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While we now have a relatively good understanding of low-Reynolds-number
hydrodynamics, and elegant techniques to dissect it, one cannot truly say the same for
yield-stress fluids. For these materials, the nonlinearity associated with the yield stress
complicates analysis and prevents the use of many of the techniques used for slow viscous
flow. Simultaneously, the presence of a yield stress introduces a range of new features into
the problem beyond those of traditional Stokes flow. Accordingly, in this essay, we discuss
the impact of a yield stress in the relatively simple setting of two-dimensional, steady,
inertialess flow. The main goals are to establish intuition for the dramatically different
features that can be introduced to the flow by the yield stress, and to outline the various
tools available to the modeller to construct and interpret these flows.

Key words: plastic materials

1. Introduction
A favourite Italian dessert is the panna cotta, similar to thick custard or blancmange. It
resists the force of gravity, to stand up in the shape in which it was set, but wobbles like
jelly after being lightly disturbed, quickly returning to its original configuration. Then,
when the spoon is pushed in, the panna cotta smoothly and irrevocably flows apart along a
seam. The material therefore combines the properties of a deformable or soft, viscoelastic
solid, with those of a viscous fluid, depending on the strength of the imposed stress. In
other words, panna cotta has properties one usually associates with a yield-stress fluid.
A great many other materials share these properties, from mud and lava in geophysical
contexts, to mucus in biology and to creams, gels and slurries in industrial processes.
The flows associated with these materials have application in a wide and colourful variety
of settings, ranging from geological hazards, to locomotion and to transport, mixing and
optimisation problems.

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
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Solid mechanicians typically view the yield stress from below, considering the
recoverable displacements arising before flow, and determining when yield occurs as
a mode of failure. Fluid mechanicians often consider the yield stress as a nuisance,
complicating the effective viscosity of the material and rendering it singular as yield is
approached from above. Plasticity theory applies in between, with classical approaches
sometimes ignoring any solid-like deformation below the yield point or viscous effects
above it. Unsurprisingly, however, the true nature of a material like panna cotta can only
by appreciated by fully understanding the transition from the viscoelastic solid below the
yield stress to the viscoplastic fluid above it. We refer the reader to recent reviews for a
fuller discussion on such issues and more (Balmforth, Frigaard & Ovarlez 2014; Bonn
et al. 2017; Coussot 2018; Frigaard 2019a; Larson & Wei 2019).

Notwithstanding this last point, here, we adopt the historical perspective of the fluid
mechanician, and explore how the simple presence of a yield stress can fundamentally
impact viscous flow behaviour. Throughout this work we focus on the idealised setting of
relatively slow, steady flows in two spatial dimensions; this is the setting of the classical
Stokes problem in viscous fluid mechanics, for which we have over a century’s worth of
analysis and understanding to exploit. With a yield stress and its fundamentally nonlinear
nature, however, many of the tools and much of the intuition built for Stokes flows no
longer apply. Indeed, the yield stress introduces a range of new features into slow, steady
flows. Our purpose here is to illustrate how the yield stress impacts flow problems, and
identify the novelties. Our overarching goal is to re-establish some of the intuition lost
from the Stokes problem by the incorporation of the yield stress.

For that reason, we focus most of our discussion on one of the simplest kinds
of viscoplastic fluid: an incompressible material described by the Herschel–Bulkley
constitutive law (which contains within it, as a limiting case, the famous Bingham plastic
constitutive law; Hohenemser & Prager (1932); Oldroyd (1947a)). Such a material is
characterised by a scalar yield stress, above which it flows in a viscous manner and below
which it is rigid. Because our goal is chiefly to consider the impact of the yield stress, our
interest is well away from the Newtonian limit. Indeed, we focus on situations where the
yield stress is relatively strong, or equivalently, when the flow is very slow. Both translate
to the ‘plastic limit’ of the problem, where the yield stress dominates the internal stresses,
except over the narrow boundary layers wherein length scales are sufficiently small that
viscous effects survive (Oldroyd 1947b; Balmforth et al. 2017).

We begin in § 2 with an illustrative overview of various common dynamical features
that occur in slow, steady viscoplastic flows in this plastic limit. This discussion sets the
scene for the remainder of the article by conceptually introducing much of the interesting
phenomenology of viscoplastic flows, the analysis and interpretation of which occupies
the subsequent sections. After this opening overview section, we proceed to outline
the mathematical foundations, including some details of plasticity theory, in § 3, before
presenting three extended ‘case studies’ of viscoplastic problems in §§ 4, 5 and 6. These
illustrate many of the features already introduced in § 2, but are considered in somewhat
more detail. Conceptual issues, points of interest and open research questions are discussed
throughout these sections as they arise; these ideas are all then brought together in a final
discussion and perspectives section (§ 7).

2. Canonical viscoplastic behaviour: an overview
The defining feature of a viscoplastic material is the presence of a threshold yield stress;
if the stress exceeds this value, the material yields and flows. The simplest models assume
that the threshold value is a material constant, that the material is rigid and undeformed
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below the threshold, and that the rheological response of the material is always an
instantaneous function of the local strain rate (thus precluding any elastic effects). Given
a flow field u, the associated deviatoric stress τ and strain rate γ̇ = ∇u + ∇uT are then
related by

γ̇ = 0 for τ < τ
P
, (2.1)

τ =
[
τ

P

γ̇
+μ(γ̇ )

]
γ̇ for τ � τ

P
, (2.2)

where the symbols γ̇ and τ refer to the scalar second invariants of the respective tensors,
γ̇ = √

(1/2)γ̇i j γ̇i j and τ = √
(1/2)τi jτi j . The yield stress is τ

P
and the function μ(γ̇ )

here is the generalised ‘plastic’ viscosity. It is immediately clear that the stress state of
the material is determined by contributions from both plastic and viscous stresses (the
first and second terms in (2.2), respectively) when the yield threshold is exceeded. The
relative importance of these contributions is typically measured by the ‘Bingham number’
Bi, which, given a flow problem with length and velocity scales L and U , respectively, and
thus strain-rate scale U/L, is

Bi = τ
P
L

U μ(U/L) . (2.3)

We refer to the limit Bi � 1 as the ‘plastic limit’ of the problem: in this limit the yield stress
plays a dominant role in the dynamics of the flow, and, as we shall see, flow solutions can
look remarkably unlike their Newtonian counterparts. Note that this limit is achieved both
when the yield stress itself is large, but also for arbitrary non-zero yield stress when the
strain rate is sufficiently small (at the initiation of motion, for example).

Before delving into the mathematical and numerical details associated with
manipulating and analysing constitutive laws of the kind outlined above, we first provide a
brief overview of the different sorts of behaviour that such a model can produce. There are
various hallmarks of viscoplastic flows when Bi � 1 that will recur throughout this work,
and these are perhaps best introduced by means of an example flow solution. Figure 1
shows sample numerical solutions of two-dimensional, inertialess flow of a Bingham fluid
(μ= constant in (2.2)) around a translating disk (e.g. Roquet & Saramito (2003); Tokpavi,
Magnin & Jay (2008); Chaparian & Frigaard (2017b); Supekar, Hewitt & Balmforth
(2020)). This problem is well known in viscous fluid mechanics as a setting for the famous
Stokes paradox: there is no purely viscous solution for flow around a translating disk;
inertial effects inevitably impact the flow sufficiently far from the disk. Viscoplastic fluids
have no such problem: the stress must decay away from the translating disk and, for
any Bingham number, will eventually ‘plug up’ the material as it falls below the yield
stress (see, e.g. Hewitt & Balmforth (2018)). That feature is a generic one for viscoplastic
problems: stresses decay away from the point(s) of disturbance, causing the material to
plug up sufficiently far away. As the influence of the yield stress (i.e. Bi) is increased, the
yielded region of deformation typically becomes increasingly localised to the source of
the disturbance.

That said, as seen in figure 1(a), which shows the deformation-rate field for two different
values of Bi � 1 separated by roughly an order of magnitude, the flow pattern is richer than
just a simple localisation of viscous motion. Moreover, flow does not become confined to
narrow regions around the disk. In fact, the region of yielded material in the two cases is
almost identical, indicating that the flow field converges towards a non-trivial plastic limit
as Bi → ∞. The colour map and logarithmic scale used here helpfully illustrate both the
location of the rigid plugs (black) and the relative contributions of plastic deformations
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Figure 1. (a) Numerical solution for the nearly plastic flow of a Bingham fluid around a disk translating to the
right. Shown is the logarithmic shear rate log10 γ̇ as a density map over the (x, y)-plane, for two solutions with
different values for the dimensionless yield stress (Bi = 210, top; 214, bottom; each full solution is symmetric
about y = 0). The green lines show a selection of streamlines. In (b) the borders of the plugs are shown for
a wider suite of computed solutions with Bi = 2 j , j = 6, 7, . . . , 16, with yield stress increasing as indicated
(and colour coded from red to blue). The (green) dashed and dot-dashed lines indicate the outer yield surface
and border of the serendipitous plug of the perfectly plastic solution (Randolph & Houlsby 1984). The wall
boundary layer along the top side of the disk for Bi = 210 = 1024 is shown in more detail in (d). Angular
velocity v profiles are plotted in (c,d) along the cuts indicated by dotted blue lines in (a) and (e), for the suite
of computations in (b). These profiles are collapsed by plotting v against the scaled coordinates indicated, and
compared with the predictions of boundary-layer theory (green dots; §§ C.1.1 and C.1.2).

(small, but non-zero strain rates; orange) and residual viscous motion (larger strain rates;
yellow). The anatomy of these solutions reflects an interplay between the extended plastic
regions, thin viscous layers and unyielded plugs.

The extended regions of nearly plastic deformation dominate the flow pattern when
Bi � 1. In figure 1(a), these regions extend out to circular arcs beginning from a point
ahead of the disk to a (symmetric) point at the back; fluid circulates from fore to aft
within them. Small, rigidly rotating plugs occupy the centres of the circulating flows, while
narrow shear layers act as buffers from both the outer unyielded plug and from the moving
disk. Two other, rigidly translating plugs with triangular yield surfaces are attached to the
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disk at the front and back. The stress and deformation fields in the extended regions of
nearly plastic deformation approach those for a disk moving in a perfectly plastic material
(Randolph & Houlsby 1984); the clean, geometrical nature of these regions reflects an
underlying map of characteristics, the so-called slipline field (Hill 1950; Prager & Hodge
1951), that solve the hyperbolic plastic problem, as discussed in more detail in § 3.4 below.

Over the shear layers that buffer the extended nearly plastic regions, viscous stresses
become important, and their interplay with the plastic stresses controls the dynamics (see
Oldroyd (1947b); Balmforth et al. (2017)). It turns out, however, that the nature of this
control depends on whether one boundary is a rigid wall or not (in essence, there is a
fixed constraint on the magnitude of the stress at the edge of a plug region that is absent
if the layer borders a rigid wall). As demonstrated in detail in Appendix C, wall-bounded
layers are generically thinner, with higher shear rates, than ‘free’ shear layers bordering a
plug. In figure 1, panels (c) and (d) show how the widths of these two types of boundary
layers scale with Bi−1/2 and Bi−1/3, respectively. Those scalings, in each case, follow from
consideration of the size of the pressure drop across the layers. These viscoplastic layers
have vanishing thickness for Bi → ∞, becoming lines of slip in the perfectly plastic limit.

Finally, the plugs also come in different varieties. The outer, ‘ambient’ plug of figure 1
is one variety, corresponding to a permanent feature of the plastic limit. This permanence
is visible in panel (b), which plots the yield surfaces for computations with varying Bi.
The outermost yield surface, the border of the ambient plug, converges to a finite curve for
Bi → ∞ which corresponds to the yield surface of the perfectly plastic slipline solution
(Randolph & Houlsby 1984). In addition to appearing in the perfectly plastic solution,
these ‘permanent’ plugs are characterised by stress fields that certainly fall below the yield
value.

A second plug variety is illustrated by the rotating plugs at the cores of the recirculation
zones. Unlike the permanent plugs, these regions of rigid rotation steadily shrink as Bi is
increased, and vanish completely in the limit Bi → ∞ (although their decay is extremely
weak; Supekar et al. (2020) argue that the plug radius decays like Bi−3/28). The rotating
plugs also do not feature in the perfectly plastic slipline solution. In other words, these
‘residual plugs’ constitute a second variety of plugs that have their origin in viscous effects
(which are evidently sufficient to reduce stresses below the yield value for finite Bi if the
local strain rate remains relatively small).

Last, the rigid plugs attached to the front and back of the disk are examples of a third
plug variety. In the numerical solutions, these plugs have yield surfaces that again converge
to finite curves (figure 1b), as for the permanent plugs. However, unlike the latter, the
whole interior of the triangular plugs are held close to the yield threshold. Moreover,
these regions are identified as part of the deforming region in the perfectly plastic solution
(which we illustrate more fully below in § 5). By pure coincidence, it turns out that the
velocity field over the triangular regions is simultaneously consistent with rigid-body
motion, being simply an extension of the disk’s velocity. Those regions thereby become
identified numerically as plugs. In fact, when we consider some other disk-flow problems
in § 5, we uncover different examples in which triangular regions at the front and back
truly yield and deform plastically, owing to the imposition of different velocity boundary
conditions on the disk surface that lead to a conflict with rigid-body motion. The attached
plugs in figure 1 are therefore examples of what one might call ‘serendipitous’ plugs.

A summary of all these features, amounting to a list of expectations for the flow patterns
in the plastic limit, is given in table 1. A number of principles underlie these features.
These principles, and some of their consequences, will be identified and discussed in the
remainder of this article, and are summarised in table 2.
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Table 1. Typical flow features in the plastic limit.

Table 2. Key guiding principles underlying the typical flow features listed in table 1.

3. Mathematical foundations

3.1. Conservation laws; prototypical viscoplastic rheology
Consider the flow of a two-dimensional, incompressible, complex fluid, describing the
geometry by a Cartesian coordinate system (x̂, ŷ). The fluid velocity is û = (û, v̂).
Conservation of mass and momentum demand that

∇ · û = 0, (3.1)

and

0 = ∇·τ̂ + f̂ − ∇ p̂, (3.2)
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where p̂ is the pressure and f̂ represents any body force like gravity (we use the
hat notation to denote dimensional variables; this decoration is removed using suitable
scalings, to arrive at a dimensionless formulation, as outlined presently).

One of the simplest and most popular constitutive models for a yield-stress fluid of the
form of (2.2) is the Herschel-Bulkley law, with tensorial formulation

τ̂ =
(
τ

P

ˆ̇γ + K ˆ̇γ n−1
)

ˆ̇γ for τ̂ > τ
P
. (3.3)

The plastic viscosity, μ( ˆ̇γ )= K ˆ̇γ n−1 takes the same form as the power-law fluid, with
a consistency K and power-law index n. The yield stress is τ

P
; if τ̂ < τ

P
, this threshold

for yield is not breached and the deformation rates must all vanish, translating to ˆ̇γi j = 0.
An important special case of (3.3) is when n = 1 and the rate-dependent part of the stress
takes the form of a constant viscous stress. This is the Bingham fluid, which is popular
because of its simplicity, not its realism. Fits to data obtained in rheometers more typically
generate power-law exponents n < 1, although the power-law form itself is usually only
a rougher representation of real fluid behaviour (Balmforth et al. 2014; Bonn et al. 2017;
Coussot 2018; Frigaard 2019a).

Importantly, when τ̂ < τ
P

, no relation is imposed between the stresses and strain rates.
In two dimensions, the two force-balance equations (3.2) are then insufficient to determine
the two independent components of τ̂ and the pressure p̂. That is, the stress state is
formally indeterminate over any plugged region, which is an awkward feature of the
problem that will recur often in our discussion.

3.2. Scaling and dimensionless formulation
It is helpful to reformulate the equations in dimensionless form and identify key
dimensionless groups. We have already identified the Bingham number (2.3) as the ratio
of viscous and yield-stress scales; for the Herschel–Bulkley law, given length and velocity
scales L and U , the Bingham number is

Bi = τ
P

K (U/L)n , (3.4)

with Bi � 1 denoting the plastic limit of the problem. Alternatively, when the velocity
scale is not imposed, but a body force like gravity is present, a stress scale P can be
defined (such as P = ρgL). In this circumstance, one can define a velocity scale

U =L
(P

K

) 1
n

(
≡L1+ 1

n

(ρg

K

) 1
n
)
, (3.5)

where ρ and g denote density and gravitational acceleration and the Bingham number in
(3.4) becomes Bi = τ

P
/P (or τ

P
/(ρgL)). This parameter must remain order one if the

applied stresses are to exceed the yield stress and force motion. Strictly speaking, Bi now
represents the ratio of yield stress to the imposed stress, and (for gravity) is sometimes
referred to as the ‘Oldroyd number’ instead. The plastic limit is then characterised by the
special value of Bi for which the fluid speed approaches zero. That is, the plastic limit
corresponds to the threshold for motion.

For two-dimensional flow without body forces, we write the dimensionless governing
equations using either a Cartesian coordinate system (x, y) or general curvilinear
coordinates (s, η) built from the arc length along some prescribed curve and its normal:

1011 P1-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

34
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.343


N.J. Balmforth and D.R. Hewitt

∂u

∂x
+ ∂v

∂y
= 0,

∂τXX

∂x
+ ∂τXY

∂y
= ∂p

∂x
,

∂τXY

∂x
− ∂τXX

∂y
= ∂p

∂y
,

∂U

∂s
+ (1 − κη)

∂V

∂η
− κV = 0,

∂τSS

∂s
+ (1 − κη)

∂τSN

∂η
− 2κτSN = ∂p

∂s
,

∂τSN

∂s
− (1 − κη)

∂τSS

∂η
+ 2κτSS = ∂p

∂η
,

(3.6)

where

κ = ∂θ

∂s
, (3.7)

is the curvature of the prescribed curve. Here and throughout this work, capital-letter
subscripts are used to identify tensor components. The velocity field in Cartesian
coordinates is (u, v); the curvilinear relative is (U, V ). The strain-rate components are
given by

γ̇XX = 2
∂u

∂x
,

γ̇XY = ∂u

∂y
+ ∂v

∂x
,

γ̇SS = 2
1 − κη

(
∂U

∂s
− κV

)
,

γ̇SN = 1
1 − κη

(
∂V

∂s
+ κU

)
+ ∂U

∂η
,

(3.8)

and the Herschel–Bulkley constitutive law is

τ =
(
γ̇ n−1 + Bi

γ̇

)
γ̇ for τ > Bi. (3.9)

The nonlinear rheology in (3.9) presents some challenges for computing numerical
solutions to (3.6)–(3.9), primarily because of the yield condition. A convenient, alternative
approach that circumvents such challenges is provided by ‘regularising’ the constitutive
law: (3.9) is replaced by a smoothed version with a well-defined and finite relationship
between stress and strain rate everywhere. More precise techniques also exist, most notably
the augmented Lagrangian approach, which provides an iterative solution to the exact
rheology directly. Some details of both of these schemes, along with other numerical
considerations and observations, are presented in Appendix A.

Alternatively, as in any fluid mechanical problem, asymptotic approaches based on an
extreme difference in length scales provide a useful tool for interrogating viscoplastic
flows (Balmforth 2019). Shallow flows can be attacked with a generalisation of viscous
lubrication theory, although the approach has been incorrectly denigrated in the past
because of the fallacy of the so-called lubrication paradox (Balmforth & Craster 1999;
Hewitt & Balmforth 2012). More generally, and as illustrated earlier, viscous deformation
becomes restricted to narrow boundary layers in the plastic limit, which are amenable
to boundary-layer analysis (Oldroyd 1947b; Balmforth et al. 2017). Such asymptotic
approaches can become technically involved; the interested reader can find further details
in Appendix C.

3.3. Extremum principles and minimum dissipation
The (dimensionless) governing equations can be cast into a variational form that identifies
extremum principles satisfied by the velocity and stress fields (see Prager (1954) and, for
example, Frigaard (2019b)). We quote these principles in settings for which we ignore
any body forces (i.e. gravity) and the velocity field is prescribed on all the boundaries.
The principles therefore apply to the steady flow problems considered in § 4 and § 5, and
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provide a useful constraint associated with the net dissipation rate on the solutions in the
plastic limit.

The first principle is that, of all the divergence-free velocity fields v that match up with
the velocities along the boundaries, the actual velocity field u minimises the functional

Φ[v] =
∫ ∫

D

{
Bi + [γ̇ (v)]n

n + 1

}
γ̇ (v) dxdy, (3.10)

where D denotes the domain occupied by the fluid and γ̇ (v) denotes the strain-rate
invariant built from v. In this minimisation, the trial velocity fields are not linked through
the constitutive law to any stress field.

The second principle is that, of all the possible stress fields σ̃ that satisfy the force-
balance equations, independently of the constitutive law, the actual stress σ maximises

Ψ [σ̃ ] =
∫
∂D

u·σ̃ · n̂ ds − n

n + 1

∫ ∫
D

{
Max

[
0, τ (σ̃ )− Bi

]}1+ 1
n dxdy, (3.11)

where ∂D denotes the boundary of the fluid domain, with unit outward normal n̂ and
infinitesimal arc length ds, and τ(σ̃ ) denotes the second invariant of the trial stress field.

Necessarily, when the extrema are achieved, we also have that Φ[u] =Ψ [σ ], which
corresponds to the integral constraint∫

∂D
u·σ · n̂ ds =

∫ ∫
D
τ γ̇ dxdy ≡ E, (3.12)

and is simply an expression of the fact that the power supplied through boundaries (the
left-hand side) must balance the net dissipation rate (E , the second integral). Importantly,
in the plastic limit, τ γ̇ → Biγ̇ and the velocity minimisation corresponds to selecting the
trial velocity field that has the least net rate of dissipation. In addition, if a body force is
present (cf. § 6), the work performed by that force must also be added to the variational
problems and to (3.12) (Prager 1954; Frigaard 2019b).

3.4. Plasticity theory
For Bi � 1, the theory of perfect plasticity applies (Hill 1950; Prager & Hodge 1951); key
concepts for generating solutions in this limit are provided below. Additional details of
slipline analysis, and a sample construction of a relevant slipline pattern, can be found in
Appendix B.

3.4.1. Sliplines
In terms of our two-dimensional Cartesian coordinate system, the constitutive law in the
ideal plastic limit reduces to

τ 2
XY

+ τ 2
XX

= Bi2, (3.13)

which motivates the definition of the new variable θ in

(τXX, τXY)=
Bi
γ̇
(γ̇XX, γ̇XY)= Bi(− sin 2θ, cos 2θ). (3.14)

We may then manipulate the force-balance equations (3.2) into the hyperbolic pairing(
∂

∂y
+ cot θ

∂

∂x

)
(p + 2Biθ)= 0 &

(
∂

∂y
− tan θ

∂

∂x

)
(p − 2Biθ)= 0. (3.15)
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A
B

C

(a)

(b)

D

x

y ↓ θ = 0, y = y0

θ

← y = ya, θ = π/4 

← β-line

← α-line

Figure 2. Illustrations of the slipline field, and Prandtl’s (a) cycloid and (b) punch solutions. The shaded
regions indicate plugs. In (b), the dotted lines show sample streamlines.

That is, we have the Riemann invariant p + 2Biθ along the curves with dy/dx = tan θ ; the
curves with dy/dx = − cot θ have p − 2Biθ = constant. These characteristic curves are
the ‘sliplines’ of classical plasticity theory (Hill 1950; Prager & Hodge 1951). Evidently,
the two sets of curves are orthogonal to one another, and are commonly referred to as the
α and β-lines. Convention takes the two sliplines to form a local right-handed coordinate
system.

The sliplines form a net that spans all the yielded regions (two examples are shown in
figure 2). A number of properties of the network follow from (3.15). Two, in particular,
are often quoted and termed ‘Hencky’s rules’; we describe these more thoroughly in
Appendix B.1. One important consequence of them is that when a slipline of one family
(i.e. α or β) is straight, then all the other lines of the same family must also be straight
if sliplines from the other slipline family connect them together. This relatively strong
geometrical constraint impacts the structure of the yielded regions and provides a pathway
to solving the slipline equations analytically in some problems. In particular, it implies that
when one slipline is straight, the acceptable slipline fields include square checkerboards
and centred circular fans, as illustrated in figure 2(b), or a set of involutes to a curve such
as a circle (as we encounter later).

In general, however, the utility of sliplines is limited because rigid plugs can be present,
over which (3.13) no longer holds, and any slipline can be taken to be a yield surface
bounding these plugs (Hill (1950); Prager & Hodge (1951); see also figure 2). Worse,
discontinuities can also appear in the stress field. The sliplines do not remain continuous
across these features, implying scars can disfigure the slipline pattern. The (total) normal
and shear stresses remain continuous across any such discontinuity, but there can be a
jump in the tangential normal stress (i.e. σSS = τSS − p, if the curvilinear coordinate system
is aligned with the discontinuity). These conditions translate to the requirement that the
sliplines meet the discontinuity at equal angles.
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Complicating matters further is that, in many problems, boundary conditions are
provided on the velocity, not the stress. One cannot then construct the slipline field without
a consideration of the velocity field. The components of the velocity field along the
sliplines, (vα, vβ), satisfy the so-called Geiringer equations

∂vα

∂sα
= vβ

∂θ

∂sα
and

∂vβ

∂sβ
= −vα ∂θ

∂sβ
, (3.16a,b)

which follow from the constraint of incompressibility (3.1). These equations imply that
the plastic flow lines (i.e. the characteristics of the velocity field) coincide with the
sliplines. Therefore, if the velocity field is directed along one set of sliplines, these
curves also correspond to streamlines and the velocity along them remains fixed. Again, a
complication is that the ideal plastic velocity field need not remain continuous. In fact, as
implied by the name, a slipline can be taken as the locus of a jump in tangential velocity.
In other words, velocity discontinuities can be present, but they are aligned with sliplines.
Figure 2(b) also plots a selection of streamlines, corresponding to the slipline field shown.
Here, fluid enters the domain at an angle to the 45◦ checkerboard of sliplines. Once fluid
reaches the fan, however, slip occurs, allowing the velocity to re-align with the circular
arcs of the fan. Thereafter, one of the slipline families corresponds to streamlines.

Although the slipline field can be used to directly construct a range of perfectly plastic
solutions, the difficulties implicit in the construction can make such an approach unwieldy
and it is often not possible to proceed analytically. While techniques have been developed
to ease numerical constructions of the slipline field (Collins 1982), our perspective here is
different. With the advent of augmented Lagrangian numerical techniques, one can solve
two-dimensional problems of viscoplastic steady flow with relative ease, even close to the
plastic limit. This circumvents any need to construct numerical slipline fields directly.
Instead, with a numerical viscoplastic solution in hand, the slipline analysis provides
a convenient tool to diagnose the solution structure, pointing to the existence of any
analytical special cases and providing a means to verify the fidelity of computations. We
illustrate these ideas later, using some specific flow configurations.

3.4.2. Exact solutions and constructions
Two classical exact solutions to the slipline problem date back to Prandtl and are illustrated
in figure 2. The solution illustrated in figure 2(b) consists of a patchwork of circular
fans and triangular checkerboards. The rightmost sliplines (a β-line for the bottom half,
and an α-line for the top) provide a yield surface. This construction was offered by
Prandtl as a slipline solution for plastic indentation, following along the lines of traditional
developments for the indentation of a punch in linear elasticity. Prandtl’s solution (rotated
by ninety degrees) is commonly used in soil mechanics for the failure of a foundation
above a cohesive soil.

A second solution offered by Prandtl applies to the compression of a plastic layer, or a
squeeze flow. In this case the sliplines are cycloids: if θ = θ(y) and p = Bi[−Γ x +Φ(y)],
then the force-balance equations reduce to

∂

∂y
(cos 2θ)= −Γ &

∂

∂y
(Φ + sin 2θ)= 0, (3.17)

If θ = 0 at y = y0 and θ = (1/4)π at y = ya , then the α-lines follow from

cos 2θ = y − ya

y0 − ya
,

dy

dx
= tan θ =

√
y0 − y

y + y0 − 2ya
, Γ = −(y0 − ya)

−1. (3.18)
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Hence

2 tan−1

√
2
v

− 1 − √
v(2 − v)+ 1 − 1

2
π = x0 − x

y0 − ya
, v = y0 − y

y0 − ya
, (3.19)

if x = x0 for y = ya , which is the equation for a cycloid. Note that this curve is scale free,
in the sense that any scaling of y and x leaves the equation unchanged (as long as Γ can be
scaled suitably too). The resulting slipline field is actually what is illustrated in figure 2(a).

Note that Prandtl’s two solutions illustrate an important feature of the plasticity problem:
the squeezing walls generating the cycloid solutions in figure 2(a) are assumed to be ‘fully
rough’, a condition demands that the fluid slides along the wall with a local shear stress
that equals the yield stress. For a viscoplastic fluid, such slip prompts the appearance of a
thin wall boundary layer over which the tangential velocity is brought back to zero. In other
words, fully rough boundary conditions on the walls translate to no slip, and the slipline
angle is either θ = 0 or θ = (1/2)π . Conversely, the surface on the left in figure 2(b) is
free, implying that the shear stress must vanish, and θ = ±(1/4)π . Such a condition on
the slipline angle also applies along lines of symmetry, such as the midline between the
squeezing plates in figure 2(b). The y-axis can further be taken as another line of symmetry
at the centre of the squeeze flow, if the shaded region is assumed to plug up with yield
surfaces along the bordering sliplines. The correspondence between no-slip or free-slip
boundary conditions and the fixing of the slipline angle recurs in the examples we present
below.

More generally, the slipline equations (when expressed in terms of the two local radii of
curvature, or some other geometrical variables; Appendix B.1) and Geiringer’s equations
reduce to the telegraph equation under a change of independent variables (from arc length
to an angle parameterisation; Hill (1950)). Classical solutions to that problem then allow
one to write down exact solutions to the plasticity problem in terms of single integrals if
information is provided along a known slipline. Even if such information is not provided,
one can still use this solution as the basis of a numerical scheme (Dewhurst & Collins
1973; Collins 1982). This strategy significantly expanded the library of slipline solutions
available in the plasticity literature (e.g. Collins (1970, 1982)), a resource that largely
remains untapped in analyses of viscoplastic fluid flows near the plastic limit. In fact,
this technique leads to semi-analytical solutions, one of which is closely related to the
slipline problem discussed in § 4 (Hill 1950; Chakrabarty 1979). Other exact solutions or
constructions follow from searching for self-similar solutions (e.g. Taylor-West & Hogg
(2021, 2023)).

4. Jet-like intrusion
To illustrate viscoplastic flow dynamics near the plastic limit, we consider three model
problems for a Bingham fluid (n = 1). The first, sketched in figure 3, corresponds to a
modification of a problem suggested by Oldroyd (1947b) in which a jet-like intrusion of
viscoplastic fluid flows through a rectangular channel. The fluid enters with fixed speed U
over an orifice on the left wall of width yi , then leaves through a similar exit on the right
wall. We take L= yi as the characteristic length scale, and impose symmetry conditions
along the midlines of the rectangle, at x = �x and y = 0, reducing our computational
domain to the upper left quadrant. We consider two possible boundary conditions for the
walls at y = ±�y : no slip conditions and free slip conditions. Adopting no slip simulates
flow through a localised expansion. Such flows have previously been used as model
problems for viscoplastic computations (Mitsoulis & Tsamopoulos 2017) and experiments
(Coussot 2014), and have received attention in the classical plasticity literature (Hill 1950).
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y

xyi

U
Moving plug

Static plug

Static plug

Shear layer

← (a) Oldroyd′s jet-like intrusion

(b) Dimensionless computational domain

← u = w = 0

← u = w = 0

Symmetry

↓ u = w = 0 or Free slip ↓

↑ u = w = 0 or Free slip ↑

2𝓁x

Fluid

domain D

2
𝓁
y

← (u, w) = (1, 0)

1

Figure 3. Sketch of a jet-like intrusion through a rectangular domain. The characteristic scales L and U are
taken to be the inflow speed U and the inlet width yi . Practically, the symmetries about y = 0 and x = �x are
used to consider only a quarter of the domain.

Alternatively, with free-slip conditions, we simulate an array of vertically stacked, periodic
injections. It proves useful to consider both no slip and free slip at y = ±�y in order to
illustrate some important repercussions of placing a plug against a wall.

4.1. Narrow domains; breaking the incoming plug
A suite of numerical solutions for the jet problem are displayed in figure 4. Here, the
Bingham number is fixed close to the plastic limit (Bi = 2048), the cross-stream height is
set at �y = 3/2 and the downstream length �x is varied. For small domain lengths �x , flow
enters and exits the domain as a moving plug of almost uniform width bordered by two thin
shear layers (figure 4c). This localisation of fluid deformation by the yield stress, and the
creation of extensive blockages, is rather different from traditional Stokes flow, for which
fluid deforms throughout the domain (and is equivalent to the localisation of viscoplastic
flow around the disk in figure 1). The shear layers have a structure that can be predicted
by Oldroyd’s boundary-layer theory (see figure 5a,c), as outlined in § C.1.1. That analysis
indicates that the net dissipation E over the upper half of the domain is approximately
�x Bi (cf. (C9)) and the area of the corresponding yielded region is given by (C8); both
diagnostics are plotted in figure 4(a,b) for the full series of computations.

As the domain becomes longer, the stresses exerted on the moving plug increase;
eventually, this increase causes the plug to break. A region of almost perfectly plastic
deformation then appears near the inlet that allows the jet to adjust its width (figure 4d,e).
This widening reduces the net dissipation rate below that expected for an unbroken plug
(figure 4a), and abruptly increases the area of yielded plug (figure 4b). Evidently, the
widening of the jet is sufficient to reduce the velocity jumps across the shear layers, and the
net dissipation rate within them, despite the lengthening of those layers and the additional
dissipation incurred over the plastic region.

As illustrated in figure 6(a,b), the perfectly plastic flow can be described by slipline
theory: much as for Prandtl’s punch, two centred fans emerge from the edges of the
inlet, with a triangular wedge between them. Indeed, the intrusion can be viewed as an
indentation problem, with different boundary conditions applying on the left wall. The
fans extend outwards and meet along the centreline of the jet; the slipline pattern then
continues out to the right, with all the sliplines becoming curved due to the symmetry
condition along y = 0 (|θ | = (1/4)π). The plastic region terminates to the right along a
final slipline that fronts the widened moving plug. Shear layers continue to buffer the
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← 𝓁y  3/2

 𝓁y = 3/2 ↓

 𝓁y = 3/2 → 

 𝓁y  3/2

𝓁x
3 4 5 6

𝓁x = π/4 + 1/2
← 𝓁x = π/4 + 1/2

𝓁x = 1.9
← 𝓁x = 1.9

Free slip

No-slip

↑

𝓁x = 4 𝓁x = 6

𝓁x = 1.4 𝓁x = 1.8 𝓁x = 2 𝓁x = 3

log10 γ ·

↓ Free slip ↓

↑ No-slip ↑

(a) (b)

(c)

(h) (i)

(d ) (e) ( f ) (g)

𝓁x = 1

Figure 4. Viscoplastic jets for (Bi, �y)= (2048, 3/2) and varying �x . (a) Net dissipation rate and (b) area of
the yielded regions for y > 0, plotted against �x . (c)–(i) Density maps of log10 γ̇ on the (x, y)-plane for the
values of �x indicated. For each �x , two solutions are shown: for the upper (filled blue stars in (a,b)), no-
slip conditions are applied at y = ±�y ; for the lower (open red squares in (a,b)), free-slip conditions are used
instead. The insets in (a,b) show transitional, free-slip solutions at �x = 1.275 and �x = 1.9. Open (blue) stars
in (a)–(b) represent solutions with �y � 3/2, for which the yielded regions do not touch the top and bottom
boundaries. The grey lines in (a,b) show the predictions in (C8)–(C9). The solid blue and red lines in (a) show
predictions for E based on the slipline fields in figure 6(a). The vertical dashed lines at �x = (π/4)+ (1/2) and
�x ≈ 1.9 indicate the flow pattern transitions arising when one of the plugs breaks; that at �x = 3.824 indicates
where the slipline solution predicts that the yielded region collides with the walls at y = ±�y .
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(a) (c) (d )

(b)

Figure 5. (a,c) The viscoplastic shear layer for �x = 1 (cf. figure 4c), and (b,d) the wall boundary layer for
�x = 6 (cf. figure 4i). The vertical dashed lines in (a,b) show the cuts at which the horizontal velocity profiles
of (b,d) are drawn. The dashed curves in (a) shows the yield surfaces predicted by shear-layer theory (§ C.1.1).
In (c), the velocity profiles (shown by red lines) are collapsed by shifting each by (1/2), then plotting them
against ζ = (y − (1/2))/Y , where Y is the local half-width of the shear layer. In (d), the profiles are collapsed
by scaling u by the plug speed u∗, and then plotting the curves against ζ = (y − (3/2)/η∗, where η∗ is the local
boundary-layer thickness. The blue dots in (c,d) show the predictions (1/2)− (1/4)ζ(3 − ζ 2) (§§ C.1.1) and
(2 + ζ )ζ (C.1.2).

jet from above and below. More details of the construction of the slipline field are given
in Appendix B. Note that the checkerboard of sliplines filling the wedge at the inlet, in
combination with the rigid-body inflow velocity, allows that region to solidify into another
example of an serendipitous plug. A different example, in which the inflow is not rigid and
the checkerboard remains fully plastic, is presented below in § 4.5.

Figure 6(b,c) also illustrates the slipline field reconstructed directly from the numerical
solutions, by plotting the curves of constant p ± Bi tan−1(τXX/τXY) (cf. equations (3.15)).
This more practical strategy to determine the sliplines successfully confirms most of the
details of the slipline field, but breaks down in the shear layers and plugs, and fails to trace
all the sliplines in the fans. An example is which the reconstruction is even poorer will be
encountered later in figure 10(b).

From the slipline solution, one can construct the force balance on the widened plug,
which controls the size of the plastic region. Appendix B.2 summarises the details of
this calculation, which provides predictions for a number of key characteristics of the
flow pattern, as plotted in figures 4(a) and 6(b,c). For example, the net dissipation rate
can be determined, either by a direct calculation using Geiringer’s equations (3.16), or by
exploiting the power balance in (3.12) and calculating the power input along the borders
of the slipline pattern.

The analysis of the slipline patterns also predicts the domain length at which the
uninterrupted moving plug breaks: the critical value is �x ∼ (1/4)π + (1/2), as seen in
figure 4(a,b). Because sudden jumps arise in the properties of the flow pattern at this
transition (including the area of the yielded region), owing to the breakage of the plug,
we refer to this type of bifurcation as ‘first order’, following the terminology of phase-
transition theory. As we shall see below, continuous, or ‘second-order’ bifurcations are
also possible, that do not involve the breakage of any plug. Note that the transition for
the numerical solutions in figure 4 is slightly shifted and ‘blurred’: the finite Bingham
number used for the computations adjusts the domain length at which the plug breaks and
appears to lead to flow patterns with mixed character over a narrow window surrounding
that transition (see the inset in figure 4a). However, it is hard to tell whether this latter
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Figure 6. The two slipline fields for �x = 3 (cf. figure 4g) for the (b) no-slip and (c) free-slip cases. Additional
diagnostics are plotted in (c,d). In (a,b), half of the domain shows the numerical solution for log10 γ̇ along
with reconstructions of the curves of constant p ± 2Biθ , and the insets display the geometry of the yielded
regions and some special points of the slipline construction. For (c), we plot the x−position of point C (xC )
and the slipline angle (θE ) at point E against �x for no-slip solutions with �y = 3. In (d), the scaled dissipation
rate E/Bi, θE and xC are plotted against �y , for free-slip solutions with �y = 1.5. The stars in (c,d) display
corresponding results from the numerical solutions (with xC measured from the right-hand border of the plastic
region in (a), then from the centre of the shear layer at y = �y in (b) and θE from the centre of the upper shear
layer at x = (1/4)).

feature is genuine or an artefact of the numerical scheme, the solution having perhaps
failed to properly converge (see Appendix A).

In fact, there are actually two suites of computations shown in figure 4: one with no-slip
walls at y = ±�y , the other with free slip there. As long as �x remains less than about 1.9,
the two sets of solutions are identical. In other words, two different problems have the same
solution. This coincidence arises because of the cloaking effect of the plug that intervenes
between the flowing region and the wall for �x � 1.9: if the wall lies inside a plug, that
entire region is rigid and so the conditions applying upon the wall, and even its shape are
irrelevant. This notion of cloaking dates back at least to Oldroyd (see Balmforth, Craster
& Hewitt (2021)), and has been considered in detail for the motion of differently shaped
particles encased in viscoplastic fluid (Chaparian & Frigaard 2017a,b). The difference
between the two cases that emerges for longer domains arises because the plug breaks for
free-slip walls at �x ≈ 1.9, decloaking the wall (see below in § 4.3).
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4.2. Wide domains; no-slip walls
For longer domain lengths, the solutions depend on the boundary condition applied along
the top and bottom boundaries (see e.g. figure 4a,b,f ). With a no-slip condition, the jet
continues to widen gradually until it meets the walls at y = ±�y , for domains lengths
near �x ≈ 3.6. Thereafter, as in figure 4(h), the bordering shear layers narrow to become
described by the viscoplastic wall-boundary-layer theory of § C.1.2. That wall layer is
predicted to have constant thickness and a parabolic velocity profile. The former feature
is well reproduced by the numerical solution, as illustrated in figure 5(b). The parabolic
velocity profile is less well reproduced, however; see figure 5(d). The discrepancy here
arises not because the boundary-layer flow takes a different form to that predicted, but
because of the algorithm used to compute the solutions: the algorithm exploits a Fourier
cosine series in y, and the solutions only satisfy a no-slip condition at y = �y after the
addition of a numerical ‘sponge layer’ at the top boundary (spanning �y < y < 1.1�y).
Over the sponge, the yield stress and viscosity are artificially increased to suppress motion.
In finer detail, however, this device does not fully incorporate no slip, leaving a velocity
profile with noticeable departures from parabolic form. In other words, the boundary-layer
theory exposes an artefact in the numerical solution.

When the yielded region reaches the no-slip wall near �x ≈ 3.6, the containment of the
flow by the no-slip boundaries limits the yielded area and enhances the dissipation rate
above what would have been incurred had there been no collision with the wall. Both
feature are illustrated in figure 4(a,b), in which E and the yielded area are compared with
corresponding data for solutions with larger �y . The collision of the yielded region with
the wall indicates a second transition in flow pattern for the no-slip problem. In this case,
however, no plug breaks and the pattern properties change continuously. The transition is
therefore second-order.

According to the slipline solution, the widened jet meets the walls when �x ≈ 3.824 for
this specific value of �y . Because the shear layers have finite thickness in the numerical
solutions, the transition occurs at the slightly smaller value of �x ≈ 3.6. Once the yielded
region collides with the wall, its structure becomes fixed (see figure 4h,i), with the
lengthening of the domain in x serving only to impact the length and thickness of the
wall layer.

4.3. Wide domains; free-slip walls
For free-slip walls, the solutions develop differently with increasing domain length: at
�x ≈ 1.9, the yielded region widens abruptly, with the moving plug then filling the entire
cross-stream domain (e.g. figure 4f ). The sudden jump in yielded area indicates that the
transition is again first-order. In this case, the transition arises because the stationary plug
that cloaks the wall for smaller �x breaks suddenly. This de-cloaking event leaves a pattern
for �x > 1.9 containing sliplines that meet the wall at 45◦ (see figure 4f ); the new slipline
pattern is shown in more detail in figure 6(b). The inset of figure 4(b) further illustrates
how the transition again becomes blurred for the finite-Bi computation, with patterns of
mixed character appearing once more.

In regard to the minimisation of E , the widening of the moving plug incurs no additional
dissipation at the top and bottom boundaries in view of the free-slip condition that holds
there; the plug now freely slides. This means that, once the domain becomes sufficiently
wide, the dissipation rate can be kept lower by eliminating the shear layers of the moving
plug, despite the broadening of the perfectly plastic flow region, paving the way for the
flow transition at �x ≈ 1.9. The switch is reflected by a kink in the plot of E near �x ≈ 1.9
(figure 4a), and a corresponding jump in the yielded area (figure 4(b)). Both metrics
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Figure 7. The scaled stress component τXX/Bi for (a) �x = 1, (b) 5/4 and (c) 7/5, showing y > 0. The upper
density plot is computed with the augmented Lagrangian scheme; the lower one exploits a regularisation of the
constitutive law (Papanastasiou (A1), with β = 104). The red contours indicate where τ = Bi; the dashed green
contours identify curves of constant γ̇ = 10−3 and 10−4. Cuts of τXX/Bi along x = (1/3)�x and (2/3)�x are
plotted to the right of the density maps (upper and lower panels, respectively); cuts along y = (1/4) and 3/4
are plotted below and above (respectively). In these cuts, the results with the augmented Lagrangian algorithm
are plotted as solid blue, and for regularisation with dashed red.

become independent of �x beyond the transition because the sliding plug shields the
extended yielded zone from whatever lies to the right, and can accommodate any increase
in domain length (see figure 4f–4(i)).

Note that the density plots of the strain rate in figure 4 display substructure beyond the
identification of the yielded regions for both no-slip and free-slip top walls: the shear and
boundary layers bordering the plastically deforming region are highlighted by elevated
levels of γ̇ . In addition, enhanced dissipation arises at the junctions between different
sections of the slipline pattern due to the smoothing of the associated discontinuities in the
plastic velocity field. Altogether, the viscoplastic shear and boundary layers in combination
with the structure of the slipline field rationalise the form of the flow pattern.

4.4. Further details of the plugs; stress indeterminacy
Over the plugs in figure 4, the indeterminacy of the stress state implies that multiple
solutions should be possible, even though the precise numerical algorithm employed
selects a particular one. This feature is illustrated in figure 7 where computations
with the augmented Lagrangian algorithm for �x = 1, 5/4 and 7/5 are compared with
corresponding solutions computed using the popular Papanastasiou regularisation (see
Appendix A). The two agree over the yielded regions, provided the regularisation
parameter β is chosen to be sufficiently large. In panels (a,b), the yielded region consists
of only the shear layer; for the example in panel (c), the yielded region is larger, the central
plug having broken.

Over the plugs the two stress solutions do not agree, because the augmented Lagrangian
scheme converges to a stress–velocity solution that does not satisfy the constitutive law of
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the generalised Newtonian fluid employed by the regularised scheme. However, near the
bifurcation at �x ∼ (1/4)π + (1/2) (panel (b)), the range of possible stress states evidently
becomes more restricted. As a consequence, the two stress solutions align more closely
over the impending yielded region. At bifurcation, the range of possible stress solutions
narrows to the single, unique, yielded solution, which correspond to the mode of failure of
the moving plug.

Figure 7 also highlights two other practical issues with the computations: for the
augmented Lagrangian scheme, the yield surface predicted by τ = Bi can be somewhat
rough; it is arguably better to use a contour of a small value of log10 γ̇ . Indeed, we have
followed this practice everywhere but in figure 7. On the other hand, with a regularisation
of the viscosity, strain rates of order β−1 are not relevant to a yield-stress fluid and it can
be awkward to detect true yield surfaces. For this algorithm, figure 7 demonstrates that
it is better to use either τ = Bi or a contour of constant 1 � γ̇ � β−1 to locate effective
yield surfaces. Even with such choices, however, the scheme fails to capture all of the yield
surface in figure 7(b). Other practical issues with regularising the constitutive model are
discussed by Frigaard & Nouar (2005).

4.5. Indentation; the appearance of stress discontinuities
Prandtl’s punch problem in figure 2(b) corresponds to a minor variation on the jet
configuration, in which we apply different boundary conditions on the left boundary
and take the domain to be sufficiently large that fluid plugs up well before reaching all
the other boundaries. In fact, a simple periodic version of Prandtl’s punch follows from
adopting free-slip conditions at y = ±�y and setting u(0, y)= u0(y), where u0(y) is a
2�y−periodic function with zero average. Figure 8 presents solutions for such a problem,
in which u0(y) is prescribed as either a square wave or a sine function. For large Bi, we
arrive at solutions for which we recognise a periodic repetition of the fans of Prandtl’s
slipline pattern (panels (a,b), left-hand density plots). Much further from the plastic limit,
at lower Bi, some of the features remain (panels (a,b), right-hand density plots).

Note that the velocity field over the triangular checkerboards in Prandtl’s solution
is uniform, and so these regions are consistent with plugs. This remains true for
the periodic version shown in figure 8(a) which uses the square-wave ‘indentation’,
u0(y)=sgn((1/2)− |y|). By contrast, when u0(y)= sin y (figure 8b), the velocity field
over those regions is sheared and the checkerboards then add to the yielded area. In other
words, the checkerboards again provide settings for serendipitous plugs.

Aside from this difference, two solutions in figure 8 evidently possess the same stress
solution for Bi � 1 (see figure 8c). This demonstrates another novel feature of viscoplastic
flow near the plastic field: there can be multiple solutions with the same stress solution but
different velocity field. This form of non-uniqueness is different from the cloaking effect
of a plug, as it arises for yielded flow. The multiplicity is also only a feature of the plastic
limit: for lower Bingham number (at Bi = 1 in figure 8d), viscous effects distinguish the
two solutions.

The indentation problem illustrates yet another feature of the plastic limit: Prandtl’s
solution demands that θ = ±π

4 , or τXY = 0 and |τXX | = Bi, along the left wall. In fact,
as seen in figure 8(c), τXX jumps from −Bi to Bi as one passes through the centre
of the fans. For the square-wave example, this stress distribution and jump is not
significant, as the entire left boundary, barring the centres of the fans, lies within
the plugged-up checkerboards. For the sinusoid, however, the velocity field through the
checkerboards is inconsistent with rigid-body motion, leaving them yielded. But the
velocity boundary condition and continuity demand v= ∂v/∂y = ∂u/∂x = 0 at x = 0.
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Figure 8. Indentation solutions for u(0, y)= u0(y) with (a) u0 =sgn((1/2)− |y|) and (b) u0 = sin y (and
symmetry conditions along y = ±1 and x = �x ). For each case, solutions for Bi = 1 and 2048 are shown,
plotting log10 γ̇ over the (x, y)-plane (with the same colour map). The green lines show sample streamlines;
sliplines are plotted in black. In (c), the scaled stress component τXX/Bi is shown for both solutions with
Bi = 2048; the thicker (red) contour shows the yield surfaces. Cuts of τXX/Bi are plotted to the left, taken
from the vertical dotted lines on the density maps; the blue lines are for the sinusoid, red for the square wave.
(d) A similar plot for the solutions with Bi = 1.

If the left-hand boundary were yielded, the last of these conditions implies that τXX = 0,
in disagreement with Prandtl’s solution. Thus, the stress field must contain a discontinuity
along x = 0 to rescue the slipline solution. Indeed, the cuts shown to the left of figure 8(c)
provide numerical evidence that τXX suddenly jumps from ±Bi in x > 0 to zero at x = 0.
As mentioned in § 3.4, such features are acceptable for a perfectly plastic material.

What is more surprising, however, is that the numerical solutions in figure 8 are not
computed for the perfectly plastic problem, but with finite Bi. One might therefore imagine
that the stress discontinuities are not true features of these numerical solutions, but become
smoothed in some way by the addition of the viscous stress to the constitutive law. In
fact, this is not the case: the solutions for Bi = 1 as well as those for Bi = 2048 appear to
share genuine stress discontinuities along x = 0. In other words, the viscous stress does
not smooth out these feature, in conflict with one’s expectations from Stokes flow (where
the strain rates and stresses are continuous for non-singular solutions). A closer inspection
at figure 8(c,d) reveals how this is apparently accomplished: a yield surface with γ̇ = 0
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↓ u = u0 (φ)
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Fluid domain D
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Solid

Solid
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Translating or squirming cylinder

Uu0

↓ u = 0 (r = 𝓁 )

Figure 9. Sketch of the flow between concentric cylinders with prescribed surface velocities. The characteristic
scales L and U are set by the radius R of the inner cylinder and a measure of its surface speed U .
Again, symmetry about an axis is exploited to halve the computational domain.

appears along x = 0. Because of this yield line, the stress need no longer converge to
τXX = 0 at x = 0 for any Bi.

Stress discontinuities can also emerge at finite Bi within the flow domain. For example,
Hewitt & Balmforth (2017) considered the viscoplastic version of Taylor’s swimming
sheet, which is closely related to the indentation problems in figure 8, except that the
left-hand boundary is no longer straight. At both large and order-one Bingham numbers,
Hewitt & Balmforth (2017) present solutions with stress discontinuities.

5. Flow between concentric cylinders
Our second canonical problem, sketched in figure 9, describes the instantaneous flow
between two cylinders induced by the motion of the inner surface. Because stresses
decline away from the moving surface, one expects fluid to plug up well before the
outer cylinder if the annular gap is sufficiently wide (cf. § 2). That wall is then cloaked,
rendering its shape and precise position irrelevant. Consequently, in this limit the problem
is equivalent to flow around a translating or rotating disk in an infinite viscoplastic medium
(Randolph & Houlsby 1984; Tokpavi et al. 2008; Hewitt & Balmforth 2018). With a
more complicated surface velocity, the problem also models a two-dimensional biological
locomotor ‘squirming’ through viscoplastic fluid (Supekar et al. 2020). In the opposite
limit, when the radii of the surfaces are much closer, the gap between them is narrow, and
we arrive at a viscoplastic journal bearing (the eccentric version of which was considered
by Hewitt & Balmforth (2012)).

For the examples we consider in this section, we adopt the radius of the inner cylinder
as the length scale L (see figure 9), and prescribe its dimensional surface velocity by

u = U
[
uW x̂ + UW (φ)φ̂

]
, (5.1)

where φ denotes polar angle. That is, UuW denotes the translation speed and UUW (φ)

defines a specified angular velocity. The radius of the outer cylinder � now becomes
a parameter of the problem (along with Bi, uW and any parametrisations contained in
UW (φ)). In all the examples, there is also at least one axis of symmetry (displayed as
y = 0 in figure 9) that we exploit to reduce computational costs.

A key feature of the problem, that we discuss a number of times below, is the power
balance in (3.12), which in view of (5.1) can be written more explicitly as

E = −uW FX −
∮

UW τRΦ dφ, (5.2)
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where

FX ≡ x̂·
∮ [

σ ·r̂]r=1 dφ, (5.3)

is the drag force exerted on the inner disk.

5.1. Pure translation
Solutions for flow around a disk in pure translation (uW = 1, UW = 0) with three different
annular gaps, Δ= �− 1, are shown in figure 10. For a sufficiently wide gap, the fluid
plugs up further away from the inner cylinder, rendering the outer cylinder irrelevant
and the flow equivalent to that around an isolated disk, as illustrated earlier in figure 1.
Randolph & Houlsby (1984) provided a slipline solution for the perfectly plastic version
of this problem which is compared with the numerical solution (at finite Bi) in figure 10(a).
The slipline field contains triangular checkerboards attached to the front and back of the
disk, with semicircular fans positioned to either side; between the fans and checkerboards,
the sliplines are involutes of the disk. As mentioned earlier, the velocity field across
the checkerboards is consistent with solid-body motion, rendering these regions into
serendipitous plugs in the numerical solution. The cores of the semicircular fans also
solidify into residual plugs.

Randolph & Houlsby’s slipline construction is analytical, and the net dissipation rate E
can be calculated by hand along with the drag FX and torque T on the cylinder

|FX | = 4
(
π + 2

√
2
)

= E, T ≡
∮ [

τRΦ

]
r=1 dφ = 0. (5.4)

Importantly, Randolph & Houlsby also demonstrate that one can find an acceptable stress
field over the attached plugs and surrounding stationary plug; as already noted, the stress
field is indeterminate over these regions, but to fully complete a slipline solution, one
must show that there is an admissible stress over each plug that satisfies the force-balance
equations (3.2) and yield condition (τ 2

XX
+ τ 2

Y Y
< Bi2).

The other two solutions displayed in figure 10 indicate how the flow, and Randolph &
Houlsby’s slipline field, becomes distorted when the outer boundary lies too close to
the inner cylinder (� < 2 + (1/4)π ≈ 2.79 for Bi → ∞). Other features remain, such as
the residual plugs and the viscoplastic shear and boundary layers. Note that the slipline
patterns reconstructed from the numerical solutions here are rather imprecise (especially
in figure 10b), which illustrates that construction of these characteristics can be delicate,
particularly near non-plastic flow features (e.g. shear layers and rigid plugs).

The progression of the flow pattern as once proceeds from the wide-gap (Randolph–
Houlsby) solution to the thin-gap limit is shown more quantitatively in figure 10(d,e). Here,
net dissipation rates and yielded areas are presented for a wider suite of computations
with varying �. There are two second-order transitions in flow pattern present in this
progression. The first transition arises when the yielded regions meet the shrinking outer
cylinder, which occurs for �= 2 + π/4 according to Randolph & Houlsby’s slipline
solution. The second arises only when Bi is finite, and corresponds to the collision of
the outer wall with the residual plugs lying near the top and bottom of the disk. Both
transitions are second order because slipline patterns exist to either side of the transitions
that continuously connect to one another; no sudden jumps arise in pattern geometry, and
no plugs break.
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Figure 10. Translating cylinders for varying outer radius � (as indicated), showing density maps of log10 γ̇

along with sample streamlines (green). A selection of sliplines from Randolph & Houlsby’s solution are
included in (a) (green lines), and from reconstructions using the numerical stress field in (b,c) (black lines).
(d) Net dissipation rate E/Bi and (e) yielded area are plotted against Δ= �− 1 for a wider suite of
computations. The (red) dashed lines display the predictions of lubrication theory (§ C.2); the dot-dashed line
in (d) shows E/Bi for Randolph & Houlsby’s solution (labelled RH). In (e), two flow patterns transitions
are indicated: the values of Δ at which either the yielded region or the residual plug collides with the outer
wall. The vertical dashed lines indicate the prediction for the former using Randolph & Houlsby’s solution.
Bi = 2048 and n = 1.

5.2. The narrow-gap limit; annular squeeze flow
When the gap between the cylinders is narrow, �− 1 =Δ� 1, lubrication theory can
be used to build solutions analytically. We illustrate this construction for the case of a
uniformly translating inner disk (uW = 1, UW = 0); i.e. an annular squeeze-flow problem.
Figure 11 presents numerical solutions in this limit, and a comparison with predictions
from lubrication analysis, which is summarised in more detail in § C.2. Figure 10(e,g) also
includes the corresponding predictions for the dissipation rate and plug area. The former
is quoted in (C36), whereas the latter equals the area of the annulus because the plugs all
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Figure 11. Squeeze flow in the narrow gap (of radial width Δ) between two cylinders, with the inner cylinder
moving to the right at unit speed and the outer cylinder stationary. (a–c) Solutions for Δ= 1/5: (a) density
plots of log10 γ̇ for the values of Bi indicated in each quadrant; (b) cuts through the angular velocity along
the midline r = 1 + (1/2)Δ (blue) are compared with the pseudo-plug velocity (C34) predicted by lubrication
theory (red dashed); (c) cuts from the rotation rate at φ = (1/4)π (blue) are compared against the asymptotic
velocity profile (C30) (red dotted). The dashed lines in (a) and the dots in (c) indicate the predicted fake yield
surfaces r = 1 + Y and r = 1 +Δ− Y from (C33).

become small in the thin-gap limit (the relevant Bingham number is B =Δ2Bi, rather than
Bi, implying flow becomes effectively Newtonian for Δ→ 0 at fixed Bi).

The density plots of the strain-rate invariant in panel (a) illustrate how the lubrication
flow adopts a distinctive character in which a relatively weakly sheared region occupies the
centre of the gap. This plug-like central flow is the thin-gap relative of the nearly plastic
flow region in wider annuli (cf. figures 1 and 10), and is buffered from the walls by layers
of stronger shear (which are the cousins of the boundary layers in figure 1). This layered
flow pattern is the hallmark of the lubrication limit (§ C.2). Because the central region
is not fully rigid, common practice is to refer it as a ‘pseudo-plug’, following Walton &
Bittleston (1991). Earlier work has sometimes incorrectly identified the pseudo-plug as a
true plug, and then falsely claimed an inconsistency in the lubrication analysis because of
the weaker shear that remains present (the fallacy of the lubrication paradox).

The solution in figure 11, with Δ= 1/5, is not particularly close to the narrow-gap
limit. Consequently, there are noticeable discrepancies with the predictions of lubrication
theory in the velocity profiles displayed in figure 11(b,c). The numerical solution matches
the asymptotic predictions more closely for narrower gaps, as illustrated in figure 12 which
presents numerical solutions for Δ= 1/20. In this example, the main disagreements arise
around the border between the pseudo-plug and the more strongly sheared layers. In fact,
the lubrication velocity profile here can be further improved by smoothing out the splice
between the two regions over a narrow intervening transition zone (Walton & Bittleston
1991; Putz et al. 2008; Muravleva 2015).

More awkwardly, lubrication theory also predicts that the pseudo-plug (the weakly
sheared central region) persists all the way around the annulus. The numerical solutions,
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Figure 12. The thin-gap squeeze-flow solution for Δ= 1/20 (n = 1). Density plots of log10 γ̇ are plotted in
panels (a–c) for Bi = 2048: (a) shows the entire solution over 0<φ < 1/2π ; (b) and (c) show magnifications
near φ = 0 and 1/2π , respectively. The black dashed lines show the fake yield surfaces, r = 1 + Y and
r = 1 +Δ− Y , from (C33). The blue and white dashed lines show Prandtl’s cycloids (3.19), intersecting either
θ = 0 or the predicted edge of true plug at φ = 1/2π . Panels (d–h) add further solutions with Bi = 128, 512,
2048 and 8096. The plug borders for solutions are plotted (in red) in (d) and (f ). In (e), the yield surfaces
near φ = 0 are scaled, using [r(φ)− 1]/[r(0)− 1] (for the lower) or [1 +Δ− r(φ)]/[1 +Δ− r(0)] (for the
upper), then replotted against φ/[r(0)− 1] or φ/[1 +Δ− r(0)]. The blue dots show Prandtl’s cycloid. In (e),
the prediction (C74) of Appendix C.3 for the edges of the plugs at φ = 1/2π are indicated by (blue) stars,
and the dashed lines indicate the radial borders given by (C33). In (g) and (h), cuts of the angular velocity
along the midline (r = 1 + (1/2)Δ) and of the rotation rate at φ = (1/4)π (blue lines) are compared with the
predictions in (C30) and (C34) (red dotted lines). The (red) dots in (h) show the predicted fake yield surfaces
from (C33).
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however, display plugs attached to the walls near φ = 0 and π , and true plugs embedded
within the pseudo-plug near φ = ±(1/2)π . These features are not captured by leading-
order lubrication analysis (§ C.2), primarily because their angular scale is too small.
Despite this, their presence can be detected in the details of that analysis.

First, the attached plugs near φ = 0 and π can be anticipated because the lubrication
analysis predicts that the pseudo-plug expands to fill the entire gap if sin φ = 0 (see (C33)
and figures 11a and 12a). But this further implies that the entire gap then truly plugs up.
Evidently, away from the asymptotic limit, such unyielded points broaden into the attached
plugs over an angular scale comparable to the gap.

Second, the lubrication analysis fails to recover the true plugs at φ = ±(1/2)π because
it implicitly assumes that the pseudo-plug solution is always weakly sheared. But, at
φ = ±(1/2)π , the angular velocity of the pseudo-plug reaches a maximum (see figures 11b
and 12g) and the shear in the pseudo-plug locally vanishes. This opens up the possibility
of a different asymptotic solution in which a true plug arises at the centre of the gap.
One can construct this solution by adapting a method presented by Walton & Bittleston
(who considered axial viscoplastic flow down an eccentric annular duct; see also Frigaard
& Ryan (2004); Putz et al. (2008); Liu et al. (2019); Balmforth et al. (2021)). This
higher-order extension of the lubrication theory is provided in Appendix C.3, and predicts
embedded plugs with angular borders that are indicated by stars in figure 12(f ).

The higher-order lubrication analysis assumes that the angular length of the plug is
relatively small, but not as small as the gap. Consequently, the plug is predicted to end at
a single angular position. The numerical solutions, however, display yield surfaces with a
definite shape, albeit of the scale of the gap (see figures 11 and 12), similar to the attached
plugs. In fact, both yield surfaces closely follow Prandtl cycloidal sliplines, as illustrated
in figure 12(b,c).

We rationalise this observation by first noting that on the scale of the narrow gap,
the walls appear straight and parallel with a nearly constant pressure gradient, ∂P/∂s =
−Γ Bi. At φ = 0, we have Y → 0 or Γ = 2�−1, whereas Γ = [(1/2)Δ− Y (1/2π)]−1 near
φ = 1/2π . Inserting these two options into (3.19) gives the sliplines also plotted, choosing
either x0 = 0 or the location of the edge of the plug near φ = (1/2)π predicted by (C74).

To reinforce this point, we exploit the scale invariant form of the cycloid noted in § 3.4.2
to collapse all the yield surfaces measured from the numerical solutions near φ = 0: for
the lower yield surfaces, we scale r(φ)− 1 and φ by r(0)− 1, then scale 1 +Δ− r(φ)
and φ by 1 +Δ− r(0) for the upper yield surface. As shown by figure 12(e), this scaling
successfully collapses the observed yield surfaces onto Prandtl’s cycloid.

Note that the floating plugs at φ = ±(1/2)π correspond to the small-gap limit of the
residual plugs at the core of the semi-circular fans of Randolph & Houlsby’s slipline field
(figures 1a,b and 10a). Indeed, the former also disappear as Bi → ∞ (Y → 1/2 in this
limit; see (C74)). On the other hand, the plugs attached to the inner cylinder at φ = 0 and
φ = π are the remnants of the triangular plugs attached to the front and back of the disk in
figure 1 (and are no longer serendipitous). The ambient plug that surrounds and cloaks the
outer cylinder in figure 1 becomes compressed into the plugs attached to the outer cylinder
at φ = 0 and φ = π .

5.3. Translation with rotation
Returning again to the limit in which the outer cylinder is sufficiently distant that it does
not affect the flow, we now allow the inner cylinder to rotate as well as translate (Hewitt
& Balmforth 2018). Solutions in the plastic limit are illustrated in figure 13. Surprisingly,
although one expects that rotation breaks sideways symmetry (up-down in the figures),
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Figure 13. Translating and rotating cylinders for varying rotation speed Ω (as indicated; translation speed in
positive x direction is again scaled to unity). On the left of each plot, we display a density map of log10 γ̇ for the
numerical solution along with sample streamlines. On the right, we show the corresponding slipline solution,
with various important points indicated. Plugs are shaded black, and the α (β) lines are plotted as red (blue)
lines.
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Figure 14. (a) Forces |FX | and dissipation rates E , scaled by Bi, plotted against Ω for translating and rotating
cylinders. In (b,c) we show the corresponding torques T/Bi and yielded areas, respectively. The stars indicate
data taken from numerical solutions. The black, red and blue lines show the slipline predictions for the three
different flow patterns, which are illustrated in the insets to (b) (density maps of log10 γ̇ ) and shown in more
detail in figure 13 (with the same colour scale). In (a), the red stars show E , as computed from the velocity
field, and the red circles indicate |FX +ΩT |.

the stress field remains symmetrical and equivalent to that of Randolph & Houlsby as
long as Ω < (1/

√
2) (figure 13a). This feature becomes reflected in the drag and torque,

which remain at the values given in (5.4) to leading order; see figure 14. Nevertheless, the
velocity field is asymmetrical, as illustrated in figure 13(a). This solution demonstrates
how it is possible for an asymmetrical velocity field to be consistent with a symmetrical
stress field in the plastic limit, since only the orientation of the strain-rate tensor needs to
be symmetrical in (3.14), not the invariant γ̇ itself.
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When Ω reaches (1/
√

2), the asymmetrical velocity field is no longer able to remain
consistent with the symmetrical stress field. This arises because the (anti-clockwise)
tangential velocity along the section O+D+ of the disk is Ω − sin φ, (1/4)π < φ <
(1/2)π , whereas the plastic region on the other side of the wall boundary layer has zero
angular velocity. Thus, between the plastic region and disk there is a tangential slip velocity
of sin φ −Ω , which must have the same sign as the local shear stress, τRΦ = −Bi. This can
only be true if Ω < (1/

√
2).

For higher rotation rates, the stress field necessarily deviates from the Randolph &
Houlbsy form and becomes asymmetrical, as seen in figure 13(b). In particular, the
rightmost involutes leaving the front of the cylinder no longer meet at (x, y)= (

√
2, 0).

Instead, a gap opens, with the attached plug separated from the surrounding ambient plug
by the circular slip surface C−C+. This arc is centred at point E , which is the centre of
rotation of the combined velocity field of the cylinder, (1, 0)+Ω(−y, x)=Ω(yΩ − y, x)
with yΩ =Ω−1.

The arc C−C+ widens asΩ is increased still further. Eventually, forΩ = 1, the rotation
centre E reaches the centre of the fan O+ and the attached plug meets the semi-circular
fan on that side of the disk. At this stage, the entire upper fan plugs up, as illustrated in
figure 13(c). This third slipline pattern was constructed previously by Hewitt & Balmforth
(2018). As highlighted by the area of the yielded region plotted in figure 14(c), the first
switch in flow pattern atΩ = 1/

√
2 is second order because the intersecting slipline fields

are compatible. The second switch at Ω = 1 is first order, because the rotating plug of the
last pattern breaks.

The drag, torque and dissipation rate can be calculated analytically for all of the three
slipline patterns in figure 13 (see § B.3). In each case, E = |FX | + |ΩT |. The predictions
are included in figure 14. Note that the torque calculated numerically for solutions with
Bi = 2048 does not vanish forΩ < (1/

√
2) because of a residual viscous torque stemming

from the asymmetrical viscoplastic boundary and shear layers. For Bi → ∞, however, the
first slipline pattern (rather surprisingly) implies that a translating disk can rotate at a
rate 0<Ω < (1/

√
2) without requiring any torque or incurring any additional dissipation

beyond that expended for the non-rotating disk.
Strictly speaking, as noted earlier, to establish that the slipline patterns in figure 13

are the exact solutions in the plastic limit one must further demonstrate that there is
an acceptable stress field over each of the plugs. Randolph & Houlsby perform this
construction for Ω = 0, but none has been provided for the asymmetrical or rotating
plugs of figure 13(b,c). Following Hewitt & Balmforth (2018) and § B.3, one can establish
there are matching velocity and stress fields elsewhere which satisfy force balance, the
constitutive law and boundary conditions. Hence, except for the extension of the stress
field into the plugs, the extremum principles imply that E = |FX | + |ΩT | and the solutions
are exact. That said, the numerical solutions provide evidence that admissible stress fields
can be found for the plugs. Therefore, the slipline patterns do not only provide bounds on
the net drag or dissipation rate, as sometimes they are constructed to do, but are the true
solutions. Nor is it strictly necessarily to compute both E and |FX | + |ΩT | independently
and verify they are equal (they must be if all is consistent).

5.4. Squirmers
The two examples shown in figure 10(a) and 13(a) repeat the possibility for two solutions
to possess the same stress field but different velocity fields in the plastic limit. A third
example is shown in figure 15(a,c), which corresponds to an idealised model of a circular
microswimmer that ‘squirms’ through fluid by activating a tangential surface motion
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Figure 15. Model squirmers with a surface angular velocity UW (φ)= φ(π − |φ|) for −π < φ <π , and
Bi = 2048 (n = 1). In (a), the (logarithmic) strain rate is plotted for a Randolph & Houlsby-like solution
with a translation speed of uW = 0.4Bi−1/2; a boundary-layer solution with uW = 5Bi−1/2 is presented in (b).
A magnified view of the first solution in the first quadrant is shown in (c), along with sample streamlines
(green). The boundary layer against the squirmer is shown in more detail in (d). A corresponding plot for
another boundary-layered solution with uW = 0.7Bi−1/2 is presented in (e) (the colour scale is the same as
for (d)); the dotted line shows the prediction (C23) for the boundary-layer width. A suite of computations with
varying Bi1/2uW are presented in (f ,g). Plotted are (f ) the drag force FX and net dissipation rate E , and (g) the
yielded area. In (d), the (red and blue) solid lines show the predictions in (5.5) and (C24); the (blue) dashed
line shows (5.4). The self-propelled squirmer, with zero net drag, is indicated by the star.

(Lighthill 1975). More specifically, we consider domains for which the outer boundary
r = � is sufficiently far away that it is hidden by the surrounding plug, and, in (5.1), we
take UW (φ)= φ(π − |φ|) for −π < φ <π (sinusoidal surface velocities were considered
by Supekar et al. (2020)). The (dimensionless) translation speed uW is now a parameter
of the problem, although for a genuine self-propelled squirmer, uW must be selected by
demanding that no net forces are exerted on the inner disk (see below).

All three examples in figures 10(a), 13(a) and 15(a,c) have the same (leading-order)
slipline pattern, and all experience the same drag force |FX | ≈ 4(π + 2

√
2)Bi (figure 15f ).

One minor difference is that the triangular sections at the front and back of the disk that
correspond to checkerboards in the slipline field are no longer fully plugged up for the
squirmer. The viscoplastic boundary layer at r = 1 also persists all the way around the
disk. These discrepancies arise because the squirmer’s surface velocity is not consistent
with solid-body motion over the checkerboard, unlike in figures 10(a) and 13(a). Instead,
the checkerboards contain true plastic deformation, or at least partly so, with the fine
structure of the flow pattern tracking the 45◦ sliplines (see figure 15c). Besides this, the
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circular fan turns out to mostly have a rigidly rotating velocity field, leading to a persistent
serendipitous plug, instead of the residual plug of figure 1.

Much as with the rotating, translating cylinder considered above, the squirmer’s stress
solution takes the Randolph–Houlsby form only for as long as the translation speed uW is
not too large. A different solution emerges when uW exceeds a critical value of O(Bi−1/2),
which is much less than the the O(1) tangential surface motion UW (φ). Because this
transition value is so small, the dissipation in the Randolph–Houlsby-type solutions is
dominated by the boundary layer against the cylinder (see figure 15a,c,d). The power
balance (5.2) then reduces to

E ∼ Bi
∮

|UW | dφ, (5.5)

since τRΦ ∼ −Bi sgn(UW ) over the boundary layer (§ C.1.2).
Beyond the critical transition in the translation speed, the flow becomes completely

confined to the viscoplastic boundary layer around the inner cylinder and there is no
extended region of plastic deformation, as illustrated in figure 15(b,e). In this case, the
boundary-layer theory of § C.1.2 provides analytical predictions for the boundary-layer
width and drag force FX , with the net dissipation rate again given by (5.5). In figure 15(e),
the prediction for the boundary-layer thickness (equation (C23)) agrees satisfyingly with
the numerical solution, except near φ = 0 and π , where the boundary-layer approximation
locally breaks down.

The net drag and dissipation rate for a suite of computations with varying uW are plotted
in figure 15(f ) and compared with the predictions stated above. Also displayed is the area
of the yielded region, which abruptly jumps to small values when flow localises to the
squirmer surface. That is, the transition in flow pattern is first order, precipitated by the
breakage of the plug around the localised boundary-layer flow. The transition also arises
when the drag for the boundary-layer solution matches that for Randolph & Houlsby’s
construction (see figure 15f ), which implies

uW =
1
3 Bi−1/2√

π + 2
√

2 − 1

[∫ π

0

|UW |3 dφ
sin φ

] 1
2

, (5.6)

from boundary-layer theory (§ C.1.2; Supekar et al. (2020)). This criterion is consistent
with a minimisation of the net dissipation rate (§ 3.3) because, hidden beyond the leading-
order term in (5.5), lies a contribution of uW |FX | from translation.

Note that the force FX must vanish for a self-propelled squirmer. As indicated in
figure 15(f ), this condition selects the particular locomotion speed uW ≈ 1.54Bi−1/2,
shown by the filled star. The analytical prediction from boundary-layer analysis

uW ∼ 1
3

Bi−1/2
[∫ π

0

|UW |3 dφ
sin φ

] 1
2

, (5.7)

(§ C.1.2; Supekar et al. (2020)) is slightly smaller, as seen in figure 15(f ).
Though not relevant to locomotion, one can consider much larger translation speeds

of O(1), as illustrated in figure 16. Because the boundary-layer width grows with uW ,
the flow delocalises again in this parameter range, forming a wider region of plastic
deformation (panels (a,b)). Eventually, once this region extends sufficiently far from the
disk, the pattern transforms into another with the Randolph & Houlsby form (panel (c)).
The drag is then approximately given by (5.4), with a dissipation rate of E ≈ uW FX for
large uW .
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Figure 16. Model squirmers for higher translation speeds uW ; (n, Bi)= (1, 2048). On the left, strain-rate
maps and sample streamlines are plotted for (a) uW = 45Bi−1/2 ≈ 1, (b) uW = 80Bi−1/2 ≈ 1.77 and (c)
uW = 250Bi−1/2 ≈ 5.52. The lower half of the plots show slipline fields, constructed using the argument
described in the main text. The thicker (red) lines in (a,b) reconstruct the curve inside the disk that appears to
generate the involutes. A wider suite of computations with varying uW is presented on the right, plotting (d)
the drag force FX and net dissipation rate E , and (e) the yielded area. In (d), the (red and blue) dashed lines
show (5.4) and E = |FX |/uW . The Randolph–Houlsby (RH) slipline pattern features to the right of the vertical
line indicated.

The nearly plastic solution for uW � 2.45 has an interesting structure, as highlighted
by the slipline patterns shown in the lower halves of figure 16(a,b). Here, rather than
attempt to reconstruct the slipline using the stress field (as in figure 10), we make use
of the observation that there are no plugs within the yielded region and the y-axis must
correspond to a slipline as it is a line of symmetry. Hencky’s rules then imply all the
sliplines of the same family as the y-axis are straight, and Geiringer’s equations demand
that the other family correspond to streamlines. We therefore reconstruct the sliplines by
finding contours of constant velocity direction and streamlines. This leads to the patterns
shown in figure 16(a,b,c), with the latter largely reproducing the Randolph & Houlsby
slipline field.

Note that the reconstruction fails once the sliplines cross a shear layer, which happens
near the front and back of the disk, where the slipline pattern from the y-axis meets
the local checkerboards there. For uW � 2.45, the slipline field is composed of involutes
generated by a curve lying inside the disk (see figure 16a,b). Importantly, there is no
boundary layer along the surface of the disk that dictates the slipline angle there (unlike
for the Randolph–Houlsby patterns). The geometry of the curve from which the involutes
are built must therefore be controlled by the strain-rates at the disk’s surface.

Finally, figure 17 presents solutions for a squirmer with a different surface velocity
distribution. In this case, the angular surface velocity is more step-like, with UW (φ)=
tanh(5 sin φ). Unlike in previous examples, the nearly plastic solution shown in
figure 17(a) with uw = 0 escapes the Randolph & Houlsby form, because of the appearance
of a stress discontinuity (indicated by the green arrow; the yield surfaces are a little difficult
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Figure 17. Sqirmer solutions for surface velocity, uw = 0 and UW (φ)= tanh(5 sin φ), and (a) Bi = 2048 and
(b) Bi = 1. Shown are sample streamlines (green) superposed on density maps of log10 γ̇ ; in (a), the diagnosed
slipline field is indicated by the black lines in y < 0. Scaled stress components for the solution with Bi = 1 are
shown in (c,d). The plugs (diagnosed by the contour γ̇ = 10−4) are shaded dark blue with dashed red borders
(the yield surfaces). The arrows point to what appear to be stress discontinuities.

to determine in this example owing to the presence of a wide region held very close to the
yield stress). The discontinuity also appears to persist for the solution with much lower Bi
shown in figure 17(b), breaking into two pieces that each track curved yield lines (black
arrows). The nearly vertical one close to y = φ = 0 manifests mainly in the component
τR R = −τΦΦ , in accord with the jump conditions stated in § 3.4.1. Thus, this squirmer
offers another example in which stress discontinuities appear, even at finite Bi.

5.5. Translation with axial motion
Moving beyond two-dimensional flow, the relatively simple geometry of the annular gap
(figure 9) offers a convenient setting in which to explore the impact of adding flow in the
third spatial dimension on the dynamics in the nearly plastic limit. In particular, we can
consider three-dimensional flow fields (u, v, w) that depend only on the planar coordinates
(x, y). This task was accomplished by Hewitt & Balmforth (2018) and Hewitt & Balmforth
(2022), who considered the flow around a cylinder translating at different angles to its
axis, taking the annular gap to be sufficiently wide that the outer boundary is cloaked by a
plug (rendering the problem equivalent to that of an infinitely long cylinder in an infinite
domain). Further results for this problem are presented in figure 18. When the angle of
motion is not closely aligned with the cylinder axis, the in-plane flow field is similar to
the Randolph–Houlsby pattern; the boundary layers, shear layers and extended regions of
nearly plastic deformation all survive the addition of an order-one out-of-plane velocity
component (at large Bingham number). The nearly plastic regions, however, no longer
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Figure 18. Flow around infinitely long cylinders translating with respect to their axes at anglesΔ of (a) 7π/22,
(b) π/8 and (c) π/200. Shown are density plots of log10 γ̇ with sample streamlines for the in-plane velocity field
(green, y > 0) and contours of constant w (black, y < 0). Bi = 2048. (d) A magnification of the boundary layer
for the solution also shown in (c); panel (e) shows a similar plot for a fourth solution with localised boundary-
layer flow atΔ= 5π × 10−5. The force components, FX and FZ (solid red and blue), and yielded area (dotted)
are shown in (f ) as functions of Δ, for a wider set of computations. The filled stars show the angles for the
solutions in (a,b,c,e), whereas the open (yellow) stars indicate the limits (FX , FZ )= (8

√
2 + 4π, 0)Bi and

(0, 2π)Bi, expected for Δ= (1/2)π and Δ= 0, respectively. Panel (g) replots the data for the small window
of angles (of order Bi−1) over which the drag force reorientates. The dashed lines in (e) and (g) shows the
predictions from boundary-layer analysis (Hewitt & Balmforth 2022) of FX ∼ 9πBi2Δ and boundary-layer
thickness (

√
2/Bi).

possess an embedded slipline structure. Nevertheless, the structure of the two-dimensional
flow pattern broadly carries over to a genuinely three-dimensional flow.

As the direction of motion becomes closer to axial, the flow pattern loses its similarity
with the Randolph–Houlsby slipline field (see figure 18b). More interestingly, when
translation is almost completely aligned to the axial direction, fluid flow becomes primarily
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axial, and mostly confined to a narrow boundary layer around the cylinder (panel (c)).
However, sideways motion still persists, generating a significant transverse force FX .
Indeed, it is only when the direction of motion reaches a relatively narrow window of
angles close to the axial direction (with a width of O(Bi−2/(n+1))) that the sideways force
abruptly drops from O(Bi) values to zero (see figure 18f,g). Hewitt & Balmforth (2018,
2022) focused on the impacts of this feature in swimming problems in which relatively
long waves along a cylindrical worm or tail drive locomotion through a viscoplastic fluid.
In particular, it was shown that because of the abrupt reorientation of the force, locomotion
took the form of ‘burrowing’, with each cylindrical segment of the worm or tail moving
almost axially (Hewitt 2024).

The sharp switch in the drag force arises because, in the perfectly plastic problem, axial
motion can be accounted for purely by slip over the cylinder surface (which broadens
into a viscoplastic boundary layer for finite Bi). But sideways translation, no matter how
small, cannot. Thus, an arbitrarily small, but finite sideways translation must always
create a region of perfectly plastic deformation away from the cylinder, generating a finite
sideways drag. In the viscoplastic problem, this sideways drag can be switched off when
the boundary layer against the cylinder consumes all motion, leading to the O(Bi−2/(n+1))
window of angles (a true boundary-layered solution from within this window is shown in
figure 18e). The switch from a localised boundary layer to extended sideways flow takes
the form of a first-order transition in flow pattern in which part of the plug surrounding the
cylinder breaks. The transition is visible in figure 18(g) as the kink in FX and sharp rise in
yielded area near Δ= 2.5 × 10−4.

The perfectly plastic solution that emerges in the limit Bi → ∞ for translation angles
1 �Δ� O(Bi−2/(n+1)) is similar to that for the translation of a two-dimensional disk
with a free-slip condition on its surface (Martin & Randolph 2006; Supekar et al. 2020).
This arises because most of the axial motion is confined to the viscous boundary layer;
the in-plane velocities are much smaller, and not so confined. Viscoplastic boundary layer
theory, on the other hand, demands that the stress components, τRΦ and τRZ , dominate
close to the cylinder. But this further implies that τRZ � τRΦ since w� (u, v). The
boundary layer therefore enforces a stress-free condition on the plastic flow further from
the cylinder. Nevertheless, the axial velocity does not vanish outside the boundary, and
merely becomes as small as u and v. The problem does not therefore correspond precisely
to flow around a two-dimensional, stress-free disk, although the flow pattern looks similar
(see Supekar et al. (2020)).

6. Viscoplastic gravity currents
The final problem, sketched in figure 19, considers the viscoplastic analogue of a
canonical problem in viscous fluid mechanics: a dambreak initiating a gravity current.
This problem has wide application in geophysical and industrial settings, piecing together
the viscoplastic failure of an emplaced block, the resulting gravity-driven runout, and the
final convergence to a plastically arrested state. Figure 19 illustrates the configuration for
the symmetrical version of this problem, in which a block collapses to both left and right,
and shows the initial state at the moment of failure. The height of the block H can be
taken as the length scale L; the scaled half-width � provides one of the parameters of the
problem.

The other main parameter (setting aside n) is a measure of the yield stress. In this case,
we cannot immediately define the usual Bingham number because there is no specified
velocity scale U . Instead, the distance over which the yield stress competes against gravity
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Figure 19. Sketch of the collapse of a block of yield-stress fluid with finite density immersed in a miscible
viscous fluid with negligible density. The computational domain contains exactly half of the block. The
characteristic length scale is set by the height of the block H, and a characteristic speed U is then taken to
be ρgH2/μ.

can be gauged by the length scale τ
P
/(ρg), leading us to define the parameter

Bi = τ
P

ρgH . (6.1)

A balance between the gravitational stress scale ρgH and the viscous stress K (U/H)n ,
then implies a convenient velocity scale

U =H1+ 1
n

(ρg

K

) 1
n
. (6.2)

With this choice, we could replace (6.1) with the original definition of the Bingham
number in (2.3), and we continue to informally refer to Bi in that fashion with this in
mind. However, as defined in (6.1), Bi is more properly interpreted as the ratio of the yield
stress to the externally imposed, gravitational stress scale (which is often referred to as the
Oldroyd number).

6.1. Failure
Failure problems like the initial collapse of the block in figure 19 are commonplace in
geotechnical engineering, in addressing the stability of slopes, embankments and other
structures (Terzaghi 1943). For cohesive soil, the problem is traditionally dealt with within
the framework of ideal plasticity theory, which corresponds to the plastic limit for failure of
a block of yield-stress fluid. The problem is also more commonly couched in terms of the
limit analysis of plasticity (Prager & Hodge 1951), wherein one exploits the corresponding
extremum principles to § 3.3 to provide bounds on the critical value of Bi at which failure
occurs.

For a rectangular block, the critical value for failure, Bicri t , depends on the aspect ratio
� (Liu et al. 2016), as summarised in figure 20(a). In addition, at Bi = Bicri t deformation
adopts a specific spatial pattern, or ‘failure mode’. Such patterns correspond to the
dynamical modes for incipient collapse in elastic systems, or the neutral modes at the onset
of linear instability in a viscous flow, with the critical value Bicri t (�) playing the role
of the stability threshold. However, the yield stress ensures that viscoplastic failure is
equivalent to a nonlinear eigenproblem (with an indeterminate equilibrium stress), unlike
a conventional linear stability analysis. Demanding symmetry along x = 0 also rules out
failure modes that correspond to sideways buckling, divorcing the current formulation
from the classical problem of Euler’s elastic column.

For relatively slender blocks, the column of material fails primarily at its base, below
a vertically falling plug. The distinctive flow pattern, or the failure mode, that results is
illustrated in figure 20(c), and can be built by slipline theory (Chamberlain et al. 2001).
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Figure 20. Failure modes for the problem sketched in figure 19. (a) The critical Bingham number Bicri t above
which there is no motion as a function of the aspect ratio �=L/H, and (b) the heights, Z0 (filled circles)
and Z� (open squares), at which failure occurs along x = 0 and x = �, respectively. Four distinct modes are
identified in (a,b) and plotted with different colours; samples of each are illustrated in the remaining panels
(e–f ), which present density plots of log10(γ̇ ) along with selected streamlines. The solution at �= 1, shown
further in the inset to panel (a), appears to have mixed character. In (c), a corresponding slipline pattern is also
shown (in x < 0); the predictions of slipline theory are shown by (red) solid lines in (a,b). The dashed lines in
(a,b) indicates the aspect-ratio-independent theoretical limit for � > 1 (Lyamin & Sloan 2002a,b; Martin 2011).
The inset to (f ) shows a reconstruction of the slipline field. The failure modes here are identified by computing
solutions at sequentially larger Bi until the maximum strain rate over the block, γ̇max , falls below 2 × 10−3; the
critical Bingham number is then determined by extrapolating γ̇max to zero.

The slipline pattern, also shown in the figure, contains a checkerboard stemming from
the free surface at the side, together with a fan emanating from the lower outer corner.
The sliplines in both are no longer straight, but curve because of gravity and the impact
of hydrostatic pressure on the slipline invariants (see Appendix B.4). Note that a section
of the expected plastic region appears to plug up in the computation, a feature permitted
by the shear layer along its top border. This leads to a serendipitous plug at the side that
rotates out of position.

The slipline solution illustrated in figure 20(c) provides a prediction for Bicri t (�) that is
added to figure 20(a). Other properties of the failure mode can also be established, such
as the heights, Z0 and Z�, up to which failure occurs at x = 0 and x = �, respectively
(cf. figure 20c). These alternative measures offer clearer diagnostics of the transitions in
flow patterns (or failure mode) that take place as the aspect ratio is varied; see figure 20(b).
The first transition arises for �≈ 0.5 and is first order, involving the breakage of the upper
plug along the symmetry line. The breakage eliminates purely vertical collapse (and the
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slipline field of panel (c)), and instead permits the upper corners of the initial block to
rotate out sideways. Widespread plastic deformation takes places underneath the rigid
rotation.

The failure mode changes again when the aspect ratio � reaches values closer to unity,
with a prominent shear layer emerging that pierces the block close to its core. Figure 20
identifies what appear to be four distinct failure modes altogether. In panels (a,b), the
four modes are plotted with different colours, and examples of each mode are shown in
(c,d,e,f ). In these failure computations (which proceed in an iterative manner in order to
determine Bicri t ), the modes and the transitions between them are less straightforward to
characterise because strain rates are necessarily small, which can obscure the geometry of
the yield surfaces, plugs and plastic regions.

Once � exceeds unity, collapse only arises in the vicinity of the vertical face (figure 20f );
the central core of the block never fails, and the critical value becomes independent of
aspect ratio. The solution then corresponds to the failure mode of an infinitely wide block,
bounds for which have been provided by Lyamin & Sloan (2002a,b). This failure mode has
Bicri t ≈ 0.2648, Z0 = 1 and Z� ≈ (1/2) (as seen in figure 20a,b), and possesses a slipline
solution that has been constructed by Martin (2011). This slipline field is rather intricate,
however, and Martin’s strategy to build it is more like our slipline reconstruction from
the numerical viscoplastic flow computation (cf. the inset in figure 20f ) than an explicit
construction using the slipline equations, as in Appendix B. In fact, beyond the relatively
narrow limit, the modes of failure and their corresponding slipline patterns are fairly
complicated; for no aspect ratio do they take the form of simple arcs of failure between
rigid blocks (as is often assumed in the geotechnical engineering literature in order to
establish simple bounds; e.g. Terzaghi (1943); Chamberlain et al. (2004)). Nevertheless,
the failure modes again form the patchwork of plugs, plastic regions and boundary layers
that we now expect in the plastic limit.

6.2. Runout; thin-film spreading
After failure, the block collapses into a free-surface gravity current that runs out to
lower the gravitational stresses towards the yield stress everywhere. The time-dependent
dynamics of the spreading gravity current can be interrogated by numerical simulation (see
Liu et al. (2016) and references therein; Valette et al. (2021)), although computations can
be time consuming and tricky. An alternative is to assume that flows are relatively shallow
(�� 1) and exploit lubrication theory, as has been done for viscous gravity currents
(e.g. Huppert 1982). Balmforth et al. (2006) and Appendix C.2.2 review details of the
viscoplastic version of this analysis, which furnishes an evolution equation for the local
depth of the fluid layer h(x, t). Related situations in which the analysis has been exploited
include bearings and blade coating (Hewitt & Balmforth 2012; Lister & Hinton 2022),
the flow of lava and mud (Blake 1990; Hinton & Hogg 2022; Hinton, Hewitt & Hogg
2023), the growth of mountain ranges (Ribinskas et al. 2024; Taylor-West & Hogg 2024),
the viscoplastic linings of lung airways (Shemilt et al. 2022, 2023) and other problems
involving surface tension (Ross, Wilson & Duffy 2001; Jalaal & Balmforth 2016; Jalaal,
Stoeber & Balmforth 2021; Ball & Balmforth 2024).

Figure 21 presents a sample numerical solution to the thin-film evolution equation
(C39), in which a block of fluid collapses and runs out over the underlying horizontal
plane. Note that, because shear stresses vanish along the free surface (in the absence
of surface tension), a superficial pseudo-plug must appear during runout, as sketched in
figure 21(a). The relatively strongly sheared layer underneath the pseudo-plug has depth
Y (x, t)≡ h − Bi/|∂h/∂x |; as the fluid runs out, and surface slopes and stresses decline,
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Figure 21. A shallow-layer solution to (C39) for the collapse of a block above a horizontal base plate for Bi =
0.004 and �= 10. The initial shape is given by h(x, 0)= h∞ + 1 + tanh[100(x − (1/2)�)], where h∞ = 10−3

denotes a pre-wetted film coating the entire base plate (added to ease numerical computations, along with the
regularisation parameter, Y∞ = 10−6, introduced in the replacement Y =Max(Y∞, h − Bi/|∂h/∂x |) in (C39)).
The geometry of the slump is sketched in (a). Panel (b) shows snapshots of h(x, t) and Y (x, t); the final profile
of h(x, t) (as given by (6.3)) is shown by the red dots. In (c), scaled snapshots of Y and u p for t > 0.1 are
plotted against ξ = x/X (t) (with X (t) defined by h(X, t)= 1.01h∞); Y is scaled by its maximum value, u p by
twice the value taken where ξ = (2/3). Panel (d) shows times series of hm(t)= h(0, t) and X (t), with the
dashed lines show the predictions from solving (C46).

this depth descends to y = 0. Importantly, runout becomes limited by the yield stress and
fluid eventually reaches a slumped state with a sloped surface, unlike in the corresponding
viscous problem (in the absence of surface tension).

As noted by Nye (1951) and others, the final state is given by Y → 0, or

h = √
2Bi(X − x), (6.3)

where x = X denotes the fluid edge (see Appendix C.2.2). In the example shown in
figure 21, the entire block yields and flows on its path to the final state. When the
initial block is sufficiently wide, or the yield stress large enough, however, part of the
block remains intact, leaving a flat-topped final deposit (Balmforth et al. 2006). Here, we
consider only fully collapsed states.

The convergence to the final state can be described analytically and follows a relatively
long, algebraic dependence on time (see Matson & Hogg (2007); Hogg & Matson (2009);
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Appendix C.2.2). For a Bingham fluid the convergence takes the form t−1, as illustrated in
figure 21(d). During this passage, ∂u p/∂x > 0, where u p is the speed of the pseudo-plug,
indicating a state of horizontal expansion (cf. figure 21c).

Note that dambreaks from a step-like initial condition are problematic in lubrication
theory because |∂h/∂x | becomes arbitrarily large at the step, but should be asymptotically
small for the theory to remain valid (which is partly why the step in the initial condition
in figure 21 has been smoothed out slightly). Lubrication theory cannot therefore address
the initial failure of the block, as in § 6.1. Indeed, the theory predicts that the block always
fails (the yield criterion being Y = h − Bi/|∂h/∂x |> 0, which is inevitably satisfied if
|∂h/∂x | → ∞).

6.3. Slumped states with finite slope
Armed with slipline theory, one can attempt to advance beyond the thin-film limit and
build the final shape for slumps with finite slope. In this context, Nye provided an elegant
construction for gravity-driven plastic flow with a free surface in the context of modelling
the shape of the snout of a glacier. This construction applies equally to viscoplastic flow
in the plastic limit.

Details of Nye’s construction are provided in Appendix B.4, which begins by artificially
providing data along the outer arc of a circular fan, as illustrated in figure 22(a). The
opening angle of the fan and its height h0 act as two parameters. The surprising feature of
Nye’s construct is that, as one proceeds to shallower depths, the slipline field converges
to a special solution regardless of the precise details of the initial slipline (i.e. the fan
angle and h0). Indeed, another choice for the initial slipline based on Prandtl’s cycloid
(see Appendix B.4) leads to the slipline field shown in figure 22(b). This alternative
construction converges more quickly to the special solution.

The profile of the special solution is displayed in figure 22(d). One awkward detail of
this solution is that the steepening of the free surface near the fluid edge inevitably leads to
the lowest α-line eventually curving downwards rather than upwards into the fluid (see Nye
(1951) and Appendix B.4). Nye argued that this breakdown of the special solution could by
cured by placing a plug below the distinguished α-line that curves initially upwards from
the base before descending and intersecting the fluid edge, as illustrated by the shaded
region in figure 22(c).

Unfortunately, Nye’s construction is not relevant to the dambreak problem shown in fig-
ure 21: his glacier snout is assumed to be in a state of horizontal compression. By contrast,
as illustrated in figure 21(c), shallow viscoplastic dambreaks reach their the final state un-
der horizontal expansion, a result that carries over to finite depths (Liu et al. 2016). When
the surface boundary conditions are adjusted to account for this difference, Nye’s con-
struction fails to work: the slipline calculation no longer converges, but diverges from any
special solution. The mathematical reason underlying the ‘stability’ of Nye’s construction
has not previously been established; nor has the ‘instability’ of its extensional counterpart.

To provide the extensional version of Nye’s construction a different procedure is needed.
One simple strategy for the task is outlined in Appendix B.4, and leads to the results
shown in figure 22(e). This procedure begins with a guess for a section of the free-surface
position, builds the resulting slipline field down to the base, then updates the surface
position to correct the bottom boundary condition (θ(x, 0)= 0). The strategy can also
be used to build solutions for horizontal compression; figure 22(c) demonstrates that the
results agree with Nye’s construction, except near the end of the profile where the α-lines
bend downward.
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Figure 22. Surface profiles constructed for (a–d) horizontal extension and (e,f ) horizontal compression. Nye’s
original construction of the slipline field from part of a circular fan is shown in (a); the construction in (b) uses
a modified Prandtl cycloid to launch the sliplines. In (c), a magnification near the nose is shown for the slipline
field of (b); the shaded region indicates the plug introduced by Nye to avoid the sliplines unphysically turning
downwards from y = 0. The constructions in (d,e) uses the minimisation scheme outlined in Appendix B.4 to
build the slipline field using a section of the free surface for h1 > (h/Bi) > h2 with h1 = 12 and h2 = 2. The
red dots show surface profiles constructed for the different values of h2 marked by stars (h2 = 0.505π , (5/3), 2,
3 and 4 in (c); h2 = 0.01, (1/3), (2/3), (4/3) and (8/3) in (e)). The dashed lines show the profile predicted by
(higher-order) shallow-layer theory. The solid line in (d) shows the profile from (b). All the profiles are aligned
at the surface height h = 8 indicated by the dot-dashed lines. The overlaid plots in (d,e) show magnifications
near the nose.

The breakdown of the slipline field near the fluid edge is also inevitable when the fluid
is under horizontal extension (Appendix B.4). Awkwardly, once the α-lines begin to curve
downwards it no longer becomes possible to extend the slipline field down from the surface
to positions where y = θ = 0, and the strategy of Appendix B.4 fails to produce a physical
solution. For horizontal extension, the breakdown is more noticeable (see figure 22e,f ),
and it does not seem possible to rectify the situation by adding a plug against the base to
allow the slipline network to be continued to the fluid edge.

As an analytical alternative to sliplines, one can continue the asymptotics of lubrication
theory to higher order to generate more accurate profiles than the leading-order result
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Figure 23. Final profiles from a suite of numerical simulations with varying Bi that begin with either a square
or triangle of unit area (Liu et al. 2016). The insets in (a) show the two sets of final profiles. These are then
scaled by Bi and replotted in the main panel. A magnification near the front is displayed in (b). The dot-dashed
line shows the leading-order asymptotic prediction from (6.3). The dashed line is the improved profile from
(6.4) and the solid line shows the construction from figure 22(c). The latter two curves are shifted horizontally
to align them with the numerical simulations at the position where h = 10Bi.

in (6.3). This exercise was accomplished by Dubash et al. (2009) and Liu et al. (2016),
leading to the predictions

h =

⎧⎪⎨
⎪⎩

√
1
4
π2Bi2 + 2Bi(X − x)− 1

2
πBi

√
2Bi(X − x)+ 1

2
πBi

, (6.4)

for horizontal compression or extension, respectively. Note that the profile in extension
ends at x = X with a finite depth (indicating an implausible vertical cliff face at the edge),
and both profiles reduce to parameterless curves when using the variables, (x, h)/Bi. The
predictions in (6.4) are added to figure 22(d,e) for comparison with the slipline solutions.

Finally, the slipline results and higher-order asymptotic predictions for horizontal
extension are replotted in figure 23 and compared with the final profiles from a suite of
numerical simulations with varying Bi provided by Liu et al. (2016). These simulations
are conducted by adopting either a square or triangular initial shape with the same
area (the latter being a right-angle triangle with width � at the base, but height 2 at
x = 0). Aside from some relics from the initial shape, the final profiles are successfully
collapsed on scaling by Bi. The scaled profiles match well with (6.4) and the slipline
construction over distances exceeding about 4Bi (i.e. four times the dimensional length
scale τ

P
/(ρg)). However, very close to the front, the latter terminate at finite height,

whereas the simulations abruptly descend and bend around to create a small overhang.
Evidently, (6.4) adequately describes the final shape of a slump except for the region at the
nose, whose detailed structure remains unresolved.

7. Discussion: implications, complications and perspectives

7.1. Flow patterns; what to expect in the plastic limit
In the plastic limit, two-dimensional viscoplastic flow generates a patchwork of plugs,
shear layers, wall boundary layers and regions of nearly perfectly plastic deformation.
There is further substructure within the latter, guided by distinguished sliplines. The extent
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of the region of deformation is typically set by the length scale of the object acting as a
forcing to or barrier against flow. Deformations can become more widespread if the forces
needed to push fluid out of the way are not limited but become correspondingly higher as
the volume of displaced fluid increases.

Driving flow by tangential motions of a wall can, in principle, be somewhat different,
as the possibility then arises for all motion to be localised to a boundary layer. For
example, in the limit of large rotation, the flow field around the translating and rotating
cylinder of § 5.3 becomes localised to relatively narrow boundary layer at the surface (see
Hewitt & Balmforth (2018)). However, as illustrated by the squirming cylinder (§ 5.4),
deformation cannot always be confined within a wall boundary layer; weaker deformations
are still driven plastically further afield. Other examples in which the deformation is not
completely localised are provided by Oldroyd’s moving plate (Balmforth et al. 2017) and a
swimming sheet driven by longitudinal waves (Hewitt & Balmforth 2017). Therefore, it can
be dangerous to conclude that remote deformations have an origin that is not viscoplastic.

Nevertheless, as illustrated by the translating and rotating cylinder, the addition of
further motion components to a solid wall or translating object does not necessarily
expand the yielded region. In fact, adding rotation (§ 5.3) or axial motion (5.5) to the
translating cylinder initially leads to the same yielded area. Then, as one ramps up the
rotation rate or axial speed, changes in flow pattern arise that actually decrease the yielded
area. This somewhat counter-intuitive result might serve as a cautionary note in problems
in which the goal is to eliminate plugs or enhance shear flow (such as in transport and
mixing problems), where adding another component to the driving motion might seem
advantageous.

The plastic limit also supports an interesting type of partial non-uniqueness: the same
stress state is possible for different velocity fields. As the stress controls the yield surfaces,
the geometrical shape of the flow pattern is the same. However, the streamlines, and
the dissipation and its spatial structure, are different. For example, the solutions in
figures 1, 10, 13(a), 15(a) and 16(c) all possess the Randolph–Houlsby stress field, but
the streamlines and distribution of the shear rate are not the same. This non-uniqueness
extends to problems with different boundary locations or shapes, or with isolated flow
structures. In such cases, the intervening plugs provide effective cloaks to hide any detail
embedded within them or lying further afield.

A related feature is that the velocity field associated with the checkerboards or circular
fans of a slipline solution can be consistent with rigid-body motion. Certain velocity
boundary conditions must be present for this to be the case, and if they are, the
checkerboards or fans effectively plug up, even though the stress there is held exactly
at the yield stress. With other velocity boundary conditions, however, shear must arise,
implying that the checkerboards or fans appear as nearly plastic regions. We have termed
the plugs that arise in the former setting as ‘serendipitous’ in view of this. The relatively
low deformation rates associated with the plastic regions for Bi � 1 also mean that viscous
effects can sometimes eliminate shear at slightly smaller Bi. This leads to ‘residual’ plugs
that owe their existence to finite viscosity and (somewhat counter-intuitively) are not
present for Bi → ∞. Therefore near the plastic limit, there can be three types of plugs,
the last being the genuine, permanent plugs that feature in the slipline solution and truly
lie below the yield stress.

One might wonder why the Randolph & Houlsby slipline pattern appears so prevalent
in the solutions in § 5. Or, for that matter, why the components of Prandtl’s indentation
solution are common in the solutions of § 4. One reason is that both have lines of
symmetry, which imply that certain sliplines are straight. But Hencky’s rules then demand
that a significant fraction of the slipline pattern must contain straight sliplines (§ 3.4).
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In combination with the geometry of a straight or circular boundary, the solution is thereby
evidently forced to adopt those familiar forms.

A final curiosity is that the stress field can apparently be disfigured by discontinuities.
Such scars are expected in the plastic limit (§ 3.4). But their appearance at finite Bingham
number is, perhaps, a little shocking in view of the smoothing action of viscosity. In our
numerical solutions, the discontinuities at finite Bi appear to be associated with ‘yield
lines’. These are curves along which stresses reach the yield stress; on both sides, the
yield criterion is met, so that the curves are not genuine yield surfaces. However, their
appearance appears to allow the numerical solutions to establish stress jumps across the
yield lines as the constitutive law no longer demands continuity there. We know of no
results from analysis that preclude the existence of stress discontinuities at finite Bingham
number (which, if they existed, would imply that those in figures 8 and 17 are numerical
artefacts). We are also unaware of any previous computations, barring those in Hewitt
& Balmforth (2017), that highlight their possible existence. Indeed, one imagines that
such features are potentially problematic in numerical computations, requiring careful
consideration to avoid persistent gridding errors and Gibbs phenomena.

7.2. Bifurcations; the role of stress inside the rigid plugs
A guiding principle of the inertialess problem in the plastic limit is that the solution must
be a unique minimiser of the dissipation rate (for finite Bi, the quantity minimised is not
quite this; see § 3.3). In other words, there cannot be multiple solutions with different
values for E that correspond to local, but not global, minimisers. Therefore, when flow
patterns changes at a point of bifurcation, one of the corresponding solutions must cease
to exist, while the other must come into existence. In a number of situations, this demands
that one or more plugs of the former must necessarily break to eliminate that pattern as a
potential solution.

This feature is not always obvious because the stress state within the plugs is indetermi-
nate. The jet problem of § 4 provides numerous bifurcations that illustrate this point. The
first bifurcation, for example, corresponds to the sudden breakage of the central, moving
plug that, for smaller domain lengths, spans the entire domain (figure 4c). But to determine
when that plug breaks, one would need to track through every admissible stress field
and demonstrate that all ceased to exist at the bifurcation point, an exercise that sounds
impossible. A much better approach is to examine the solution after the bifurcation, with
its broken plug and known stress state (i.e. Figure 4d,e or figure 6a), and then track that
solution back to the bifurcation to gauge when that flow pattern must disappear. This exer-
cise is certainly feasible and can be accomplished using the slipline solution in figure 6(a),
which exists for �x > (1/4)π + (1/2). The bifurcation point is thereby identified, and
must correspond to the domain length at which the uninterrupted moving plug breaks.
In other words, the analysis of the flow patterns at transitions is approached from one
side only, taking a path that avoids the undetermined stress state of the plug that breaks.
Alternatively, one might relax the treatment of the stress state below the yield stress, and
use a constitutive law that predicts the plug stress. This is the approach implicitly taken
when a regularised model is used, and would, in principle, allow a direct construction of
the transition point from either side, were the solution to be analytically accessible.

Because the plugs that break at such a bifurcation have finite size, solution properties
such as the yielded area can change discontinuously at transitions in flow pattern. The
transitions of the jet at �x = (1/4)π + (1/2) and, for free-slip walls, at �x ≈ 1.9, for
example, have this feature (see figure 4b). We have referred to these types of transitions as
‘first order’, following the terminology of the theory of phase transition.
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Continuous, or ‘second-order’, types of transitions are also possible: in such cases,
global solution properties like the yielded area do not abruptly change because the two
flow patterns are connected continuously across the transition point by a common, nearly
plastic (slipline) solution. For example, when the jet expands to meet the no-slip wall
between panels (g) and (h) of figure 4, there is a connecting slipline field like that in
figure 5(a). Since the boundary layer against a no-slip wall demands that sliplines intersect
it tangentially, one expects transitions with this continuity whenever a yielded region or
plug meets a no-slip boundary. Further examples are provided by the concentric annular
problem in § 5.1 (see figure 10). By contrast, at a free-slip wall, or a line of symmetry,
the slipline angle must be θ = (1/4)π . This rules out any continuous transition between
slipline patterns when the yield region collides with the wall. Instead, there must be a
sudden jump to a new flow pattern, with a breakage of one of the plugs; i.e. a first-order
transition.

Such considerations impact the possibility for a plug to cloak a boundary or isolate
a localised flowing region. For example, when a plug adheres to a no-slip boundary,
that rigid material cloaks the wall to render its detailed shape and position irrelevant.
Moreover, the plug will effectively cloak the boundary until stresses increase sufficiently
for the yielded regions to progress smoothly to the wall; thereafter, a viscoplastic wall
layer buffers the flow. For a free-slip wall or symmetry line, however, a sudden switch in
flow state arises at an abrupt de-cloaking event, because the transition becomes first order.
This points to the existence of long-range influence beyond the yielded envelope, or stress
connections across bridging plugs. Beyond the examples considered here, such features
have been explored in flow patterns around multiple particles moving through viscoplastic
fluids (Chaparian et al. 2018).

7.3. Perspectives
Our aim here has been to gain insight into the impact of a fluid yield stress on flow
structures and the dynamics, and our conclusions are perhaps best summarised by the
bullet points in tables 1 and 2 presented in § 2. In order to explore these features, we have
focused on three relatively simple problems involving the inertialess, two-dimensional
flow of a Herschel–Bulkley fluid. Diving into more complicated modelling generally
means leaving behind some of the ability to dissect and fully interpret solutions inherent
in this ideal setting. However, although the relaxation of modelling assumptions inevitably
renders the situation more murky, the intuition and general principles gained hopefully
carry over into more complicated problems.

For example, it is not conceptually difficult to move from two to three dimensions,
and there are many largely numerical (and experimental) studies that consider three-
dimensional viscoplastic flows. Indeed, we have already looked into the effect of adding a
component of flow in the third dimension in flow between concentric cylinders (§ 5.5),
finding that aspects of the two-dimensional dynamics can survive. However, one key
analytical tool is lost in the process: the slipline theory of perfect plasticity. It is also
relatively straightforward, numerically, to incorporate inertia into viscoplastic modelling,
although sufficiently strong inertial forces may well significantly disrupt the flow features
identified here.

As noted in the introduction, most real viscoplastic materials violate the idealisations
inherent in the Herschel–Bulkley model. In particular, most behave visco-elastically
both below and above yield. Many recent studies of viscoplastic fluids employ an
‘elasto-viscoplastic’ formulation, with the most popular modelling approach following
Saramito (2007). Such studies have had success in capturing some of the experimental
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observations of yield-stress fluids that run counter to the predictions of non-elastic
formulations (e.g. Fraggedakis, Dimakopoulos & Tsamopoulos (2016); Varchanis et al.
(2020); Moschopoulos et al. (2021); Esposito et al. (2024)). While such elasto-viscoplastic
models are now fairly commonly used in numerical studies, the anatomy of the flows
produced are usually not dissected in quite the manner we have attempted here. This
is partly because the added rheological complexity thwarts most analytical progress. It
would, however, be instructive to explore in an idealised context and in a systematic
manner how elasticity affects the canonical flow patterns discussed here. For example,
can one quantify and interpret how elasticity affects the force balances that underpin the
thin viscoplastic shear layers? In what manner do elastic forces act to disrupt the slipline
structure of the extended plastic regions? Can one illustrate generic principles for how
elasticity should affect the different types of plug?
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Appendix A. Numerical details

A.1. Regularisation and the augmented Lagrangian method
The difficulties associated with numerically computing solutions to (3.6)–(3.9) include
dealing with the rigid plugs and the associated indeterminacy of the stress. Practically,
efforts that exploit the effective viscosity of the constitutive law are also plagued by its
divergence at the yield surfaces. Both issues can be alleviated by abandoning the Herschel–
Bulkley law in favour of a regularised version such as

τ =
[
γ̇ n−1 + Bi

γ̇

(
1 − e−βγ̇ )] γ̇ , (A1)

often known as the ‘Papanastasiou regularisation’ (Papanastasiou 1987), where β is a
regularisation parameter that should be chosen to be sufficiently large that the yielded
regions are insensitive to the precise choice for its value. More specifically, β−1 represents
a limiting scale for the strain rate γ̇ , below which the model inaccurately approximates the
true Herschel–Bulkely law (3.3). There is no longer any need in (A1) for two branches to
the constitutive law, nor the switch between them at the yield stress. Any true plug becomes
replaced by a plug-like region with small strain rate and effective viscosity ∼ βBi.

Though popular, regularised models have the potentially unappealing feature of the
removal of the true plugs. Other numerical approaches based on augmented Lagrangian
algorithms are available that avoid this drawback. The trick is to augment the problem
with some new variables and iterate to the solution; the extremum principles summarised
above provide the formalism that underscores this strategy (see Treskatis et al. (2018) for
a concise and readable overview of modern approaches to this method).

For most of the two-dimensional numerical solutions presented here in the steady,
inertialess, Bingham limit, we employ the following version of the augmented Lagrangian
approach, which we outline in a practical manner, avoiding any derivation (for a more
formal derivation, see Dean, Glowinski & Guidoboni (2007); Glowinski & Wachs (2011)).
First, we take the curl of the force-balance equation (3.2) to eliminate the pressure, and
enforce incompressibility by introducing a streamfunction such that
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u =
(
∂ψ

∂y
,−∂ψ

∂x

)
. (A2)

The basic approach then is to introduce dummy tensors d and λ, which are iterated towards
the true strain rate γ̇ and plastic stress Biγ̇ /γ̇ tensors, respectively. As such, these tensors
each have only two independent components (the others being enforced by the symmetry
and vanishing trace of the strain rate), which are iterated as follows, here illustrating the
evolution from step k to step k + 1:(

λk+1
XX

λk+1
XY

)
=

(
λk

XX

λk
XY

)
+ r

(
2ψk

xx

ψk
yy −ψk

xx

)
− r

(
dk

XX

dk
XY

)
, (A3)

∇4ψk+1 = − (1 + r)−1
[

2
(
λk+1

XX
− rdk

XX

)
xy

+ (∂yy − ∂xx )
(
λk+1

XY
− rdk

XY

)]
, (A4)(

dk+1
XX

dk+1
XY

)
= 1

r

(
λk+1

XX
+ 2rψk+1

xy

λk+1
XY

+ rψk+1
yy − rψk+1

xx

)
×

{
0 Λ< Bi,

(1 − BiΛ−1) Λ≥ Bi,
(A5)

with Λ=
√

4(λk+1
XX

+ 2rψk+1
xy )2 + (λk+1

XY
+ rψk+1

yy − rψk+1
xx )2 and where r = O(Bi) is a

relaxation parameter. The superscripts indicate the iteration number, and the lower-case
(x, y) subscripts imply partial derivatives, as do the operators ∂xx and ∂yy . The iteration
can be initiated with the Newtonian solution or an existing viscoplastic one, and converges
to a solution with d ≡ γ̇ and λ= Biγ̇ /γ̇ over the yielded regions. Correspondingly, in the
plugged regions d → γ̇ → 0, while the augmented plastic stress tensor λ converges to an
acceptable stress field there. Convergence is typically monitored by the magnitude of the
difference between the dummy and true strain rates.

The true power of the technique is that the original nonlinear (and, indeed, non-
differentiable) differential equations are replaced by solving the linear biharmonic relation
in (A4) (which evaluates the yield-stress terms using a previous iterate, and locks in the
boundary conditions as long as they can be expressed in terms of ψ). The nonlinearity in
the constitutive law is dealt with instead by (A5), which is simply an algebraic expression,
with no more need to work with a potentially singular effective viscosity. The main
downside of the approach is that convergence can be extremely slow, particularly in the
plastic limit, and some care must be taken with accurate determination of convergence.

Note that the algorithm above is for a Bingham fluid; the Herschel–Bulkley version
follows from replacing the factor (1 + r)−1 in (A4) with (μ∗ + r)−1, where μ∗ = γ̇ n−1

is the dimensionless viscosity. However, if one desires to retain the linearity of the
partial differential equation in (A4) (if the numerical solver requires this, for example),
an alternative approach is to replace the factor (1 + r)−1 with r−1, and to replace the
1/r prefactor in (A5) by (μ∗ + r)−1. This approach places all the nonlinearity back into
the algebraic equation (A5), leaving the elliptic problem linear; as a result, the dummy
stress tensor λ in this alternative formulation converges to the full deviatoric stress tensor
λ→ (Bi/γ̇ +μ∗)γ̇ , rather than just to the plastic part of the stress.

A.2. Some practical numerical details
The numerical solutions presented here were computed using a mixed finite-difference
approach that fundamentally replies on the linearity of the biharmonic equation in (A4).
To begin, one spatial direction is identified in which the boundary conditions are amenable
to a Fourier transform: a sine, cosine, or full transform can be employed to achieve
odd, even, or periodic boundary conditions for the streamfunction and its derivatives.
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Having explicitly taken the transform, (A4) reduces to an ordinary differential equation
that can be integrated using a standard finite-difference approach (requiring the inversion
of a penta-diagonal matrix) before transforming the solution back to real space. The main
strength of this approach is that it allows relatively accurate computations at high Bi: fast
Fourier transforms render the method quite efficient, allowing for a fairly large number of
grid cells and fairly small convergence tolerances in the augmented Lagrangian iteration
scheme. Such accuracy is essential at high Bi if one wants to accurately capture the finer
details of, for example, narrow viscoplastic shear layers. In fact, it also turns out that high
accuracy is often required to extract a reasonable map of slipline characteristics: although
these features stretch across the extended plastic regions, they are sensitively affected by
small changes in, for example, the pressure in the viscoplastic layers, which one might not
otherwise notice was slightly inaccurate.

The downsides of this numerical approach are its (lack of) versatility, particularly
with respect to boundary conditions. For example, no-slip conditions on three walls of a
rectangular domain is not straightforwardly achieved using this method. One way around
that is to artificially construct a no-slip condition by dramatically enhancing the yield
stress over a narrow ‘sponge layer’ adjacent to the boundary, which effectively forces the
material to be plugged up there. This is the strategy adopted in § 4 to deal with no-slip
boundaries at y = ±�y , and it works effectively, although it slows down convergence of
the algorithm somewhat.

A final point relates to convergence, and the choice of the relaxation parameter r in
the scheme. We measure convergence by the proximity of the dummy strain rate d and
the true strain rate γ̇ = ∇u + ∇uT , with solutions being deemed to have converged when
the average magnitude of the difference (that is, the mean root of the sum of the squares
of the difference) lies below an imposed threshold. In most cases, we use a threshold of
O(10−7), although in cases where the strain rates are themselves very low (as for the
failure modes of § 6) it is more appropriate to use a relative error, and demand the relative
error in γ̇ , scaled by the largest value of γ̇ in the domain, is less than a given threshold
(in § 6 we use a threshold of O(10−4). This convergence metric is not the only choice:
one could demand convergence pointwise, rather than in the mean, or could use a different
metric (the simplest choice is simply to monitor the change in the strain rate between
two iterates, and to require this to be sufficiently small; this is, however, an unsatisfactory
measure, since the rate of change of the strain rate becoming small is no guarantee that the
solution is close to convergence).

More importantly, we find that the choice of relaxation parameter r has a significant
impact on convergence and the accuracy of solutions, a feature that may not be detected
if one simply trusts that a given convergence criterion has been met. For example, it turns
out that the boundary-layer profile against the ‘fake’ no-slip wall in figure 5(d) is sensitive
to the choice of r , even though the flow structure elsewhere seems to be unchanged;
values of r that are too large give increasingly inaccurate boundary-layer profiles, even
at higher resolution. This feature could easily be missed without interrogation of the finer
details, emphasising how numerical solutions near the plastic limit should be checked
against theory whenever possible. Note that the alternative, but closely related, ‘dual-based
proximal gradient’ algorithm (Treskatis et al. 2016, 2018) may avoid this issue of choosing
the relaxation parameter, as well as accelerating convergence.

Appendix B. Plasticity details
A practical example of the construction of a slipline pattern is shown in figure 24,
corresponding to one of the broken-jet flow patterns of § 4. The construction begins
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Figure 24. Illustration of the construction of a slipline network. We begin on the left with a piece of Prandtl’s
punch solution: only half of the solution is displayed.

from a slipline that is known because a portion of the slipline field can be prescribed:
the uniform inflow at the left-hand boundary corresponds to a checkerboard with 45◦
sliplines. But the boundary condition implied by the checkerboard is inconsistent with no
slip on the wall above and below the inflow. This inconsistency can be relieved by adding
circular fans at the edges of the checkerboard. The resulting pattern mirrors Prandtl’s
punch solution. Unlike in figure 2(b), however, we terminate the fan at a particular angle,
(1/2)π − θE , as illustrated on the left of figure 24. The upper fan then spans sliplines with
−(1/4)π < θ < θE , and the angle θE becomes a parameter of the problem. The known
starting slipline for the upper half of the solution is the final circular arc of the fan, the
β−line AE (which has prescribed stress, up to an arbitrary pressure constant).

To construct the rest of the slipline field, we first extend the α-line that intersects point
P along AE down to the new point A′ at y = 0, as illustrated by the inset in the top
left of figure 24. This extension is accomplished by combining the local slope of the
α-line and its Riemann invariant with the symmetry condition θ = −(1/4)π applying
along y = 0. Specifically, using a simple finite-difference approximation (Hill 1950; Prager
& Hodge 1951), the new point A′ is given by (x, y, θ, p)= (xP − yP cot((1/2)θP −
(1/4)π), 0,−(1/4)π, pP − 2Bi(θP + (1/4)π)), where the subscript refers values at
point P . The point A′ initiates a new β-line to the right of the fan. Similar finite-
difference approximations allow one to advance this β-line from A′ to P ′, combining
the known characteristics information from A′ and Q. Indeed, the entire new β-line can
be constructed by stepping up and along its length using the information from AE carried
by the α-lines.

A repetition of this exercise furnishes the slipline field. The field terminates when
the uppermost α-line becomes horizontal. At this point C , we must add the shear layer
that extends across to the symmetry line at x = �. At this stage, however, � cannot be
prescribed. Instead, that length must be determined by evaluating the horizontal force
along the rightmost β-line (from B to C), and setting this force equal to Bi times the length
of the shear layer (fixing �). This construction guarantees net force balance on the moving
plug. The entire solution is thereby parameterised by the angle θE adopted at the outset.

B.1. Hencky’s rules
To quote Hencky’s rules, we first denote the radii of curvature of the two sliplines by

R−1 = ∂θ

∂sα
and S−1 = − ∂θ

∂sβ
, (B1)
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where sα and sβ denote arclength along the α and β-lines, respectively. The rules are:

(i) For any curve of one of the family of sliplines, the change in the angle θ is constant
between intersections with two adjacent lines of the other family. In other words,
referring to figure 2, the change in the angle θ between points A and C is the same
as that between B and D (or the change in the angle along the β-lines AB and C D is
the same).

(ii) As one traverses a slipline, the change in the radius of curvature of the other
intersecting sliplines is equal to arc length

∂R

∂sβ
= ∂S

∂sα
= −1. (B2)

That is, in figure 2 as one progresses from A to B, the radii of curvature of the α−lines
through A and B differ by the arclength of AB (or the radii of curvature of the β-lines
at A and C differ by the arclength of AC).

B.2. Slipline calculations for figure 6
Over the upper fan, the pressure is constant along the α-lines (the radial spokes); along the
circular β-lines, we have

p − 2Biθ = pA − 2BiθA = pA + 1
2
πBi. (B3)

Thus,

pE = pA +
(

1
2
π + 2θE

)
Bi. (B4)

Since EC is an α-line

pC = pE + 2(θE − θC )Bi = pA +
(

1
2
π + 4θE − 2θC

)
Bi. (B5)

Last, BC is a β-line, implying

p = pC + 2(θ − θC )Bi. (B6)

For the no-slip case in figure 6(a), point C also lies along the horizontal shear layer.
Here, the pressure variation is relatively small (§ C.1.1) and the symmetry condition at
x = �x demands that p = τXX = 0 there. Thus, θC = pC = 0, leaving p = 2θBi along BC .
The horizontal component of force along this curve is

fBC =
∫ yC

0
x̂ ·

(−p − Bi sin 2θ Bi cos 2θ
Bi cos 2θ −p + Bi sin 2θ

)(
cos θ
sin θ

)
dy

cos θ

= −
∫ yC

0
(p + Bi tan θ)dy. (B7)

Because there can be no horizontal forces along AB or the symmetry line x = �x , this force
component must be equal and opposite to that along the shear layer, which is −Bi(�x −
xC ). It is this condition that dictates the position of point C , given the domain length �x
and the slipline construction of θ along BC . In addition, by mass conservation, the speed
of the moving plug at BC is (2yC )

−1, and the net dissipation rate (for y > 0) is

E = (�x − xC )
Bi

2yC

+ Ep, (B8)
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where Ep is the contribution from the upper plastic region. But this latter rate must also
equal the net power input along the border O EC BC , which is given by the input along O A
(and equal −(1/2)(pA − Bi)) less the output along BC (given by fBC (2yC )

−1). Altogether,
and recalling that PA = −((1/2)π + 4θE )Bi when PC = θC = 0, we arrive at

E = 1
2

(
1 + 4θE + 1

2
π

)
Bi. (B9)

Note that the upper slipline solution in figure 6(a) terminates when θE → 0, B → A and
C → E . The force component fBC can then be computed directly as

fBC → 1
2

Bi
(

1 − √
2 + 1

2
π

)
; (B10)

(p = 2θBi along BC and dy = (1/2)
√

2 cos θ dθ ). Force balance demands this be equal to
Bi(�x − xC )→ Bi(�x − (1/2)

√
2), and so we find the bifurcation point

�x = 1
2

+ 1
4
π. (B11)

For the free-slip case in figure 6(a), the position of point C is set simply by the
condition that yC = �y and θC = (1/4)π (xC then following from the slipline construction).
Moreover, the pressure pC cannot now vanish, but must be fixed by demanding that
fBC = 0, which follows because there are no other forces acting on the moving plug to
the right of C . i.e. p = pC + (2θ − (1/2)π)Bi along BC , which must be fed into (B7)
with fBC = 0, and then solved for pC . The only power input is now along O A and so the
net dissipation rate must be

E = −1
2
(pA − Bi)= 1

2
(1 + 4θE )Bi − 1

2
pC . (B12)

B.3. Slipline calculations for figures 13 and 14
The slipline construction for the case without an upper fan in figure 13(c) was presented
by Hewitt & Balmforth (2018); we summarise here the construction for the intermediate
case in (b). To begin, consider the pressure along the contour A−B−C−C+B+ A+ and its
reflection in x < 0. Let p0 denote the pressure at the bottom of the fan at A−. The curve
A−B−C− is a β-line, and so

p = p0 + (2θ + π)Bi (A−B−C−)
pC− = p0 + (2θC− + π)Bi.

(B13)

The combined section C−C+B+ A+ is an α-line, implying

p = pC− − 2(θ − θC−)Bi (C−C+B+ A+)
pA+ = pC− − (π − 2θC−)Bi.

(B14)

Continuing the calculation around the mirror image in x < 0, and finally returning to A−,
we find that the pressure is

p0 − (π − 4θC−)Bi, (B15)

which should equal p0. Hence θC− = (1/4)π . Given that the disk’s motion can be viewed
as pure rotation about the centre E at (0, Ω−1) the geometry of EC+ and EC− demands
that these radial spokes have length

REC = 1
2

(√
2 +Ω−1

)
. (B16)
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To calculate the force and torque, consider the segment O−D−C−C+D+O+ (the net
force and torque on the attached plug must vanish, and so contributions from D−C−C+D+
are the same as those along the plugged surface of the disk): if n̂ denotes the outward
normal, each line element supports a force(

fX
fY

)
=

(−p − Bi sin 2θ Bi cos 2θ
Bi cos 2θ −p + Bi sin 2θ

)
· n̂. (B17)

The integral of fX along the various sections provides the net drag, whereas the integrals
of fT = x fY − y fX determine the torque. The various contributions to the drag (setting
p0 = 0, as the contribution of that background pressure ultimately cancels) are as follows:

O−D− :
n̂ =

(
sin θ

− cos θ

)
,

0< θ <
1
4
π,

δFX

Bi
= 3

√
2

4
(π − 2)− π (B18)

D−C− :
n̂ = 1√

2

(
1

−1

)
,

�D−C− = 1√
2
Ω−1, θ = 1

4
π,

δFX

Bi
= −1

4
(3π + 2)Ω−1 (B19)

C−C+ : n̂ =
(

sin θ
− cos θ

)
,

π

4
< θ < sin−1 Ω, (B20)

δFX

Bi
= −

(
1 + 1√

2
Ω−1

) [
3π

2
√

2
−Ω + 1√

2
− 2(π − sin−1 Ω)

√
1 −Ω2

]
(B21)

C+D+ : n̂ =
(√

1 −Ω2

Ω

)
, �C+D+ = REC −

√
Ω−2 − 1, θ = sin−1 Ω, (B22)

δFX

Bi
= −[1 + 2(π − sin−1 Ω)

√
Ω−2 − 1][Ω + 1√

2
−

√
1 −Ω2] (B23)

D+O+ :
n̂ =

(
cos θ
sin θ

)
,

sin−1 Ω < θ <
1
2
π,

δFX

Bi
= 2Ω(2 − sin−1 Ω)− 3

√
1 −Ω2 − π.

(B24)

We avoid quoting the torque contributions as the formulae are somewhat cumbersome.
Summing the various contributions gives

|FX |
Bi

=
[
(2 − π + 4 sin−1 Ω)

Ω
+ 4π + 4

√
2 + 4

√
1 −Ω2

]
, (B25)
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and
|T |
Bi

= 1
2
Ω−2

[
π − 2 − 2πΩ2 + 4(2Ω2 − 1) sin−1 Ω + 4Ω

√
1 −Ω2

]
, (B26)

which bridge between the force and torque for Randolph & Houlsby’s solution in (5.4) and
those for the slipline pattern in figure 13(c), which are (Hewitt & Balmforth 2018)

|FX |
Bi

= 2π + 4
√

2 + 2 + 3π
Ω

&
|T |
Bi

= 2π − 3π + 2
2Ω2 . (B27)

B.4. Including gravity and Nye’s construction of a glacier snout
When the body force of gravity acts, the slipline construction must be modified
accordingly. First, we switch the pressure that appears in (3.15) to P(x, y)= p(x, y)+
(ρgL)y/P , the non-hydrostatic part of the dimensionless pressure, assuming that gravity
is directed in the negative y-direction. The relations (3.15) still then apply, with the
Riemann invariants along the sliplines modified to P ± 2Biθ and the constructions of the
slipline field proceeding otherwise as before. The only change with the addition of gravity
is then to any boundary condition imposed on the stress, such as at a free surface.

In that case of a free surface, the construction of the sliplines becomes more convoluted
because the boundary position must be found as part of the solution of the problem. As
part of this exercise, one hardwires the free-surface conditions into the construction of the
slipline field, which requires that two families of sliplines meet the free surface at 45◦ to
the local tangent. For the slump problem, in which we choose P = ρgH and L=H, one
further demands P = Bi(h ± 1) at the free surface y = h(x), with the sign set by whether
the final state is reached under horizontal compression or extension.

The alternative to Nye’s initial fan, that is used in figure 22(b), is the β-line given by

θ(y)= 1
2

[
1 − 4

π
tan−1

(
Bi
h0

)]
cos−1

(
1 − y

h0

)
, (B28)

P(y)= 2Bi[θ(y)− θ(h0)] + h0 + Bi,
dx

dy
= − tan θ. (B29)

This choice recognises that the special solution to which Nye’s construction converges at
larger depths is almost flat (and corresponds to that predicted by shallow-layer theory).
The slipline therefore corresponds to one of Prandtl’s cyloids, but modified to allow for
the small surface slope.

The inevitability of the bending downwards of the lowest α-line as the surface slope
steepens (Nye 1951) follows from Hencky’s rules: the combination of the surface boundary
conditions and slipline equations imply that

R−1 = S−1 + 1√
2

sin α, (B30)

for a point on the surface, where α= − tan−1(hx ) gives the surface angle. For the α-line
leaving the free surface at G in figure 25(a), R > 0, but the upward β-line meeting this
point has S < 0 (as drawn, θ is increasing upwards). A short consideration of the geometry
of the isosceles triangles formed by the slipline network just underneath the free surface,
coupled with the pressure boundary condition, leads to (B30).

Now consider two adjacent β-lines from the free surface to the bottom, labelled G H
and G ′H ′ in the sketch shown in figure 25(a). Hencky’s first rule indicates that the α-line
intersecting the free surface at G must approach that point with the same sign for R at
that for the α-line leaving the base at H ′ (θ changes by the same increment along both
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FHH
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(a) (b)

Figure 25. Sliplines for horizontal (a) compression and (b) expansion, illustrating the geometry underlying
Nye’s argument.

α-lines between their intersections with the two β-lines). Hencky’s second rule implies
that S at G must equal the length of the α-line FG, because S vanishes where the β-line
hits the base at F . As S−1 inevitably increases as we progress towards the nose of the
current, but (1/

√
2) sin α is bounded, it follows from (B30) there must be a horizontal

location at which R for the top α-line (which was initially positive) becomes negative. The
corresponding bottom α-line must therefore bend downwards.

For horizontal extension, the slipline geometry illustrated in figure 25(b) implies that
both R and S are positive (θ is now decreasing downwards, becoming less negative), and
the construction leading to (B30) can be adjusted to now show that

R−1 = 1√
2

sin α− S−1. (B31)

Moreover, Hencky’s second rule still indicates that S must equal the arclength of H G,
which again becomes small if the slipline field extends down to h = 0. Therefore, R−1

must again switch sign, both at the surface point (labelled G in figure 25b), and at the base
along the corresponding β−line (labelled H ).

A simple alternative to Nye’s construction to build the slipline field under horizontal
extension is to first set up a grid of heights y = h along a section of the free surface, assign
values of θ on the grid and then integrate

dx

dh
= cot

(
θ + 1

4
π

)
, (B32)

to obtain a free-surface shape. A network of sliplines can then be generated by integrating
downwards to the heights y0 where θ = 0. Minimising the sum of squares of all the y0’s
(by, for example, using MATLAB’s fminsearch), one can then try to home in on the surface
values of θ that lead to a slipline field which satisfies the true boundary condition (i.e.
y0 = 0). Constructions of this kind, beginning with guesses based on shallow-layer theory,
appear in figure 22(b,f ).

Note that the profiles built in this fashion or by Nye’s construction do not constrain the
total amount of material. Therefore, the only length scale of relevance is τ

P
/(ρg). This

implies that a simple rescaling of the problem is possible which eliminates all parameters.
The rescaling is to take L = H , Bi = τ

P
/(ρgH), and then consider the new variables

Bi−1(x, y, h, p), as used in figures 22 and 23.

Appendix C. Asymptotic details

C.1. Viscoplastic boundary layers

C.1.1. Shear layers
When plastic slipline constructions are considered as the limit of a viscoplastic theory,
any jump in tangential velocity across a slipline must be smoothed by viscosity over a
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narrow shear layer. Such viscoplastic shear layers were explored by Oldroyd (1947b), who
gave a leading-order theory for their structure and offered a self-similar solution for the
corresponding velocity profile. Because the shear layers follow sliplines, and such curves
can also be yield surfaces, Oldroyd’s boundary layer can also act as the buffer between a
plastically deforming region and a rigid plug. Indeed, it is also acceptable to place a shear
layer between two plugs, in the manner of a line of failure between rigid blocks.

Oldroyd’s original shear-layer theory considered a straight boundary layer within a
Bingham fluid. His analysis was generalised by Balmforth et al. (2017) to allow for a
curved centreline (i.e. centring slipline) and fluid described by the Herschel–Bulkley law.
In this generalisation, the curvilinear coordinate system (s, η) of § 3.2 is defined by the
centreline of the shear layer (i.e. the slipline at the shear layer’s centre has s = sα or s = sβ
and η= 0).

When the shear layer is relatively thin (compared with its length), the geometry demands
that V � U , γ̇SS ∼ 2Us and γ̇SN ∼ Uη where we have used subscripts corresponding to the
spatial coordinates (s, η) as a shorthand for partial derivatives (an exercise we extend to
the Cartesian coordinates (x, y) and time t below). In Oldroyd’s theory the main balances
of terms from (3.6) are

Us + Vη ∼ 0,
∂TSN

∂η
+ ∂τSS

∂s
∼ Ps,

∂τSS

∂η
∼ Pη, (C1)

where

p = −2σBiθ + P, τSN = σBi + TSN , τSS ∼ 2σBiUs

Uη
, TSN ∼ |Uη|n−1Uη − 2σBiU 2

s

U 2
η

,

(C2)
and σ = +1 (σ = −1) if Uη > 0 (Uη < 0). The leading-order part of the pressure (−2σBiθ )
is demanded by the Riemann invariant of the slipline threading the shear layer (recall
κ = θs), which is an α-line (β-line) if σ = +1 (σ = −1). Because the leading-order term
in the stress tensor is constant (τSN ∼ σBi and |TSN | � Bi), and all the terms from the
curvature of the shear layer cancel to leading order, force balance boils down to countering
pressure gradients with a mix of the viscous shear stress and higher-order plastic stress
corrections.

The leading-order relations in (C1)–(C2) can be combined into Oldroyd’s shear-layer
equation, which is the formidable-looking partial differential equation(

|Uη|n−1Uη + 2σBiU 2
s

U 2
η

)
ηη

− 4σBi
(

Us

Uη

)
sη

= 0. (C3)

This equation must be solved subject to matches of U to the flow to either side of the shear
layer: U → U± for η→ ±σBi−1/(n+2)Y (s), where U+ − U− (with U+ >U−) is the jump
in tangential velocity across the shear layer and its half-width is Bi−1/(n+2)Y (s).

Despite the daunting look of (C3), that equation has a useful self-similar solution in
which

U (s, η)= 1
2
(U+ + U−)+ (U+ − U−) f (ζ ), ζ = σBi1/(n+2) η

Y (s)
. (C4)

The profile function f (ζ ) is given by an incomplete beta function, and the shear-layer
half-width Y (s) follows from solving a relatively simple ordinary differential equation
(Balmforth et al. 2017). For Bingham fluids (n = 1), the solution is more transparent and
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given by

f (ζ )= 1
4
ζ(3 − ζ 2),

2Y
3
2

E√
3(U+ − U−)

[
tan−1

√
Y

YE − Y
−

√
Y (YE − Y )

YE

]
, (C5)

if the boundary opens at s = 0 (so Y (0)= 0) and reaches a maximum half-width of
Bi−1/3YE = Bi−1/3Y (sE ) at

s = sE = πY
3
2

E√
3(U+ − U−)

. (C6)

That is, the maximum half-width and length are related by

Bi−1/3YE = Bi−1/3

[
3s2

E
(U+ − U−)
π2

] 1
3

. (C7)

Further calculations imply that the area occupied by the shear layer is

2Bi−1/3
∫ sE

0
Y (s) ds = 3

2
π−2/3s5/3

E
Bi−1/3[3(U+ − U−]1/3, (C8)

and, to leading order, the net dissipation rate arising over it is given by

E ∼ (U+ − U−)sE Bi. (C9)

The results in (C5), (C8) and (C9), with (U+,U−)= (1, 0) and s ≡ x , are compared with
numerical solutions for the jet problem in figures 4 and 5 (sE → �x ), and for the translating
disk in figure 1(d).

C.1.2. Wall layers
Viscoplastic boundary layers can also arise against a no-slip wall. In such settings, the wall
need not align with a slipline and the flow structure is necessarily different (Beris et al.
1985; Piau 2002; Balmforth et al. 2017). The main balances in the boundary layer follow
those in Reynolds lubrication theory

Us + Vη ∼ 0,
∂τSN

∂η
− 2κτSN ∼ ps, 0 ∼ pη. (C10)

i.e. the pressure is approximately constant across the boundary layer and its gradient along
the layer balances the resistance from shear stresses. Hence, taking η to increase into the
fluid from the wall at η= 0,

p ∼ P(s) & τSN ∼ σBi + (η− η∗)(Ps + 2κσBi), (C11)

where σ =sgn(Uη) and η= η∗ denotes the edge of the boundary layer, at which location
the stress invariant, which is dominated by τSN , must decrease towards the yield stress.
Given that the boundary layer is thin, η� 1, and so the first term in the shear stress in
(C11) significantly outweighs the second.

The leading-order form of the constitutive law demands that

τSN ∼ σBi + |Uη|n−1Uη, (C12)

which, in combination with (C11), leads to the velocity profile

U ∼ Uw − n

n + 1
|Ps + 2κσBi| 1

n

[
|η∗|1+ 1

n − |η∗ − η|1+ 1
n

]
sgn(Ps + 2κσBi), (C13)
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given that sgn(Uη)≡ − sgn(Ps + 2κσBi)× sgn(η∗). Here, U (s, 0)= Uw is the tangential
wall velocity. If U = U∗ at η= η∗, then we find that the velocity jump is related to the
pressure gradient and boundary-layer thickness by

U∗ − Uw ∼ − n

n + 1
|Ps + 2κσBi| 1

n |η∗|1+ 1
n sgn(Ps + 2κσBi). (C14)

A further relation arises from mass conservation: the net flux along the layer is

Q =
∫ η∗

0
U dη= η∗Uw − n

2n + 1
|Ps + 2κσBi| 1

n η
2+ 1

n∗ sgn(Ps + 2κσBi)

= η∗[(nUw + (n + 1)U∗]
2n + 1

. (C15)

But
dQ

ds
= − [V (s, η∗)− V (s, 0)] , (C16)

or
η∗[(nUw + (n + 1)U∗]

2n + 1
= Q0 −

∫ s

0
[V (s, η∗)− V (s, 0)] ds, (C17)

for some flux constant Q0. To proceed any further, the normal velocities or pressure drop
along the boundary layer must be specified, which requires a splice with the surrounding
flow. In most situations, this splice demands that P = O(Bi) (in the plastic limit). It follows
that the boundary layer has a characteristic thickness given by

η∗ = O(|U∗ − Uw|nBi−1sE )
1

n+1 ; (C18)

(where sE is again the boundary-layer length), which is thinner than Oldroyd’s shear layer
(which has a thickness of O(Bi−1/(n+2))).

C.1.3. Flat plate next to a moving plug
When the boundary layer buffers a straight wall from a plug, the tangential velocity jump
U∗ − Uw is constant and the normal velocity V vanishes on both sides. The net flux Q
must then be constant, demanding that the boundary layer have uniform thickness and
pressure gradient. The velocity profile becomes

U ∼ Uw + (U∗ − Uw)

[
1 −

(
1 − η

η∗

) 1
n
]

; (C19)

(cf. figure 5b,d; the corresponding profile for the translating disk is compared with
numerical results in figure 1e).

C.1.4. Boundary-layered squirmers
For a Bingham fluid (n = 1) between a circular wall with unit radius and a surrounding
stationary plug, we have

s ≡ φ, η= −(r − 1), κ = 1, U∗ = 0, σ = sgn(Uw). (C20)

The boundary-layer profile simplifies to

U ∼ Uw

(
1 − η

η∗

)2

. (C21)
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Since the wall speed is specified, Uw = UW (φ)+ O(Bi−1/2), we solve (C14) for the
pressure gradient

Ps = 2UW

η2∗
− 2Bi sgn(UW ). (C22)

Given that V (s, 0)= uW cos φ and V (s, η∗)= 0, the flux relation in (C17) reduces to

− η∗ = 3uW sin φ
UW (φ)

, (C23)

since UW (0)= 0 (eliminating the integration constant Q0). Evidently, UW (φ) must have
the same sign as sin θ (η∗ < 0); otherwise the boundary layer cannot contain the flow.

Since the pressure P and shear stress τRΦ = −τSN ∼ −Bi sgn(UW ) dominate the stress
at η= 0, the net force on the squirmer can be evaluated as

FX ∼ 2
∫ π

0
[Bi sgn(UW ) sin φ − P cos φ] dφ = 4

9u2
W

∫ π

0

|UW |3 dφ
sin φ

− 4Bi. (C24)

Finally, because the tangential velocity gradient across the boundary layer again dominates
the shear rate tensor, the net dissipation rate is given by (5.5).

C.2. Lubrication theory
If the geometry of the flow domain takes the form a narrow gap, then Reynolds lubrication
analysis applies throughout. The reduction of the problem becomes complicated, however,
by the fact that a number of different flow patterns are possible depending on the applied
stresses (Hewitt & Balmforth 2012). As an example (although one for which this full
richness is not realised), we consider a narrow gap of uniform thickness h in which flow
is driven by primarily the normal motion of one of the walls; i.e. a squeeze flow like that
considered in § 5.2.

Returning to (C10) (which again applies), we now write

τSN ∼
(
η− 1

2
h

)
Ps, (C25)

because the velocity boundary conditions U (s, 0)= U (s, h)= 0 imply symmetry about
the midline of the gap. That said, a key difference with the solution (C11) adopted in
§ C.1.2 is that lubrication pressures are relatively large P � Bi, leading us to abandon the
curvature term 2κσBi. As before, though, the thin-gap scalings lead one to expect that
γ̇SN � γ̇SS , γ̇ = |us |, τSN � τSS and τ ≈ |τSN |. It follows that

|Uη|n−1Uη ∼ −Ps ×
{
(Y − η), 0<η< Y,
(h − Y − η), h − Y <η< h, (C26)

with

Y = h

2
− Bi

|Ps | . (C27)

Over the region Y <η< h − Y , the shear stress τSN becomes less than Bi and it appears
that the total stress must fall below the yield threshold. However, for η→ Y from below,
or η→ h − Y from above, Uη becomes small, and it is no longer acceptable to assume
that τSN � τSS . Indeed, it is possible to satisfy the constitutive law by taking the stress
components to be of the same order, with

U ∼ Up(s)+ U1(s, η)+ . . . , (C28)
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as long as Up � U1 and U1η = O(Upx ). In this setting the constitutive law corresponds to
the perfectly plastic relation

(τSS, τSN )≈
Bi
γ̇
(γ̇SN , γ̇SN ), (C29)

and we can adopt this alternative strategy for solving the constitutive relation over
Y <η< h. Because Uη is relatively small here, this region is often called a ‘pseudo-
plug’ in the viscoplastic fluids literature (Walton & Bittleston 1991), and it is a mistake
to view η= Y and η= h − Y as genuine yield surfaces (this is the core of the fallacy
of the lubrication paradox). Indeed, it typically turns out that the plug-like flow speed,
U ∼ Up(s), depends on position along the gap and cannot be rigid.

In other words, the sections 0<η< Y and h − Y <η< h are relatively strongly
sheared, viscoplastic flow regions. The central section Y <η< h − Y , however, deforms
plastically and is simply the thin-gap relative of a nearly plastic zone (§ 3.4). The flow
profile is

U ∼ − n

n + 1
|Ps | 1

n sgn(Ps)×

⎧⎪⎪⎨
⎪⎪⎩

[
Y 1+ 1

n − (Y − η)1+ 1
n

]
, 0<η< Y,

Y 1+ 1
n , Y < h − Y,[

Y 1+ 1
n − (Y − h + η)1+ 1

n

]
, h − Y <η< h.

(C30)

Note that, in a full asymptotic analysis, narrow transition regions surrounding the fake
yield surfaces η= Y and η= h − Y are required to smooth out the join between the
pseudo-plug and sheared regions (Walton & Bittleston 1991; Putz et al. 2008; Muravleva
2015). These layers, however, have no impact on the leading-order solutions elsewhere and
therefore need no explicit consideration.

The pressure gradient, or equivalently Y , must be determined by considering mass
conservation across the gap

∂

∂s

∫ h

0
U dη= − ∂

∂s

[
n(h + 2nh − 2nY )

(2n + 1)(n + 1)
|Ps | 1

n Y 1+ 1
n sgn(Ps)

]
= V (s, h)− V (s, 0).

(C31)
After an integral in s, and the addition of an unknown flux constant, this furnishes an
algebraic equation to solve for either Ps or Y . Last, with the solution for the pressure
gradient in hand, we determine the unknown flux constant by integrating Ps over the
lubrication layer and applying the boundary conditions on P at the ends.

C.2.1. Narrow annulus
In the Bingham squeeze-flow example presented in § 5.2, s is equivalent to the angle turned
around the annular gap, and we have the correspondences

s ≡ φ, η≡ �− r, h ≡Δ= �− 1, V (s, h)≡ 0, V (s, 0)≡ − cos φ; (C32)

(n = 1, and the inner wall of the annulus moves to the right with unit speed, which
prescribes this particular V (s, 0), and demands that U (s, 0)≈ 0 because U � V ).

In this case, reflection symmetry about θ = 0 implies that the flux constant vanishes
after integrating equation (C31), and we arrive at the cubic,

F(υ)= υ2(3 − 2υ)
3(1 − 2υ)

= | sin φ|
h2Bi

, υ = Y

h
. (C33)
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Note that this cubic implies that B = h2Bi is a more natural Bingham number for the
narrow-gap geometry. The pressure gradient and plug speed are given by

Ps = − 2Bi
h(1 − 2υ)

sgn(sin φ) & Up = υ2hBi
h(1 − 2υ)

sgn(sin φ). (C34)

The net dissipation rate is

E =
∫ π

−π

∫ h

0
τ γ̇ (�− η)dηds ∼ 2

∫ π

−π

∫ Y

0

(
1
2

h − η

)
(Y − η)P2

s dηds (C35)

= 2Bi
�− 1

∫ π

−π
| sin φ| ds

(1 − 2υ)
= −

∫ π

−π
Ps sin φ ds, (C36)

which equals the power input due to the translation of the inner cylinder,
∫ π
−π P cos φ ds

(to leading order), as it must.

C.2.2. Gravity currents
For a shallow film spreading under gravity above a flat plane (figure 21), (s, η)≡ (x, y)
and the lubrication analysis follows along a parallel path to that sketched above (Liu &
Mei 1989; Balmforth et al. 2006). Important differences are that the flow is now time-
dependent, spanning the region 0< y < h(x, t), and gravity is included, which modifies
the last of equations (3.6) by adding a term −1 to the right-hand side (given that the stress
scale is ρgH). In the shallow limit, and for stress-free conditions along the top surface
y = h(x, t), we then find p ∼ h − y and τSN ∼ −hx (h − η) (instead of p = P(x, t) and
(C25)). The velocity profile (assuming no-slip at y = 0) becomes,

u = − n

n + 1
sgn(hx ) |hx | 1

n ×
{ [

Y 1+ 1
n − (Y − η)1+ 1

n

]
, 0 ≤ y ≤ Y,

Y 1+ 1
n , Y < y ≤ h,

(C37)

where

Y = Max
(

0, h − Bi
|hx |

)
, (C38)

is a fake yield surface that divides a fully shear region below from an overlying pseudo-
plug; see figure 21(a).

Last, mass conservation across the gap, along with the kinematic condition ht +
U (x, h, t)hx = V (x, h, t), furnishes the evolution equation

ht + qx = 0, q = −nY 1+ 1
n |hx | 1

n [(2n + 1)h − nY ]
(n + 1)(2n + 1)

sgn(hx ). (C39)

If Y → 0, the pseudo-plug expands to fill the entire fluid layer, bringing flow to rest.
Given hx < 0, this furnishes the condition

hhx ≈ −Bi, (C40)

which leads to the profile quoted in (6.3). The convergence to this final state can be
captured by setting

h(x, t)=
√

h2
e − 2Bix + Bi

he
Λ(t)Υ (ξ), (C41)

where he denotes the final maximum depth

ξ = x

X (t)
, X (t)= h2

e

2Bi
−Λ(t), (C42)
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and Λ� 1 (at least in the situation in which the entire fluid layer yields). Plugging these
relations into the definition of Y and the evolution equation leads to

Y = h + XBi
hξ

≈ Bi
he
Λ

(
zΥ + z2

)
z
, z = √

1 − ξ, (C43)

and

ht − Ẋ

X
ξhξ ≈ Bi

he
Λ̇

(
Υ − z−1 + z

)
(C44)

= −1
2

Bi
(

Y 2
)

x
≈Λ2 Bi4

2zh4
e

d
dz

[(
zΥ + z2

)
z

]2

. (C45)

That is,

Λ̇= − 1
3k

Bi2Λ2 & 1 −
(

zΥ + z2
)

= 1
2

k
d
dz

[(
zΥ + z2

)
z

]2

, (C46)

for some separation constant k, and since h3
e = 3Bi when h∞ → 0. The solution therefore

converges to the final state as Λ∼ (Bi2t/3k)−1. The analysis of the ordinary differential
equation for Υ (z) further demands that k ≈ 0.0866, which corresponds to ensuring that the
solution remains regular at both z = 0 and z = 1 (where Υ = 0 and Υ = 1, respectively;
see Matson & Hogg (2007)).

C.3. Lubrication analysis for annular squeeze flow with plugs
The squeeze-flow problem in § 5.2 has an order-one transverse (radial) velocity V . For a
thin gap, of thickness ε� 1, the velocity along the gap must therefore be O(ε−1), and
so the shear is Uη = O(ε−2). The lubrication analysis of § C.2 therefore requires some
rescaling in order to fully appreciate the asymptotics at work. In particular, it is helpful to
introduce the scaled variables

η= εζ, (τSS, τSN )= ε−2(TSS, TSN ), p = ε−3Π, Bi = ε−2 B, U = ε−1u; (C47)

(recycling some notation for the last variable). Noting that κ = 1, the curvilinear force-
balance equations in (3.6) can then be written as

Πs = (1 − εζ )
∂

∂ζ
TSN + ε

∂

∂s
TSS − 2εTSN , Πζ + ε

∂

∂ζ
TSS = O(ε2). (C48)

The leading-order terms here present the usual lubrication balances. We further have the
mass conservation relation ∫ 1

0
u dζ = sin θ (C49)

and (Bingham) constitutive law(
TSS
TSN

)
∼

(
1 + B

Γ

)(
2εus

uζ + εu

)
, Γ =

√
(uζ + εu)2 + 4ε2u2

s , (C50)

for TSS
2 + TSN

2 > B2 (to O(ε2)).
Focusing on the upper part of the annulus (0< θ < π), the scale of the small true plug

that appears near s = θ = (1/2)π is relatively small, though not as small as the gap itself.
Consequently, we further set

s = 1
2
π + δξ, (C51)
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where ε� δ� 1. The first relation in (C48) becomes
1
δ
Πξ = ∂

∂ζ
TSN + ε

δ

∂

∂ξ
TSS + O(ε); (C52)

(the second is unchanged). The constitutive law implies that TSS is O(εδ−1)� 1 smaller
than TSN where the fluid is yielded, and the mass conservation constraint becomes∫ 1

0
u dζ = 1 − 1

2
δ2ξ2 + . . . . (C53)

To solve the problem, we therefore introduce the sequences

Π = δΠ0 + εΠ1 + . . . , TSN = T0 + ε

δ
T1 + . . . , u = u0 + ε

δ
u1 + . . . , TSS =Σ0 + . . . .

(C54)
The problem is also now symmetrical about ζ = 1/2, leading us to consider the inner half
of the annulus with 0< ζ < 1/2.

At leading order, we find that

Π0ξ = T0ζ , Π0ζ = 0, T0 = u0ζ + B, (C55)

with solution

T0 = −
(

1
2

− ζ

)
Π0ξ , u0 = −1

2
ζ(2Y0 − ζ )Π0ξ , Y0 = 1

2
− B

|Π0ξ | , (C56)

applying in 0< ζ < Y0 (whereΠ0ξ < 0), and u0ζ = 0 in Y0 < ζ < 1/2. This reproduces the
solution in § C.2 except that the leading-order mass conservation constraint boils down to

1
6
|Π0ξ |(3 − 2Y0)Y

2
0 = 1, or F(Y0)= 1

B
, (C57)

and demands that P0ξ , Y0 and u p0 = −(1/2)Π0ξY 2
0 are all constant.

At O(εδ−1) we arrive at the equations

Π1ξ = T1ζ +Σ0ξ , (Π1 +Σ0)ζ = 0. (C58)

But Σ0 = 0 and T1 = u1ζ over the yielded region, and so for 0< ζ < Y0 we find

Π1 =Π1(ξ), T1 = T1 + ζΠ1ξ & u1 = ζT1 + 1
2
ζ 2Π1ξ . (C59)

Over the plug, the solution is less clear as Σ0 need not vanish, and (C58) do not provide
sufficient conditions to determine all of Π1, T1 and Σ0, which corresponds to the usual
indeterminacy below the yield stress. Setting that complication to one side, we observe
that the corrections to the leading-order solution imply shifts to the yield surface position
and plug velocity from

B = T0(Y0)+ ε

δ

[
Y1T0ζ (Y0)+ T1(Y0)

] + . . . , (C60)

and

u p0 + ε

δ
u p1 + . . .= u0(Y0)+ ε

δ

[
Y1u0ζ (Y0)+ u1(Y0)

] + . . . . (C61)

That is,

Y1 = −T1 + Y0Π1ξ

Π0ξ
& u p1 = Y0T1 + 1

2
Y 2

0Π1ξ . (C62)
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The last of these implies a constraint, as u1p should be constant.
With these corrections in hand, mass conservation now demands that

− 1
2
δ2ξ2 =

∫ 1

0
u dζ − 2

∫ Y0

0
u0 dζ − (1 − 2Y0)u p0. (C63)

The right-hand side of this expression of O(εδ−1). To match the O(δ2) terms on the left,
we must therefore select δ = ε

1
3 . We then find

− 1
2
ξ2 = 2

∫ Y0

0
u1 dζ + (1 − 2Y0)u p1 + 2Y1u p0, (C64)

or

Y1 = −3ξ2 + 2(3 − 2Y0)u p1

2Y 2
0Π0ξ

. (C65)

At the edge of the plug, ξ = ξ∗, the solution must smoothly join on to that for the pseudo-
plug, given that the shape of the yield surface varies over a much shorter scale (O(ε)) than
the plug width. The leading-order pseudo-plug solution is given by

F(Y )= B−1 sin θ & u p = −1
2
ΠξY 2 = BY 2

1 − 2Y
. (C66)

Corrections to these expressions are not expected at O(εδ−1 ≡ ε
2
3 ) in the bulk of the

pseudo-plug, and so the match demands that

Y1(ξ∗)= − ξ2∗
2B F ′(Y0)

= − 3(1 − 2Y0)
2ξ2∗

4BY0
(
3 − 6Y0 + 4Y 2

0
) , (C67)

and

u p1 = 2Y0 B(1 − Y0)

(1 − 2Y0)2
Y1(ξ∗)= − 3(1 − Y0)ξ

2∗
2
(
3 − 4Y0 + 4Y 2

0
) , (C68)

which are consistent with (C65). This must be true because, at this stage, the solution
simply corresponds to an expansion of that for the pseudo-plug for θ = 1

2π + δξ∗, given
that the only new addition to the problem, the extensional stress Σ0, has not yet made a
decisive appearance.

Last, we must consider the force balance on the plug: (C58) imply

Π1(ξ, ζ )=Π1(ξ, Y0)−Σ0(ξ, ζ ) &
∫ 1

2

Y0

[Π1(ξ, Y0)− 2Σ0]ξ dζ = −T1(ξ, Y0),

(C69)
since Σ0(ξ, Y0)= 0 and T1(ξ, (1/2)= 0. That is,

∂

∂ξ

∫ 1
2

Y0

Σ0dζ = 1
2

T1 + 1
4
Π1ξ (ξ, Y0)

2u p1
(
3 − 6Y0 + 4Y 2

0
)

4Y 3
0

+ 3(1 − Y0)ξ
2

4Y 3
0

. (C70)

Symmetry about ξ = 0 (φ = (1/2)π) then indicates that∫ 1
2

Y0

Σ0dζ = 2u p1ξ
(
3 − 6Y0 + 4Y 2

0
)

4Y 3
0

+ (1 − Y0)ξ
3

4Y 3
0

. (C71)
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Figure 26. Plug lengths ξ∗ ≡ ((1/2)π − φ∗)/Δ1/3 plotted against rescaled Bingham number, B =Δ2Bi. The
solid line shows (C74) and the stars indicate measurements from numerical solutions with Δ= 1/20; the
triangles show the measurements from the solutions shown in figure 11 with Δ= 1/5.

But where the plug breaks, the extensional stress Σ0 must match with that for the pseudo-
plug, which is

Σ0 = ±
√

B2 − T 2
0 = ±

√
B2 −

(
1
2

− ζ

)2

Π2
0ξ . (C72)

Evaluating the integral at ξ = ξ∗ as −(1/4)πB((1/2)− Y0) now gives

−
(

1
2

− Y0

)
πBY 3

0 = 2u p1ξ∗(3 − 6Y0 + 4Y 2
0 )+ (1 − Y0)ξ

3∗ = −2(1 − Y0)ξ
3∗ . (C73)

That is,

ξ∗ =
[
πBY 3

0 (1 − 2Y0)

4(1 − Y0)

] 1
3

, (C74)

which is plotted as a function of B in figure 26 along with plug sizes measured from
numerical solutions. The plug length has the interesting feature that it is a non-monotonic
function of Bingham number (which is already evident from the numerical solutions in
figure 11).
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