We begin by briefly surveying some of the basic facts about the symmetric
crosscap number. These facts include relationships between this parameter and
others. We also consider upper and lower bounds for the symmetric crosscap num-
ber of a group in terms of its order. We examine large groups of automorphisms and
the importance of the extended triangle groups; here we also give the connection
with regular maps on non-orientable surfaces.

We obtain formulas for the symmetric crosscap number for three families of
groups, the dicyclic groups, the abelian groups with most of the factors in the
canonical form isomorphic to Z2, and the hamiltonian groups with no odd order
part. We also determine ~�� Gð Þ for each group G with order less than 16.

A natural problem to classify, for each value of the integer ~��, the groups of
symmetric crosscap number ~��. This has been done for the groups with symmetric
crosscap numbers 1 and 2 [19, Theorems 3.2 and 4.1]. The groups with ~�� ¼ 1 act
on the projective plane, and those with ~�� ¼ 2 act on the Klein bottle. We show
that there are no groups with ~�� ¼ 3. This resolves a conjecture of Tucker [19,
p. 1118].
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2. Preliminaries. We shall assume that all surfaces are compact and without
boundary. If S is a surface, then S is characterized topologically by orientability and
its topological genus p.

The Euler characteristic �ðSÞ of an orientable surface S of topological genus p is
�ðSÞ ¼ 2 � 2p. If the surface S is non-orientable with p crosscaps (or topological
genus p), then the Euler characteristic is �ðSÞ ¼ 2 � p.

Regardless of orientability, the surface S can carry a dianalytic structure [1] and
be considered a Klein surface or a non-singular algebraic curve over R. Thus the
surface S also has an algebraic genus g. If S is orientable, then S is a classical Rie-
mann surface, and the algebraic genus and the topological genus agree. If S is a non-
orientable Klein surface, then the algebraic genus g ¼ p� 1, where p is the crosscap
number. It is sometimes convenient to use the algebraic genus.

Non-euclidean crystallographic (NEC) groups are a standard tool for studying
group actions on surfaces. Associated with each NEC group � is its signature, which
has the form

p;�; �1; . . . ; �r½ �; �11; . . . ; �1s1

� �
; . . . ; �k1; . . . ; �ksk

� �� �� �
ð2:1Þ

The quotient space U=� is a surface with topological genus p and k holes. The sur-
face is orientable if the plus sign is used and non-orientable otherwise. Associated
with the signature (2.1) is a presentation for the NEC group � . Further, the non-
euclidean area �ð�Þ of a fundamental region for � can be calculated directly from its
signature [15, p. 235]. An excellent reference for the basics about NEC groups is the
monograph [2].

Let X be a Klein surface of algebraic genus g � 2. Then X can be represented as
U=K, where K is a surface group. Let G be a group of dianalytic automorphisms of
the Klein surface X. Then there are an NEC group � and a homomorphism
	 : � ! G onto G such that kernel 	 ¼ K. If X is a Riemann surface, then K is a
Fuchsian surface group and

�ðKÞ ¼ 4
 g� 1ð Þ: ð2:2Þ

If X is a non-orientable Klein surface, then the surface group K is a proper NEC
group and

� Kð Þ ¼ 2
 g� 1ð Þ: ð2:3Þ

Let G be a finite group and let � : � ! G be a homomorphism of the proper
NEC group � onto G that preserves the orders of the elements of finite order in �.
Then the kernel K of � is a surface group, and G acts on the compact surface U=K.
There is a criterion for the orientability of U=K.

Proposition A [14]. The surface U=K is non-orientable if and only if � �þ
� �

¼ G.
Equivalently, the surface U=K is orientable if and only if � �þ

� �
has index 2 in G.

Now the genus of the surface U=K on which the group G ffi �=K acts can be
calculated from ½� : K� and either (2.2) or (2.3). In particular, if U/K is a non-
orientable surface with c crosscaps, then g ¼ c� 1 and

c ¼ 2 þ Gj j  � �ð Þ=2
: ð2:4Þ
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For more on this general approach, see [14] and [10].

3. Actions on non-orientable surfaces. We first show that each finite group acts
on a non-orientable Klein surface. This result is surely something of a folk theorem,
and we give a quick proof. The corresponding result for Riemann surfaces is a
classical result of Greenburg [6, p. 572].

Theorem A. Let G be a finite group. Then there is a non-orientable Klein surface
X such that G is a group of automorphisms of X.

Proof. If the group G is cyclic or dihedral, then G acts on the projective plane
[19, p. 1111]. Suppose that G has generators z1; . . . ; zr, where r � 3, oðziÞ ¼ mi and
the product z1z2    zr ¼ 1. Let � be the NEC group with signature
1; �; m1;    ;mr½ �; f gð Þ. The group � is generated by x1; . . . ; xr, a with defining

relations

xið Þ
mi¼ x1x2    xra

2 ¼ 1:

Define a homomorphism 	 : � ! G by 	ðxiÞ ¼ zi, 	ðaÞ ¼ 1, and let K=ker 	. Then
K contains no elements of finite order, and obviously 	ð�þÞ ¼ G, since each xi is in
�+. Thus K is a non-orientable surface group, and G ffi �=K is a group of auto-
morphisms of the non-orientable Klein surface X ¼ U=K.

Thus each finite group G acts on a non-orientable surface (as a group of
homeomorphisms), and it is natural to seek the surface of smallest topological
genus. The symmetric crosscap number ~�� Gð Þ is the minimum crosscap number (or
topological genus) of any non-orientable surface on which G acts [12]. This para-
meter ~�� Gð Þ could also be called the symmetric non-orientable genus of G [19]. The
symmetric crosscap number, in one guise or another, has been studied by several
mathematicians working on Klein surfaces; for example, see [3] and [7] as well as [19].

An immediate consequence of (2.4) and our proof of Theorem A is an upper
bound for ~�� Gð Þ.

Corollary 1. Let G be a finite group with generators z1;    ; zr, where o zið Þ ¼ mi
and the product z1z2    zr ¼ 1. Then

� Gð Þ � 2 þ jGj r� 1 �
Xr

i¼1

1

mi

� �
:

While this upper bound is general and perhaps of a little theoretical interest, the
bound is not very good, since rank � ¼ r but rank G � r� 1 (a is in kernel 	). It
is possible to get an improved, useful upper bound by assuming that G has an
involution in its center.

Theorem 1. Let G be a finite group with generators z1;    ; zr, where o(zi)=mi. If
there is an involution w in the center of G, then

� Gð Þ � 2 þ jGj r� 1 �
Xr

i¼1

1

mi

� �
:
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Proof. In the simple cases (r ¼ 1 and r ¼ 2 ¼ m1 ¼ m2), ~�� Gð Þ ¼ 1 and the
inequality holds. Now consider the remaining cases. Let � be the proper NEC group
with signature 0;þ; m1;    ;mr½ �; ð Þ

� �� �
. The group � is generated by x1;    ; xr, e

and the reflection c with defining relations

xið Þ
mi¼ c2 ¼ ece�1c ¼ x1x2 . . . xre ¼ 1:

Define a homomorphism 	 : � ! G by 	ðxiÞ ¼ zi, 	ðeÞ ¼ ðz1z2 . . . zrÞ
�1, 	ðcÞ ¼ w.

Then let K=kernel 	. Now K contains no elements of finite order, and again
	ð�þÞ ¼ G, as each xi 2 �þ. Hence K is a non-orientable surface group, and G acts
on the non-orientable surface X ¼ U=K. Let X have crosscap number p. Then we
calculate p from �(�) and (2.4). We see that ~�� Gð Þ � p. This gives the upper bound.

This improves Corollary 1, since the generators are not required to satisfy
z1z2 . . . zr ¼ 1. Having an involution in the center is a rather special condition, of
course. We shall see an application in Section 6.

4. Basic relationships among the parameters and two lower bounds. There are two
parameters that are closely related to the symmetric crosscap number. The sym-
metric genus �ðGÞ of the group G is the minimum genus of any Riemann surface on
which G acts (possibly reversing orientation). The strong symmetric genus �0ðGÞ is
the minimum genus of any Riemann surface on which G acts preserving orientation.
Obviously �ðGÞ � �0ðGÞ.

Doubling is a standard way to deal with non-orientable surfaces. Associated
with each non-orientable surface X is its complex double Xc [1, pp. 37–41], a Rie-
mann surface with the same algebraic genus as X and Euler characteristic
�ðXcÞ ¼ 2�ðXÞ. The surface Xc has an orientation-reversing involution � : Xc ! Xc
such that Xc=� ¼ X. Let H and G denote the automorphism groups of X and Xc,
respectively. Also let Gþ be the subgroup of G consisting of the orientation-preser-
ving automorphisms of Xc, and set L ¼< � >. Then

H ffi f 2 Gþj f� ¼ �f
� �

;

and thus G contains a subgroup isomorphic to L�H ffi Z2 �H. Here see [1, p. 79]
and [18, x6].

Now represent the non-orientable surface X as U=K, where K is a surface group.
We obtain a proper NEC group � and a homomorphism 	 : � ! H onto H such
that kernel 	 ¼ K and also 	ð�þÞ ¼ H. The surface group K has a canonical Fuch-
sian subgroup Kþ, and the surface U=Kþ is the complex double of X. Further, we
have �þ=Kþ ffi �=K ffi H; K=Kþ ffi< � >, and �=Kþ ffi< � > �H. For more
details of this, see [14, x2].

It is easy to establish two basic inequalities involving ~�� and other parameters;
these inequalities were also pointed out in [12]. Suppose that G is a finite group with
symmetric crosscap number ~�� ¼ ~�� Gð Þ. Then G acts on a non-orientable Klein
surface X with ~�� crosscaps and Euler characteristic � Xð Þ ¼ 2 � ~��. The complex
double Xc has Euler characteristic � Xcð Þ ¼ 2 2 � ~��ð Þ. The genus of Xc is
1 � � Xcð Þ=2 ¼ ~�� � 1. Now G acts on Xc preserving orientation, and Z2 � G acts on
Xc as well. Therefore
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~�� Gð Þ � �0 Gð Þ þ 1; ð4:1Þ

~�� Gð Þ � � Z2 � Gð Þ þ 1: ð4:2Þ

5. Large groups and regular maps. Large groups of automorphisms of surfaces
are quotients of triangle groups. A triangle group is a Fuchsian group with signature
0;þ; ‘;m; n½ �; f gð Þ, where 1=‘þ 1=mþ 1=n < 1. We denote a group with this sig-

nature by �ð‘;m; nÞ. An extended triangle group is an NEC group with signature
0;þ; ½ �; ‘;m; nð Þ

� �� �
; we denote this group by �½‘;m; n�. The basic result about tri-

angle groups and large groups of orientation-preserving automorphisms of Riemann
surfaces is given in [11, x2] and [10, x4]; also see [16, p. 22] and [18, Theorem 12].

We give the corresponding result for non-orientable surfaces. Let � ¼ �ðk;m; nÞ
be a triangle group. In general, there are two types of proper NEC groups with
canonical Fuchsian subgroup isomorphic to � [16, p. 21]. One is the extended tri-
angle group �½k;m; n�. The other type only occurs when � ¼ �ðm;m; nÞ has two
equal periods. This group has signature 0;þ; m½ �; nð Þ

� �� �
and presentation

c2 ¼ xm ¼ cxcx�1
� �n

¼ 1: ð5:1Þ

We denote a group with this signature by �ðm; nÞ.

Lemma 1. Let G be a group of automorphisms of a non-orientable Klein surface X
with crosscap number p � 3. If Gj j > 24 p� 2ð Þ, then G is a quotient of an extended
triangle group � 2;m; n½ � with m 6¼ n. If 24 p� 2ð Þ � Gj j > 12 p� 2ð Þ, then G is a quo-
tient of an extended triangle group � 2;m; n½ � with m 6¼ n, except in the following cases;
in each case G is a quotient of the proper NEC group listed.

1ð Þ Gj j ¼ 24 p� 2ð Þ;� 3; 3; 4½ �; 2ð Þ Gj j ¼ 24 p� 2ð Þ;� 3; 4ð Þ;
3ð Þ Gj j ¼ 20 p� 2ð Þ;� 2; 5; 5½ �; 4ð Þ Gj j ¼ 20 p� 2ð Þ;� 5; 2ð Þ;
5ð Þ Gj j ¼ 15 p� 2ð Þ;� 3; 3; 5½ �; 6ð Þ Gj j ¼ 15 p� 2ð Þ;� 3; 5ð Þ:

Proof. Represent X as U=K, where K is a non-orientable surface group, and
obtain a proper NEC group � and a homomorphism � : � ! G onto G such that
kernel � ¼ K. Further �ð�þ

Þ ¼ G and U=Kþ is the complex double Xc, a Riemann
surface with genus g ¼ p� 1. Then G ffi �þ=Kþ acts on Xc preserving orientation. It
is now a routine matter of applying Lemma A of [10, p. 117] to �+ and considering
the possibilities for �.

The extended triangle group producing the largest possible order is �½2; 3; 7�. If
the group G acts on a non-orientable Klein surface with crosscap number p � 3,
then Gj j is at most 84ðp� 2Þ ¼ 84ðg� 1Þ. Since G acts on the complex double Xc
preserving orientation, this also follows from the classic bound of Hurwitz. See [14].
One consequence is the basic lower bound for ~��. If G is a group with ~��ðGÞ � 3, then

~�� Gð Þ � 2 þ Gj j=84: ð5:2Þ

This bound is attained for infinitely many values of ~�� [14, p. 57]. In fact, there are
infinite families of simple groups that act as groups of 84ðp� 2Þ automorphisms.
Groups of this type include infinitely many of the projective special linear groups
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PSLð2; qÞ [17, p. 150] as well as the large alternating groups [4]. Here also see
[12, x10].

An easy, but notable, consequence of (5.2) is that for each integer ~�� � 3, the
number of groups with crosscap number ~�� is finite.

The upper bound 84ðp� 2Þ can be improved by assuming that G is of a special
type; that is, supersolvable, nilpotent, prime order, cyclic, etc. Here, see [3] and [7].
Each improved bound also gives a corresponding lower bound on the crosscap
number of the group. For instance, we have the following result.

Proposition B [3]. Let G be a finite nilpotent group with ~�� Gð Þ � 3. Then
~�� Gð Þ � 2 þ Gj j=8.

An extended triangle group is generated by reflections, of course. By Lemma 1,
a large group of automorphisms of a non-orientable Klein surface must be gener-
ated by involutions. Thus we obtain a lower bound for the crosscap number of a
group that is not generated by involutions.

Proposition 1. Let G be a finite group with ~�� Gð Þ � 3. If G is not generated by
involutions, then

~�� Gð Þ � 2 þ Gj j=24:

Proof. Let G act on a non-orientable surface with crosscap number ~�� ¼ ~�� Gð Þ.
Then, by Lemma 1, Gj j � 24 ~�� � 2ð Þ.

The following example shows that this bound is attained.

Example. Let G ¼ Z3 � PSLð2; 7Þ, a group of order 504; G is obviously not
generated by involutions. LetW be a generator for Z3 and let PSLð2; 7Þ ffi ð2; 3; 7; 4Þ
have the presentation

R2 ¼ S3 ¼ RSð Þ
7
¼ R;S½ �

4
¼ 1:

See [5, p. 96]. Then G has presentation

W3 ¼ R2 ¼ S3 ¼ RSð Þ
7
¼ R;S½ �

4
¼ W;R½ � ¼ W;S½ � ¼ 1:

Let X ¼WS. Then oðXÞ ¼ 3, and G ¼< R;X >, since ðRXÞ7 ¼W. Let
D ¼ ½R;X� ¼ ½R;S�, so that oðDÞ ¼ 4. Now let � ¼ �ð3; 4Þ have presentation (5.1).
There is a homomorphism 	 : � ! G onto G defined by 	ðcÞ ¼ R and 	ðxÞ ¼ X�1,
and L=kernel 	 contains no elements of finite order. It is easy to see that the sub-
group H ¼< X;D >¼< X;RXR > is normal in G. Then G=H is trivial and H ¼ G:
Thus G is generated by X and D, images of the orientation-preserving elements x�1

and cxcx�1. Thus 	ð�þ
Þ ¼ G and L is a non-orientable surface group. The group G

acts on the surface U=L, a non-orientable surface with c ¼ 23 crosscaps, and
Gj j ¼ 24ðc� 2Þ.

There is an important connection here with the theory of regular maps on sur-
faces. For the basic definitions of regular maps, see [5, pp. 20, 101–103]. A map is
said to be of type fn; kg if it is composed of n-gons, k meeting at each vertex. Let M
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be a regular map of type fn; kg. First assume thatM is on an orientable surface. The
group of orientation-preserving automorphisms ofM is a quotient of �ð2; n; kÞ with
kernel a Fuchsian surface group. If M is reflexible, then the full automorphism
group of M is a quotient of �½2; n; k�, with the ‘‘rotation’’ subgroup a quotient of
�ð2; n; kÞ. Hence large groups of orientation-preserving automorphisms of Riemann
surfaces are map groups. For more on this correspondence, see [16, x8].

Now assume that M is on a non-orientable surface; any regular map on a non-
orientable surface is reflexible [5, p. 102]. Then the automorphism group G ofM is a
quotient of an extended triangle group �½2; n; k� such that the kernel is a non-
orientable surface group. Further there is a reflexible map N on the complex double
Xc of X which is a double cover ofM. The full group of the map N is isomorphic to
Z2 � G. Here, see [17, x4] and [5, x8.1]. Thus we have the following result.

Lemma 2. Let G be a group of automorphisms of a non-orientable Klein surface X
with crosscap number p � 3. If G is a quotient of a triangle group � 2; n; k½ � (with kernel
a surface group), then there is a regular map of type n; kf g on the topological surface
X. Further the automorphism group of X is isomorphic to the automorphism group of
the map. Conversely, if G is the automorphism group of a regular map of type n; kf g on
a non-orientable surface S, then G is a quotient of a triangle group � 2; n; k½ � and G acts
as a group of automorphisms of a non-orientable Klein surface homeomorphic to S.

For the corresponding result about Riemann surfaces, see [16, p. 28]. Again, for
non-orientable surfaces, large groups of automorphisms are map groups.

Corollary 2. Let G be a group of automorphisms of a non-orientable Klein sur-
face X with crosscap number p � 3. If Gj j > 24 p� 2ð Þ, then G is the group of a regular
map on a non-orientable surface with p crosscaps.

6. Applications. Here we determine formulas for the crosscap number for three
infinite families of groups. We start with a family for which the symmetric genus is
known and (4.2) provides the lower bound.

The structure of finite abelian groups is well understood. A finite abelian group
A of rank r has a unique canonical form

A ¼ Zm1
� Zm2

� . . .� Zmr

such that mi divides miþ1 for i ¼ 1; . . . ; r� 1 and m1 > 1 [8, p. 387]. This canonical
form is quite useful for studying genus parameters; see [9], for instance.

We consider the abelian groups with most of the factors in the canonical form
isomorphic to Z2.

Theorem 2. Let the abelian group A have the canonical form
Z2ð Þ

a
�Zm1

� . . .� Zmb, where a > b � 0 and m1 > 2. Then

~�� Að Þ ¼ 2 þ Aj j 3bþ a� 3ð Þ=4:

Proof. The formula holds for the abelian groups with ~�� � 2. Assume ~��ðAÞ � 3,
so that either b > 0 or a � 4. Let � be an NEC group with signature
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0;þ; ½ �; ð Þ
b; 2a�bþ1
� �� �� �

:

We calculate

� �ð Þ=2
 ¼ 3bþ a� 3ð Þ=4:

Write t ¼ a� bþ 1. Then � has a presentation with generators c1; . . . ; cb, d0; . . . ; dt,
e1; . . . ; eb, f (the di’s and f correspond to the last period cycle) and relations

cið Þ
2
¼ dj

� �2
¼ ei; ci½ � ¼ e1e2 . . . ebf ¼ 1;

d0d1ð Þ
2
¼ d1d2ð Þ

2
¼ . . . ¼ dt�1dtð Þ

2
¼ 1; fd0 f

�1 ¼ dt:

Now let V1; . . . ;Va be a set of generators for ðZ2Þ
a, and letWj be a generator for

the factor Zmj . Then there is a homomorphism 	 : � ! A onto A defined by

	 cið Þ ¼ Vi i ¼ 1; . . . ; bð Þ;

	 dj
� �

¼ Vbþj j ¼ 1; . . . ; a� bð Þ;

	 eið Þ ¼Wi i ¼ 1; . . . ; bð Þ;

	 d0ð Þ ¼ 	 dtð Þ ¼ Vbþ1Vbþ2; 	 fð Þ ¼ W1W2 . . .Wbð Þ
�1:

The homomorphism 	 is clearly onto. By considering the images of (orientation-
preserving) products of two reflections (along with the images of the connecting
generators e1; . . . ; eb), it is not hard to see that 	ð�þ

Þ ¼ A. Further, L=kernel 	
contains no elements of finite order. Hence L is a non-orientable surface group, and
A acts on the non-orientable surface Y ¼ U=L. If Y has p crosscaps, then from (2.4)
p ¼ 2 þ Aj j 3bþ a� 3ð Þ=4. Hence, ~�� Að Þ � 2 þ Aj j 3bþ a� 3ð Þ=4.

On the other hand, ~�� Að Þ � � Z2 � Að Þ þ 1, by (4.2). Clearly, the canonical form of
Z2 � A is ðZ2Þ

aþ1
� Zm1

� . . .� Zmb , where the number of Z2 factors aþ 1 � bþ 2.
Using the formula for the symmetric genus from [9, Theorem 5.3, p. 420], we have

� Z2 � Að Þ ¼ 1 þ Z2 � Aj j aþ 1ð Þ þ 3b� 4½ �=8 ¼ 1 þ Aj j aþ 3b� 3½ �=4:

This gives the lower bound, and we have the formula for the crosscap number.
As a special case, we obtain the formula for the symmetric crosscap number of

an elementary abelian 2-group.

Corollary 3. ~�� Z2ð Þ
a
¼ 2 þ 2a�2 a� 3ð Þ.

For n � 2, let DCn be the dicyclic group or order 4n [5, p. 7] with generators X,
Y and defining relations

X2n ¼ 1; Xn ¼ Y2; Y�1XY ¼ X�1: ð6:1Þ

Each element outside the cyclic subgroup < X > has order 4 and hence there must
be at least one element of order 4 in any generating set for DCn. There is a unique
element ðXnÞ of order 2 in the group, and clearly Xn is in the center. It is also not
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hard to see that Xn is in the Frattini subgroup and is a non-generator. We know that
�0ðDCnÞ ¼ n, if n is even, and �0ðDCnÞ ¼ n� 1, if n is odd, by [11, Theorem 1]. By
(4.1) we have ~��ðDCnÞ � 3, for all n.

Theorem 3. If n 6¼ 3, then ~�� ðDCnÞ ¼ 2nþ 2. Furthermore ~�� ðDC3Þ ¼ 7.

Proof. Write G ¼ DCn, and let G have presentation (6.1). Let G act on the non-
orientable Klein surfaceW of topological genus ~�� ¼ ~��ðGÞ � 3. RepresentW as U=K,
where K is a non-orientable surface group, to obtain a proper NEC group � with
signature (2.1) and a homomorphism 	 : � ! G onto G such that kernel 	 ¼ K.
Write A ¼ �ð�Þ=2
. Then, by (2.4), ~�� ¼ 2 þ 4nA. We obtain a lower bound for A.
Since � is a proper NEC group, either k 6¼ 0 (and the surface U=� is bordered) or
the minus sign is present in the signature (and U=� is non-orientable) or both.

I. Suppose first that k ¼ 0, so that U=� must be non-orientable. If p � 3, then
A � 1. If p ¼ 2, then r � 1 (since A > 0) and easily A � 1=2. Assume p ¼ 1. Then
clearly r � 2. If r � 3, it follows that A � �1 þ 3ð1=2Þ ¼ 1=2. Assume r ¼ 2 so that
� is an NEC group with signature ð1;�; ½�1; �2�; f gÞ, where �1 � �2. Then � has
presentation

s�1 ¼ t�2 ¼ sta2 ¼ 1:

The quotient group G ffi �=K is generated by the two elements 	ðsÞ and 	ðaÞ (also by
	ðtÞ and 	ðaÞ). Since the unique involution of G is a non-generator, immediately we
have �2 � �1 � 3.

Suppose that G ¼ DCn has elements of order 3. Then 3 divides n, of course. We
write n ¼ 3‘. But the two elements of G of order 3 are contained in the normal
subgroup N ¼< X2‘ >, and it is not hard to see that the quotient group G=N is the
dicyclic group DC‘ if ‘ > 1. Hence if ‘ > 1, an element of order 3 cannot be part of
a two-element generating set for DCn. Also, DC3 is not generated by two elements of
order 3. For the group DC3, if �1 ¼ 3, then �2 � 4 and A � �1 þ ð2=3Þ þ 3=4; thus
~��ðDC3Þ � 7.

Assume that n 6¼ 3. Whether DCn has elements of order 3 or not, we must
have �1 � 4, �2 � 4. Then we obtain A � �1 þ 2ð3=4Þ ¼ 1=2. Hence ~�� � 2nþ 2, in
general.

II. Suppose next that k 6¼ 0 so that the quotient space U=� is a bordered sur-
face. Let � denote the algebraic genus of U=�. We simplify the presentation for � as
in [10, Lemma 1, p. 118]. In this simplified presentation there must be at least two
elements with order larger than two, since �=K ffi DCn. It follows that

� þ r � 2:

If � � 2, it is easily seen that A � 1. Suppose that � ¼ 1. Then we have r � 1 with at
least one ordinary period larger than two, and A � 2=3.

Now assume � ¼ 0, so that U=� is the disc D. Then r � 2, with at least two of
the ordinary periods greater than two. If r � 3, then it is easy to see that
A � �1 þ 2ð2=3Þ þ 1=2 ¼ 5=6. Suppose that r ¼ 2. Then � has signature ð0;þ;
½�1; �2�; fCgÞ, where C is a period cycle and �1 � �2. The group � is generated by s, t,
the connecting generator e and some reflections. But ste ¼ 1, and e is redundant.
Further, if c is a reflection, the 	ðcÞ must be the unique involution of G. Thus G is
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generated by the two images 	ðsÞ and 	ðtÞ with orders �1 and �2, respectively. Now,
just as before, for DC3, if �1 ¼ 3, �2 � 4 and we have ~�� � 7. if n 6¼ 3, then we must
have �1 � 4, �2 � 4, and ~�� � 2nþ 2 in general again.

The group G is generated by the two elements XY and Y of order 4, and Xn is an
involution in the center of G. Thus the upper bound of Theorem 1 is
~�� � 2 þ 4n  1=2 ¼ 2 þ 2n, in agreement with the lower bound. Also, the groupDC3 is
generated by X2 and Y, elements of orders 3 and 4; in this case ~�� � 7, by Theorem 1.

A hamiltonian group is a non-abelian group in which every subgroup is normal.
The finite hamiltonian groups have the form

Q� A� B

where Q ffi DC2 is the quaternion group, A is an elementary abelian 2-group and B
is an abelian group of odd order [5, p. 8]. We shall consider the hamiltonian groups
with no odd order part; the symmetric genus of these groups was determined in [10,
Theorem 3].

Theorem 4. Let G=(Z2)
a�Q. Then

~��ðGÞ ¼
2 þ 2aþ1ðaþ 2Þ; if a ¼ 1 or a ¼ 2
2 þ 2aþ1ðaþ 3Þ; if a � 3:

�

Proof. First suppose that a � 3. Let � be an NEC group with signature

ð0; þ; ½4; 4�; 2aþ1
� �� �

:

We calculate �ð�Þ=2
 ¼ ðaþ 3Þ=4. The group � has a presentation with generators
x, y, c0, . . ., caþ1, e and relations

x4 ¼ y4 ¼ ðciÞ
2
¼ xye ¼ 1;

ðc0c1Þ
2
¼ ðc1c2Þ

2
¼ . . . ¼ ðcacaþ1Þ

2
¼ 1; ec0e

�1 ¼ caþ1:

Let V1; . . . ;Va be a set of generators for ðZ2Þ
a, and let X and Y be generators for

Q satisfying (6.1). Then there is a homomorphism 	 : � ! G onto G defined by

	ðxÞ ¼ X; 	ðyÞ ¼ Y;

	ðciÞ ¼ Vi ði ¼ 1; . . . ; aÞ;

	ðc0Þ ¼ 	ðcaþ1Þ ¼ V1V2; 	ðeÞ ¼ ðXYÞ�1:

The homomorphism 	 is clearly onto. By considering the images of products of two
reflections (together with the images of x and y), it is not hard to see that 	ð�þÞ ¼ G.
Further, K=kernel 	 has no elements of finite order. Hence K is a non-orientable
surface group, and G acts on the surface Y ¼ U=K. If p is the crosscap number of Y,
then from (2.4) we find that p ¼ 2 þ 2aþ1ðaþ 3Þ. Hence ~��ðGÞ � 2 þ 2aþ1ðaþ 3Þ in the
general case.

If a < 3, then it is possible to improve the upper bound slightly. If a ¼ 1, then G
is a quotient of an NEC group with signature ð0;þ; ½4�; fð Þ2gÞ such that the kernel is
a non-orientable surface group. If a ¼ 2, then use an NEC group with signature
ð0;þ; ½ �; fð Þ3gÞ. In these two cases, ~��ðGÞ � 2 þ 2aþ1ðaþ 2Þ.
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Again, ~��ðGÞ � �ðZ2 � GÞ þ 1, by (4.2) and clearly Z2 � G ffi ðZ2Þ
aþ1

�Q. Using
the formula for the symmetric genus from [10, p. 122], we have �ðZ2 � GÞ ¼
1 þ 2aþ1ðaþ 3Þ if a � 3 and �ðZ2 � GÞ ¼ 1 þ 2aþ1ðaþ 2Þ if a ¼ 1 or a ¼ 2. This gives
the lower bound, and we have the formula for the crosscap number.

7. Small groups. Theorem 3 completes the calculation of the symmetric crosscap
number of each group of order less than 16. The cyclic groups have symmetric crosscap
number 1, and the abelian groups Z2 � Zn of rank two have ~�� ¼ 2. The only other
abelian groups in the range are ðZ2Þ

3 and Z3 � Z3; we know ~��ðZ3 � Z3Þ ¼ 5 [12, x9].
The dihedral groups Dn have symmetric crosscap number 1. If n is even, then

~��ðZ2 �DnÞ ¼ 2; here, of course, ðZ2Þ
3
ffi Z2 �D2. Theorem 3 deals with the dicyclic

groups. The only other non-abelian group in the range is A4, which has symmetric
crosscap number 1. The following table gives ~��ðGÞ as well as �0ðGÞ and �ðGÞ, for
each group G with jGj < 16 and ~��ðGÞ > 2.

Groups of small order with ~��>2
order group G ~��ðGÞ �0ðGÞ �ðGÞ

8 Q 6 2 1
9 Z3 � Z3 5 1 1
12 DC3 7 2 1

8. Crosscap number 3. Finally we use regular maps to classify the groups with
crosscap number 3. Suppose that G is a finite group with ~��ðGÞ ¼ 3. The group G
must act on a non-orientable Klein surface X with 3 crosscaps and Euler character-
istic �1. The complex double Xc is a Riemann surface with Euler characteristic
�ðXcÞ ¼ �2 and genus 2.

First we apply Lemma 1 and the correspondence between large groups and
regular maps. If jGj > 24, then G is a group of a regular map on a surface with 3
crosscaps. If 24 � jGj > 12, then G is a group of a regular map unless G is a quotient
of one of the exceptional groups in cases (1), (2), (4), (5) or (6); in these cases, G has
order 24, 20 or 15.

Thus, if G is a group with crosscap number 3, then either G is the group of a
regular map on a non-orientable surface with 3 crosscaps, G is a small group of
order at most 12, or G is a quotient of one of the five exceptional NEC groups.

However, there are no regular maps at all on a surface with 3 crosscaps [5, p. 116],
and none of the small groups have ~�� ¼ 3. We need to consider the exceptional groups.

The only group of order 15 is cyclic, of course, and has no involutions. Hence
Z15 is clearly not a quotient of either � ½3; 3; 5� or �ð3; 5Þ.

Suppose that jGj ¼ 20 and G were a quotient of � ¼ �ð5; 2Þ by a non-orientable
surface group K. Then �þ

¼ �ð2; 5; 5Þ and �þ=Kþ ffi �=K ffi G is the rotation group
of a regular map of type {5,5} on the complex doubleXc ¼ U=K

þ, a surface of genus 2.
The regular maps on an orientable surface of genus 2 have been classified [5, p. 140],
and none of these maps are of type {5,5}. Thus this exceptional case does not occur.

Finally suppose that jGj ¼ 24 and G were a quotient of the NEC group � by a
non-orientable surface group K, where � is either � ½3; 3; 4� or �ð3; 4Þ. In either case
�þ

¼ �ð3; 3; 4Þ and �þ=Kþ ffi G. It follows that G ffi SLð2; 3Þ [10, pp. 125,127]; G is
also called the binary tetrahedral group < 2; 3; 3 >. See [5, pp. 68,69]. But the binary
tetrahedral group has a unique involution T such that the center Z ¼< T > and
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G=Z ffi A4, the ordinary tetrahedral group. Now G is obviously not a quotient of
either � ½3; 3; 4� or �ð3; 4Þ by a non-orientable surface group, and these exceptional
cases do not occur either.

In summary we have the following result.

Theorem 5. There are no groups with symmetric crosscap number 3.

This affirms a conjecture of Tucker [19, p. 1118]. It also raises the interesting
question of whether there are other integers for which there are no groups with that
symmetric crosscap number. We do not yet know enough about this parameter to
make a confident conjecture. However, it has recently been established that if n is a
non-negative integer, then there is at least one group of strong symmetric genus n
[13, Theorem 1]. The related problem about the symmetric genus remains unsolved;
see [11, x9].

Finally, we would like to thank the referee for several helpful suggestions.
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