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Coinductive predicates express persisting ‘safety’ specifications of transition systems.

Previous observations by Hermida and Jacobs identify coinductive predicates as suitable

final coalgebras in a fibration – a categorical abstraction of predicate logic. In this paper, we

follow the spirit of a seminal work by Worrell and study final sequences in a fibration. Our

main contribution is to identify some categorical ‘size restriction’ axioms that guarantee

stabilization of final sequences after ω steps. In its course, we develop a relevant categorical

infrastructure that relates fibrations and locally presentable categories, a combination that

does not seem to be studied a lot. The genericity of our fibrational framework can be

exploited for binary relations (i.e. the logic of ‘binary predicates’) for which a coinductive

predicate is bisimilarity, constructive logics (where interests are growing in coinductive

predicates) and logics for name-passing processes.

1. Introduction

Coinductive predicates postulate properties of state-based dynamic systems that persist

after a succession of transitions. In computer science, safety properties of non-terminating,

reactive systems are examples of paramount importance. This has led to an extensive study

of specification languages in the form of fixed point logics and model-checking algorithms.

In this paper, we follow Hermida and Jacobs (1998) and Hermida (1993) – whose

results are further extended in Fumex et al. (2011) and Atkey et al. (2012), see also Jacobs

(2012, Chap. 6) – and take a categorical view on coinductive predicates. Here, coalgebras

represent transition systems; a fibration is a ‘predicate logic’; and a coinductive predicate

is identified as a suitable coalgebra in a fibration. Our contribution is the study of final

sequences – an iterative construction of final coalgebras that is studied notably in Worrell

(2005) and Adámek (2003) – in such a fibrational setting.

Coalgebras have been successfully used as a categorical abstraction of transition systems

(see e.g. Jacobs (2012); Rutten (2000)): By varying base categories and functors, coalgebras

bring general results that work for a variety of systems at once. Fixed point logics (or

modal logics in general), too, have been actively studied coalgebraically: Coalgebraic
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modal logic is a prolific research field (see Cı̂rstea et al. 2011); their base category is

typically Sets but works like Klin (2007) go beyond and use presheaf categories for

processes in name-passing calculi; and literature including Cı̂rstea and Sadrzadeh (2008),

Venema (2006) and Cı̂rstea et al. (2009) studies coalgebraic fixed point logics.

Unlike most of these works, we follow Hermida and Jacobs (1998) and Hermida

(1993) and parameterize the underlying ‘predicate logic’ too with the categorical notion

of fibration. The conventional setting of classical logic is represented by the fibration
Pred
↓

Sets
(see Appendix C for an introduction to fibrations).

fibration
P
↓p
C

Pred
↓

Sets

Rel
↓

Sets

coalgebra invariant bisimulation

final
coalgebra

coinductive
predicate bisimilarity

However, there are various other ‘logics’ modelled as fibrations, and hence the fibrational

language provides a uniform treatment of these different settings. An example is binary

relations (instead of unary predicates) that form a fibration
Rel
↓

Sets
(see Appendix C). In this

case, coinductive predicates are bisimilarity relations (see the above table, and Example 7.2

later).

Another example is predicates in constructive logics. They are modelled by the subobject

fibration of a topos. In fact, coinductive predicates in constructive logics are an emerging

research topic: Coinduction is supported in the theorem prover Coq (based on the

constructive calculus of constructions), see e.g. Bertot and Komendantskaya (2008), and

working in Coq, some interesting differences between classically equivalent (co)inductive

predicates have been studied, e.g. in Nakata et al. (2011).

Yet another example is modal logics for processes in various name-passing calculi. They

are best modelled by the subobject fibration of a suitable (pre)sheaf category like SetsI

and SetsF (Fiore and Turi 2001; Fiore and Staton 2006; Miculan 2008; Stark 1996; Staton

2011).

1.1. Coinductive predicates and their construction, conventionally

In order to illustrate our technical contributions (Section 3), we here present a special

case, with classical logic and Kripke models. We first introduce syntax.

Definition 1.1 (Rudimentary logic Rν). In this tiny fragment of the μ-calculus, fixed-point

operators are limited to the greatest one at the outermost position; and moreover, all the

formulas are ‘rank-1,’ that is, the fixed-point variable u occurs precisely under one modal

operator.

Rνu � α ::= a | a | �u | �u | α ∧ α | α ∨ α ; Rν � β ::= νu. α . (1)

Here, a belongs to the set AP of atomic propositions; a stands for the negation of a and u

is the only fixed-point variable (with possibly multiple occurrences).
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An Rν-formula can be thought of as a recursive definition of a coinductive predicate. Later,

we will model such a ‘definition’ categorically as a predicate lifting. Among specifications

expressible in Rν is (may-) deadlock freedom (there is an infinite path). It is expressed by

νu.�u and is our recurring example.

An Rν-formula is interpreted in Kripke models. Let c = (X,→, V ) be a Kripke model,

where X is a state space, → ⊆ X × X is a transition relation and V : X → P(AP) is a

valuation. The conventional interpretation [νu.α]c of Rν-formulas in the Kripke model c

is given as follows (see e.g. Bradfield and Stirling (2006)). First, we interpret α ∈ Rνu as a

function [α]c : PX → PX. Concretely:

[a]c(P ) = {x | a ∈ V (x)} [a]c(P ) = {x | a 
∈ V (x)}
[�u]c(P ) = {x | ∀y ∈ X. (x→ y implies y ∈ P )} [α ∧ α′]c(P ) = [α]c(P ) ∩ [α′]c(P )

[�u]c(P ) = {x | ∃y ∈ X. (x→ y and y ∈ P )} [α ∨ α′]c(P ) = [α]c(P ) ∪ [α′]c(P )

This function [α]c is easily seen to be monotone, since u occurs only positively in α.

Finally, we define [νu.α]c ⊆ X to be the greatest fixed point of the monotone function

[α]c : PX → PX.

The Knaster–Tarski theorem guarantees the existence of such a greatest fixed point

[νu.α]c in a complete lattice PX. However, its proof is highly non-constructive. In contrast,

a well-known iterative construction (Cousot and Cousot 1979) computes [νu.α]c as the

limit of the following descending chain (see also Bradfield and Stirling (2006)). Here, �
denotes the subset X ⊆ X.

� � [α]c� � [α]2c� � · · · . (2)

An issue now is the length of the chain. If [α]c preserves limits
∧

(which is the

case with α ≡ �u), clearly ω steps are enough and yields
∧

i∈ω
(
[α]ic�

)
as the greatest

fixed point. This is not the case with α ≡ �u. Indeed, for the Kripke model c1 below

[νu.�u]c1

=

∧
i∈ω

(
[�u]ic1

�
)
: there is no infinite path from the root; but it satisfies [�u]ic1

�
(there is a path of length � i) for each i.

c1

· · · .

(3)

Yet the chain (2) eventually stabilizes, bounded by the size of the poset PX: In each step

before stabilization, at least one element must be thrown away. Therefore, the calculation

of [νu.α]c proceeds, in general, via transfinite induction. This is what we call a state space

bound for the chain (2).

Besides a state space bound, another (possibly better and seemingly less known) bound

can be obtained from a behavioural view. One realizes that not only the size of the state

space X but also the branching degree can be used to bound the length of the chain (2).
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This is a result similar to the one in Hennessy and Milner (1985, Theorem 2.1); the latter

is stated for bisimilarity as a coinductive relation, not for a coinductive predicate. We

formally state (an instance of) the result for the record.

Lemma 1.2 (Behavioural bound). Let c = (X,→, V ) be a finitely branching Kripke model.

For α = �u, the chain (2) stabilizes after ω steps and yields [νu.�u]c as its limit, that is,∧
i∈ω

(
[�u]ic�

)
= [νu.�u]c.

Proof. The essence of the result lies in the fact that the limit
∧

i∈ω
(
[�u]ic�

)
is a �-

invariant, which we shall prove now. Assume that a state x satisfies
∧

i∈ω
(
[�u]ic�

)
; we

have to show that x satisfies [�u]c
(∧

i∈ω
(
[�u]ic�

))
, that is, there is a successor x′ of x

that satisfies the limit
∧

i∈ω
(
[�u]ic�

)
.

Since x satisfies [�u]ic� (there is a path of length � i) for each i, for each i � 1, there is

a successor xi of x that satisfies [�u]i−1
c �. By c being finitely branching, the set {x1, x2, . . . }

of such successors turns out to be finite and there exists a successor x′ of x such that

x′ = xi for infinitely many i. It follows (from [�u]ic� � [�u]jc� if j � i) that this x′

satisfies [�u]ic� for all i ∈ ω, and hence satisfies
∧

i∈ω
(
[�u]ic�

)
. This proves that the limit∧

i∈ω
(
[�u]ic�

)
is an invariant, and hence

∧
i∈ω

(
[�u]ic�

)
� [νu.�u]c.

For the last equality claimed in the lemma, the other direction [νu.�u]c �
∧

i∈ω
(
[�u]ic�

)
is easy: [νu.�u]c � [�u]ic� is easily shown by induction on i. This concludes the proof.

Note that Lemma 1.2 holds however large the state space X is. Moreover, it easily

generalizes from νu.�u to an arbitrary Rν-formula νu.α. Note also that the counterexample

c1 in Equation (3) is not finitely branching and does not contradict with Lemma 1.2.

1.2. Final sequences in a fibration

This paper is about putting the observations in Section 1.1 in general categorical terms. Our

starting observation is that the chain (2) resembles a final sequence, a classic construction

of a final coalgebra.

In the theory of coalgebra, a final F-coalgebra is of prominent importance since it is a

fully abstract domain with respect to the F-behavioural equivalence. Therefore, a natural

question is if a final F-coalgebra exists; the well-known Lambek lemma prohibits e.g. a

final P-coalgebra for the (full) powerset functor P. What matters is the size of F: When it

is suitably bounded, it is known that a final coalgebra can be constructed via the following

final F-sequence:

1 F1
!�� · · ·F !�� Fi1

Fi−1 !�� · · ·Fi !�� . (4)

Here, 1 is a final object in C, and ! is the unique arrow. In particular, if F is finitary, a

final coalgebra arises as a suitable subobject (or a quotient) of the ω-limit of the final

sequence (4). These constructions in Sets are worked out in Pattinson (2003) and Worrell

(2005); the one in Worrell (2005) is further extended to locally presentable categories

(those are categories suited for speaking of ‘size’) with additional assumptions in Adámek

(2003).
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Turning back to coinductive predicates, indeed, the fibrational view (Hermida 1993;

Hermida and Jacobs 1998) identifies coinductive predicates as final coalgebras in a

fibration. This leads us to scrutinize final sequences in a fibration. Our main result

(Theorem 3.9) is a categorical generalization of the behavioural ω-bound (Section

1.1) – more precisely, we axiomatize categorical ‘size restrictions’ for that bound to

hold.

The conditions are formulated in the language of locally presentable categories (see

e.g. Adámek and Rosický (1994); also Appendix B); and the combination of fibrations

and locally presentable categories does not seem to have been studied a lot (an exception

is Makkai and Paré (1989, Section5.3)). We therefore develop a relevant categorical

infrastructure (Section 6). Our results there include a sufficient condition for the total

category Sub(C) of a subobject fibration to be locally (finitely) presentable, and the

same for a family fibration Fam(Ω). Via these results, in Section 7, we list some concrete

examples of fibrations to which our results in Section 3 on the behavioural bounds apply.

They include
Pred
↓

Sets
(classical logic),

Rel
↓

Sets
(for bisimulation and bisimilarity),

Sub(C)
↓
C

for C that

is locally finitely presentable (LFP) and locally Cartesian closed (a topos is a special case)

and
Fam(Ω)
↓

Sets
for a well-founded algebraic lattice Ω.

1.3. Contributions

To summarize, our contributions are (1) combination of the mathematical observations

in Hermida (1993), Hermida and Jacobs (1998) and (Jacobs 2012, Chap. 6) for a

general formulation of coinductive predicates; (2) categorical behavioural bounds for final

sequences that approximate coinductive predicates and (3) a categorical infrastructure that

relates fibrations and locally presentable categories.

Compared to the earlier version (Hasuo et al. 2013) of the current paper, the main

differences are as follows. Here, we additionally address inductive predicates over coinduct-

ive datatypes (see Section 5). We identify them as coinductive predicates in the fibrewise

opposite
P (op)

↓p(op)

C
of the original fibration

P
↓p
C

, so that the difference between inductive and

coinductive predicates becomes a matter of categorical duality. The examples in Section

7 are extended accordingly, studying inductive predicates on top of coinductive ones.

Besides, we include all the proofs that were omitted in Hasuo et al. (2013) for space

reasons.

1.4. Organization of the paper

In Section 2, we identify coinductive predicates as final coalgebras in a fibration, following

the ideas of Hermida (1993), Hermida and Jacobs (1998) and Jacobs (2012). The main

technical results are in Section 3, where we axiomatize size restrictions on fibrations and

functors for a final sequence to stabilize after ω steps. These results are reorganized

in Section 4 in a fibration of invariants. We see in Section 5, which is added to an earlier

version of this paper (Hasuo et al. 2013), that the results in Section 2–4 apply to inductive
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predicates too. The next two sections are devoted to examples: First in Section 6, we

develop a necessary categorical infrastructure; and then in Section 7, we discuss concrete

examples. In Section 8, we conclude with some directions of future work. In Appendices,

we present minimal introductions to the theories of coalgebras, locally presentable

categories and fibrations – the three categorical disciplines that our technical developments

rely on.

2. Coinductive predicates as final coalgebras

In this section, we follow the ideas in Hermida (1993), Hermida and Jacobs (1998),

Jacobs (2012) and characterize coinductive predicates in various settings (for different

behaviour types, and in various underlying logics) in the language of fibrations. An

introduction to fibrations is e.g. in Jacobs (1999); see also Appendix C. In this paper, for

simplicity, we focus on poset fibrations. It should however not be hard to move to general

fibrations.

Convention 2.1 (Fibration). We refer to poset fibrations (where each fibre is a poset rather

than a category) simply as fibrations.

Definition 2.2 (Predicate lifting). Let
P
↓p
C

be a fibration and F be an endofunctor on C. A

predicate lifting of F along p is a functor ϕ : P → P such that (ϕ, F) is an endomap of

fibrations.

P
ϕ

��

p ��

P
p��

C
F

�� C
(5)

This means: that the above diagram commutes; and that ϕ preserves Cartesian arrows,

that is, ϕ(f∗Q) = (Ff)∗(ϕQ). See below.

P

p

��

f∗Q
fQ

�� Q ϕ(f∗Q)
ϕ(fQ)

�� ϕQ

(Ff)∗(ϕQ) Ff(ϕQ)

��

C X
f

�� Y FX
Ff

�� FY

(6)

In the prototype example
Pred
↓

Sets
, the above definition coincides (see Jacobs 2012) with

the one used in coalgebraic modal logic (see e.g. Cı̂rstea et al. (2011)), the latter being

a (monotone) natural transformation 2( ) ϕ
⇒ 2F( ) : Setsop → Sets. In particular, the

naturality requirement corresponds to the preservation of Cartesian arrows (6); and

monotonicity of ϕ comes from the functoriality of ϕ : P → P .

We think of predicate liftings as (co)recursive definitions of coinductive predicates

(see Example 2.4). On top of it, we identify coinductive predicates (and invariants) as

coalgebras in a fibre.
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Definition 2.3 (Invariant, coinductive predicate). Let ϕ be a predicate lifting of F along
P
↓p
C

; and X
c→ FX be a coalgebra in C. They together induce an endofunctor (a monotone

function) on the fibre PX , namely PX

ϕ
→ PFX

c∗→ PX , where ϕ restricts to PX → PFX

because of Equation (5).

1. A ϕ-invariant in c is a (c∗ ◦ ϕ)-coalgebra in PX , that is, an object P ∈ PX such that

P � c∗(ϕP ) in PX .

2. The ϕ-coinductive predicate in c is the final (c∗ ◦ ϕ)-coalgebra (if it exists). Its carrier

shall be denoted by �νϕ�c. It is therefore the largest ϕ-invariant in c; Lambek’s lemma

yields that �νϕ�c = (c∗ ◦ ϕ)(�νϕ�c).

Example 2.4 (Rν). The conventional interpretation [νu.α]c (described in Section 1.1) of

Rν-formulas is a special case of Definition 2.3. Indeed, let us work in the fibration
Pred
↓

Sets
,

and with the endofunctor FK = P(AP)×P( ) on Sets. An FK-coalgebra X
c→ P(AP)×PX

is precisely a Kripke model: c combines a valuation X → P(AP) and the map X → PX
that carries a state to the set of its successors. To each formula α ∈ Rνu, we associate a

predicate lifting ϕα of FK. This is done inductively as follows:

ϕa(U ⊆ X) =
(
{V ∈ FKX | a ∈ π1(V )} ⊆ FKX

)
,

ϕa(U ⊆ X) =
(
{V ∈ FKX | a 
∈ π1(V )} ⊆ FKX

)
,

ϕ�u(U ⊆ X) =
(
{V ∈ FKX | π2(V ) ⊆ U} ⊆ FKX

)
,

ϕ�u(U ⊆ X) =
(
{V ∈ FKX | π2(V ) ∩U 
= �} ⊆ FKX

)
,

ϕα∧α′ (U ⊆ X) =
(
(ϕαU ∩ ϕα′U) ⊆ FKX

)
,

ϕα∨α′ (U ⊆ X) =
(
(ϕαU ∪ ϕα′U) ⊆ FKX

)
.

(7)

In the above, π1 and π2 denote the projections from FKX = P(AP) × PX. Then it is

easily seen by induction that �νϕα�c in Definition 2.3 coincides with the conventional

interpretation [νu.α]c described in Section 1.1.

In fact, the predicate liftings ϕα in Equation (7) are the ones commonly used in

coalgebraic modal logic (where they are presented as natural transformations). We point

out that the same definition of ϕα – they are written in the internal language of toposes

– works for the subobject fibration
Sub(C)
↓
C

of any topos C. Therefore, the categorical

definition of coinductive predicates (Definition 2.3) allows us to interpret the language

Rν in constructive underlying logics. Suitable completeness of C ensures that a final

(c∗ ◦ ϕ)-coalgebra in Definition 2.3 exists.

Proposition 2.5. Let ϕ be a predicate lifting of F along
P
↓p
C

; X
c→ FX be a coalgebra in

C; and P ∈ PX . We have P � �νϕ�c if and only if there exists a ϕ-invariant Q such that

P � Q.

The proposition is trivial but potentially useful. It says that an invariant can be used as

a ‘witness’ for a coinductive predicate. This is how bisimilarity is commonly established
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(namely by finding a bisimulation); and it can be used e.g. in Abramsky and Winschel

(2015, Section 6) as an alternative to the metric coinduction principle used there.†

Remark 2.6. The coalgebraic modal logic literature exploits the fact that there can be

many predicate liftings (in the form of natural transformations) of the same functor F .

Different predicate liftings correspond to different modalities (such as � vs. � for the

same functor P). This view of predicate liftings is also the current paper’s concern (see

Example 2.4).

In contrast, in fibrational studies like Hermida (1993), Hermida and Jacobs (1998),

Fumex et al. (2011) and Atkey et al. (2012), use of predicate liftings has focussed on the

validity of the (co)induction proof principle. For such purposes, it is necessary to choose a

predicate lifting ϕ that is ‘comprehensive enough,’ covering all the possible F-behaviours.

In fact, it is common in these studies that ‘the’ predicate lifting, denoted by Pred(F), is

assigned to a functor F . An exception is Jacobs (2010).

3. Final sequences in a fibration

Here, we present our main technical result (Theorem 3.9). It generalizes known behavioural

ω-bounds (like Hennessy and Milner (1985, Theorem 2.1); see Section 1.1); and claims

that the chain (2) for a coinductive predicate stabilizes after ω steps, assuming that the

behaviour type functor F and the underlying logic
P
↓p
C

are ‘finitary’ in a suitable sense (but

no size restriction on ϕ).

3.1. Size restrictions on a fibration

We axiomatize finitariness conditions in the language of locally presentable categories (see

Appendix B for a minimal introduction). Singling out these conditions lies at the heart of

our technical contribution.

Definition 3.1 (LFP category). A category C is LFP if it is cocomplete and it has a

(small) set F of finitely presentable (FP) objects such that every object is a filtered colimit

of objects in F .

Definition 3.2 (Finitely determined fibration). A (poset) fibration
P
↓p
C

is finitely determined

if it satisfies the following:

1. C is LFP, with a set F of FP objects (as in Definition 3.1).

2.
P
↓p
C

has fibrewise limits and colimits (as in Definition C.9).

3. For arbitrary X ∈ C, let (XI )I∈I be the canonical diagram for X with respect to F
(i.e. I = F/X, see Lemma B.4), with a colimiting cocone (XI

κI→ X)I∈I . Then for any

† To be precise, only if we take PE in Abramsky and Winschel (2015) – that is in fact, a least fixed-point

specification – as an atomic proposition (and that is essentially what is done in the proofs in Abramsky and

Winschel (2015, Section 6)). Our future work on nested μ’s and ν’s will more adequately address the situation.
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P ,Q ∈ PX ,

P � Q ⇐⇒ κ∗IP � κ∗IQ in PXI
for each I ∈ I.

The intuition behind Cond. 3 is that a predicate P ∈ PX (over arbitrary X ∈ C)

is determined by its restrictions (κ∗IP )I∈I to FP objects XI . One convenient sufficient

condition for Cond. 3 is that the total category P is itself LFP, with its FP objects residing

above the FP objects in C (Corollary 6.2). We note that Cond. 1 guarantees, since LFP

implies completeness, that an (ωop-)limit Fω1 of the final F-sequence (4) exists. However,

this does not mean (nor do we need) that Fω1 carries a final F-coalgebra; it fails for

F = Pω , see Worrell (2005).

Definition 3.3 (Well-founded fibration). A well-founded fibration is a finitely determined

fibration that further satisfies the following:

4. If X ∈ F (hence FP), the fibre PX is such that: the category P op
X consists solely of FP

objects.

Since PX is complete, this is equivalent to: there is no (ωop-)chain P0 > P1 > · · · in

PX that is strictly descending.

We note that the following stronger variant of the condition 3.3 rarely holds:

3.3′ : For any X ∈ C, there is no strictly descending ωop-chain in PX

(it fails in
Pred
↓

Sets
). The original Cond. 3.3 holds in many examples (as we will see later

in Section 7), thanks to the restriction that X is FP.

Remark 3.4. Conditions 3–3.3 mention a fixed set F of FP objects. It is not hard to see

that this is not necessary, and we can take as F the set of all FP objects without loss

of generality. (Stating the conditions in terms of F is an advantage when it comes to

checking them, though.)

Let us first note that, by Adámek and Rosický (1994, Remark 1.9), any FP object

Y ∈ C is a split quotient of some X ∈ F , i.e. there exists q : X � Y and i : Y � X with

q ◦ i = idY .

Then we indeed have the following. On Cond. 3, for an FP object Y and κ′ : Y → X,

take X ′ ∈ F with a splitting X ′
q

� Y
i

� X ′. Then we can take I such that XI = X ′ and

κI = κ′ ◦ q. Hence, κ∗IP � κ∗IQ in PXI
induces κ′∗P � κ′∗Q in PY because κ′ = κI ◦ i.

On Cond. 3.3, for an FP object Y , take X ∈ F with a splitting X
q

� Y
i

� X. Then

a strictly decreasing chain Q0 > Q1 > · · · in PY induces a strictly decreasing chain

q∗Q0 > q∗Q1 > · · · in PX . Here, the strictness of the latter is by i∗q∗Qn = Qn.

The following trivial fact is written down for the record.

Lemma 3.5. A finitely determined fibration
P
↓p
C

is well-founded if PX is a finite category

for each X ∈ F .
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P ϕω�1

�� ��
��

�1 ϕ�1
�� · · ·�� ϕi�1

�� · · ·��

ϕω+1�1

		 		




b′

��

�

�
�

C Fω1

�� ��

πi
��

1 F1!�� · · ·�� Fi1
Fi−1 !�� · · ·Fi !��

Fω+11

		 		

Fπi−1

��
b



�

�
�

Fig. 1. Final sequences in a fibration.

3.2. Final sequences in a fibration

The following result from Jacobs (1999, Proposition 9.2.1) is crucial in our development.

Lemma 3.6. Let
P
↓p
C

be a fibration, with C being complete. Then p has fibrewise limits if

and only if P is complete and p : P → C preserves limits. If this is the case, a limit of a

small diagram (PI )I∈I in P can be given by∧
I∈I

(π∗I PI ) over Lim
I∈I

XI .

Here, XI := pPI ; (LimI∈I XI

πI→ XI )I∈I is a limiting cone in C; and
∧

I∈I denotes the the

inf in the fibre PLimI XI
. Moreover,

∧
I∈I(π

∗
I PI ) is a limit of the diagram of shape I, namely

π∗I PI � π∗JPJ holds for any I → J in I.

Figure 1 presents two sequences. Here, we assume that
P
↓p
C

is finitely determined

(Definition 3.2) and that ϕ is a predicate lifting of F . In the bottom diagram (in C),

the object 1 ∈ C is a final one (it exists since LFP implies completeness); F1
!→ 1 is the

unique map; Fω+11 := F(Fω1); and b is a unique mediating arrow to the limit Fω1. In

the top diagram (in P ), the object �1 is the final object in the fibre P1; by Lemma 3.6,

this is precisely a final object in the total category P . Hence, this diagram is nothing but a

final sequence for the functor ϕ in P . A limit ϕω�1 of this final sequence exists, again by

Lemma 3.6; and moreover, it can be chosen above Fω1. We define ϕω+1�1 := ϕ(ϕω�1).

Lemma 3.7 (Key lemma). Let
P
↓p
C

be a well-founded fibration; F : C → C be finitary; and

ϕ be a predicate lifting of F . Then the final ϕ-sequence ‘stabilizes’ after ω steps (modulo

reindexing via b). Precisely, in Figure 1, we have ϕω+1�1 = b∗(ϕω�1).

Proof. We proceed by steps.

Step a. We observe that, in Figure 1, the top diagram is carried to the one below by the

functor p : P → C. This is straightforward: The arrow ϕ�1 → �1 must be carried to the

unique arrow !: F1 ��� 1; on the mediating arrow b′ in P , since pb′ is again a mediating

arrow in C, it must coincide with b.
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Step b. Before moving on, we observe that Cond. 3 in Definition 3.2 yields a seemingly

stronger statement (Cond. 3′ below).

Sublemma 3.8. For a finitely determined fibration
P
↓p
C

the following holds:

3′ Let X ∈ C; P ,Q ∈ PX; and (YJ)J∈J be an arbitrary filtered diagram in C such that

ColimJ YJ = X, with a colimiting cocone (YJ

γJ→ X)J∈J . Then P � Q if and only if for

each J ∈ J , γ∗JP � γ∗JQ in PYJ
.

Proof. (Of Sublemma 3.8) The only non-trivial statement is the ‘if ’ part of the direction

3 ⇒ 3′ . It suffices to show that γ∗JP � γ∗JQ (for each J ∈ J ) implies κ∗IP � κ∗IQ (for each

I ∈ I), where κI and I are as in Cond. 3.

Let I ∈ I. Since XI is FP, an arrow κI : XI → X to a filtered colimit X = ColimJ YJ

factors through some YJI

γJI→ X, as in the diagram below.

XI
κI ��

hI
�����

��� X = ColimJ YJ

YJI
γJI

��������

Now, we have κ∗IP = h∗I γ
∗
JI
P � h∗I γ

∗
JI
Q = κ∗IQ, where the inequality is by the assumption

that γ∗JP � γ∗JQ for each J ∈ J . This proves Sublemma 3.8.

Step c. By Step a, we see that ϕω+1�1 � b∗(ϕω�1) by the universality of a Cartesian

arrow. In what follows we shall prove its converse:

b∗(ϕω�1) � ϕω+1�1 in PFω+11. (8)

Let us take a filtered diagram (XI )I∈I in C such that XI ∈ F (for each I ∈ I) and

Fω1 = ColimI∈I XI , with (XI

κI→ Fω1)I∈I being the colimiting cocone. Then we have

Fω+11 = F(Colim
I∈I

XI ) = Colim
I∈I

FXI,

by the assumption that F is finitary; moreover, (FXI

FκI→ Fω+11)I∈I is a colimiting cocone.

The diagram (XI )I∈I is filtered, and so is the latter diagram (FXI )I∈I . Thus, by Cond. 3′

in Sublemma 3.8, showing the following proves Equation (8):

(FκI )
∗( b∗(ϕω�1)

)
� (FκI )

∗(ϕω+1�1) for each I ∈ I. (9)

Step d. To prove Equation (9), we first prove the following fact: For each I ∈ I, there

exists iI ∈ ω such that

κ∗I (ϕ
ω�1) = κ∗I

(
π∗iI (ϕ

iI�1)
)

in PXI
. (10)

That is, the final sequence in P (Figure 1), when restricted to XI (that is FP), stabilizes

within finitely many steps. Indeed, by Lemma 3.6, the ωop-limit ϕω�1 is described as an

ωop-limit (i.e. an inf of a descending sequence) in PFω1:

ϕω�1 =
∧
i∈ω

π∗i (ϕ
i�1). (11)

Therefore, we have κ∗I (ϕ
ω�1) =

∧
i∈ω κ∗Iπ

∗
i (ϕ

i�1) since reindexing κ∗I preserves fibrewise

limits
∧

. Here, the sequence
(
κ∗Iπ

∗
i (ϕ

i�1)
)
i∈ω in PXI

is also descending. Therefore, by p
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being a well-founded fibration (Definition 3.3) and XI being FP, there exists iI ∈ ω at

which the descending sequence
(
κ∗Iπ

∗
i (ϕ

i�1)
)
i∈ω in PXI

stabilizes, that is,

κ∗I
(∧
i∈ω

π∗i (ϕ
i�1)

)
=

∧
i∈ω

κ∗Iπ
∗
i (ϕ

i�1) = κ∗I
(
π∗iI (ϕ

iI�1)
)

in PXI
.

Combined with Equation (11), this proves Equation (10).

Step e. Finally, let us prove Equation (9). For each I ∈ I,

(FκI )
∗( b∗(ϕω�1)

)
= (FκI )

∗( b∗(∧
i∈ω

π∗i (ϕ
i�1)

) )
by Equation (11)

=
∧
i∈ω

(FκI )
∗( b∗(π∗i (ϕi�1)

) )
reindexing preserves

∧
�

∧
j∈ω

(FκI )
∗( b∗(π∗j+1(ϕ

j+1�1)
) )

letting i = j + 1 for i � 1

=
∧
j∈ω

(FκI )
∗( (Fπj)

∗(ϕj+1�1)
)

by πj+1 ◦ b = Fπj (see Figure 1)

=
∧
j∈ω

ϕ
(
κ∗Iπ

∗
j (ϕ

j�1)
)

by Definition 2.2

� ϕ
(
κ∗Iπ

∗
iI
(ϕiI�1)

)
letting j = iI on the LHS

= ϕ
(
κ∗I (ϕ

ω�1)
)

by Equation (10)

= (FκI )
∗(ϕω+1�1) by Definition 2.2 and ϕω+1�1 = ϕ(ϕω�1).

This proves Equation (9) and concludes the proof of Lemma 3.7.

The object ϕω�1 is a ‘prototype’ of ϕ-coinductive predicates in various coalgebras. This

is part of the main theorem below.

It is standard that a coalgebra X
c→ FX in C induces a cone over the final F-sequence,

and hence a mediating arrow X → Fω1 (see below). Concretely, ci : X → Fi1 is defined

inductively by X
c0→ 1 is !; and ci+1 is the composite X

c→ FX
Fci→ Fi+11. The induced

arrow to the limit Fω1 is denoted by cω .

Fω1

�� ��
πi��

1 F1!�� · · ·�� Fi1�� · · ·��

X

�� ��

ci
��

cω

��

	

�



(12)

Note that Fω1 does not necessarily carry a final F-coalgebra (see Remark 3.12).

Theorem 3.9 (Main result). Let
P
↓p
C

be a well-founded fibration; F : C → C be a finitary

functor; ϕ be a predicate lifting of F along p; and X
c→ FX be a coalgebra in C.

1. The ϕ-coinductive predicate �νϕ�c in c (Definition 2.3) exists. It is obtained by the

following reindexing of ϕω�1, where cω is the mediating map in Equation (12).

�νϕ�c = c∗ω(ϕω�1). (13)
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2. Moreover, the predicate �νϕ�c is the limit of the following ωop-chain in the fibre PX

�X � (c∗ ◦ ϕ)(�X) � (c∗ ◦ ϕ)2(�X) � · · · , (14)

that stabilizes after ω steps. That is, �νϕ�c =
∧

i∈ω(c∗ ◦ ϕ)i(�X).

Proof. We proceed by steps.

Step a. We first show that the descriptions of �νϕ�c in the items 1–2 are the same:

c∗ω(ϕω�1) =
∧
i∈ω

(c∗ ◦ ϕ)i(�X). (15)

We have

c∗ω(ϕω�1) = c∗ω
(∧
i∈ω

π∗i (ϕ
i�1)

)
by Lemma 3.6

=
∧
i∈ω

c∗ω
(
π∗i (ϕ

i�1)
)

since reindexing preserves
∧

=
∧
i∈ω

c∗i (ϕ
i�1) by the definition of cω .

(16)

Furthermore, c∗i (ϕ
i�1) in the above is seen to be equal to (c∗ ◦ ϕ)i(�X). This is shown

by induction on i ∈ ω. For i = 0, the claim amounts to !∗(�1) = �X , which holds since

reindexing preserves �. For the step case,

c∗i+1(ϕ
i+1�1) = c∗(Fci)

∗(ϕi+1�1) by ci+1 = Fci ◦ c
= c∗

(
ϕ
(
c∗i (ϕ

i�1)
))

by Definition 2.2

= (c∗ ◦ ϕ)
(
(c∗ ◦ ϕ)i(�X)

)
by induction hypothesis.

Therefore the Equation (15) holds.

Step b. In order to show that
∧

i∈ω(c∗ ◦ ϕ)i(�X) is the ϕ-coinductive predicate in c,

we shall exhibit that the chain (14) – the final (c∗ ◦ ϕ)-sequence in PX – stabilizes after

ω steps. By Equation (15), the claim (c∗ ◦ ϕ)
(∧

i∈ω(c∗ ◦ ϕ)i(�X)
)

=
∧

i∈ω(c∗ ◦ ϕ)i(�X)

reduces to

(c∗ ◦ ϕ)
(
c∗ω(ϕω�1)

)
= c∗ω(ϕω�1). (17)

Step c. Finally, we shall prove Equation (17):

c∗
(
ϕ(c∗ω(ϕω�1))

)
= c∗

(
(Fcω)∗(ϕ(ϕω�1))

)
by Definition 2.2

= c∗
(
(Fcω)∗(b∗(ϕω�1))

)
by Lemma 3.7

= (b ◦ Fcω ◦ c)∗(ϕω�1)

= c∗ω(ϕω�1).

(18)

For the last equality, we used b ◦ Fcω ◦ c = cω , which is proved by showing that

b ◦ Fcω ◦ c is also a mediating map in Equation (12). Indeed, for each i � 1,

πi ◦ b ◦ Fcω ◦ c = Fπi−1 ◦ Fcω ◦ c see Figure 1

= Fci−1 ◦ c by Equation (12)

= ci by the definition of ci.

This concludes the proof.
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Example 3.10 (Rν). We shall continue Example 2.4 and derive from Theorem 3.9 the

behavioural bound result described in Section 1.1: the chain (2) stabilizes after ω steps,

for each α ∈ Rνu and each finitely branching Kripke model c.

Indeed, the latter is the same thing as a coalgebra X
c→ FfbKX, where FfbK = P(AP)×

Pω( ). Compared to FK in Example 2.4, the powerset functor is restricted from P to

Pω; this makes FfbK a finitary functor. Still the same definition of ϕα defines a predicate

lifting of FfbK. Theorem 3.9.2 can then be applied to the fibration
Pred
↓

Sets
(easily seen to be

well-founded, Example 7.1), the finitary functor FfbK and the predicate lifting ϕα for each

α. It is not hard to see that the function [α]c : PX → PX in Section 1.1 coincides with

c∗ ◦ ϕα : PredX → PredX (note that PredX ∼= 2X ∼= PX); thus the chain (2) coincides with

Equation (14) that stabilizes after ω steps by Theorem 3.9.

Remark 3.11. The ω-bound of the length of the chain (14) is sharp.

A (counter)example is given in the setting of Example 3.10, by the predicate lifting ϕ�u

and the coalgebra (i.e. Kripke structure) c2 below. There bi,i has no successors. Indeed,

while �νϕ�u�c2
is {ai | i ∈ ω}, its ith approximant ((c2)

∗
i ◦ ϕi

�u)(�X) in Equation (14)

contains bi,0 too.

c2

a0

b0,0 a1

b1,0

b1,1

a2

b2,0

b2,1

b2,2

...

Remark 3.12. It is notable that Theorem 3.9 imposes no size restrictions on ϕ : P → P .

Being a predicate lifting is enough. To find an example such that ϕ is not finitary is future

work. Our main theorem would not become trivial even if it turns out that ϕ is always

finitary.

Final F-sequences are commonly used for the construction of a final F-coalgebra. It is

not always the case, however, that the limit Fω1 is itself the carrier of a final coalgebra

(even for finitary F; see Worrell (2005, Section 5)). One obtains a final coalgebra either

by (1) quotienting Fω1 by the behavioural equivalence (see e.g. Pattinson (2003)); or

(2) continuing the final sequence till ω + ω steps. The latter construction is worked out
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in Worrell (2005) (in Sets) and in Adámek (2003) in LFP C with additional assumptions.

Its relevance to the current work is yet to be investigated.

We emphasize that a final ϕ-sequence ‘stabilizes’ in ω steps relatively to the underlying

final F-sequence. In fact, we can also show that the final ϕ-sequence absolutely stabilizes

in ω+ω steps for some LFP C including Sets; a proof can be done by observing that the

final ϕ-sequence stabilizes as soon as the final F-sequence stabilizes, once we are beyond

ω steps.

To show directly the stabilization of the final ϕ-sequence in ω+ω steps, one may want

to prove that P is strongly LFP as in Adámek (2003) and that ϕ is finitary. Neither of

these seems easy.

Coalgebra morphisms are compatible with coinductive predicates. This fact, like

Proposition 2.5, is potentially useful in establishing coinductive predicates.

Proposition 3.13. Let f : X → Y be a coalgebra morphism from X
c→ FX to Y

d→ FY .

In the setting of Lemma 3.7 and Theorem 3.9:

1. If Q ∈ PY is a ϕ-invariant in d, so is f∗Q ∈ PX in c.

2. We have �νϕ�c = f∗
(
�νϕ�d

)
.

Proof. For the item 1,

f∗Q � f∗d∗(ϕQ) Q is an invariant

= c∗(Ff)∗(ϕQ) f is a homomorphism

= (c∗ ◦ ϕ)(f∗Q) by Definition 2.2.

For the item 2, the coalgebras give rise to mediating arrows X
cω→ Fω1 and Y

dω→ Fω1,

respectively, as in Equation (12). It is easy to see that cω = dω ◦ f (using the universality

of the limit Fω1); using Equation (13) the claim follows.

Remark 3.14. The current paper focusses on FP objects, finitary functors, etc. – i.e. the

ω-presentable setting (see Adámek and Rosický (1994, Section 1.B)). This is for the

simplicity of presentation: the results, as usual (as e.g. in Klin (2007)), can be easily

generalized to the λ-presentable setting for an arbitrary regular cardinal λ. In such an

extended setting, we obtain a behavioural λ-bound.

4. A fibration of invariants

We organize the above observations in a more abstract fibred setting. The technical results

are mostly standard; see e.g. Hermida (1993), Hermida and Jacobs (1998) and Jacobs

(2012, Chap.6).

We write Coalg(F) for the category of F-coalgebras.

Proposition 4.1. Let ϕ be a predicate lifting of F along
P
↓p
C

. Then the fibration
P
↓p
C

is lifted

to a fibration
Coalg(ϕ)
↓p

Coalg(F)
, with two forgetful functors forming a map of fibrations from the

latter to the former.
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Proof. It is easy to check each fibre Coalg(ϕ)
X

c→FX
is a poset. Let (X

c→ FX)
f
→ (Y

d→

FY ) be an arrow in Coalg(F), and P
s→ ϕP be above Y

d→ FY . A Cartesian lifting of f

is obtained as in the following diagram:

P ϕf∗P
ϕf(P )

�� ϕP

f∗P

t

���
�

f(P )

�� P

s

��

C FX
Ff

�� FY

X

c

��

f
�� Y

d

��

Here, we used the universality of the Cartesian lifting ϕf(P ) (see Definition 2.2).

The two forgetful functors constitute a map of fibrations: The commutativity (5) is

obvious, and Cartesian liftings in
Coalg(ϕ)
↓p

Coalg(F)
(which we constructed above) are based on the

Cartesian liftings in
P
↓p
C

.

The next observation explains the current section’s title.

Proposition 4.2. Let
Coalg(ϕ)
↓p

Coalg(F)
be the lifted fibration in Proposition 4.1. For each coalgebra

X
c→ FX, the fibre over c coincides with the poset of ϕ-invariants in c. That is,

Coalg(ϕ)
X

c→FX
�����

∼= �� Coalg(c∗ ◦ ϕ)
������PX

.

Proof. Given a ϕ-coalgebra P
s→ ϕP above X

c→ FX, we use the universality of the

Cartesian lifting of c to obtain a (c∗ ◦ ϕ)-coalgebra as in the following diagram:

c∗(ϕP )
c(ϕP )

�� ϕP

P

s

��

���
�
�

Conversely, given a (c∗ ◦ ϕ)-coalgebra Q
t→ c∗(ϕQ), we obtain a ϕ-coalgebra above

X
c→ FX as the following composite:

c∗(ϕQ)
c(ϕQ)

�� ϕQ

Q

t
��

Then it is straightforward to see that the mappings are monotone and inverse to each

other. The mappings commute with the forgetful functors since they do not change the

carriers.
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Therefore, Theorem 3.9.1 and Proposition 3.13.2 state the fibration
Coalg(ϕ)
↓p

Coalg(F)
has fibrewise

final objects. (At least part of) this statement itself is shown quite easily using the

Knaster–Tarski theorem (each fibre is a complete lattice). Our contribution is their

concrete construction as ωop-limits (Theorem 3.9.2).

The following lemma is essentially a special case of Lemma 3.6, but see also Jacobs

(1999, Proposition 9.2.1 and Exercise 9.2.4).

Lemma 4.3. Let
P
↓p
C

be a fibration; and assume that C has a final object. Then
P
↓p
C

has a

fibrewise final object if and only if P has a final object that is above the final object of C.

By applying the lemma to
Coalg(ϕ)
↓p

Coalg(F)
, we obtain a basic relationship between coinductive

predicates and final coalgebras.

Corollary 4.4. Let ϕ be a predicate lifting of F along
P
↓p
C

; and assume that a final

F-coalgebra exists. The following are equivalent:

1. The coinductive predicate �νϕ�c exists for each coalgebra c : X → FX. Moreover, they

are preserved by reindexing (along coalgebra morphisms).

2. There exists a final ϕ-coalgebra that is above the final F-coalgebra.

As noted in Remark 3.12, however, our concrete construction of coinductive predicates

does not rely on a final F-coalgebra.

5. Inductive predicates over coinductive datatypes

The central topic of the current paper is coinductive predicates over coinductive datatypes,

the latter identified as coalgebras in the base category C of a fibration
P
↓p
C

. Some variations

are possible, namely: inductive/coinductive predicates over inductive/coinductive datatypes.

For example, Hermida and Jacobs (1998) focus on: inductive predicates over inductive

datatypes (the latter identified as algebras); and coinductive predicates over coinductive

datatypes (as we have done in the previous sections).

It turns out that, among these four variations, inductive predicates over coinductive

datatypes allow a straightforward adaptation of our current categorical framework by

taking the fibrewise opposite
P (op)

↓p(op)

C
of the fibration

P
↓p
C

we are interested in. We present these

results in the current section. The study of the other two variations – inductive predicates

over inductive datatypes, and coinductive predicates over inductive datatypes – is left as

future work. In fact, we have preliminary observations that under certain assumptions

these two variations coincide. Their details will be presented in another venue.

The following is the definition of an inductive predicate (on a coinductive datatype).

It is not hard to see that the definition generalizes e.g. the semantics of the μ operator

of the modal μ-calculus in a Kripke model. Later in Lemma 5.4, we will identify it as a

coinductive predicate in the fibrewise opposite.
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Definition 5.1 (Inductive predicate). Let ϕ be a predicate lifting along a fibration
P
↓p
C

; and

X
c→ FX be a coalgebra in C. The ϕ-inductive predicate in c is the initial (c∗ ◦ ϕ)-algebra

(if it exists). We denote its carrier by �μϕ�c. Hence, it is the smallest predicate P ∈ PX

such that P � c∗(ϕP ) in PX .

In what follows we utilize the notion of fibrewise opposite
P (op)

↓p(op)

C
of a fibration

P
↓p
C

(Bénabou (1975); see also (Jacobs 1999, Definition 1.10.11)). Intuitively, the fibrewise

opposite p(op) is obtained by opposing the order in each fibre PX but leaving the base

category C, as well as the reindexing structure, as in the original fibration p. The precise

definition is best stated via indexed categories and the Grothendieck construction. It is

left to the appendix (Lemma C.13).

Some remarks are in order. First, the total category P (op) of the fibrewise opposite
P (op)

↓p(op)

C
is in general different from the opposite category P op (in the usual sense) of P . The same

applies to the functor p(op), that is different from the opposite functor pop. We emphasize

that in the fibrewise opposite
P (op)

↓p(op)

C
, the base category C stays the same. We also note that

P (op)

↓p(op)

C
is a fibration, unlike the opposite functor

P op

↓pop

Cop of p that is canonically an opfibration.

Notation 5.2. For distinction, we denote reindexing functors in fibrations
P
↓p
C

and
P (op)

↓p(op)

C
by

f∗ and f#, respectively. They are in fact the same monotone functions between fibres as

posets:

(P (op))Y
f#

�� (P (op))X

(PY )op (f∗)op
�� (PX)op

for f : X → Y .

The following result, although straightforward, is essential for the subsequent technical

development.

Lemma 5.3. Let
P
↓p
C

be a fibration and F be an endofunctor on C. For a predicate lifting

ϕ : P → P of F along p, there exists a canonical predicate lifting ϕ(op) : P (op) → P (op),

which we call the fibrewise opposite of ϕ, of F along the fibration
P (op)

↓p(op)

C
.

Proof. We give an explicit construction here, although the statement is almost trivial

when stated in terms of indexed categories.

On objects, we define ϕ(op)P = ϕP . For the action on arrows, we first note that an

arrow P → Q in P (op) above f : X → Y exists if and only if P � f#Q in (P (op))X = (PX)op.

Exploiting this fact, ϕ(op)’s action on the arrow P → Q is defined to be the unique arrow

ϕ(op)P → ϕ(op)Q above Ff : FX → FY . The last (unique) arrow exists, indeed: We have

ϕ(op)P � (Ff)#ϕ(op)Q in (P (op))FX by ϕP � ϕf∗Q = (Ff)∗ϕQ in PFX . Here, the last

equality is because ϕ is a predicate lifting.
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Lemma 5.4. Let P be a predicate over X ∈ C.

1. The object P ∈ PX carries a (c∗ ◦ ϕ)-algebra if and only if P ∈ (PX)op = (P (op))X is a

ϕ(op)-invariant in c.

2. The ϕ-inductive predicate in c is the ϕ(op)-coinductive predicate in c. That is, �μϕ�c =

�ν(ϕ(op))�c as objects in PX .

Proof. The category of (c∗ ◦ ϕ)-algebras in PX is dually equivalent to the category of

(c# ◦ ϕ(op))-coalgebras in (P (op))X , since the following diagram (in Posets) commutes.

(P (op))X
(ϕ(op))X �� (P (op))FX

c#
�� (P (op))X

(PX)op
ϕ

op
X �� (PFX)op (c∗)op

�� (PX)op

Thanks to the previous characterization – inductive predicates in
P
↓p
C

as coinductive ones

in
P (op)

↓p(op)

C
– we can apply all the results that we have obtained so far to inductive predicates.

Notice again that the base category C has remained the same. The characterization in

Lemma 5.4 can be seen as a generalization of the duality μu. ϕ(u) = ¬νu.¬ϕ(¬u) between

least and greatest fixed points in classical logics – the latter is a special case where fibres

are self-dual, i.e.
P
↓p
C
∼=

P (op)

↓p(op)

C
.

Via the last characterization, our main result (Theorem 3.9) can also be used to show

the stabilization of the ω-chain when calculating inductive predicates (see Corollary 5.8).

The inductive predicate on Fω1 is not a limit nor a colimit in P , but it is a limit in P (op)

(see Definition 5.7).

Definition 5.5 (Co-well-founded fibration). A co-well-founded fibration is a finitely determ-

ined fibration that further satisfies:

3.3. If X ∈ F (hence FP), the fibre PX is such that: the category PX consists solely of FP

objects.

Since PX is cocomplete, this is equivalent to: there is no (ω-)chain P0 < P1 < · · · in

PX that is strictly ascending.

Lemma 5.6. For a finitely determined fibration
P
↓p
C

, its fibrewise opposite
P (op)

↓p(op)

C
is also

finitely determined. Moreover, p(op) is well-founded if and only if the fibration p is co-

well-founded.

Proof. It is trivial that the fibration p(op) satisfies the condition 1 (of Definition 3.2)

if and only if p satisfies it. For the condition 2, p(op) has fibrewise limits and colimits,

because p has fibrewise colimits and limits, respectively. The condition 3 for p(op) is

obviously equivalent to the one for p since reindexing functors κ∗I , κ
#
I are the same as

functions. By (P (op))X = (PX)op, p(op) satisfies the condition 3.3 if and only if p satisfies

3.3.
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Definition 5.7. Let ⊥1 be the least element of the fibre P1 (hence the greatest in (P (op))1).

We denote by ϕω⊥1 ∈ PFω1 the limit of the following diagram in P (op). It is easily seen to

reside above the final F-sequence in C.

⊥1 ϕ⊥1
�� · · ·�� ϕi⊥1

�� · · ·�� in P (op)

Note here that ⊥1 is the final object in P (op), and the object ϕ⊥1 is the functor ϕ(op)

applied to ⊥1. Therefore, the above diagram is the final ϕ(op)-sequence in P (op).

Using Lemma 3.6, it is not hard to see that ϕω⊥1 =
∨

i∈ω π∗i (ϕ
i⊥1) in the fibration

P
↓p
C

,

where (πi : F
ω1→ Fi1)i∈ω is the limiting cone for the final F-sequence in C.

The following is our main result adapted to inductive predicates. In particular, it states

that an inductive predicate is computed as a supremum of an ω-chain.

Corollary 5.8. Let
P
↓p
C

be a co-well-founded fibration; F : C → C be a finitary functor; ϕ

be a predicate lifting of F along p; and X
c→ FX be a coalgebra in C.

1. The ϕ-inductive predicate �μϕ�c in c exists. It is obtained by the following reindexing

of ϕω⊥1, where cω is the mediating map in Equation (12).

�μϕ�c = c∗ω(ϕω⊥1)

2. Moreover, the predicate �μϕ�c is the colimit of the following ω-chain in the fibre PX

⊥X � (c∗ ◦ ϕ)(⊥X) � (c∗ ◦ ϕ)2(⊥X) � · · · ,

that stabilizes after ω steps. That is, �μϕ�c =
∨

i∈ω(c∗ ◦ ϕ)i(⊥X).

Proof. By Lemmas 5.4 and 5.6 and Theorem 3.9.

Corollary 5.9. Let ϕ be a predicate lifting of F along
P
↓p
C

; and

(Coalg(ϕ(op)))(op)

↓p(op)
(op)

Coalg(F)
be the fibrewise

opposite of the lift of the fibration
P (op)

↓p(op)

C
(see Proposition 4.1 and Lemma 5.3). For each

coalgebra X
c→ FX, the following diagram commutes:((

Coalg(ϕ(op))
)(op)

)
X

c→FX

����
��

∼= �� Alg(c∗ ◦ ϕ)

�����
��

((PX)op)op PX

Proof. Apply Proposition 4.2 for the predicate lifting ϕ(op) along
P (op)

↓p(op)

C
, we obtain

Coalg(ϕ(op))
X

c→FX
�����

∼= �� Coalg(c# ◦ ϕ(op))
�������

(P (op))X

,

whose opposite categories are the ones in the diagram we want to prove.
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Coalgebra morphisms are compatible with inductive predicates just as in Proposi-

tion 3.13. Therefore, the inductive predicates �μϕ�c form a fibrewise initial object ⊥ = �μϕ�

of the fibration p(op)
(op)

.

6. Examples at large

Here are several results that ensure a fibration to be finitely determined or well-founded,

and hence enable us to apply Theorem 3.9. Some of them are well-known; others

– especially those which relate fibrations and locally (finitely) presentable categories,

including Lemmas 6.3 and 6.7 – seem to be new.

The following results provide sufficient conditions for a fibration to be finitely determ-

ined (Definition 3.2). Recall that a full subcategory F of P is said to be dense if each

object P ∈ P is a colimit of the canonical diagram F/P
π→ F ↪→ P .

Lemma 6.1. Let
P
↓p
C

be a fibration with fibrewise limits and colimits and coproducts∐
between fibres. Assume further that C is LFP with a set FC of FP objects (as in

Definition 3.1). If the total category P has a dense subcategory FP such that every R ∈ FP
is above FC (i.e. pR ∈ FC), then p is finitely determined.

Proof. The only non-trivial part is the ⇐ direction of Cond. 3. For that, it suffices to

show that arbitrary P ∈ P is a colimit of the diagram (κ∗IP )I∈I . Here, I and κI are as in

Cond. 3.

By Lemma C.11, the colimit ColimI∈I κ
∗
IP is described as

∨
I∈I

∐
κI
κ∗IP using a sup

∨
in

PX , since (XI

κI→ X)I∈I is colimiting. We have
∐

κI
κ∗IP � P as a counit of an adjunction;

therefore, ColimI∈I κ
∗
IP � P .

Thus, it suffices to show that P � ColimI∈I κ
∗
IP in PX . Let (PJ)J∈J be a diagram in P

such that PJ ∈ FP and there is a colimiting cocone (PJ

gJ→ P )J∈J . Such a diagram exists

since FP is dense.

By the assumption, for each J , the object PJ ∈ FP lies above an object in FC . Therefore,

the arrow pgJ : pPJ → pP = X is an object of FC/X; since I = FC/X, we can choose

IJ ∈ I such that κIJ = pgJ . Now an arrow PJ

gJ→ P in P induces

PJ � (pgJ)
∗P = κ∗IJ P (19)

by the universality of Cartesian arrows. We proceed as follows:

P = Colim
J∈J

PJ
(∗)
=

∨
J∈J

∐
pgJ

PJ

(†)
�

∨
J∈J

∐
κIJ

κ∗IJ P �
∨
I∈I

∐
κI
κ∗IP

(∗)
= Colim

I∈I
κ∗IP .

For (∗), we used Lemma C.11; (†) holds since IJ is chosen so that κIJ = pgJ and Equation

(19) hold. This concludes the proof.

Corollary 6.2. Let
P
↓p
C

be a fibration with fibrewise limits and colimits and coproducts
∐

between fibres, where C is LFP with a set FC of FP objects (in Definition 3.1). If the total

category P is also LFP, with a set FP of FP objects (as in Definition 3.1) chosen so that

every R ∈ FP is above FC , then p is finitely determined.

https://doi.org/10.1017/S0960129517000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000056


Coinductive predicates and final sequences in a fibration 583

6.1. Subobject fibrations

The following is one of the results that are non-trivial.

Lemma 6.3. Let C be an LFP category with F being a set of FP objects (as in

Definition 3.1). Then the total category Sub(C) of the subobject fibration is LFP: the set

FSub(C) := {(P � X) | X ∈ F , and there exists a strong epi Z � P such that Z ∈ F}

consists of FP objects in Sub(C); and every object (Q � Y ) ∈ Sub(C) is a colimit of a

filtered diagram in FSub(C).

Proof. The proof is by steps.

Step a. First, we show that Sub(C) is complete and cocomplete. We rely on Lemma C.11.

We start with fibrewise limits in
Sub(C)
↓
C

; the proof is like in Jacobs (1999, Ex-

ample 1.8.3(iii)). By Lemma B.6, an LFP category C is complete. This equips each

fibre Sub(X) with arbitrary inf’s
∧

computed as wide pullbacks. A reindexing functor

(by pullbacks) preserves these inf’s since limits commute. Therefore, by Lemma C.11, the

total category Sub(C) is complete.

Each fibre (which is a poset) has arbitrary inf’s; hence, it is a complete lattice and

arbitrary sup’s also exist.

Next, we show that
Sub(C)
↓
C

is a bifibration (Definition C.3). An abstract proof can be

given by Freyd’s adjoint functor theorem (note that each fibre Sub(X) is a complete lattice,

and that reindexing f∗ preserves inf’s). Instead we explicitly introduce
∐

exploiting a

factorization structure of LFP C (Lemma B.6.2). Namely, given (P
m

� X) ∈ Sub(X) and

f : X → Y , the opreindexing
∐

f P is defined by the (StrongEpi,Mono)-factorization of

f ◦ m, as below.‡

P �� ��

��
m
��

∐
f P
��

��

X
f

�� Y

(20)

The fact that
∐

f P � Q if and only if P � f∗Q is easily proved using the diagonalization

property of the factorization structure. This establishes
∐

f as a left adjoint to reindexing

f∗. Using Lemma C.11, we conclude that Sub(C) is cocomplete.

Step b. Let Im: C/Y → Sub(Y ) be the image functor defined by the (StrongEpi,Mono)-

factorization (i.e. Im f =
∐

f X for f : X → Y ). In the notation in Lemma B.11.2, we

have

FSub(C) = {Im f | X ∈ F , f ∈ F/X}
= {(P � X) ∈ Sub(C) | X ∈ F , P ∈ FSub(X)}.

The set FSub(C) is small, since F is small and FSub(X) is small for each X ∈ F .

Step c. First, we prove that (P
m

� X) ∈ FSub(C) is FP in Sub(C).

‡ Opreindexings
∐

f � f∗ do not have to satisfy the Beck–Chevalley condition.
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Sublemma 6.4. Let (QI

nI
� YI )I∈I be a filtered diagram in Sub(C). Then pointwise colimits

ColimI∈I YI and ColimI∈I QI in C form a colimit of the diagram in Sub(C):

Colim
I∈I

(QI

nI
� YI ) =

(
Colim
I∈I

QI → Colim
I∈I

YI

)
.

Proof. (Of the sublemma) On the one hand, by Lemma C.11, the colimit (Q
n

� Y ) =

ColimI∈I(QI � YI ) can be explicitly described as

Y = Colim
I∈I

YI , Q =
∨
I∈I

∐
κI
QI , (21)

where (YI

κI→ Y )I∈I is a colimiting cocone. On the other hand, both (QI )I∈I and (YI )I∈I are

I-shaped diagrams in C with a monotransformation (QI

nI
� YI )I . Therefore, by Adámek

and Rosický (1994, Corollary 1.60), the induced arrow n′ : ColimI QI → ColimI YI is

monic. In Sub(Y ), we have

Q =
∨
I∈I

Im
(
QI

nI→ YI

κI→ Y
)

= Im
((

Colim
I∈I

QI

) n′→ Y
)

by Lemma B.7

= Colim
I∈I

QI the arrow n′ is already monic.

As we have Y = ColimI YI in C, this concludes the proof of the sublemma.

Let (QI

nI
� YI )I∈I be a filtered diagram in Sub(C); (Q

n
� Y ) be its colimit; and

g : (P
m

� X)→ (Q
n

� Y ) be an arrow in Sub(C).

There exists an FP object Z ∈ F and a strong epimorphism p : Z � P by the definition

of FSub(C) and FSub(X). The preservation of filtered colimits is shown as follows:

Colim
I∈I

(
Sub(C)

(
(P

m
� X), (QI

nI
� YI )

))
(∗)∼= Colim

I∈I
{(fI : X → YI , gI : Z → QI ) | fI ◦ m ◦ p = n ◦ gI}

= Colim
I∈I

(
C(X,YI )×C(Z,YI ) C(Z,QI )

)
where C(X,YI )×C(Z,YI ) C(Z,QI ) is a suitable pullback

∼=
(

Colim
I∈I

C(X,YI )
)
×ColimI∈I C(Z,YI )

(
Colim
I∈I

C(Z,QI )
)

Sets is LFP and hence filtered colimits and finite limits commute

∼= C(X,Colim
I∈I

YI )×C(Z,ColimI∈I YI ) C(Z,Colim
I∈I

QI ) X,Z are FP in C

= C(X,Y )×C(Z,Y ) C(Z,Q) by Sublemma 6.4

= {(f : X → Y , g : Z → Q) | f ◦ m ◦ p = n ◦ g}
(†)∼= Sub(C)

(
(P

m
� X), (Q

n
� Y )

)
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where the bijection (∗) is by the diagonal fill-in

Z
p

�� �� P
��

m
��

����� QI
��
nI
��

������
gI

X
fI

�� YI

and (†) follows similarly.

Step d. The following observation on canonical diagrams with respect to F ⊆ C and

FSub(C) ⊆ Sub(C) is useful.

Sublemma 6.5. The forgetful functor

FSub(C)/n

↓
F/Y

is an opfibration.

Proof. Recall that
Sub(C)
↓
C

is a bifibration. Then
FSub(C)

↓
F

is an opfibration, because the full

subcategory FSub(C) ⊆ Sub(C) is closed under opreindexing as depicted in the diagram

Z �� �� P
��

��

�� ��
∐

f P
��

��

X
f

�� X ′ .

By the diagonal fill-in

P
��

��

�� ��
∐

f P
��

��

�������� Q
��
n
��

������

X
f

�� X ′ �� Y ,�����	

the opreindexing in
FSub(C)

↓
F

lifts to an opreindexing in

FSub(C)/n

↓
F/Y

.

Step e. In the remainder of the proof, we show that every object (Q
n

� Y ) ∈ Sub(C) is

a colimit of a filtered diagram in FSub(C). Let us take a filtered diagram (YI )I∈I such that

Y = ColimI∈I YI in C and YI ∈ F (for each I ∈ I).
We shall define a diagram (QJ

nJ
� YqJ)J∈J in FSub(C) and a functor q : J → I. The

(colimiting) cocone (YI

κI→ Y ) induces a functor I → F/Y , and we obtain an opfibration
J
↓q
I

by change-of-base (Jacobs 1999, Lemma 1.5.1):

J

q

��
�
�
�
��

����� FSub(C)/n

��

π �� FSub(C)

��

I �� F/Y
π �� F ,
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in particular, JI ∼= (FSub(C)/n)κI
∼= FSub(YI )/κ

∗
IQ:

J�

q

��

QJ
��

nJ

��

�� Q
��

n

��

QJ����

�	
��

��

��
�
�

���
���

���

κ∗IQ
��

��

��
�� Q
��
n
��

I , YI κI
�� Y , YI κI

�� Y .

Therefore by Lemma B.11.2, we have a filtered colimit∨
J∈JI

QJ = κ∗IQ in Sub(YI ). (22)

Moreover, the filtered colimit (22) in Sub(X) forms a filtered colimit:

Colim
J∈JI

(QJ � YI ) = (κ∗IQ � YI ) in Sub(C), (23)

because Sub(YI ) ⊆ Sub(C) is closed under filtered colimits. Consequently,

Colim
J∈J

(QJ

nJ
� YqJ) ∼= Colim

I∈I
Colim
J∈JI

(QJ � YI ) by Lemma C.12

= Colim
I∈I

(κ∗IQ � YI ) by Equation (23)

=

((
Colim
I∈I

κ∗IQ
)

�
(

Colim
I∈I

YI

))
by Sublemma 6.4

∼= (Q
n

� Y ) by Lemma B.8.

Step f. Recall that
J
↓q
I

is an opfibration such that the base category I and each fibre JI
are filtered. It is straightforward to show the total category J is also filtered.

It follows from Lemma 6.3 and Corollary 6.2 that the internal logic of a topos that

is LFP is finitely determined. Note that an (elementary) topos is necessarily a locally

Cartesian closed category (LCCC) (see e.g. Jacobs (1999, Proposition 5.4.7)).

Corollary 6.6. Let C be LFP and at the same time a topos (or more generally an LCCC).

Then the subobject fibration
Sub(C)
↓
C

is finitely determined.

Proof. By the assumption that C is an LCCC,
Sub(C)
↓
C

has products
∏

f � f∗ between

fibres (Jacobs 1999, Corollary 1.9.9). We already proved that each fibre is a complete

lattice. These sup’s (i.e. colimits in a fibre) are preserved by reindexing f∗ since the latter is

a left adjoint f∗ �
∏

f . Namely, the fibration
Sub(C)
↓
C

has fibrewise colimits. Opreindexings
∐

satisfy the Beck–Chevalley condition since the products
∏

do (Jacobs 1999, Lemma 1.9.7).

Namely, the fibration
Sub(C)
↓
C

has coproducts.
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6.2. Family fibrations

We turn to the family fibration
Fam(Ω)
↓

Sets
over a poset Ω (see Appendix C).

Lemma 6.7. Let Ω be an algebraic lattice, i.e. a complete lattice in which each element

is a join of compact elements. (Equivalently, Ω is LFP when thought of as a category.)

Then the total category Fam(Ω) is LFP: The set

FFam(Ω) := { f : X → Ω | X is finite, and for each x ∈ X, f(x) is compact in Ω } (24)

consists of FP objects in Fam(Ω); and every object (Y , g) ∈ Fam(Ω) is a colimit of a

filtered diagram in FFam(Ω). Noting that f ∈ FFam(Ω) is above a finite set X, by Lemma 6.1,
Fam(Ω)
↓

Sets
is finitely determined.

Proof. Step a. Let us first see that the fibration
Fam(Ω)
↓

Sets
has fibrewise limits and colimits

and coproducts
∐

between fibres. The former follows from Ω being a complete lattice;

the latter is shown from Jacobs (1999, Lemma 1.9.5). In view of Lemma C.11, it follows

that the total category Fam(Ω) is cocomplete.

Step b. Before going on, we prove the following.

Sublemma 6.8. Let (YI )I∈I be a filtered diagram in Sets, and J =
∫
Y( ) be its category

of elements, i.e. J has objects {(I, y′) | I ∈ I, y′ ∈ YI} and arrows J
(
(I1, y

′
1), (I2, y

′
2)
)

=

{i ∈ I(I1, I2) | Yi(y
′
1) = y′2}. Let (YI

κI→ Y )I be a colimiting cocone. For each y ∈ Y , the

following full subcategory of J is filtered:

Jy = {(I, y′) | I ∈ I, y′ ∈ YI , κI (y
′) = y}.

Moreover, the category J is a disjoint sum of the full subcategories:

J =
∐

y∈ColimI∈I YI

Jy . (25)

Proof. By Y = {(I, y′) | I ∈ I, y′ ∈ YI}/∼ where (I1, y
′
1) ∼ (I2, y

′
2) if and only if there

exist I ∈ I, i1 : I1 → I , and i2 : I2 → I such that Yi1 (y
′
1) = Yi2 (y

′
2) (in YI ).

Step c. We prove that each (X
f
→ Ω) ∈ FFam(Ω) is FP in Fam(Ω). Let

(
(YI

gI→ Ω)
κI→ (Y

g
→

Ω)
)
I∈I be a colimiting cocone in Fam(Ω) over a filtered diagram I.

By Lemma C.11, we obtain that Y = ColimI∈I YI ; and that

g(y) =
(∨
I∈I

∐
κI
gI

)
(y) =

∨
I∈I

(
(
∐

κI
gI )(y)

)
=

∨
I∈I

( ∨
y′∈κ−1

I ({y})

gI (y
′)
)

=
∨

(I,y′)∈Jy

gI (y
′) for each y ∈ Y .

(26)

The first equality is by Lemma C.11; the second is because the order in the fibre

Fam(Ω)Y = ΩY is pointwise; and the third is by the concrete description (Jacobs 1999,

Lemma 1.9.5) of
∐

in
Fam(Ω)
↓

Sets
.
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Let J and Jy be categories as in Sublemma 6.8. Note that
J
↓
I

is an opfibration with

fibres JI = YI that are discrete.

Colim
I∈I

Fam(Ω)
(
(X

f
→ Ω), (YI

gI→ Ω)
)

∼= Colim
I∈I

∏
x∈X

∐
y′∈YI

(
f(x) �Ω gI (y

′)
)

by the definition of arrows in Fam(Ω)

∼=
∏
x∈X

Colim
I∈I

∐
y′∈YI

(
f(x) �Ω gI (y

′)
)

I is filtered and X is finite

∼=
∏
x∈X

Colim
(I,y′)∈J

(
f(x) �Ω gI (y

′)
)

by Lemma C.12

∼=
∏
x∈X

∐
y∈ColimI∈I YI

Colim
(I,y′)∈Jy

(
f(x) �Ω gI (y

′)
)

by Equation (25)

∼=
∏
x∈X

∐
y∈ColimI∈I YI

(
f(x) �Ω

∨
(I,y′)∈Jy

gI (y
′)
)

Jy is filtered and f(x) ∈ Ω is compact

∼= Fam(Ω)
(
(X

f
→ Ω), (Y

g
→ Ω)

)
by Equation (26),

where ( �Ω ) denotes the homset Ω( , ), which has at most one element, in the lattice

Ω thought of as a category.

Step d. The collection FFam(Ω) is obviously small.

Step e. We are done if we prove that every object P ∈ Fam(Ω) is a filtered colimit of

its subobjects from FFam(Ω). This easily follows from the fact that the same is true in Sets

(obvious) and in Ω (being an algebraic lattice).

Remark 6.9. It is worth mentioning that the fibrations
Sub(C)
↓
C

(in Lemma 6.3) and
Fam(Ω)
↓

Sets
(in

Lemma 6.7) are fibrewise algebraic lattices, in the following sense, each fibre is an algebraic

lattice; and each reindexing f∗ between fibres is a ‘homomorphism’ of algebraic lattices,

which we define to be a monotone map that preserves arbitrary meets and directed joins.

In other words, each reindexing f∗ is a finitary right adjoint functor. We have essentially

shown this fact in the proofs for these examples (Lemmas 6.3 and 6.7). Indeed, through

the Gabriel–Ulmer duality (Gabriel and Ulmer 1971), a finitary right adjoint functor

f∗ : PY → PX between LFP categories corresponds to a functor
∐

f : (PX)FP → (PY )FP

that preserves finite colimits, where ( )FP denotes the full subcategory consisting of all

the FP objects. All this indicates that the preservation of compact elements under the

coproduct
∐

is crucial in our developments.

We shall, however, assume Cond. 2, the stronger condition that reindexing arrows

f∗ preserve arbitrary joins, too. This simplifies definitions and emphasizes duality as in

Lemma 5.6.

6.3. Presheaf categories

Presheaf categories are well-known examples of LFP categories. See Adámek and Rosický

(1994).
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Example 6.10 (Presheaf categories). Let A be small. The presheaf category SetsA is LFP:

the set F of finite colimits of representable presheaves yA, where yA = A(A, ), satisfies

the conditions of Definition 3.1. Indeed, any presheaf X is a filtered colimit of objects

in F since X is a colimit (that is not necessarily filtered) of representable presheaves

(Lemma 6.14).

For the subobject fibration of a presheaf category SetsA, Cond. 3.3 and 3.3 in

Definition 3.3 (for X ∈ F ) reduce to the representable case X = yA.

Lemma 6.11. The subobject fibration
Sub(SetsA)

↓
SetsA

is well-founded if and only if for all

A ∈ A the poset Sub(yA) has no strictly descending chain. The subobject fibration is

co-well-founded if and only if for all A ∈ A the poset Sub(yA) has no strictly ascending

chain.

Sublemma 6.12. Let (XI )I be a finite diagram in SetsA. If for each I the poset Sub(XI ) has

no strictly descending chain, then so does Sub(ColimI XI ). If for each I the poset Sub(XI )

has no strictly ascending chain, then so does Sub(ColimI XI ).

Proof. (Of Sublemma 6.12) We rely on a presentation of colimits by coproducts and

coequalizers. In a topos (hence a regular category) SetsA coproducts are disjoint (see

e.g. Jacobs (1999, Exercise 4.5.1)); thus, we have an isomorphism of posets

Sub(X1 + · · ·+ Xn) ∼= Sub(X1)× · · · × Sub(Xn).

Let X � Y
e

� Z be a coequalizer in SetsA. The correspondence e∗ : Sub(Z)→ Sub(Y )

is easily seen to be injective. Indeed, assume P 
∼= P ′ in Sub(Z); then PA 
∼= P ′A in Sets

for some A ∈ A, and since eA : YA→ ZA is surjective, we have

(e∗P )A = e−1
A (PA) 
∼= e−1

A (P ′A) = (e∗P )A .

Therefore, if Sub(Z) has a strictly descending or ascending chain, Sub(Y ) has a strictly

descending or ascending chain, respectively. This concludes the proof of the sublemma.

Proof. (Of Lemma 6.11) By Example 6.10, Corollary 6.6 and Sublemma 6.12.

The previous lemma reduces the size problem of the fibration
Sub(SetsA)

↓
SetsA

to that of

Sub(yA). In calculating Sub(yA), we will be using the following well-known characterization

of presheaves as colimits of representables.

Definition 6.13. Let A be a small category and P : A→ Sets be a functor. The category of

elements of P , which is denoted by
∫
P , consists of objects that are pairs

(
A ∈ A, p ∈ PA

)
and arrows (∫

P
) (

(A, p), (B, q)
)

= {f : A→ B | P (f)(p) = q} .

Lemma 6.14. Any presheaf P ∈ SetsA is canonically isomorphic to the colimit of

representable functors indexed by the category of elements: P ∼= Colim(A,p)∈
∫
P yA.
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Proof. For each object (A, p) ∈
∫
P , an arrow yA→ P is induced by (yA)B = A(A,B) �

g �→ P (g)(p) ∈ PB. It is not difficult to see that these arrows yA → P are natural

in (A, p) ∈
∫
P and form a colimiting cocone. See e.g. Adámek and Rosický (1994,

Proposition 1.45) for details.

Proposition 6.16 (presented later) will be our principal tool for calculating Sub(yA). The

proposition is inspired by the following cocompletion results (Lemma 6.15), which will

not be themselves used in our subsequent technical developments.

Lemma 6.15. Let A be a small category.

1. The category SetsA of presheaves is a free cocompletion of the category Aop (with

the unit y : Aop → SetsA), that is, for a functor F : Aop → C to a cocomplete

category C there uniquely (up to natural isomorphisms) exists a cocontinuous functor

G : SetsA → C such that F ∼= G ◦ y.

2. Let P ∈ SetsA be a presheaf. There exists an equivalence of categories SetsA/P ∼=
Sets

∫
P . Hence, the slice category SetsA/P is a free cocompletion of the category

(
∫
P )op.

3. Let A ∈ A be an object. The category SetsA/(yA) is equivalent to the category

SetsA/A. Hence, the slice category SetsA/(yA) is a free cocompletion of the category

(A/A)op = Aop/A,

Proof. The item 1 is well-known: the functor G is given by GP = Colim(A,p)∈
∫
P FA. In

particular, when we take y : Aop → SetsA as F , we obtain G that is naturally isomorphic

to id : SetsA → SetsA. This generalizes Lemma 6.14.

The item 2 – with a strong fibrational flavour, via the Grothendieck construction – is

found e.g. in Mac Lane and Moerdijk (1992, Exercise III.8.(a)). The equivalence is given

explicitly by

SetsA/P �� Sets
∫
P Sets

∫
P �� SetsA/P

(Q
α−→ P )

� ��
[

(A, p) �→ (αA)−1({p})
]

R
� ��

[
A �→

∐
p∈PA R(A, p)

]
,

where, in the last entry, we only presented a presheaf in SetsA (an arrow to P is given

obviously by a projection).

The item 3 is obtained from the item 2 and the fact that
∫

(yA) = A/A (an easy

observation).

Proposition 6.16.

1. Let A be small. For any A ∈ A, the subset

{Im(yB
yf
−→ yA) | B ∈ A, f : A→ B} ⊆ Sub(yA)

is dense as a full subcategory, that is, for any subpresheaf Q � yA, there canonically

exists a family (fI : A→ BI )I such that Q =
∨

I Im(yfI ). Here, Im(α) denotes the image

of an arrow α.

2. Furthermore, assume that every arrow f with domain A ∈ A factors as f = m ◦ e
with an epi e and a split mono m. Then (the image of) the canonical embedding
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Quot(A) � Sub(yA) is dense. Here, Quot(A) denotes the poset of quotient objects of

A.

Proof. A detailed proof is given in Appendix D.

Corollary 6.17. If the following condition 1 holds for each A ∈ A, then the fibration
Sub(SetsA)

↓
SetsA

is both well-founded and co-well-founded.

1. The subset {Im(yf) | B ∈ A, f : B → A} ⊆ Sub(yA) is finite. Furthermore, for each

A ∈ A, the following condition 2 implies the condition 1 above.

2. Any arrow f with domain A factors as f = m ◦ e with an epi e and a split mono m,

and moreover, Quot(A) is a finite set.

Proof. By Lemma 6.11, it is enough to show that for each A ∈ A the poset Sub(yA) is

finite.

Assume that A ∈ A satisfies the condition 1: the subset {Im(yf) | B ∈ A, f : B →
A} ⊆ Sub(yA) is finite. By Proposition 6.16.1, we have Sub(yA) = {

∨
I Im(yfI ) | (BI ∈ A,

fI : B → A)I}, which is also finite.

That the condition 2 implies 1 follows from Proposition 6.16.2.

To determine whether Im(yf) = Im(yg) holds for arrows f and g with the same domain,

the following lemma is useful.

Lemma 6.18. The inclusion relation � on {Im(yf) ∈ Sub(yA) | B ∈ A, f : A → B} is the

partial order induced by the preorder 	 on {f | B ∈ A, f : A→ B}. The latter is defined

by

(f : A→ B) 	 (g : A→ C) if and only if f = h ◦ g for some h : C → B.

Proof. Let f : A→ B, g : A→ C be arrows in A. We first observe that(
Im(yf)

)
D = Im

(
(yB)D

(yf)D−→ (yA)D
)

= {(yf)D(k) | k ∈ (yB)D}
= {k ◦ f : A→ D | k : B → D}

(27)

for D ∈ A.

Assume that Im(yf) � Im(yg) in Sub(yA). In particular, it holds
(
Im(yf)

)
B ⊆

(
Im(yg)

)
B

as subsets of (yA)B = A(A,B). We have f = idB ◦f ∈
(
Im(yf)

)
B by Equation (27); hence,

f ∈
(
Im(yg)

)
B. Thus, there exists h : C → B such that f = h ◦ g, which is the definition

of f 	 g.

Conversely, assume that f = h ◦ g for some h : C → B. For any D ∈ A, we have(
Im(yf)

)
D = {k ◦ h ◦ g : A→ D | k : B → D} by Equation (27)

⊆ {k′ ◦ g : A→ D | k′ : C → D}
=

(
Im(yg)

)
D by Equation (27)

as subsets of (yA)D. Therefore, Im(yf) � Im(yg).
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7. Concrete examples

Example 7.1 (Pred). The fibration
Pred
↓

Sets
for the conventional setting of classical logic is

easily seen to be well-founded and co-well-founded. In particular, PredX ∼= PX is finite if

X is FP (i.e. finite). Therefore, to any finitary F and any predicate lifting ϕ, the results

in Section 3 apply.

The (interpretations of the) formulas in Rν (see Example 3.10) are examples of coin-

ductive predicates in
Pred
↓

Sets
. Besides them, the study of coalgebraic modal logic has identified

many predicate liftings for many functors F (probabilistic systems, neighbourhood frames,

strategy frames, weighted systems, etc.; see e.g. Cı̂rstea et al. (2011) and the references

therein). These ‘modalities’ all define coinductive predicates, to which the results in Section

3 may apply.

Example 7.2 (Rel). The fibration
Rel
↓

Sets
can be introduced from

Pred
↓

Sets
via change-of-base;

concretely, an object of Rel is a pair (X,R) of a set X and a relation R ⊆ X×X; an arrow

f : (X,R)→ (Y , S) is a function f : X → Y such that xRx′ implies f(x)Sf(x′). See Jacobs

(1999, p. 14).

This fibration, similarly to
Pred
↓

Sets
, is easily seen to be well-founded and co-well-founded;

therefore, to any finitary F , the results in Section 3 apply. A predicate lifting ϕ along
Rel
↓

Sets
is more commonly called a relation lifting (Hermida and Jacobs 1998); by choosing

suitable ϕ for given F (a ‘sufficiently comprehensive’ one) like in Hermida and Jacobs

(1998), a ϕ-invariant is precisely an F-bisimulation relation (in the coalgebraic sense), and

the ϕ-coinductive predicate is F-bisimilarity. We expect that the ω-behavioural bound

in Theorem 3.9 can be used to bound execution of bisimilarity checking algorithms by

partition refinement (for many different functors F).

In the following example, one can think of Ω as a Heyting algebra, and then the

underlying logic becomes constructive.

Example 7.3 (Fam(Ω)). Let Ω be an algebraic lattice that has no strictly descending (ωop-

)chains. Then the family fibration
Fam(Ω)
↓

Sets
is well-founded (see Lemma 6.7). Therefore, to

any finitary F , the results in Section 3 apply. It is not hard to interpret the language Rν

in this setting, by defining predicate liftings similar to Equation (7). This gives examples

of coinductive predicates in
Fam(Ω)
↓

Sets
.

Similarly, fibrations
Fam(Ωop)
↓

Sets
are co-well-founded for algebraic lattices Ω by Lemma 5.6,

because the fibrations are fibrewise opposite of well-founded fibrations
Fam(Ω)
↓

Sets
.

7.1. Presheaf examples

Let F be the category of natural numbers as finite sets (i.e. n = {0, 1, . . . , n − 1}) and all

functions between them; F+ be its full subcategory of nonzero natural numbers; and I
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be the category of natural numbers and injective functions. Coalgebras in the presheaf

categories SetsF, SetsF+ and SetsI are commonly used for modelling processes in various

name-passing calculi. For the π-calculus, SetsI has been found appropriate (see e.g. Stark

(1996), Fiore and Turi (2001) and Fiore and Staton (2006)); while for the fusion calculus,

we do need non-injective functions in F or F+ (see Miculan (2008) and Staton (2011)).

Inspired by Klin (2007), we are interested in coinductive predicates for such processes.

They are naturally modelled in the subobject fibration of a presheaf category. Here, we

find a distinction: the subobject fibrations of both SetsF and SetsF+ are well-founded and

co-well-founded; but that of SetsI is not well-founded (it is co-well-founded). In view of

Lemma 6.11, the only condition to check is Cond. 3.3 or 3.3 for X = yA.

Example 7.4 (Sub(SetsF), Sub(SetsF+)). The subobject fibration
Sub(SetsF+)

↓
SetsF+

is well-founded

and co-well-founded: this is shown by that the second condition of Corollary 6.17 holds

for any A ∈ F+. An important fact here is that in F (or in Sets) a mono with a non-empty

domain splits, and thus every mono in F+ is a split mono.

The subobject fibration
Sub(SetsF)
↓

SetsF
is well-founded and co-well-founded, too. To show that

Sub(y0) is finite, we appeal directly to the first condition of Corollary 6.17: We observe

by Lemma 6.18 that the set {Im(yf) | n ∈ F, f : 0 → n} is equal to the two-element set

{ Im(y(0
id0→ 0)), Im(y(0

!→ 1)) } since 0
!→ n and 0

!→ m factor through each other, for each

n, m � 1.

We turn to functors F and ϕ. In modelling processes of name-passing calculi as

coalgebras in these categories, one typically uses endofunctors F that are constructed

from the following building blocks. Let N ∈ {F,F+, I}.

— Constant functors, binary sum +, binary product × and exponentials ( )X . These are

much like for polynomial functors on Sets. An important example of the first is the

name presheaf N = Hom(1, ) ∈ SetsN.

— The abstraction functor δ : SetsN → SetsN given by δX = X( + 1).

— The free semilattice functor Pf for finite branching. This captures Kuratowski finiteness

and suitable in SetsI. See e.g. Fiore and Turi (2001) and Staton (2011).

— In SetsF and SetsF+ , another choice of a ‘finite powerset functor’ K̃ is more appropriate.

See Miculan (2008); also, Staton (2011, p. 4).

All such functors are known to be finitary (see e.g. Miculan (2008)).

Coinductive predicates in this setting can be introduced much like Rν in Example 2.4

(note that SetsN is a topos for N ∈ {F,F+, I}), for properties like deadlock freedom. Such

a language can be extended further through the modalities proposed in Klin (2007): they

correspond to constructions specific to presheaves and include the modality 〈a(b)〉 for a

binding ‘input’ operation. More examples will be worked out in our future paper.

Example 7.5 (Sub(Setsω),Sub(SetsI)). Consider the presheaf category Setsω over the

ordinal ω as a poset. The fibration
Sub(Setsω)

↓
Setsω

is finitely determined but not well-founded. It

fails to satisfy Cond. 3.3 in Definition 3.3: Let Pn : ω → Sets be the family of presheaves
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defined by

Pn(m) :=
(

0 if m < n; 1 if n � m
)

for each n ∈ ω. Then P0 > P1 > · · · is a strictly descending chain in Sub(y0). The same

counterexample works for Sub(SetsI).

In contrast, the fibrations
Sub(Setsω)

↓
Setsω

and
Sub(SetsI)
↓

SetsI
are co-well-founded, by Lemma 6.11

and the following lemma.

Lemma 7.6. For A ∈ {ω, I} and for any n ∈ A, the poset Sub(yn) is isomorphic to the

opposite of the ordinal ω + 1 = ω ∪ {ω}. Hence, Sub(yn) has no strictly increasing chain.

Proof. First, we shall invoke Lemma 6.18. Let f : n → m be an arrow in A. Note that

the existence of the arrow f induces m � n as natural numbers. For an arrow g : n→ m′

in A, it is easy to see that f factors through g if and only if m′ � m. In particular, arrows

f, f′ : n � m factor through each other; therefore, we may denote by Im(ym) the image

Im(ym
yf
→ yn) ∈ Sub(yn). Moreover, by Lemma 6.18, we have

Im(ym) � Im(ym′) if and only if m � m′ .

Therefore, there exists an isomorphism of posets

I : ωop
∼=−→ {Im(ym) | m � n} = {Im(ym

yf
→ yn) ∈ Sub(yn) | m ∈ A, f : n→ m}

defined by I(k) = Im
(
y(n + k)

)
.

We shall induce an isomorphism (the monotone function J below) between the

‘cocompletion’ of both-hand sides of the isomorphism I . Let DSub(ωop) be the poset

of downward closed subsets of ωop ordered by inclusion, and ω + 1 be the ordinal. Let

h : (ω + 1)op → DSub(ωop) be a function such that

h(k′) =
(
↓ k if k′ = k ∈ ω; � if k′ = ω

)
for k′ ∈ ω + 1, where ↓ k = {k, k + 1, . . .} is the downward closure of {k} ⊆ ωop. It is easy

to see that h becomes an isomorphism of posets. Since the poset Sub(yn) is cocomplete,

the isomorphism I induces the diagram

ωop

��
↓( )

��

I

∼=
�� {Im(ym

yf
→ yn) | m ∈ A, f : n→ m}

��
i
��

DSub(ωop)
J

�� Sub(yn)

in Posets, where i is the canonical inclusion, and J(S) =
∨

k∈S I(k) is the sup of the

images under the isomorphism. It is enough to show that J is also an isomorphism of

posets.

On the one hand, the inclusion i is dense as a full subcategory by Proposition 6.16.1, that

is, the monotone function J is surjective. On the other hand, the nullary sup J(�) = 0 in

Sub(yn) is strictly less than any other image J(↓ k) = I(k) = Im
(
y(n+k)

)
for k ∈ ω. Hence,

the monotone function J : DSub(ωop)→ Sub(yn) is an embedding (i.e. a monotone injection
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that reflects the order) that extends the embedding i ◦ I : ωop → Sub(yn). Therefore, the

monotone function J is a surjective embedding, that is, an isomorphism of posets.

In contrast to Setsω , the subobject fibration for Setsω
op

is well-founded and co-well-

founded by Corollary 6.17. Indeed, arrows f : n → m in ωop has an (Epi,SplitMono)-

factorization n � m � m, and Quotωop(n) = {n, n− 1, . . . , 0} is a finite set.

Remark 7.7. Well-foundedness fails in Sub(Setsω), Sub(SetsI) and in Fam(Ω) for Ω that

does have a strictly descending ωop-chain. This means the logics modelled by the fibrations

are inherently ‘big.’ Still, extensions of our results in Section 3 are possible from finitary

(i.e. ω-presentable) to the λ-presentable setting for bigger λ, so that they apply to the

(current) non-examples.

8. Conclusions and future work

We have investigated a mathematical theory of coinductive (and inductive) predicates

over coinductive datatypes, formalized categorically using coalgebras and fibrations. Our

technical results are about iterative constructions of coinductive predicates; they are stated

also in abstract categorical terms, using the language of locally presentable categories.

In this paper, we focussed on purely coinductive predicates and purely inductive ones.

However, in system verification, their combination is very commonly used. Such mixture

of induction and coinduction is studied fibrationally in Hensel and Jacobs (1997), but

over mixed inductive and coinductive data types, and not over a coalgebra. We believe

a recent lattice-theoretic characterization of nested/alternating least and greatest fixed

points (Hasuo et al. 2016) will provide a handle for suitably extending the current work.

Search for useful coinduction proof principles is an active research topic (see e.g. Bonchi

and Pous (2013) and Hur et al. (2013)). We are interested in the questions of whether

these principles are sound in a general fibrational setting, and what novel proof principles

a fibrational view can lead to. In fact, the well-known technique of coinduction up-to

has been formulated in fibrational terms (Bonchi et al. 2014) and revealed exciting new

applications like nominal automata.

Coalgebraic modal logic is more and more often introduced based on a Stone-like

duality (see e.g. Klin (2007)). Fibrational presentation of such dualities will combine the

benefits of duality-based modal logics and the current results. We are also interested in

the relationship to coalgebraic infinite traces (Cı̂rstea 2011; Jacobs 2004).

Kozen’s metric coinduction (Kozen and Ruozzi 2009) is a construction of coinductive

predicates by the Banach fixed point theorem and is an alternative to the current paper’s

order-theoretic one. Its fibrational formulation is an interesting future topic.

Practical applications of our categorical behavioural bounds shall be pursued, too.

Our results’ precursor – the bounds for the final sequences in Sets (Adámek 2003;

Worrell 2005) – have been used to bound execution of some algorithms, e.g. for state

minimization (Adámek et al. 2012; Ferrari et al. 2002, 2005). We aim at similar use.

Finally, games are an extremely useful tool in fixed point logics (also in their coalgebraic

generalization, see Venema (2006), Cı̂rstea and Sadrzadeh (2008), Cı̂rstea et al. (2009);
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also, Kupke (2007)). We plan to investigate the use of games in the current (even more

general) fibrational setting.
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Appendix A. Theory of Coalgebra

Given a category C and an endofunctor F : C → C, an F-coalgebra is a pair of X ∈ C
and an arrow c : X → FX (we shall denote a coalgebra simply by X

c→ FX). The notion

has turned out to be a useful categorical abstraction of state-based dynamic systems. In

an F-coalgebra X
c→ FX, the carrier object X ∈ C is understood as a state space; the

functor F specifies the behaviour type; and the arrow c represents actual dynamics. In

the most common setting of C = Sets, examples of functors F (and the corresponding

behaviour types) are

— A× ( ) for A-stream automata;

— P(AP)× P( ) for Kripke models;

— P(AP) × Pω( ) for finitely branching Kripke models, with where Pω is the finite

powerset functor;

— P(A× ) for labelled transition systems;

— D(A× ) for generative probabilistic systems;

and so on. See Rutten (2000) and Jacobs (2012) for detailed introduction.

In the theory of coalgebra as a categorical theory of (state-based dynamical) systems,

the notion of final coalgebra plays a prominent role. A final F-coalgebra Z
ζ→ FZ is one

such that, for any F-coalgebra X
c→ FX, there is a unique morphism of coalgebras from

c to ζ.

FX
Fc ������� FZ

X
c ��������

c
��

Z
final ζ

�� (28)
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Its system-theoretic significance is that: 1 Z is often the collection of ‘all possible F-

behaviours’; and 2 the induced arrow c assigns, to each state in X, its behaviour. The

‘behaviours’ here follow a black-box view on systems (it ignores internal states) and often

captures the natural notion of ‘F-bisimilarity.’

Therefore, a question arises if a final F-coalgebra exists. The well-known Lambek

lemma (that ζ is necessarily an iso) prohibits e.g. a final P-coalgebra. What matters here

is the size of F: When it is suitably bounded, a concrete construction of a final coalgebra

is known. It obtains a final coalgebra via a final F-sequence (Here, 1 is a final object in

C).

1 F1
!�� · · ·�� Fi1

Fi−1 !�� · · ·Fi !�� (29)

In particular, if F is finitary (a size restriction described later), a final coalgebra arises as a

suitable quotient of the limit of the final sequence (4). This construction in Sets is worked

out in Worrell (2005); it is further extended to locally presentable categories (those are

categories suited for speaking of ‘size’) with additional assumptions in Adámek (2003).

The current paper’s goal is to apply this construction also to coinductive predicates.

Appendix B. Locally Finitely Presentable Categories

The theory of coalgebra has been mainly developed in the base category C = Sets.

Exceptions include the category of nominal sets or (pre)sheaf categories (e.g. Fiore

and Staton (2006, 2009)) for name-passing calculi, and Kleisli categories (e.g. Hasuo

et al. (2007) and Hasuo (2010)) for trace semantics and simulation. The current paper

follows Adámek (2003) and Klin (2007) and finds LFP categories a convenient abstract

setting. Here, we follow Adámek and Rosický (1994) and list a minimal set of definitions

and results on LFP categories.

The following is a categorical formalization of ‘finiteness’ of objects. Examples are

finite sets (in Sets), and algebras presented by finitely many generators and finitely many

equations (in suitable categories of algebras).

Definition B.1 (Finitely presentable object). An object X ∈ C is FP if the functor

C(X, ) : C → Sets preserves filtered colimits.

Definition B.2 (Locally finitely presentable category). A category C is LFP if it is

cocomplete and it has a (small) set F of FP objects such that every object is a filtered

colimit of objects in F .

Remark B.3 (Adámek and Rosický (1994, Theorem 1.5)). A filtered colimit can be

rewritten as a directed colimit. Hence, every object in an LFP category is a directed

colimit of objects in F . Some papers prefer to use directed colimits instead of filtered

colimits in the definition of LFP categories, possibly because of simplicity in notations.

Lemma B.4. Let C be LFP, with a set F of FP objects as in Definition 3.1; and X ∈ C.

The canonical diagram for X with respect to F

F/X
π−→ F ↪−→ C (30)
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is filtered, and X is its colimit. Here, π is the projection from the comma category F/X

of F ↪→ C and 1
X→ C.

Proof. In case F contains all the FP objects up to isomorphisms, our claim would be

Adámek and Rosický (1994, Proposition 1.22). In our current general case, almost the

same proof yields our claim, except that we also have to show that the diagram F/X is

filtered.

We shall show that any finite diagram (YI

fI→ X)I∈I in F/X has its cocone (in F/X).

First, we construct a cocone in C/X. Let (YI

κI→ Y )I be a colimiting cocone in C. The

arrows (fI )I induce f : Y → X, which forms a colimiting cocone(
(YI

fI→ X)
κI→ (Y

f
→ X)

)
I∈I in C/X

by Lemma B.5 below.

The finite colimit Y = ColimI YI of FP objects is FP. Therefore, Y is a split quotient of

some object Y ′ in F (Adámek and Rosický 1994, Remark 1.9). Then we obtain a cocone(
(YI

fI→ X)
i◦κI−→ (Y ′ � Y

f
→ X)

)
I∈I in F/X,

where i : Y � Y ′ is a section of Y ′ � Y .

Lemma B.5. Let C be a cocomplete category and (XI )I∈I be a diagram in C. There exists

a canonical isomorphism((
Colim

I
XI

) f
→ Y

)
∼= Colim

I

(
XI

fI→ Y
)

in C/Y (31)

for a cocone (XI

fI→ Y )I and the arrow f : ColimI XI → Y that is induced by the

universality of colimits. In other words, the colimiting cocone over (XI )I in C induces a

colimiting cocone over (fI )I in C/Y .

Proof. We have a cocone (fI
κI→ f)I in C/Y induced by the colimiting cocone (XI

κI→
ColimI XI )I in C, since the diagram below commutes and the arrows fI

κI→ f are natural

in I .

XI

fI ��

κI �� ColimI XI

f ��

Y Y

To prove the isomorphism (31), we shall show that the induced cocone, say c, is colimiting.

Let c′ be an arbitrary cocone (fI
gI→ f′)I in C/Y . An arrow g : ColimI XI → X ′ in C

forms an arrow g : c→ c′ of cocones if and only if for any I ∈ I the diagram

XI

fI ��

κI �� ColimI XI

f ��

g
�������� X ′

f′ ��

������
gI

Y Y Y

(32)

commutes. The universality of colimits in C shows that an arrow g satisfying g ◦ κI = gI
for any I ∈ I uniquely exists. Moreover, the arrow g with this condition satisfies f′ ◦g = f
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since f′ ◦ g ◦ κI = f′ ◦ gI = fI . Hence, there uniquely exists an arrow g : c→ c′ of cocones.

Lemma B.6. (Adámek and Rosický 1994, Corollary 1.28 & Proposition 1.61) Let C be

LFP.

1. C is complete.

2. C has (StrongEpi,Mono)- and (Epi,StrongMono)-factorization structures.

For each X ∈ C, the (StrongEpi,Mono)-factorization structure induces the image functor

Im: C/X → Sub(X), which is left adjoint to the forgetful functor Sub(X) → C/X. An

image of a colimit can be calculated as a sup of images.

Lemma B.7. Let C be LFP and (XI

κI→ X) be a colimiting cocone in C. For an arbitrary

cocone (XI

fI→ Y ), we have

Im f =
∨
I

Im fI in Sub(Y ),

where f : X → Y is induced by the universality of colimits.

Proof. We have

Im
((

Colim
I∈I

XI

) f
→ Y

)
= Im

(
Colim
I∈I

(
XI

fI→ Y
))

=
∨
I∈I

Im
(
XI

fI→ Y
)
.

The former equality is by Lemma B.5; the latter is because Im: C/Y → Sub(Y ) is a left

adjoint functor.

Lemma B.8. Let C be an LFP category.

1. Adámek and Rosický (1994, Proposition 1.59) filtered colimits commute with finite

limits in C. Precisely, the canonical arrow

Colim
I∈I

Lim
J∈J

XI,J → Lim
J∈J

Colim
I∈I

XI,J

is an isomorphism for a diagram (XI,J)(I,J)∈I×J in C such that I is a filtered category

and J is a finite category.

2. Filtered colimits in C are stable under pullbacks.

Proof. We prove the item 2. Let X = ColimI∈I XI be a filtered colimit and f : Y → X

be an arrow. Apply the item 1 to the diagram

( Y
f��

XI κI
�� X

)
I∈I

,
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where J =

( ·
��

· �� ·

)
. This yields a pullback square

ColimI κ
∗
IY

��

��

ColimI Y

ColimI f��

ColimI XI ColimI κI

�� ColimI X
, that is

ColimI κ
∗
IY

��

��

Y
f��

X X

,

because we have X = ColimI∈I X and Y = ColimI∈I Y for a filtered category I. Since a

pullback of f : Y → X along id : X → X is given by f itself, we obtain ColimI κ
∗
IY = Y ,

as required.

The following notion (which is already in Definition B.1) is about the ‘size’ of functors.

An intuition (when C = Sets) is: a functor F is finitary if F ’s action FX on an arbitrary

set X is determined by its action FX ′ on all the finite subsets X ′ ⊆ X.

Definition B.9 (Finitary functor). A functor F : C → D is finitary if it preserves filtered

colimits.

For an endofunctor F : C → C, this notion of finitariness is commonly used to bound the

‘branching degree’ of systems as F-coalgebras. For example, the finite powerset functor

Pω is finitary; the (full) powerset functor P is not.

There are many LFP categories, among which are Sets, the category Posets of posets

and monotone functions, and categories of algebras with finitary operations. See Adámek

and Rosický (1994) for more examples.

Example B.10 (Presheaf categories). Let A be a small category. The presheaf category

SetsA is LFP: the set

F := {finite colimits of representable presheaves yA},

where yA = A(A, ), satisfies the conditions of Definition B.1.

Lemma B.11. Let C be LFP, with F ⊆ C as in Definition 3.1; and X ∈ C.

1. Adámek and Rosický (1994, Proposition 1.57) The slice category C/X is LFP, which

is guaranteed by the set FC/X = F/X of FP objects.

2. The poset Sub(X) of subobjects is LFP (i.e. it is an algebraic lattice, meaning a complete

lattice in which each element is a join of compact elements), which is guaranteed by

the set

FSub(X) = {Im f | f ∈ F/X}
= {(P � X) | there exist an object Z ∈ F and a strong epi Z � P } ,

of FP objects (i.e. compact elements) where Im: C/X → Sub(X) denotes the image

functor defined by the (StrongEpi,Mono)-factorization.

Proof. We shall prove the item 2. A proof that Sub(X) is LFP without explicit description

of FSub(X) is found e.g. in Porst (2011, Theorem 5).
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The lattice Sub(X) is a reflective subcategory of C/X by the reflection Im: C/X →
Sub(X). Thus, Sub(X) ⊆ C/X is closed under filtered colimits by Adámek and Rosický

(1994, Corollary 1.60). Hence, by Adámek and Rosický (1994, Theorem 1.39), Sub(X) is

LFP, with FP objects {Im f | f ∈ F/X}.

Appendix C. Fibrations

We follow Jacobs (1999), although we focus on the simpler notion of poset fibration.

C.1. Introduction (via Indexed Posets)

This paper’s interest is in coinductive predicates, hence in predicate logic. The most

straightforward formalization of predicate is as a subset P ⊆ X of a set (a ‘universe’) X:

an element x ∈ X satisfies P if x ∈ P . Accompanying is the natural notion of entailment:

P entails Q if P ⊆ Q. This way we obtain the poset (2X,⊆) of predicates over X.

However, it is not on a single universe X that we consider predicates. For example,

in a situation where there are two Kripke models c = (X,→, VX), d = (Y ,→, VY ) and

a ‘homomorphism’ f : X → Y , a natural question is if the interpretation of a formula

νu.α is preserved by f. (It is; see Proposition 3.13). Here, we are comparing the predicate

�νu.α�c ⊆ X with the predicate �νu.α�d ⊆ Y reindexed via f : X → Y . The latter is

concretely described as the inverse image

f−1
(
�νu.α�d

)
= { x ∈ X | f(x) ∈ �νu.α�d }.

Therefore, a reindexing structure is also relevant to predicate logic: a function f : X → Y

induces reindexing f−1 : 2Y → 2X . Additionally, the map f−1 is monotone.

To summarize: (1) predicates on a universe X form a poset; (2) a function f : X →
Y between universes induces a monotone reindexing function from the collection of

predicates over X to that over Y . Such a situation is nicely described as a (contravariant)

functor

Φ : Cop −→ Posets , (33)

where Posets is the category of posets and monotone functions. The functor Φ assigns, to

each ‘universe’ X ∈ C, the poset ΦX of predicates over X. Moreover, f : X → Y in C
induces a reindexing map Φf : ΦY → ΦX. This functor Φ is a special case of an indexed

category (Jacobs 1999, Section 1.10).

In the current paper, however, we favour an equivalent presentation of such a structure

by a fibration, since we find the latter to be more amenable to generalization of structures

in ordinary category theory (such as limits). The equivalence between index categories and

fibrations is well-known; here, we sketch the Grothendieck construction from the former

to the latter. Its idea is to ‘patch up’ the posets (ΦX)X∈C and form a big category P , as
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in the following figure:

ΦX ΦY
� �

�� ��

•

� �

�� ��

•��� �������

•
����

•
��

Φf
←− •

��

���
���

•
�� ����

•
��

��� �������

X
f

�� Y

‘patch up’
=⇒

• •��� � �

P

p

��

•
����

•
��

•
��

��� � �

•
�� ����

•
��

��� � �

C X
f

�� Y

On the right, we add some arrows (denoted by ���) so that we have an arrow (Φf)(Q)→ Q

in P for each Q ∈ ΦY . (On the left the correspondence, ���� depicts the action of the map

Φf.) The above diagram in P should be understood as a Hasse diagram: those arrows

which arise from composition are not depicted.

Formally:

Definition C.1 (The Grothendieck construction). Given Φ: Cop → Posets, we define the

category PΦ by

— its object is a pair (X, P ) of an object X ∈ C and an element P of the poset ΦX; and

— its arrow f : (X, P )→ (Y ,Q) is an arrow f : X → Y in C such that

P � (Φf)(Q).

Here, � refers to the order of ΦX.

Thus arises a category P = PΦ that incorporates: the order structure of each of the posets

(ΦX)X∈C; and the reindexing structure by (Φf)f : C-arrow. For fixed X ∈ C, the objects

of the form (X, P ) and the arrows idX between them form a subcategory of P . This

is denoted by PX and called the fibre over X. It is obvious that PX is a poset that is

isomorphic to ΦX.

Moreover, there is a canonical projection functor p : P → C that carries (X, P ) to X.

C.2. Formal definition of (Poset) fibration

We axiomatize those structures which arise in the way described above.

Definition C.2 ((Poset) fibration). A (poset) fibration
P
↓p
C

consists of two categories P ,C
and a functor p : P → C, that satisfy the following properties:

— Each fibre PX is a poset. Here, the fibre PX for X ∈ C is the subcategory of P
consisting of objects P ∈ P such that pP = X and arrows f : P → Q such that

pf = idX (such arrows are said to be vertical ).

— Given f : X → Y in C and Q ∈ PY , there is an object f∗Q ∈ PX and a P -arrow

fQ : f∗Q → Q with the following universal property. For any P ∈ PX and g : P → Q

in P , if pg = f, then g factors through f(Q) uniquely via a vertical arrow. That is,
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there exists a unique g′ such that g = f(Q) ◦ g′ and pg′ = idX .

P

p

��

Q

=⇒

f∗Q
f(Q)

�� Q

P
g

��       
g′
���
�

C X
f

�� Y X
f

�� Y

— The correspondences ( )∗ and ( ) are functorial:

id∗Y Q = Q , (g ◦ f)∗(Q) = f∗(g∗Q),

idY (Q) = idQ , g ◦ f(Q) = gQ ◦ f(g∗Q).

The last equality can be depicted as follows:

P

p

��

f∗(g∗Q)
f(g∗Q)

�� g∗Q
gQ

�� Q

(g ◦ f)∗Q g◦f(Q)

��

C X
f

�� Y
g

�� Z

The category P is called the total category of the fibration; C is the base category. The

arrow fQ : f∗Q→ Q is called the Cartesian lifting of f and Q. An arrow in P is Cartesian

(or reindexing) if it coincides with fQ for some f and Q.

In the case where
P
↓p
C

is induced by an indexed category Φ: Cop → Posets via Definition C.1,

a Cartesian lifting is obviously given by f∗(Q) = (Φf)(Q).

In the current paper, we focus on poset fibrations (which we shall simply call fibrations).

In a (general) fibration, a fibre PX is not just a poset but a category, and this elicits a

lot of technical subtleties. Nevertheless, it should not be hard to generalize the current

paper’s results to general, not necessarily poset, fibrations (especially to the split ones).

We shall often denote a vertical arrow in P (i.e. an arrow inside a fibre) by �.

The dual notion of a fibration is an opfibration.

Definition C.3. An opfibration
P
↓p
C

consists of two categories P ,C and a functor p : P → C

such that
P op

↓pop

Cop is a fibration. Concretely, in an opfibration
P
↓p
C

, for an arrow f : X → Y

in C and P ∈ PX , there is an object
∐

f P ∈ PY and a P -arrow P →
∐

f P satisfying an

appropriate universal property. This arrow P →
∐

f P in P is said to be opcartesian (or

opreindexing).

A bifibration
P
↓p
C

is a fibration as well as an opfibration.

Note that we do not assume the Beck–Chevalley condition for a bifibration. A fibration

with coproducts
∐

f between fibres – introduced later in Definition C.10– carries a canonical

opfibration structure, too.
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Lemma C.4 (Jacobs (1999, Lemma 9.1.2)). A fibration
P
↓p
C

is a bifibration if and only if

for any arrow f : X → Y in C the reindexing functor f∗ : PY → PX has a left adjoint∐
f � f∗.

C.3. Examples

Example C.5 (Subobject fibration). Let C be a (well-powered) category with finite limits.

The category Sub(C) is defined by: its object is a pair (P ,X) of X ∈ C and its subobject

P � X (we write (P � X) ∈ Sub(C)); and its arrow (P � X)
f
→ (V � Y ) is a C-arrow

f : X → Y that restricts to P → Q. That is, given an arrow f : X → Y in C,

f is an arrow in Sub(C)

(P
m

� X)
f
→ (Q

n
� Y )

⇐⇒ ∃f′ such that
P

f′
�����

��
m ��

Q
��
n��

X
f

�� Y
. (34)

The projection (P � X) �→ X defines a functor; thus arises the subobject

fibration
Sub(C)
↓
C

of C. In particular, given X
f
→ Y in C and (Q � Y ) ∈

Sub(Y ), the Cartesian lifting f∗Q is defined by a pullback.

f∗Q
fQ

�����
��

m
��
��

Q
��
n
��

X
f

�� Y

A special case is the following most straightforward modelling of predicate logic. It arises

from the contravariant powerset functor 2( ) : Setsop → Posets via Definition C.1.

Example C.6 (
Pred
↓

Sets
). The subobject fibration

Sub(Sets)
↓

Sets
of Sets is denoted by

Pred
↓

Sets
. An object

of its total category is often denoted by (U ⊆ X). Reindexing is given by inverse images.

More concretely, in the category Pred, an object is a pair (P ,X) of a set X and its

subset P ⊆ X; an arrow (P ⊆ X)
f
→ (Q ⊆ Y ) is a function X

f
→ Y that restricts to P → Q

(i.e. P ⊆ f−1Q).

Example C.7 (Rel). The fibration
Rel
↓

Sets
can be introduced from

Pred
↓

Sets
via the following

change-of-base:

Rel ��

��
��

Pred

��

Sets
X �→X×X

�� Sets

Concretely, an object of Rel is a pair (X,R) of a set X and a relation R ⊆ X×X; an arrow

f : (X,R)→ (Y , S) is a function f : X → Y such that xRx′ implies f(x)Sf(x′). See Jacobs

(1999, p. 14).

Example C.8 (Family fibration). The family fibration
Fam(Ω)
↓

Sets
over a poset Ω is introduced

as follows. An object in the fibre Fam(Ω)X is a function f : X → Ω; and an arrow

(X
f
→ Ω)

k→ (Y
g
→ Ω) in the total category Fam(Ω) is a function k : X → Y such that

f(x) � g(k(x)) for each x ∈ X. See e.g. Jacobs (1999, Definition 1.2.1) for more details.
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C.4. Structures in a fibration

In a fibration
P
↓p
C

, a C-arrow X
f
→ Y induces a correspondence PY

f∗

→ PX via reindexing.

This is easily seen to be a monotone map (i.e. a functor between posets as categories).

Definition C.9 (Fibrewise (co)limits). A fibration
P
↓p
C

is said to have fibrewise limits if

— each fibre PX has, as a category, all limits (meaning it has arbitrary inf’s
∧

); and

— for each C-arrow X
f
→ Y , the reindexing functor PY

f∗

→ PX preserves these limits.

In this case, each fibre PX has a final object (denoted by �X).

Similarly, a fibration has fibrewise colimits if each fibre has them and they are preserved

by reindexing.

The following notions must be distinguished from ‘fibrewise (co)products.’

Definition C.10 ((Co)products between fibres). A fibration
P
↓p
C

is said to have products

(between fibres) if

— each reindexing functor f∗ : PY → PX has a right adjoint f∗ �
∏

f; and

— the functors (
∏

f)f satisfy the so-called Beck–Chevalley condition. See Jacobs (1999,

Section1.9).

Similarly, a fibration has coproducts (between fibres) if each reindexing has a left adjoint∐
f and they satisfy the Beck–Chevalley condition.

The prototype example
Pred
↓

Sets
has fibrewise (co)limits: each fibre is a complete lattice; and∧

and
∨

are preserved by inverse images. It has products
∏

and coproducts
∐

between

fibres, too: specifically
∐

f is given by the direct image of the function f. See Jacobs (1999,

Section 1.9).

Throughout the paper, we rely on the following result. It extends Lemma 3.6. Note that

colimits are preserved by opreindexings in a bifibration.

Lemma C.11. Let
P
↓p
C

be a fibration. Assume that C is complete; then the following are

equivalent:

1. The fibration p has fibrewise limits.

2. The total category P is complete and p : P → C preserves limits.

If this is the case, a limit of a small diagram (PI )I∈I in P can be given by∧
I∈I(π

∗
I PI ) over LimI∈I XI .

Here, XI := pPI ; (LimI∈I XI

πI→ XI )I∈I is a limiting cone in C; and
∧

I∈I denotes the limit

computed in the fibre PLimI XI
.

(Sort of) dually, let
P
↓p
C

be a bifibration (such as a fibration with coproducts
∐

between

fibres, see Lemma C.4). Assume that C is cocomplete; then the following are equivalent:

1. Any fibre PX has colimits.

2. The total category P is cocomplete and p : P → C preserves colimits.
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In this case, a colimit of a small diagram (PI )I∈I in P can be given by

∨
I∈I(

∐
κI
PI ) over ColimI XI ,

where XI := pPI and (XI

κI→ ColimI XI )I∈I is a colimiting cocone in C.

In contrast to the above results that are on limits in the total category P of a fibration,

Lemma C.12 allows one to compute limits over P as a diagram. It is well known that an

iterated limit LimX∈C LimY ∈D F(X,Y ) is isomorphic to the limit Lim(X,Y )∈C×D F(X,Y ).

This kind of isomorphism exists even if the category D ‘depends’ on X ∈ C in the

following sense. (Note that
C×D
↓π1
C

is at the same time a fibration and an opfibration.)

Lemma C.12. Let
P
↓p
C

be a fibration and F : P → E be a functor. If LimP∈PX
FP exists for

each X ∈ C, then we have a canonical isomorphism

Lim
X∈C

Lim
P∈PX

FP ∼= Lim
P∈P

FP ,

where one side exists if the other side does.

Dually, let
P
↓p
C

be an opfibration and F : P → E be a functor. If ColimP∈PX
FP exists

for each X ∈ C, then we have a canonical isomorphism

Colim
X∈C

Colim
P∈PX

FP ∼= Colim
P∈P

FP ,

where one side exists if the other side does.

Proof. Let
P
↓p
C

be a fibration. For f ∈ C(X,Y ), a canonical arrow

Lim
P∈PX

FP → Lim
Q∈PY

FQ (35)

is obtained via the universality of limits as below:

LimP∈PX
FP

πf∗Q ��

����� LimQ∈PY
FQ

πQ
��

F(f∗Q)
F(fQ)

�� FQ .
(36)

Indeed, we have

F(f∗Q)
F(f∗g) ��

F(fQ)
�� FQ

Fg��

F(f∗Q′)
F(fQ′)

�� FQ′

for g ∈ PY (Q,Q′) because of the naturality of Cartesian liftings.
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For each E ∈ E, we have

E(E,Lim
X∈C

Lim
P∈PX

FP )

∼= Lim
X∈C

Lim
P∈PX

E(E, FP )

∼= Lim
X∈C
{
(
hP ∈ E(E, FP )

)
P∈PX

| Fg ◦ hP = hP ′ for any g ∈ PX(P , P ′) }

∼= {
((
hP ∈ E(E, FP )

)
P∈PX

)
X∈C

| Fg ◦ hP = hP ′ for any g ∈ PX(P , P ′);

F(fQ) ◦ hf∗Q = hQ for any f ∈ C(X,Y ) and Q ∈ PY }
the postcomposition of the arrow (35) maps (hP )P to (F(fQ) ◦ hf∗Q)Q by Equation (36)

= {(hP ∈ E(E, FP ))P∈P | Ff ◦ hP = hQ for any f ∈ P (P ,Q)}

by the factorization P
g
→ f∗Q

f
→ Q of f : P → Q into vertical g and Cartesian f

∼= Lim
P∈P

E(E, FP )

= E(E,Lim
P∈P

FP ).

Applying the Yoneda Lemma yields the claim.

C.5. Fibrewise opposite

Let op : Posets → Posets be a functor that maps (P,�) to (P,�)op = (P,�). Assuming

a fibration
P
↓p
C

is induced – by the Grothendieck construction – by an indexed category

Φ: Cop → Posets, the composite Cop Φ→ Posets
op
→ Posets induces a fibration in which each

fibre is opposed. This is what is denoted by
P (op)

↓p(op)

C
in the following lemma.

Lemma C.13 (Fibrewise opposite, Bénabou (1975)). Let
P
↓p
C

be a fibration. There exists a

canonical fibration
P (op)

↓p(op)

C
such that (P (op))X = (PX)op, and reindexing functors coincide, as

in the commutative diagram

(P (op))Y
f∗ in p(op)

�� (P (op))X

(PY )op (f∗ in p)op
�� (PX)op

for f : X → Y .

This fibration p(op) is called the fibrewise opposite of p.

Proof. We describe the construction of P (op); it is simple in the current setting where

we focus on poset fibrations. The objects are the same as those of P , and the arrows are

defined by

P (op)(P ,Q) = {f : pP → pQ | P � f∗Q}.
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It is easy to show that idpP induces an arrow P → P in P (op); this gives the identity

arrow. The composite g ◦ f ∈ P (op)(P , R) of f ∈ P (op)(P ,Q) and g ∈ P (op)(Q,R) is given

by composition in C, too.

Appendix D. Omitted proofs

D.1. Proof of Proposition 6.16

We shall prove the item 1. In the topos SetsA, there exists an (Epi,Mono)-factorization,

which induces the image functor Im: SetsA/P → Sub(P ) that is surjective on objects.

In particular, a subpresheaf of P can be thought of as an image of some arrow with

codomain P .

Let (Q
θ−→ P ) ∈ SetsA/P . By Lemma 6.14, we may assume Q = ColimI∈I(yBI ) for some

diagram (BI )I∈I . By Example 6.10 and Lemma B.7, we have Im θ =
∨

I∈I Im θI where the

arrow θI is the composite
(
yBI → ColimI (yBI )

θ→ P
)
.

Letting P = yA, we obtain Im(Q
θ−→ yA) =

∨
I Im(yBI

yfI−→ yA) for a family (fI )I such

that θI = yfI ; such a family (fI )I exists since the functor y is full and faithful. This proves

the item 1.

We shall now prove the item 2. We observe that an epi A � C in A induces a mono

yC � yA in SetsA: this is because the functor y : Aop → SetsA preserves all existing limits,

including the pullback

C

idC
��

��

idC �� C

m

��

C
m �� A

in Aop. (The diagram is a pullback if and only if m is a mono in Aop, i.e. an epi in A.)

Thus, there is a monotone function Quot(A)→ Sub(yA).

Regarding monos in A, we can show the following sublemma (its only-if direction will

not be used later).

Sublemma D.1. Let m : C → B be an arrow in A. The arrow ym : yB → yC is an epi in

SetsA if and only if the arrow m is a split mono.

Proof. The following are equivalent (folklore): For an arrow e in B,

1. the arrow e is an absolute epi, i.e. F(e) is an epi for any functor F with the domain B,

2. the arrow ye in SetsB
op

is an epi, and

3. the arrow e is a split epi.

The sublemma is part of this fact for B = Aop.

To be concrete, we take a retraction r : B → C of a split mono m in A. By r ◦m = idC ,

we have ym ◦ yr = idyC , which shows that ym is a (split) epi in SetsA.

Conversely, let m : C → B be an arrow in A such that ym : yB → yC is an epi in

SetsA. Because colimits are computed component-wise in the functor category SetsA, the

function (ym)C : A(B,C)→ A(C,C) is surjective. Hence, there exists r ∈ A(B,C) such that

(ym)C(r) = idC ∈ A(C,C), that is, r ◦m = idC . Therefore, the arrow m has a retraction r.
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Therefore, an (Epi,SplitMono)-factorization A
e

� C
m

� B in A induces an (Epi,Mono)-

factorization yB
ym
� yC

ye
� yA. This yields

{Im(yB
yf
→ yA) | B ∈ A, f : A→ B} = {(yC

ye
� yA) ∈ Sub(yA) | C ∈ A, e : A � C}

∼= {(A
e

� C) ∈ Quot(A) | C ∈ A} = Quot(A),

where the last isomorphism holds because the functor y is full and faithful. Hence, the

item 2 reduces to the item 1.
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