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We explore the mechanisms and regimes of mixing in yield-stress fluids by simulating the
stirring of an infinite, two-dimensional domain filled with a Bingham fluid. A cylindrical
stirrer moves along a circular path at constant speed, with the path radius fixed at twice
the stirrer diameter; the domain is initially quiescent and marked by a passive dye in the
lower half. We first examine the mixing process in Newtonian fluids, identifying three key
mechanisms: interface stretching and folding around the stirrer’s path, diffusion across
streamlines and dye advection and interface stretching due to vortex shedding. Introducing
yield stress leads to notable mixing localisation, manifesting through three mechanisms:
advection of vortices within a finite distance of the stirrer, vortex entrapment near the
stirrer and complete suppression of vortex shedding at high yield stresses. Based on
these mechanisms, we classify three distinct mixing regimes: (i) regime SE, where shed
vortices escape the central region, (ii) regime ST, where shed vortices remain trapped
near the stirrer and (iii) regime NS, where no vortex shedding occurs. These regimes
are quantitatively distinguished through spectral analysis of energy oscillations, revealing
transitions and the critical Bingham and Reynolds numbers. The transitions are captured
through effective Reynolds numbers, supporting the hypothesis that mixing regime
transitions in yield-stress fluids share fundamental characteristics with bluff-body flow
dynamics. The findings provide a mechanistic framework for understanding and predicting
mixing behaviours in yield-stress fluids, suggesting that the localisation mechanisms and
mixing regimes observed here are archetypal for stirred-tank applications.

Key words: complex fluids, laminar mixing, plastic materials

1. Introduction
Mixing is ubiquitous in both natural and industrial environments. Applications span
a vast range of Reynolds numbers and length scales (see figure 1 in Ottino 1990 for
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illustration). From the coffee we drink, household cleaning products and oil extraction
to the human digestive system and pharmaceutical production, various materials undergo
mixing processes daily.

Despite its prevalence, mixing remains one of the more challenging paradigms in
engineering to systematically define, frame and understand (Spencer & Wiley 1951; Ottino
1990; Villermaux 2019). In the simplest context, mixing entails the homogenisation of a
passive tracer (level-1); however, it can be more intricately tied to the flow dynamics,
as when rheology depends on tracer concentration (level-2), or chemical reactions occur
during the process (level-3) (Dimotakis 2005).

A significant body of literature focuses on level-1 mixing, i.e. mixing of a passive dye
in fluid. Even within this limited scope, the parameter space is extensive: mixing may be
in line, active or passive, or take place in a stirred tank. Factors like domain geometry,
impeller shape, size, position, stirring protocol and speed all influence mixing behaviour.
Additionally, fluid rheology plays a critical role. Given the vast range of parameters and
the complexity of the problem, most studies have focused on Newtonian fluids, and mixing
remains an active research area (see Warhaft 2000; Peltier & Caulfield 2003; Wunsch &
Ferrari 2004; Caulfield 2021 and references therein).

Many fluids in polymer processing, food engineering, bioengineering, physiology and
chemical engineering are non-Newtonian, with a subset exhibiting yield stress, such
as polymeric gels, muds, paints and cosmetics. Yield-stress fluids are highly viscous
materials that flow only when the applied shear stress exceeds a threshold known
as the yield stress (Balmforth, Frigaard & Ovarlez 2014; Coussot 2014; Bonn et al.
2017). It was recognised early on that turbulent mixing in these fluids is economically
and technologically impractical. Spencer & Wiley (1951) proposed streamline mixing,
achieved by continuously deforming the fluid to (a) increase the surface area of the
interface and (b) distribute it throughout the material volume. With few exceptions
(Derksen 2013; Daneshvar Garmroodi & Karimfazli 2024), studies of mixing in yield-
stress fluids focus on the mixing of passive dyes.

Initial efforts to understand mixing of non-Newtonian fluids were dedicated to
establishing a relationship between impeller speed (in stirred tanks) and the fluid shear
rate. According to Metzner & Otto (1957), mixing flows of non-Newtonian fluids were
qualitatively understood at best in the 1950s, a sentiment that remained accurate for
decades. One of the first studies on mixing yield-stress fluids was conducted by Solomon
et al. (1981), who experimentally identified the well-mixed regions in Xanthan gum and
Carbopol solutions in stirred tanks. The coexistence of flowing and stagnant regions
presented a challenge, as the latter remained unmixed. Whitcomb & Macosko (1978)
introduced the term cavern to describe the well-mixed region where the fluid was yielded.

Although debate remains regarding the existence of a true yield stress and optimal
measurement methods (Barnes 1999; Divoux, Barentin & Manneville 2011; Dinkgreve
et al. 2016), viscoplastic models are widely used to analyse and predict flows of yield-
stress fluids (Mitsoulis & Tsamopoulos 2017). These models consider the fluid rigid below
the yield stress and a flow with shear rate-dependent viscosity when the yield stress is
exceeded.

Solomon et al. (1981) used viscoplastic models and a yield criterion to estimate cavern
size by assuming it to be spherical. Subsequent studies explored various impellers and
developed cavern size estimates based on different simplified geometries; see, for example,
Galindo et al. (1996), Tanguy et al. (1996), Amanullah, Hjorth & Nienow (1998), Pakzad
et al. (2013), Sossa-Echeverria & Taghipour (2015) and Ameur (2020). Generally, a yield
stress and shear-thinning viscosity reduce the mixing rate and extent and the cavern
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size. However, a mechanistic understanding of how the flow dynamics and mixing are
interlinked, especially with respect to rheological parameters, remains elusive.

Seminal works by Aref (1984) and Ottino (1989) demonstrated the role of chaotic
flows in effective mixing, emphasising the necessity of three-dimensional or transient
two-dimensional flows. A parallel branch of research has since modelled mixing by
analysing dynamical systems, with a primary focus on chaotic mixing in two-dimensional
time-periodic flows; for an overview of studies of Newtonian fluids, see Aref et al. (2017).

Niederkorn & Ottino (1994) numerically investigated chaotic advection in journal
bearing flows for shear-thinning fluids, examining tracer advection, periodic points,
stretching along unstable manifolds and stretching rate of fluid elements. They found
that shear-thinning viscosity decreases the amount of stretching. Fan, Phan-Thien &
Tanner (2001) studied advective mixing of viscoplastic fluids between eccentric cylinders,
showing that tracer coverage may depend on initial tracer position, and chaotic advection
can be achieved through alternating cylinder rotations. Their results highlight qualitative
transitions but do not predict when such transitions will occur.

Experimental studies by Wendell et al. (2013) explored mixing in a rotating tank filled
with a yield-stress fluid stirred by cylindrical rods rotating with constant angular velocity
in an eggbeater configuration. Higher period ratios and lower yield stresses enhanced
mixing, although mixing efficiency decreased in resonance conditions. The intermittent
yielding and unyielding near the tank wall was hypothesised to explain the decreased
mixing of yield-stress fluids. Further experiments by Boujlel et al. (2016) in the same set-
up measured mixing rate using dye concentration variance, showing that mixing consists
of rapid stretching and folding followed by slower diffusion-dominated mixing. They
concluded that mixing rate is proportional to the volume of highly sheared fluid during
each rod rotation.

In summary, while the qualitative impact of yield stress on mixing is understood –
yield stress limits cavern size and filament stretching, thus decreasing mixing rate – a
mechanistic description connecting the fluid dynamics to transitions in yield-stress fluid
mixing remains absent. Decades after Niederkorn & Ottino (1994), design procedures
still rely heavily on empiricism with a limited fundamental understanding of the fluid
mechanics (see Paul et al. 2004; Uhl 2012).

The primary objective of this manuscript is to identify and elucidate the mechanisms
behind different mixing regimes and localisation in yield-stress fluids within a periodically
stirred domain. We consider the simplest and most common viscoplastic model, the
Bingham model, thus neglecting the thixotropy and elasticity typically associated with
real yield-stress fluids. Potential influences of dye concentration on fluid properties and
density are similarly neglected. We also adopt a minimalistic stirrer geometry and stirring
strategy to avoid the added complexity of geometric effects and to isolate the roles of
yield stress and localisation. We consider an infinite two-dimensional domain filled with a
quiescent viscoplastic fluid stirred by a cylinder moving at constant speed along a circular
path. By exploring a range of mixing speeds and yield stresses, we aim to characterise the
flow and the mixing dynamics and establish a mechanistic link between them.

This problem is closely related to the classical flow past a circular cylinder. Over the
past few decades, numerous studies have examined the flow of yield-stress fluids around
a cylinder, either being drawn through the fluid or moving due to buoyancy (referred
to as the resistance and mobility problems, respectively Putz & Frigaard 2010). These
studies typically focus on regimes where inertial effects are negligible and vortex shedding
does not occur. Numerical, experimental and analytical results have been developed
for predicting the terminal velocity, drag forces and the critical yield stress beyond
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R̂

r̂o

Ω̂

Figure 1. Schematic of the domain geometry and initial conditions. The solid white line indicates the stirrer’s
path. The red and blue colours indicate the dyed and dye-free regions. Note that the figure is not to scale.

which motion is arrested (see, e.g. Tokpavi et al. 2008, 2009; Wachs & Frigaard 2016;
Chaparian & Frigaard 2017a,b). However, parameter regimes characterised by weak inertia
or dominated by large unyielded regions are not conducive to strong advective mixing.

The parameter space considered in this study is therefore complementary to the existing
body of literature. We explore a broad range of Reynolds numbers within the laminar
regime and yield-stress values away from the critical limit, where unyielded zones
dominate and regularised numerical models are less accurate. This allows us to capture
the mixing dynamics that involves vortex shedding and yield-stress-driven localisation.

The remainder of this paper is organised as follows: § 2 presents the model problem,
governing equations and numerical methods. Section 3 discusses the flow dynamics and
mixing regimes using representative cases and maps out mixing mechanisms and flow
regimes at different mixing speeds and yield stresses. Finally, § 4 summarises our findings.

2. Problem set-up

2.1. Model problem
We investigate the stirring of a viscoplastic fluid (VPF) using a circular stirrer of diameter
d̂s , which moves at a constant speed (r̂oΩ̂) along a circular trajectory with radius r̂o = cd̂s
(solid white line in figure 1). Here, c is the dimensionless stirring radius, fixed at c = 2 in
this study, and Ω̂ > 0 denotes the angular velocity of the stirrer. Dimensional quantities are
denoted by a .̂ symbol, while dimensionless quantities are written without it. To simulate
mixing in an infinite domain, we employ a circular computational domain with a radius
R̂ � r̂o (R̂ = 34r̂o), ensuring minimal boundary effects due to the domain’s sufficiently
large size. To monitor mixing, the fluid in the bottom half of the domain is marked with a
passive dye (shown in red in figure 1), where α = 1, while the rest of the fluid is dye free
(shown in blue), with α = 0. The no-slip boundary condition is imposed on the walls of
both the vessel and the stirrer.

The fluid is modelled using the Bingham model. The dimensionless form of the
constitutive equation is given by

⎧⎨
⎩ τ =

(
Bn
γ̇

+ 1
)

γ̇ if τ � Bn,

γ̇ = 0 if τ < Bn,

(2.1)

1021 A42-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
72

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10729


Journal of Fluid Mechanics

Dimensionless group Definition Value/Range

Reynolds (Re) ρ̂Ω̂ r̂2
o /μ̂ 50 − 300

Péclet (Pe) Ω̂ r̂2
o /D̂ 103

Bingham (Bn) τ̂y/μ̂Ω̂ 0 − 102

Stirring radius (c) r̂o/d̂s 2

Table 1. Dimensionless groups governing the model problem.

where τ and γ̇ are the deviatoric stress and rate of strain tensors, respectively, and

τ =
√

1
2

τ : τ and γ̇ =
√

1
2

γ̇ : γ̇ (2.2)

represent second invariants of these tensors. The Bingham number, Bn, is defined by

Bn = τ̂y

μ̂Ω̂
, (2.3)

where τy and μ̂ are the fluid’s yield stress and plastic viscosity.
The flow is governed by the Cauchy’s equations of motion and continuity while the dye

concentration is described by an advection–diffusion equation

∂u
∂t

+ u · ∇u + ∇P = 1
Re

∇ · τ

∇ · u = 0
∂α

∂t
+ ∇ · (uα) = 1

Pe
∇2α.

(2.4)

Here, u and P are the dimensionless velocity and pressure, respectively. The
characteristic scales for length, time, velocity, shear stress and pressure are r̂o, Ω̂−1, r̂oΩ̂ ,
μ̂Ω̂ and ρ̂r̂2

o Ω̂2, where ρ̂ is the density of the fluid. Results, however, are presented in
terms of the stirrer’s period, T̂stirrer = 2π/Ω̂

T = t̂

T̂stirrer
= t

2π
. (2.5)

The Reynolds (Re) and Péclet numbers (Pe) are defined as

Re = ρ̂Ω̂ r̂2
o

μ̂
, (2.6)

Pe = Ω̂ r̂2
o

D̂m
, (2.7)

where D̂m is the diffusion coefficient of dye. In this study, Péclet number is held constant
at Pe = 103.

Definitions and ranges of the relevant dimensionless groups are summarised in table 1.
To characterise the rate of mixing, a normalised variance of the dye, σ 2

Rsd
, is defined

over a circular subdomain ARsd of radius Rsd that is concentric with the stirrer’s path

σ 2
Rsd

= 1
ARsd

∫
ARsd

(
1 − α

ᾱ

)2
dA. (2.8)
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Here, ᾱ is the average dye concentration over the subdomain, for all Rsd . For given
values of the governing dimensionless parameters, Rsd is chosen to ensure the subdomain
captures the region where dye concentration is affected by the stirring (within the
timeframe of interest).

To quantify the kinetic energy, KE is defined as

KE =
√∫

A
|u|2dA, (2.9)

where KE is the kinetic energy, |u| is the speed and A represents the flow domain.

2.2. Numerical method
OpenFOAM – Open Source Computational Fluid Dynamics (2004) version 6 was used for
numerical simulations. The twoLiquidMixingFoam solver, which employs the PIMPLE
(PISO–SIMPLE) algorithm, which combines PISO (Pressure-Implicit with Splitting
of Operators) and SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)
algorithms, to decouple pressure and velocity in the governing equations, was utilised.
For temporal discretisation, we applied the second-order Crank–Nicolson scheme. The
viscous terms are discretised using a second-order centred scheme, while the convective
(inertial) terms are treated with a second-order upwind-biased scheme. The second-order
vanLeer scheme is used for the concentration field transport. Adaptive time stepping was
implemented using a constant Courant–Friedrichs–Lewy number (set to 0.05 to ensure
sufficient accuracy in transient results).

In this study, we adopt a modified version of the bi-viscosity model originally developed
by Tanner & Milthorpe (1983)

τ (γ̇ ) =

⎧⎪⎪⎨
⎪⎪⎩

(
1 + Bn

γ̇cr

)
γ̇ if γ̇ � γ̇cr,(

1 + Bn
γ̇

)
γ̇ if γ̇ > γ̇cr.

(2.10)

Here, γ̇cr is the critical strain rate. Because the numerical scheme involves
regularisation, the accuracy of predictions for the unyielded regions decreases significantly
at high Bn (Frigaard & Nouar 2005; Ahmadi, Olleik & Karimfazli 2021), making the
scheme unsuitable for exploring the limit behaviour in that regime. For the parameter
ranges considered here, γ̇cr is chosen so that the error in the average radius of the yielded
regions remains safely below 1 %; specifically, γ̇cr = ˆ̇γcr/Ω̂ = 10−4.

To verify grid independence, five different mesh sizes were tested. Figure 2 shows
the evolution of normalised variance and velocity norm, along with the corresponding
relative errors for different mesh sizes. The finest mesh (1.3 × 105) was used to estimate
the relative error. For the remainder of the simulations, we used a mesh size of 8 × 104,
which resulted in a relative error of less than 1 % for both the normalised variance and
velocity norm. Further details on the benchmarking and validation of the numerical solver
can be found in Daneshvar Garmroodi & Karimfazli (2024).

3. Results and discussion

3.1. The Newtonian limit
Figure 3 shows snapshots of dye concentration in a Newtonian fluid (Bn = 0) at Re = 100.
To facilitate the illustration of concentration development, the snapshots show subdomains
of different radii (indicated as Rsd in the captions). The white and grey lines show
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Figure 2. Time evolution of (a) normalised variance of dye concentration for different mesh sizes, (b) relative
error in dye concentration variance, ER(σ 2

6 ) = (σ 2
6 − σ 2

6, 1.3×105 )/(σ
2
6, 1.3×105 ), (c) kinetic energy for different

mesh sizes and (d) relative error in kinetic energy, ER(KE) = (KE − KE1.3×105 )/(KE1.3×105 ), for Re = 300 and
Bn = 2.

the stirrer’s path and the streamlines, respectively. A normalised variance of the dye
concentration, σ 2

20, is shown in figure 3(g). The markers in figure 3(g) indicate the time
instances of the snapshots.

When stirring begins, the stirrer crosses the dye interface periodically, stretching and
folding it (see, e.g. figures 3a and 3b). This action creates a striated pattern near the
stirrer’s path, from hereon referred to as the ‘central region’. The stretched interface and
thin striations promote local diffusion. As a result, mixing proceeds rapidly during this
stage, characterised by a sharp decline in σ 2

20 (see figure 3g). Mixing slows down once the
dye concentration becomes nearly uniform along the stirrer’s path (T ≈ 10; see figure 3c).

For 10 � T � 20, the dye concentration appears approximately axisymmetric within the
central region, and mixing is temporarily dominated by radial diffusion across the stream-
lines within this region and across the boundary of this region (figure 3d). A well-mixed
subdomain, where the dye concentration is α ≈ 0.5, thus develops in the central region.
However, this region is not quiescent, as the flow is not axisymmetric. Figure 3(e) shows
that the well-mixed region is slowly advected by the flow, following an approximately
helical trajectory. Consequently, the dye interface is brought back into the stirrer’s path,
where it is once again stretched and folded (figure 3f ). The acceleration of mixing during
this stage is congruent with the downward concavity of σ 2

20 for T � 20 (figure 3g).
Another mechanism contributing to mixing during this phase (T � 20) is the extensive

stretching of the interface beyond the central region (see figure 3f ). As the well-mixed
region drifts away from the centre, interface stretching extends beyond the stirrer’s direct
influence. This contributes to the sharp decay rates observed in σ 2

20 during this period
(T � 20).

The development of the dye concentration is governed by the momentum balance in the
flow field; i.e. the coupling between the dye concentration and momentum transfer is one
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Figure 3. (a–f ) Snapshots of the dye concentration field in a Newtonian fluid, Bn = 0, Re = 100, at times
T = 1, 3, 10, 15, 30 and 50. The white circle marks the stirrer’s path, while grey lines represent the streamlines.
The radius of the field of view is provided in the caption. (g) Time evolution of the normalised variance, with
circular markers indicating the time instances of the snapshots in (a–f ).

way because the rheology and density are independent of the dye concentration. Figure 4
illustrates the development of the vorticity field in Newtonian fluids at Re = 100, at the
same time instances as figure 3. Similar to figure 3, the white circular line is the stirrer’s
path and the grey lines are streamlines. To facilitate the illustration of the vorticity field, a
scaled vorticity magnitude (ζ ) is defined as follows:

ζ =
{

log(ωz + 1) if ωz � 0,

− log(|ωz| + 1) if ωz < 0.
(3.1)

Note that ζ retains the sign of ωz ; i.e. positive and negative ζ indicate counter-clockwise
(CCW) and clockwise (CW) rotation, respectively.

When stirring starts, two small attached eddies appear behind the stirrer. More vortices
are shed as the stirrer moves along its path (see figure 4a). The rotation of these vortices is
consistent with the stirrer’s movement with CCW and CW vortices shed inside and outside

1021 A42-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
72

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10729


Journal of Fluid Mechanics

–0.5

0

0.5

ζ

–0.5

0

0.5

ζ

Rsd = 5 Rsd = 8

Rsd = 5 Rsd = 5 Rsd = 5

Rsd = 15

(a) (b) (c)

(d ) (e) ( f )

Figure 4. (a–f ) Snapshots of the vorticity field in a Newtonian fluid, Bn = 0, Re = 100, at times T =
1, 3, 10, 15, 30 and 50. The white circle marks the stirrer’s path, while grey lines represent the streamlines.
The radius of the field of view is provided in the caption.

the stirrer’s path, respectively. This is reminiscent of the archetypal problem of the flow
around a cylinder of diameter d̂s that moves at the constant velocity of Ûo = r̂oΩ̂ . In the
archetypal problem, laminar shedding in a Newtonian fluid of viscosity μ̂ and density ρ̂ is
expected at 40 � Re∗ � 150 where Re∗ = ρ̂Ûod̂s/μ̂ (Roshko 1954).

Figure 4(b) represents the early dynamics following the onset of stirring. The periodic
passage of the stirrer disrupts the formation and advection of CCW vortices, while CW
vortices remain outside the stirrer’s path, drifting slowly away (compare figures 4b and
4c). Meanwhile, as the attached eddies develop, the CCW eddy expands across the stirrer’s
path. When the stirrer moves through this eddy, it generates additional CCW vortices (see
figure 4d). These CCW vortices also dissipate quickly before reaching beyond the central
region.

Figure 4(a) also shows that the stirrer completes a period before the previously shed CW
vortices advect away from the central region; e.g. during the second period (1 � T � 2),
the stirrer interacts with the CW vortices shed during the first period. This mechanism
interferes with vortex shedding: temporarily (2 � T < 20), the stirrer’s path is surrounded
by two CW vortices that interact with and follow the stirrer slowly moving away from
the domain centre. The first two stages of mixing (stretching and folding of the interface
followed by diffusion) take place concurrently with the vorticity dynamics discussed
above.

At T ≈ 20, the attached CCW eddy expands sufficiently to escape the stirrer’s
path (figure 4e). As this eddy gradually moves away from the central region, the
approximate symmetry of the vorticity field, along with the corresponding symmetry in
dye concentration in the central region (figure 3e), is disrupted. From this point onward,
vortices are shed away from the central region, travelling far across the flow domain
(figure 4f ).
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Figure 5. Time evolution of the vortex centres in a Newtonian fluid, Bn = 0, Re = 100, over different time
intervals, as indicated by the colour bar. Lighter shades correspond to earlier times within each panel. The
white solid line represents the stirrer’s path, while the black dashed lines denote the subdomain boundary.

To better illustrate the stages of vortex development, we present an approximation of
the locus of the vortex centres in figure 5. These centres, identified as the local minima
and maxima of the vorticity field, correspond to the CCW and CW vortices, respectively.
For simplicity and brevity, we refer to this collection of points as the vortex centres
hereafter. When stirring begins, a pair of attached eddies forms and travels with the stirrer
(figure 5a). Simultaneously, two CW vortices are shed outside the stirrer’s path within
the first period (T � 1). As shown in figure 5(b) , these shed vortices initially remain
close to the central region, drifting away slowly. This quasi-periodic flow pattern leads
to an approximately axisymmetric concentration field and a diffusion-dominated mixing
phase. Finally, the vortices escape the central region, causing the well-mixed region to
advect outward (figure 5c) – a stage marked by interface stretching and folding beyond
the central region. The kinetic energy of escaping vortices decays exponentially due to
viscous dissipation, allowing them to advect indefinitely. Consequently, mixing continues
unbounded as the vortices transport dye farther into the flow domain.

Comparing the development of mixing and the vorticity field, we identify three key
mechanisms promoting mixing during different stages of the flow: (i) local stretching and
folding of the dye interface with the movement of the stirrer, (ii) diffusion-dominated
mixing when flow structure is approximately steady and (iii) the advection of dye and
stretching of the interface with vortices that escape the central region.

3.2. Blending a viscoplastic fluid
Figure 6 shows the development of the dye concentration when the fluid has a small
yield stress, Re = 100 and Bn = 0.025. The dashed grey lines display the contours of
τ = 1.01Bn, a conservative estimate of the boundary of the yielded region. As before,
the white and grey solid lines represent the stirrer’s path and the streamlines, respectively.

The primary stages of mixing resemble those observed in the Newtonian case, beginning
with the stretching and folding of the dye interface (figures 6a and 6b). This is followed by
the formation of an approximately axisymmetric concentration profile and the emergence
of a well-mixed region within the central area (figures 6c and 6d, respectively). As
the well-mixed region drifts outward from the centre, the interface undergoes extensive
stretching, accelerating the mixing process (figures 6e and 6f ). A comparison between
figures 3 and 6 further shows that the yield stress has little influence on the concentration
field until the well-mixed region moves beyond the central area.

Figure 7 presents the evolution of the vorticity field at the same time instances as
figure 6. Comparison with figure 4 illustrates that the vorticity fields are quite similar
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Figure 6. Snapshots of the dye concentration field in a VPF with a low yield stress, Bn = 0.025, Re = 100 and
Rsd = 10. The white circle indicates the stirrer’s path, grey lines represent streamlines and dashed grey lines
show contours of τ = 1.01Bn.

until vortices escape the central region. This indicates that, within the central region, the
influence of the yield stress is negligible compared with purely viscous effects. However,
outside this region, energy dissipation due to yield stress becomes increasingly significant
with distance from the domain centre. Far enough from the centre, the fluid is expected to
remain unyielded.

In the viscoplastic case, the escaped vortices predominantly drift in the azimuthal
direction (see figures 7e and 7f ). In contrast, in the Newtonian case, the radial
displacement of the vortices is more pronounced. This highlights the first mechanism
of mixing localisation in VPFs; when the fluid has a yield stress, escaped vortices are
confined within a finite distance from the stirrer, effectively localising mixing. This
behaviour contrasts with that of Newtonian fluids, where vortices can theoretically advect
without bounds.

The effect of the yield stress on the vortex dynamics is further demonstrated in figure 8,
which presents the time evolution of the approximate vortex centres over the same intervals
as shown in figure 5. The similar development of vortices in the central region is evident
in figures 8(a) and 8(b). However, a comparison of figures 5(c) and 8(c), reveals that the
azimuthal movement of the vortex centres is more pronounced when Bn > 0.

Figure 9 illustrates the evolution of dye concentration at a moderate yield stress, Bn =
0.4. The approximate size of the yielded region is significantly smaller compared with the
case of Bn = 0.025 (see dashed grey lines), and mixing remains relatively confined to the
central region. The initial two stages of mixing are qualitatively similar to the previous
cases: stretching and folding of the interface are followed by diffusion-dominated mixing,
leading to the formation of a well-mixed region. However, in this case, the well-mixed
region remains largely quiescent. The deformation of the dye interface does not extend
beyond the central region.
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Figure 7. Snapshots of the vorticity field in a Newtonian fluid, a VPF with a low yield stress, Bn = 0.025,
Re = 100 and Rsd = 10. The white circle indicates the stirrer’s path, grey lines represent streamlines, and
dashed grey lines show contours of τ = 1.01Bn.
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Figure 8. Time evolution of the vortex centres in a VPF with a low yield stress, Bn = 0.025, Re = 100, over
different time intervals, as indicated by the colour bar. Lighter shades correspond to earlier times within each
panel. The white solid line represents the stirrer’s path, while the black dashed lines denote the subdomain
boundary. The radius of the field of view is provided in the caption.

The evolution of the vorticity field at Bn = 0.4 is shown in figure 10. The initial shedding
pattern appears similar to the Newtonian case (figure 10a). However, the shed CW vortices
stay closer to the stirrer and the CCW eddy remains mostly confined within the stirrer’s
path because the yield stress suppresses the advection of shed vortices and growth of
attached eddies. Consequently, the size of the well-mixed region is reduced compared
with the previous cases. This localisation is closely connected to the development of
vortices. Figure 11 illustrates the time evolution of the approximate vortex centres. The
formation of the attached eddies and vortex shedding during the first period is similar to the
previous cases (figure 11a). However, the shed vortices do not travel as far from the stirrer
(figure 11b). Instead, they remain trapped in the vicinity of the stirrer’s path (figure 11c).
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Figure 9. (a–f ) Snapshots of the dye concentration field in a VPF with a moderate yield stress, Bn = 0.4,
Re = 100 and Rsd = 6. The white circle indicates the stirrer’s path, grey lines represent streamlines and dashed
grey lines show contours of τ = 1.01Bn.

As a result, mixing remains confined to the central area throughout the process (figure 9f ).
This behaviour represents the second mechanism of mixing localisation due to yield stress;
as shed vortices remain trapped near the stirrer, the stretching and folding of the interface
are confined to this region, limiting the mixing rate.

As expected, at higher-yield-stress values, mixing becomes increasingly confined to the
central region. An illustrative case for Bn = 1 is shown in figure 12, where the first and
second rows display the evolution of dye concentration and vorticity fields, respectively.
The dye concentration rapidly assumes an approximately axisymmetric distribution, after
which mixing is primarily governed by radial diffusion. The two eddies remain attached
to the stirrer, with no vortex shedding observed. This behaviour is further illustrated in
figure 13, showing the time evolution of the approximate vortex centres. This represents the
third mode of localisation; the complete suppression of vortex shedding, where interface
deformation remains largely confined to the central region.

Increasing Bn beyond Bn ∼ 1 does not introduce significant qualitative changes to the
mixing dynamics. Figure 14 presents a representative case at Bn = 100 (Bn � 1), where
the evolution of concentration and vorticity fields are shown in the first and second rows,
respectively. Compared with Bn = 1 (see figures 12a and 14a), interface deformation after
the first stirring period is markedly reduced. The stirrer fails to draw the interface deep
into the dye-free region because the yielded zone is much smaller than in the Bn = 1 case.
Indeed, the stirrer’s trajectory now partially traverses unyielded regions. The yielded zone
quickly settles into a steady configuration relative to the stirrer. Both the size and shape of
the yielded region resemble the asymptotic case of a cylinder translating through a VPF
in the high-yield-stress limit (Tokpavi, Magnin & Jay 2008; Supekar, Hewitt & Balmforth
2020). Initially, the interface within this region is periodically stretched by successive
passages of the stirrer (figures 14a and 14b). However, mixing soon becomes diffusion
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Figure 10. (a–f ) Snapshots of the vorticity field in a VPF with moderate yield-stress value, Bn = 0.4, Re = 100,
Rsd = 6. The white circle indicates the stirrer’s path, while the grey lines depict the streamlines. The dashed
grey lines display the contours of τ = 1.01Bn.
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Figure 11. The time evolution of the vortex centres in the VPF with a moderate yield stress, Bn = 0.4, Re = 100
and Rsd = 3, over different time intervals, as indicated by the colour bar. Lighter shades correspond to earlier
times within each panel. The white solid line represents the stirrer’s path, while the black dashed lines denote
the subdomain boundary.

dominated as a well-mixed core develops (figures 14c and 14d). Figure 14(e–h) highlights
the rapid establishment of a flow field that is steady in the stirrer’s frame and strongly
localised around it. Instead of extending along the stirrer’s trajectory, the attached eddies
stretch predominantly in the radial direction, which explains the limited elongation of the
interface along the path of the stirrer.

To compare mixing rates across different regimes, we present the normalised variance
of dye concentration, σ 2

15, in figure 15. For reference, the solid blue line shows the purely
diffusive case. As expected, mixing rates decrease with increasing Bn. At low Bn (e.g.
Bn = 0.05), initially the mixing curves closely match the Newtonian case, indicating that,
at low yield stress, while the flow remains confined to the central region (T � 10), yield
stress has a negligible effect on local energy dissipation. However, the influence of yield
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Figure 12. Snapshots of the dye concentration (a–d) and vorticity (e–h) fields in a VPF with a high yield stress,
Bn = 1, Re = 100 and Rsd = 5. The white circle indicates the stirrer’s path, grey lines represent streamlines and
dashed grey lines show contours of τ = 1.01Bn.
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Figure 13. The time evolution of the vortex centres in the VPF with a high yield stress, Bn = 1, Re = 100 and
Rsd = 3. Lighter shades correspond to earlier times. The white solid line represents the stirrer’s path, while the
black dashed line denotes the subdomain boundary.

stress becomes more pronounced in later stages, as the well-mixed region drifts outward
(see T ≈ 20 and T ≈ 30 for Bn = 0.025 and Bn = 0.05, respectively). This shift occurs
when the dye interface enters a region where the energy dissipation and flow dynamics
begin to be affected by the yield stress. From this stage onward, the σ 2

15 curves diverge, as
the advection of escaped vortices is increasingly suppressed by the yield stress.

At moderate Bn, the divergence of σ 2
15 from the Newtonian case becomes apparent

earlier. This is because, as Bn increases, the dissipation caused by yield stress starts
to influence smaller radii. The downward concavity in the variance is almost entirely
suppressed, as vortices remain confined within the central region, preventing them from
re-accelerating mixing.

The mixing rate decreases progressively with increasing Bn, reflecting both the overall
slowdown of the flow and the suppression of vortices. For Bn � 1, however, it shows little
further variation. To assess these changes, we measure the mixing rate during the final,
diffusion-dominated stage, where the concentration variance follows an exponential decay

σ 2
15 ≈ σ 2

0 exp (−2λT ) . (3.2)
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Figure 14. Snapshots of the dye concentration (a–d) with Rsd = 3 and vorticity field (e–h) with Rsd = 2, in a
VPF with a high yield stress, Bn = 100 and Re = 100. The white circle indicates the stirrer’s path, grey lines
represent streamlines and dashed grey lines show contours of τ = 1.01Bn.
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Figure 15. Evolution of the normalised dye concentration variance for 0 � Bn � 100. Darker shades of grey
correspond to higher Bn values; the curves for Bn = 10 and Bn = 100 nearly overlap and are not visually
distinguishable. The solid blue line denotes pure diffusion, and the red dashed lines show exponential fits
during the diffusion-dominated stage. Re = 100.

Here, λ is the decay constant. The red dashed lines in figure 15 depict the exponential
fits. Following Christov & Homsy (2009), we define the enhancement factor ηλ = λ/λp,
where λp is the decay constant for the purely diffusive case. The intercept of the
exponential fit, σ0, can be viewed as an approximation of the standard deviation when
the diffusion-dominated phase begins, providing a measure of mixing by the end of the
advection-dominated stage. Here, a second enhancement factor is defined as ησ = σop/σ0,
where σop is the intercept of the exponential fit for the purely diffusive case. This
enhancement factor, ησ , enables comparison of the extent to which mixing is achieved
during the initial phase dominated by interface stretching.

The variation of enhancement factors with Bn is shown in figure 16. Changes in ηλ are
more pronounced than those in ησ . This suggests that the long-term impact of yield stress
on mixing can be more significant than its short-term effects; increasing the Bingham
number by approximately three orders of magnitude reduces ησ by approximately 10 %,
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Figure 16. Variation of the enhancement factors (a) ηλ and (b) ησ with Bn at Re = 100.

attributed to the suppression of dye interface stretching during the initial mixing stage.
Meanwhile, the same increase in Bn results in an approximately 80 % reduction in ηλ,
as diffusion – the dominant mixing mechanism over longer time scales – becomes less
effective when the interface area is reduced. Lastly, both enhancement factors drop
relatively sharply for small Bn, but exhibit only a slow decline beyond Bn ∼ 1. This
behaviour is discussed in greater detail in § 3.3.

3.3. Flow and mixing regimes
In the previous section, we identified three distinct mixing regimes:

Regime SE (shedding, escaped vortices): at sufficiently low Bn, mixing is initially
dominated by the stretching and folding of the interface. This is followed by a brief period
where mixing is driven primarily by radial diffusion. In this regime, vortices escape the
central region, carrying dye and stretching the interface deep into the domain. Once the
vortices escape, mixing re-accelerates, driven by advection and further interface stretching.

Regime ST (shedding, trapped vorticed): at moderate Bn, mixing does not re-accelerate
after the diffusion-dominated phase. In this regime, the shed vortices remain trapped in
the central region, unable to escape. They are periodically influenced by the passage of the
stirrer but remain confined, limiting further advection-driven mixing.

Regime NS (no shedding): at sufficiently high Bn, mixing is quickly dominated by
diffusion. The yield stress completely suppresses vortex shedding, confining interface
stretching to the immediate vicinity of the stirrer.

The mixing regimes described above are closely tied to the flow development and vortex
dynamics. To facilitate comparison and distinction of the regimes, we examine the time
evolution of kinetic energy (approximated by the velocity norm, ||u||) and the size of
the moving region. For the latter, we consider the general condition illustrated in figure 17.
Here, ryo and ryi mark the farthest and closest points where the line connecting the domain
centre to the stirrer-path centre crosses the boundary of the quiescent unyielded region.

When the fluid is Newtonian (Bn = 0), ryi = 0 and ryo → ∞. On the other hand, if
the fluid has a yield stress (Bn > 0), then ryo < ∞. Furthermore, the results presented
above (e.g. Bn = 0.4 shown in figure 9) illustrate that, at sufficiently small Bn, ryi = 0.
Nevertheless, at sufficiently large Bn (see, e.g. Bn = 100 shown in figure 14), ryi > 0.

Figure 18(a) shows the time evolution of ryo at Re = 100. In regimes SE and ST, ryo
evolves on two distinct time scales: a shorter time scale (Ts ≈ O(1)), corresponding to
small oscillations in ryo, and a much longer time scale (Tl ≈ O(10)), associated with
the overall increase in ryo. The amplitude of the oscillations diminishes as Bn increases,
eventually disappearing entirely in regime NS. The white dashed lines in figure 18(a)
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Figure 17. Schematic of the moving-region boundary (dashed grey line), with ryi (red) and ryo (blue) marking
the nearest and farthest intersections of the line from the domain centre to the stirrer-path centre with the
boundary of the quiescent unyielded region.
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Figure 18. (a) Time evolution of the outer radius of the yielded region, ryo, at different yield-stress values.
Darker grey shades correspond to larger Bn. The white dashed lines display the moving time average (ryo). (b)
Time evolution of the velocity norm at different yield-stress values. The inset provides a magnified view over
the range 40 < T < 44 for regimes ST and NS. Re = 100.

display the moving time average (ryo) with an averaging window of T = 1, which better
illustrates variations over longer time scales.

Immediately after stirring begins, ryo rises sharply, reflecting the onset of yielding. The
oscillations in ryo observed in regimes SE and ST (e.g. Bn = 0.025 and Bn = 0.4) are
linked to vortex interactions, indicating that the moving region remains unsteady relative
to the stirrer. By contrast, in regime NS, vortex shedding and escape from the central
region do not occur; instead, ryo rapidly converges to a steady value, suggesting that the
flow is steady in the stirrer’s frame of reference. This steady value depends only weakly
on Bn: increasing Bn by two orders of magnitude reduces ryo by less than 50 %.

At very large Bn, the flow configuration and moving region resemble the asymptotic
case of a cylinder translating through a VPF in the high-yield-stress limit. For instance, at
Bn = 100 the moving region corresponds to ryo ≈ 1.86, only slightly larger than the plastic
limit of ryo ≈ 1.70 for uniform flow past a cylinder (Supekar et al. 2020). This explains the
very slow decrease of the mixing rate at Bn � 1 (see figure 16); in regime NS, the moving
region very slowly approaches the plastic limit with lim

Bn→∞ ryo ∼ 1.70. At high Bn, the

radial extent of interface deformation is thus restricted, while stretching along the stirrer’s
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path diminishes with increasing Bn. We hypothesise that these two effects together account
for the very slow decay of mixing efficiency when Bn � 1 (see figure 16).

In regime SE, ryo increases to a local maximum as the CW shed vortices travel
away from the stirrer, orbiting the stirrer’s path (see T ≈ 5 and Bn = 0.025 in the
figure). ryo decreases as these satellite vortices spread azimuthally and weaken. The
final increase in ryo corresponds to the escape of vortices from the central region (e.g.
T ≈ 20 for Bn = 0.025). Although we expect ryo to approach an upper bound for Bn � 0,
numerical estimation of this ultimate threshold in regime SE was not feasible within the
computational domain used in this study. However, the approach of ryo to a steady average
value, r ys , is clear in regimes ST and NS (see red dashed lines in the figure).

Finally, in regime ST, the relatively slow increase in ryo during the early stages (see
Bn = 0.4, T � 10) confirms that the yield stress delays the advection of shed vortices away
from the stirrer. Additionally, no further increases in ryo are observed, as the vortices
remain confined within the central region.

Figure 18(b) shows the time evolution of the kinetic energy. As with ryo, the
kinetic energy exhibits two characteristic time scales: a short time scale (Ts ≈ O(1)),
corresponding to small oscillations in KE, and a longer time scale (Tl ≈ O(10)), reflecting
the overall growth of KE. The oscillation amplitude again diminishes with increasing
Bn, disappearing entirely in regime NS. Here, KE increases rapidly when stirring begins,
before reaching an apparently quasi-steady state (see, e.g. Bn = 0.05, 10 � T � 25). This
corresponds to the time interval when the shed CW vortices advect within the central
region. In regime SE, this stage is followed by a second, relatively rapid increase,
corresponding to the escape of vortices from the central region (see, e.g. Bn = 0.05,
30 � T � 45). This transition is not observed in regime ST, where shed vortices remain
trapped in the central region (see, e.g. Bn = 0.4 in the figure).

Two critical values of Bn may be identified to distinguish the three regimes.⎧⎪⎨
⎪⎩

Regime SE if Bn � Bnce,

Regime ST if Bnce � Bn � Bnct,

Regime NS if Bnct � Bn,

(3.3)

where Bnce and Bnct are the critical Bingham numbers marking the regime transitions.
To differentiate the regimes, we evaluated the Fourier spectrum of the oscillations,

KE′ = KE − KE, where KE = ∫ T +1
T KE dT . Figure 19 shows the frequency spectrum

of KE′ at Re = 100, 0 � Bn � 100. All regimes have peaks at frequency one and its
harmonics. This is the fundamental frequency of the system for all Bn considered. The
prominence of the peaks diminishes as Bn increases. Regimes SE and ST have additional
distinct peaks (see f ≈ 1.6 and 1.8, respectively, in figure 19). These characteristic peaks
vanish as mixing transitions between regimes. In contrast, regime NS does not display
any peaks beyond the fundamental frequency and the harmonics. To estimate the critical
values, we evaluated the strength of the characteristic peak for each regime and used the
two closest data points to find, by extrapolation, the Bn value at which the characteristic
peak disappears.

Figure 20 illustrates the flow regime map in the (Re, Bn) plane. The orange, green
and blue zones correspond to regimes NS, ST and SE, respectively. Regimes SE and ST
disappear at sufficiently small Re below which there is no shedding even in the Newtonian
case. The square and circle markers indicate the estimates of Bnce and Bnct, respectively.

The dashed and dotted lines in figure 20 illustrate that the variations of Bnct and Bnce
are well described by the following fits:
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Figure 20. Flow regime map in the (Re, Bn) plane. Regimes NS, ST and SE, are indicated in orange, green
and blue, respectively. The triangle markers are the data points. Square and circle markers display the estimates
of Bnce and Bnct, respectively. The black dotted and dashed lines are linear fits to Bnce and Bnct.

Bnce = 0.00287Re − 0.14,

Bnct = 0.0111Re − 0.53.
(3.4)

The linear variation of the critical Bingham numbers with Re is reminiscent of the
effective Reynolds number, Ree, in flows of VPFs

Ree = ρ̂Û 2
o

τ̂y + μ̂ ˆ̇γc
, (3.5)

where ˆ̇γc is the characteristic strain rate. The primary challenges in identifying the
characteristic strain rate in flows of VPFs are twofold: firstly, the physically representative
ˆ̇γc may vanish as yield stress increases and the fluid becomes quiescent. Secondly, the
relationship between ˆ̇γc and yield stress is not known a priori; see Thompson & Soares
(2016) and Ahmadi, Olleik & Karimfazli (2022) for more details.

In this context, the linear critical equations presented in (3.4) reveal the effective
Reynolds numbers at which regime transitions occur. Assume that Ûo = r̂oΩ̂ and ˆ̇γc =
aΩ̂ , where a is a constant, then (3.5) yields

Ree = Re
a + Bn

. (3.6)
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Figure 21. (a) Steady values of the time-averaged radius of the yielded region, r̄ys , at different Bn and Re.
Each symbol (with unique colour) corresponds to a specific Re; empty and filled symbols denote regimes
ST and NS, respectively. (b) Evolution of r̄ys in regime ST as a function of the modified Bingham number,
Bnm = (Bn − Bnct)/(Bnce − Bnct).

Comparing this with (3.4), we find

Ree,ce = Re
Bnct + 0.53

≈ 350, ace ≈ 0.14,

Ree,ct = Re
Bnce + 0.14

≈ 90, act ≈ 0.53.

(3.7)

In the limit corresponding to Newtonian fluids (Bn → 0), the effective Reynolds number
is given by Ree = Re/a. On the other hand, as c → ∞, the critical Reynolds number
beyond which the wake behind a cylinder in a free stream of Newtonian fluids becomes
unstable is (Roshko 1954)

Re∗
cr = Recr

c
≈ 40, (3.8)

which implies that, for c → ∞, Recr ≈ 80, or alternatively Ree,ct ≈ Recr/act ≈ 151, marks
the onset of wake instability. Comparing these values with Ree,ct when c = 2 (see 3.7)
suggests that the wake behind the cylinder becomes more unstable as the path curvature
decreases.

The two distinct definitions of the effective Reynolds number shown in (3.7) confirm
that, for a given flow set-up, the characteristic strain rate changes with Bn. It follows
that defining a unique effective Reynolds number that fully describes the hydrodynamics
observed in the (Re, Bn) plane, e.g. help distinguish the different regimes at different
values of the Bingham number, is not feasible.

To quantitatively compare the extent of localisation in different regimes, figure 21(a)
displays the steady time-averaged radius of the moving region, r ys , in regimes ST and NS
for a wide range of Re. Distinct colours and marker shapes represent various Re values.
Empty and filled markers indicate regimes ST and NS, respectively.

In regime ST, r̄ys decreases with decreasing Re and increasing Bn, confirming the
influence of both yield stress and purely plastic stresses on the flow field. Figure 21(b)
shows that, in this regime, r̄ys values approximately collapse onto the same curve when
plotted against a scaled Bingham number, Bnm ,

Bnm = Bn − Bnct

Bnce − Bnct
. (3.9)
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Figure 22. Variation of enhancement factors, (a) ηλ and (b) ησ with Bn and Re. Each symbol with unique
colour shows a specific Re. The empty and filled symbols indicate regimes ST and NS, respectively.

Additionally, figure 21(a) reveals that r̄ys is approximately independent of Re in regime
NS. Furthermore, in line with the limited changes in the mixing rate at high Bingham
(Bn � 1), r̄yo changes very slowly with Bn within this range.

Finally, figure 22 illustrates the variation of enhancement factors with Bn across
different Re. Different values of Re are distinguished by different marker shapes. Empty
and filled symbols indicate regimes ST and NS, respectively. The initial rapid decrease
in ηλ and ησ , similar to the trend observed in figure 16, corresponds to regime ST. The
enhancement factors show little variation in regime NS. This suggests that the suppression
of advected shed vortices plays a significantly larger role in mixing localisation and
reduction than the contraction of the sheared layer around the stirrer, the sole localisation
mechanism active in regime NS. Moreover, the sharpest decline occurs near the transition
to regime NS, indicating that the complete suppression of shedding marks a key threshold
in the localisation process.

It is also evident that the influence of a small yield-stress value is more pronounced at
lower Re; for instance, comparing Re = 100 and Re = 300 in the figure. At higher Re, the
influence of Bn on the enhancement factors is less pronounced at low Bn, and a very sharp
decline in the enhancement factors is observed near Bn � Bnct.

4. Summary
In this study, we investigated a canonical two-dimensional mixing set-up to establish a
mechanistic understanding of how fluid mechanics drives transitions in the mixing regimes
of yield-stress fluids.

Our numerical simulations model an infinite, two-dimensional domain filled with a
quiescent VPF described by the Bingham model. In this set-up, a cylinder moves at a
constant speed along a circular path, stirring a fluid with uniform density and rheological
properties. The stirrer diameter is fixed at half the stirring radius throughout the study.
The bottom half of the domain is initially marked with a passive dye, with the centre of
the stirrer’s path aligned with the dye interface. This representative model allowed us to
explore the fundamental features of yield-stress fluid mixing in two-dimensional settings.

To decouple the influence of the flow dynamics from dye concentration, we considered
only one-way coupling, where the flow is unaffected by dye concentration changes.
This approach simplifies the isolation of causal relationships between fluid mechanics
phenomena and mixing events.

In the Newtonian case, we identified three primary mixing mechanisms when stirring a
fluid with heterogeneous dye distribution: (i) the stretching and folding of the dye interface
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within the central region as the stirrer initiates movement, (ii) diffusion-dominated
mixing when dye distribution becomes approximately uniform along streamlines and (iii)
enhanced mixing due to vortex shedding, where shed vortices transport dyed regions into
dye-free areas (or vice versa), significantly extending the dye interface.

For the laminar regimes studied, the fluid dynamics evolves on two time scales: the
average energy of the system changes on a slow time scale, roughly an order of magnitude
slower than the stirrer period, while energy oscillations, related to vortex interactions,
occur on a faster time scale. As yield stress increases, the average yielded region
size, kinetic energy and energy oscillations decrease, eventually leading to oscillation
suppression. We identified three mechanisms by which yield stress localises mixing.

(i) Finite vortex advection: in yield-stress fluids, advection of shed vortices is
suppressed, with vortices travelling within a finite radius from the stirrer due to
energy decay. This defines a maximum distance for dye transport and leads to
localised mixing.

(ii) Entrapment of shed vortices: at moderate yield stresses, shed vortices cannot escape
the stirrer’s vicinity, resulting in periodic interactions between the stirrer and
previously shed vortices, which promote mixing localisation.

(iii) Suppression of vortex shedding: at high yield stresses, vortex shedding ceases
entirely, confining mixing to the interface stretching caused by direct interaction
between the stirrer and the dye interface.

We classified the observed mixing regimes based on these mechanisms: in regime SE,
shed vortices escape the central region, causing dye variance evolution similar to that
in Newtonian fluids, with mixing initiated by interface stretching and folding, followed
by a diffusion-dominated phase and then acceleration by escaping eddies. Regime ST is
defined by the entrapment of vortices near the stirrer, limiting mixing to its immediate
vicinity, while regime NS shows no vortex shedding, with mixing characterised by initial
interface stretching followed by diffusion across streamlines and across the boundaries of
the well-mixed region.

Using a fast Fourier transform on energy oscillations, we distinguished these regimes,
all featuring a fundamental mode at frequency one. Additional spectral peaks in regimes
SE and ST, introduced by shed vortices, further enabled us to identify critical transition
criteria. In the (Re, Bn) plane, we observed distinct separation of the three regimes
along lines that relate critical Bingham numbers to Reynolds numbers. This relationship
allows us to define two unique, effective Reynolds numbers, each capturing a transition
between two regimes at a constant value. This supports the hypothesis that fluid mechanics
phenomena underlying mixing regime transitions are closely linked to the bluff-body flow
dynamics, traditionally described by threshold Reynolds numbers marking stability and
flow transition modes.

Comparing the decay of dye concentration variance, σ 2, across regimes, we hypothesise
that, among the various localisation mechanisms, vortex entrapment near the stirrer has the
most significant impact on mixing. This is supported by the contrasting long-term decay
behaviours observed in regimes SE and ST: in regime ST, where vortices remain entrapped,
σ 2 shows an exponential decay, while in regime SE, it decays at an accelerating rate due to
the influence of vortices that escape into the outer regions. To compare regimes ST and NS,
we introduced an enhancement factor, ηλ, which quantifies the relative decay rate of σ 2

during the final, diffusion-dominated stage of mixing, compared with the purely diffusive
case. In regime ST, ηλ declines sharply with increasing Bn, but in regime NS, it becomes
largely independent of both Re and Bn. This suggests that vortex entrapment is indeed the
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primary driver of mixing localisation. Moreover, once vortex shedding is fully suppressed
(in regime NS), increasing stirrer speed has minimal effect on enhancing mixing.

Finally, mixing localisation has far-reaching effects beyond the initial localisation of
interface stretching: while the change in the degree of mixing by the end of the advection-
dominated phase may not be very significant (e.g. approximately 10 % for an increase of
three orders of magnitude in Bn), the subsequent change in the decay rate of σ 2 can be
much more significant (more than 80 %).

The fundamental principle of laminar mixing in stirred tanks is the periodic movement
of a stirrer along a closed path. In this work, we model this process in its most simplified
form: a single stirrer moving along a circular path across an initial concentration gradient,
within an effectively infinite domain. The dynamics is governed by Re and Bn and c.
For a fixed stirring radius, we observe a gradual transition from attached eddies to vortex
shedding, with vortices either remaining trapped around the stirrer or escaping the central
region.

The vortex dynamics identified in this study is closely linked to the classical problem of
vortex shedding behind bluff bodies. The Strouhal number associated with vortex shedding
behind bluff bodies, defined as St = f̂ d̂s/(r̂oΩ̂), increases monotonically with Re and
asymptotically approaches a maximum value, Stm . Here, f̂ is the shedding frequency. In
contrast, St is expected to decrease with increasing Bn, as the effective Reynolds number
is reduced. Accordingly, variations in c are expected to produce more complex vortex
structures, since the maximum number of vortices shed per stirrer period scales with cStm .
A detailed investigation of the influence of c lies beyond the scope of the present study.
Nevertheless, we hypothesise that, in the absence of wall effects, the primary mixing
modes and yield-stress-driven localisation mechanisms identified here remain relevant.
Qualitatively, the archetypal regimes fall into three categories: NS (no shedding), ST
(shedding with trapped vortices), and SE (shedding with escaping vortices).

For passive tracers, the transitions between the mixing regime observed here correlate
with distinct effective Reynolds numbers based on the stirrer size, shape and speed,
alongside the Bingham number. Alternatively, the critical Bingham numbers marking
these transitions are expected to scale linearly with the Reynolds number based on purely
viscous stresses. Given the lack of an a priori definition for effective Reynolds numbers
in such flows, we recommend further investigation of the linear critical criteria observed
here.
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