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Abstract
We describe the modulo 2 de Rham-Witt complex of a field of characteristic 2, in terms of the powers of the
augmentation ideal of the Z/2-geometric fixed points of real topological restriction homology TRR. This is
analogous to the conjecture of Milnor, proved in [Kat82] for fields of characteristic 2, which describes the modulo
2 Milnor K-theory in terms of the powers of the augmentation ideal of the Witt group of symmetric forms. Our
proof provides a somewhat explicit description of these objects, as well as a calculation of the homotopy groups of
the geometric fixed points of TRR and of real topological cyclic homology, for all fields.
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Introduction

Let k be a field. Let us recall that Milnor conjectured, in [Mil71], [Mil70], that a certain canonical map
of graded rings

K𝑀
∗ (𝑘)/2 −→ 𝐼∗/𝐼∗+1

should be an isomorphism. Here, K𝑀
∗ (𝑘) is the Milnor K-theory of k, and 𝐼 := ker(𝑟𝑘 : W𝑠 (𝑘) → Z/2)

is the augmentation ideal of the Witt group W𝑠 (𝑘) of symmetric forms over k. This conjecture was proved
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2 E. Dotto

in [Kat82] when k has characteristic 2, and subsequently in [OVV07, Voe03, Mor05] in characteristic
different from 2.

The starting point of our paper is the following, somewhat overloaded observation. On one side of this
isomorphism, we have a ‘symbolic version’ K𝑀

∗ (𝑘) of the algebraic K-theory spectrum K(𝑘) of k. On
the other side, we have the Witt group W𝑠 (𝑘), which is 𝜋0 of the Z/2-geometric fixed-points spectrum
of a certain canonical Z/2-equivariant refinement KR(𝑘) of K(𝑘) (see [CDH+20a, CDH+20b]). One
may then wonder if a similar relationship holds for other functors closely related to algebraic K-
theory. One does not need to look far for another such example, which is already provided in Kato’s
proof of Milnor’s conjecture in characteristic 2: The de Rham complex Ω∗𝑘 is a ‘symbolic version’ of
the topological Hochschild homology spectrum THH(𝑘), and THH(𝑘) also admits a canonical Z/2-
equivariant refinement THR(𝑘). The calculation of [DMPR21, Corollary 5.2] provides an isomorphism
between 𝜋0 of the Z/2-geometric fixed points of this spectrum and (𝑘 ⊗𝑆 𝑘)/2, where 𝑆 ≤ 𝑘 is the
subfield generated by the squares. The result analogous to Milnor’s conjecture is then an isomorphism

Ω∗𝑘/2
�
−→ 𝐽∗/𝐽∗+1,

where J is the kernel of the multiplication map 𝜇 : (𝑘 ⊗𝑆 𝑘)/2 → 𝑘/2. Let us point out that if 2 is a
unit in k, the source and target of this map are clearly zero, so that this statement has content only when
the characteristic of k is 2. It seems to be a standard result that this map is an isomorphism, and it plays
an important role in the proof of [Kat82, Lemma 7(3)] (see [Ara20] for a proof, which we recast in
Lemma 3.6). The main goal of our paper is to establish an analogous result for topological restriction
homology, whose ‘symbolic version’ is the de Rham-Witt complex of Bloch, Deligne and Illusie [Ill79].

Let W〈2• 〉Ω∗𝑘 be the 2-typical de Rham-Witt complex of k. We will take the definition of [Cos08] as
the initial object in the category of 2-typical Witt complexes over k (see also [HM04]). For all integers
𝑛 ≥ 0, let TR𝑛+1(𝑘; 2) be the 2-typical (𝑛 + 1)-truncated topological restriction homology of [BHM93]
(see also [AN21]). Similarly to the relation between Milnor K-theory and algebraic K-theory, W〈2• 〉Ω∗𝑘
and the homotopy groups of TR𝑛+1 (𝑘; 2) agree in low degrees, and the former should be consider the
symbolic version of the latter (see [Hes04] and [GH99, §4]). We recall that the spectrum TR𝑛+1(𝑘; 2)
is defined as the 𝐶2𝑛 -fixed points of a 𝐶2𝑛 -equivariant structure on THH(𝑘), where 𝐶2𝑛 is the cyclic
group of order 2𝑛. This admits a Z/2-equivariant refinement TRR𝑛+1 (𝑘; 2), constructed by extending
the 𝐶2𝑛 -equivariant structure on THH(𝑘) to an equivariant spectrum THR(𝑘) for the dihedral group
𝐷2𝑛 of order 2𝑛+1. The fixed-point spectrum

TRR𝑛+1(𝑘; 2) := THR(𝑘)𝐶2𝑛

then inherits the structure of aZ/2-spectrum sinceZ/2 is the Weyl group of𝐶2𝑛 in 𝐷2𝑛 . This construction
is carried out in [Høg16] and [DMP24, §1], and we review it in §1. There is then a canonical ring
homomorphism

res𝐷2𝑛
𝐶2𝑛

: 𝜋0TRR𝑛+1 (𝑘; 2)𝜙Z/2 −→ 𝜋0TR𝑛+1 (𝑘; 2)/2,

where (−)𝜙Z/2 denotes the geometric fixed-points functor, and we let 𝐽〈2𝑛 〉 be its kernel. There are
operators between these spectra

TRR𝑛+1(𝑘; 2)𝜙Z/2
𝑅 ��

𝐹
�� TRR𝑛 (𝑘; 2)𝜙Z/2𝑉��

which correspond to the usual respective maps R, V and F on TR𝑛+1 (𝑘; 2) under the restriction map
above. There is also a map

𝜎 : TRR𝑛+1 (𝑘; 2)𝜙Z/2 −→ TRR𝑛+1 (𝑘; 2)𝜙Z/2
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of order 2, which is induced by the action of the Weyl group of Z/2 in the quotient 𝐷2𝑛+1/𝐶2𝑛 . It is easy
to see that all these maps restrict to maps between the kernels 𝐽〈2𝑛 〉 . The main result of the paper is the
following analogue of Milnor’s conjecture.

Theorem 1. Let k be a field of characteristic 2. The maps 𝑅, 𝐹,𝑉 and 𝑑 := 1 + 𝜎 endow the sequence
𝐽∗
〈2• 〉/𝐽

∗+1
〈2• 〉 with the structure of a 2-typical Witt complex over k, and the unique map of 2-typical Witt

complexes over k

(W〈2• 〉Ω
∗
𝑘 )/2 −→ 𝐽∗〈2• 〉/𝐽

∗+1
〈2• 〉

is a strict isomorphism.

Let us remark on some special cases of this theorem:

i) For ∗ = 0, the isomorphism of Theorem 1 identifies with the modulo 2 reduction of the isomorphism
W〈2𝑛 〉 (𝑘) � 𝜋0TR𝑛+1(𝑘; 2) of [HM97, Theorem F], where W〈2𝑛 〉 (𝑘) is the ring of (𝑛+1)-truncated
2-typical Witt vectors of k.

ii) For • = 0, the isomorphism of Theorem 1 is the isomorphism Ω∗𝑘 � 𝐽∗/𝐽∗+1 discussed above.
iii) If k has characteristic different from 2, then both (W〈2• 〉Ω∗𝑘 )/2 and TRR𝑛+1 (𝑘; 2)𝜙Z/2 vanish, so

Theorem 1 in fact holds in all characteristics.
iv) If k is perfect of characteristic 2, then (W〈2• 〉Ω∗𝑘 )/2 = 0 for ∗ > 0, and

(W〈2• 〉Ω
0
𝑘 )/2 = W〈2• 〉 (𝑘)/2 � 𝑘.

Similarly, in the case of perfect fields, 𝜋0 TRR𝑛+1 (𝑘; 2)𝜙Z/2 � 𝑘 and 𝐽〈2• 〉 = 0 (see [DMP24,
Theorem 4.7]). Thus, Theorem 1 has nontrivial content only for non-perfect fields of characteristic 2.

We prove the theorem by first explicitly calculating the homotopy groups of TRR𝑛+1(𝑘; 2)𝜙Z/2 in
§2.1 (even though we really only need 𝜋0), extending the calculations for perfect fields of [DMP24,
§4.2]. We then use our calculation to provide generators for 𝜋0 TRR𝑛+1(𝑘; 2)𝜙Z/2 and 𝐽〈2• 〉 , analogous
to the canonical generators 𝑉𝑛−𝑖𝜏𝑖 (𝑎) of the Witt vectors (see Propositions 2.9 and 2.16). This allows
us to define a Witt-complex structure on 𝐽∗

〈2• 〉/𝐽
∗+1
〈2• 〉 , and to prove Theorem 1 by induction on •, using

the exact sequences of [Cos08, Lemma 3.5], in §3.2.
The description of the homotopy groups of TRR𝑛+1(𝑘; 2)𝜙Z/2 is in Theorem 2.7, and it is proved

using the pullbacks of [DMP24, Theorem 2.7]. It is somewhat technical, and we will not state it here, but
it is completely explicit. There is, however, a closely related calculation which is more straightforward
to state. Let TCR(𝑘; 2) be the 2-typical real topological cyclic homology spectrum of k, which we may
define as the equaliser

TCR(𝑘; 2) := 𝑒𝑞
(
TRR(𝑘; 2)

id ��

𝐹
�� TRR(𝑘; 2)

)
,

where TRR(𝑘; 2) is the limit of TRR𝑛+1 (𝑘; 2) over the maps R. Let us point out that, by [DMP24,
Theorem A], if 2 is a unit in k, then TCR(𝑘; 𝑝)𝜙Z/2 = 0 for every prime p, so that we may assume that
k has characteristic 2. Let 𝐶2 act on 𝑘 ⊗𝑆 𝑘 by swapping the two tensor factors, where 𝑆 ≤ 𝑘 is the
subfield of squares. Let us denote by w the generator of 𝐶2. The following is proved in Corollary 2.5.

Theorem 2. Let k be a field of characteristic 2. For every integer 𝑙 ≥ 0, there is an exact sequence

0→ 𝜋2𝑙TCR(𝑘; 2)𝜙Z/2 → (𝑘 ⊗𝑆 𝑘)𝐶2
𝜋−𝜙
−−−−→ (𝑘 ⊗𝑆 𝑘)𝐶2/𝐼𝑚(1 + 𝑤) → 𝜋2𝑙−1TCR(𝑘; 2)𝜙Z/2 → 0,

where 𝜋 is the quotient map, and 𝜙 is the ring homomorphism defined by 𝜙(𝑎 ⊗ 𝑏) = 𝑏𝑎2 ⊗ 𝑏.
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4 E. Dotto

The map 𝜙 in fact determines an isomorphism 𝜙 : 𝑘 ⊗𝑆 𝑘 → (𝑘 ⊗𝑆 𝑘)𝐶2/𝐼𝑚(1 +𝑤) and is in a sense
a replacement of the Frobenius of k when k is not perfect (see Lemma 2.1). It plays a crucial role in the
calculations of §2.1 and in the description of 𝐽〈2• 〉 .

In [Kat82, Theorem (1)], Kato exhibits a closely related exact sequence, involving the symmetric
and quadratic Witt groups W𝑠 (𝑘) and W𝑞 (𝑘). Combined with Theorem 2, it gives isomorphisms

𝜋2𝑙TCR(𝑘; 2)𝜙Z/2 � W𝑠 (𝑘) and 𝜋2𝑙−1TCR(𝑘; 2)𝜙Z/2 � W𝑞 (𝑘)

for every 𝑙 ≥ 0. In fact, this identifies the homotopy groups of TCR(𝑘; 2)𝜙Z/2 with the genuine normal
L-groups of k, as conjectured by Nikolaus, proved in great generality in [HNS21], and verified in
[DMP24] in the case of perfect fields (see Remark 2.6).

From Theorem 2, we can also deduce a version of the Milnor conjecture for TC. Let us choose the
respective equaliser and coequaliser

𝜈∗
𝑑𝑅𝑊 /2(𝑘; 2) �� (W〈2∞〉 Ω∗𝑘 )/2

id ��

𝐹
�� (W〈2∞〉 Ω∗𝑘 )/2 �� 𝜖∗

𝑑𝑅𝑊 /2(𝑘; 2)

as possible symbolic versions of topological cyclic homology modulo 2, where W〈2∞〉Ω∗𝑘 is the limit over
the map R of W〈2• 〉Ω∗𝑘 (and we are intentionally quotienting out 2 before taking the equaliser). Now let

𝐾 := ker
(
resZ/2𝑒 : 𝜋0TCR(𝑘; 2)𝜙Z/2 −→ (𝜋0TC(𝑘; 2))Z/2/𝐼𝑚(1 + 𝑤)

)

be the kernel of the restriction map, where w is the involution on 𝜋0TC(𝑘; 2) induced from the
Z/2-action on TCR(𝑘; 2). Let us also denote 𝑇−1 := 𝜋−1TCR(𝑘; 2)𝜙Z/2, which we consider as a
𝜋0TCR(𝑘; 2)𝜙Z/2-module. The following is a TC analogue of [Kat82, Theorem (2)].

Corollary 3. For every field k of characteristic 2, there is an isomorphism of graded rings

𝜈∗𝑑𝑅𝑊 /2(𝑘; 2) � 𝐾∗/𝐾∗+1,

and an isomorphism of graded 𝐾∗/𝐾∗+1-modules

𝜖∗𝑑𝑅𝑊 /2(𝑘; 2) � 𝐾∗𝑇−1/𝐾
∗+1𝑇−1.

We prove this result in §3.3. Our argument is fairly straightforward, but it relies on the Milnor
conjecture at the prime 2 and on the identification from [CMM21, Proposition 2.26] of 𝜈∗

𝑑𝑅𝑊 /2(𝑘; 2)
and 𝜖∗

𝑑𝑅𝑊 /2(𝑘; 2) with the respective equaliser and coequaliser

𝜈∗(𝑘) �� Ω∗𝑘
𝜋 ��

𝐶−1
�� Ω∗𝑘/𝑑 (Ω

∗−1
𝑘 )

�� 𝜖∗(𝑘)

of the projection 𝜋 and the inverse Cartier operator 𝐶−1. We then use Theorem 2 to compare K with the
augmentation ideal I of the Witt group W𝑠 (𝑘). In order to carry out this last step, we need to understand
the restriction map of 𝜋0TCR(𝑘; 2)𝜙Z/2. We are unable to do this directly, and we need to employ
the existence of a trace map of Z/2-equivariant spectra from the real algebraic K-theory spectrum
tr : KR(𝑘) → TCR(𝑘; 2), which lifts the K-theoretic trace of [BHM93] and which has a certain effect
on 𝜋0. This map will appear in forthcoming work of Harpaz-Nikolaus-Shah [HNS21] in the framework
of real K-theory of Poincaré ∞-categories. For completeness, we will give a construction in Appendix
§A for rings with involution A by lifting the trace map of [DO19] from THR(𝐴) to TCR(𝐴; 𝑝).

Theorem 4. Let A be a ring with involution. For every prime p, there is a map of Z/2-spectra
tr : KR(𝐴) → TCR(𝐴; 𝑝) which forgets to the K-theoretic trace map of [BHM93]. The composite

GW𝑠 (𝐴) = 𝜋0 (KR(𝐴)Z/2) tr
−→ 𝜋0 (TCR(𝐴; 2)Z/2) 𝑅

−→ 𝜋0 (THR(𝐴)Z/2) � (𝐴Z/2 ⊗ 𝐴Z/2)/𝑇
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sends the element of the Grothendieck-Witt group GW𝑠 (𝐴) represented by a symmetric form x on the
free module 𝐴⊕𝑛 to

tr(𝑥) =
𝑛∑
𝑖=1

(
(𝑥−1)𝑖𝑖 ⊗ 𝑥𝑖𝑖 − (𝑥

−1)𝑖𝑖𝑥𝑖𝑖 ⊗ 1
)
+ 𝑛 ⊗ 1,

where 𝑥𝑖𝑖 are the diagonal entries of the matrix of x for the standard basis of 𝐴⊕𝑛, and 𝑥−1 denotes the
inverse matrix. Here, the isomorphism describing 𝜋0 (THR(𝐴)Z/2) is from [DMPR21, Theorem 5.1].

1. Preliminaries on real topological Hochschild homology

Here, we recall the basic definitions surrounding real topological cyclic homology. In order to streamline
this section, we recast the definitions in the special case where the input is a discrete commutative ring
A with the trivial involution (which in the next sections of the paper will be a field k of characteristic 2).
We refer the details of these constructions to [DMPR21] and [DMP24], and we will freely use the
language of stable equivariant homotopy theory.

Let 𝑂 (2) be the infinite dihedral group that we identify with the semi-direct product Z/2 � 𝑆1 by
choosing the reflection across the real axis as the generator for Z/2. The real topological Hochschild
homology of A is a ring 𝑂 (2)-spectrum THR(𝐴), whose underlying ring 𝑆1-spectrum is the topological
Hochschild homology spectrum THH(𝐴), originally defined in [Bök86] (see also [BHM93] and [NS18]).
It can be constructed, as an 𝑂 (2)-equivariant ring orthogonal spectrum, as the geometric realisation of
the dihedral bar construction

THR(𝐴) := |𝑁𝑑𝑖H𝐴| = | [𝑛] ↦→ (H𝐴)⊗𝑛+1 |,

where H𝐴 is (a flat model for) the Eilenberg-MacLane ring orthogonal Z/2-spectrum of A, and ⊗
denotes the smash product of spectra (see [DMPR21]). The action of 𝑂 (2) is defined from the structure
of a dihedral object in the sense of [FL91, S 1.5, Example 5] and [Lod87], where the cyclic group 𝐶𝑛+1
acts in simplicial degree n by rotating the 𝑛 + 1 smash factors, and the reflection acts in degree n by
reversing the order of the last n smash factors.

Now let p be a prime, 𝑛 ≥ 0 an integer, and 𝐷 𝑝𝑛 = Z/2 � 𝐶𝑝𝑛 the finite dihedral subgroup of 𝑂 (2)
of order 2𝑝𝑛. Since the Weyl group of 𝐶𝑝𝑛 inside 𝐷 𝑝𝑛 is Z/2, the (genuine) fixed-points ring spectrum
THR(𝐴)𝐶𝑝𝑛 is canonically a ring Z/2-spectrum. The inclusion of subgroups 𝐶𝑝𝑛−1 ≤ 𝐶𝑝𝑛 induces a
restriction map F, also called Frobenius, and a transfer map V, also called Verschiebung, which are
maps of Z/2-spectra

THR(𝐴)𝐶𝑝𝑛
𝐹 �� THR(𝐴)𝐶𝑝𝑛−1 .
𝑉

��

There is a further map R of Z/2-spectra, sometimes called restriction or truncation

THR(𝐴)𝐶𝑝𝑛
𝑅
−→ THR(𝐴)𝐶𝑝𝑛−1 ,

which is defined from the real cyclotomic structure of THR(𝐴) (see [DPM22, Definition 3.9]). The
maps R and F are moreover maps of ring spectra (see [DPM22, Remark 3.10]). On underlying spectra,
these are the maps 𝐹,𝑉 and R of THH(𝐴), which after applying 𝜋0 correspond to the operators on the
ring of Witt vectors with the same name; see [HM97, Theorem 3.3].

Definition 1.1. Let A be a commutative ring, and p a prime. The p-typical truncated real topological
restriction homology, real topological restriction homology and real topological cyclic homology of A
are the ring Z/2-spectra defined respectively as
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TRR𝑛+1 (𝐴; 𝑝) := THR(𝐴)𝐶𝑝𝑛 ,

TRR(𝐴; 𝑝) := lim
(
. . .

𝑅
−→ TRR𝑛+1(𝐴; 𝑝) 𝑅

−→ TRR𝑛 (𝐴; 𝑝) 𝑅
−→ . . .

𝑅
−→ TRR1 (𝐴; 𝑝) = THR(𝐴)

)
,

TCR(𝐴; 𝑝) := 𝑒𝑞
(

TRR(𝐴; 𝑝)
id ��

𝐹
�� TRR(𝐴; 𝑝)

)
,

where the map F in the equaliser is induced by the Frobenius maps above, since R and F commute.

The Z/2-geometric fixed points of these spectra are characterised in [DMP24], as we now recall.
These results will be used in §2.1 below, and we encourage the reader, at least for the purpose of the
present paper, to take them as definitions of these objects.

In [DMP24, §1.2], we give a canonical equivalence of ring spectra

THR(𝐴)𝜙Z/2 = TRR1(𝐴; 𝑝)𝜙Z/2 � (H𝐴)𝜙Z/2 ⊗H𝐴 (H𝐴)𝜙Z/2,

where H𝐴 is the Eilenberg MacLane spectrum of the Z/2 Mackey functor (or Tambara functor) with
constant value A and transfer map 2. Its geometric fixed-points spectrum is then regarded as an H𝐴-
module via the map of ring spectra

H𝐴 � (𝑁Z/2𝑒 H𝐴)𝜙Z/2
𝜖 𝜙Z/2

−−−−→ (H𝐴)𝜙Z/2,

where 𝑁Z/2𝑒 H𝐴 is the Hill-Hopkins-Ravenel norm construction of the ring spectrum H𝐴 of [HHR16]
and [Sto11], and 𝜖 is the counit of the free-forgetful adjunction between commutative ring Z/2-spectra
and commutative ring spectra. We will call this the Frobenius module structure of (H𝐴)𝜙Z/2, and refer
to [DMPR21, §2.5] for the details of its construction. The Weyl group of Z/2 in 𝐷2 = Z/2 × 𝐶2 is 𝐶2,
and therefore, THR(𝐴)𝜙Z/2 is canonically a ring 𝐶2-spectrum. In [DMP24, Lemma 1.2], we lift the
equivalence above to an equivalence of ring 𝐶2-spectra

THR(𝐴)𝜙Z/2 � H𝐴 ⊗
𝑁

𝐶2
𝑒 H𝐴

𝑁𝐶2
𝑒 ((H𝐴)𝜙Z/2),

where the right factor is a module by applying the norm to the map H𝐴→ (H𝐴)𝜙Z/2, and the left factor
is now regarded as a 𝐶2-spectrum.

This 𝐶2-equivariant homotopy type will help us characterise the Z/2-geometric fixed points of
TRR𝑛+1 (𝐴; 𝑝), inductively on n. For every 𝑛 ≥ 1, the Z/2-geometric fixed points of TRR𝑛+1(𝐴; 𝑝) is
equivalent to the product of (𝑛 + 1)-copies of THR(𝐴)𝜙Z/2 if p is odd; see [DMP24, Theorem 2.1]. For
𝑝 = 2, they are given by a pullback of ring spectra

TRR𝑛+1 (𝐴; 2)𝜙Z/2 𝑅 ��

(𝑐𝐹𝑛−1 ,𝑐𝐹𝑛−1𝜎𝑛+1)
��

TRR𝑛 (𝐴; 2)𝜙Z/2

(𝐹𝑛−1 ,𝜎1𝐹
𝑛−1𝜎𝑛)

��

(THR(𝐴)𝜙Z/2)𝐶2 × (THR(𝐴)𝜙Z/2)𝐶2
𝑟×𝜎1𝑟 �� THR(𝐴)𝜙Z/2 × THR(𝐴)𝜙Z/2,

see [DMP24, Theorem 2.7]. Here, 𝜎𝑛 is the generator of the Weyl group of Z/2 inside the quotient
𝐷2𝑛/𝐶2𝑛−1 , which is also of order 2. The map

𝑐 : (THR(𝐴)𝐶2)𝜙Z/2 −→ (THR(𝐴)𝜙Z/2)𝐶2

is a certain canonical map, and r is the canonical map to the 𝐶2-geometric fixed points followed by the
equivalence given by the cyclotomic structure (see above [DMP24, Theorem 2.7] for the definitions).
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In [DMP24, Theorem A], we also characterise the real topological cyclic homology of A by providing
an equivalence of ring spectra

TCR(𝐴; 2)𝜙Z/2 �
(
(THR(𝐴)𝜙Z/2)𝐶2

𝑟 ��

𝑓
�� THR(𝐴)𝜙Z/2

)
,

where f is the forgetful map.
Finally, we will need to briefly use the existence of norm maps on THR(𝐴) in order calculate a

certain restriction map, in Propositions 2.12 and 2.14. To establish their existence, we simply observe
that the dihedral bar construction employed above to define THR has a canonical symmetric monoidal
structure, and therefore, THR(𝐴) is a strictly commutative 𝑂 (2)-equivariant ring spectrum (provided
we choose a strictly commutative and flat model for the Eilenberg-MacLane ring 𝐶2-spectrum H𝐴,
which we can achieve by a cofibrant replacement in the flat model structure of [Sto11, BDS16]). Thus,
we obtain non-additive norm maps

𝑁𝐺
𝐻 : 𝜋0THR(𝐴)𝐻 −→ 𝜋0THR(𝐴)𝐺

for every pair of finite subgroups 𝐻 ≤ 𝐺 ≤ 𝑂 (2), which, when composed with a restriction map, satisfy
the multiplicative double-coset formula.

2. Real TR and real TC of fields of characteristic 2

2.1. The geometric fixed points of TRR and TCR for fields of characteristic 2

Let k be a field of characteristic 2, and 𝑆 ≤ 𝑘 the subfield of squares. We regard k as an S-vector space
and endow the abelian group 𝑘 ⊗𝑆 𝑘 with the involution w which flips the two tensor factors.

The homotopy groups of TRR(𝑘)𝜙Z/2 have been computed in [DMP24, Theorem 4.7, Corollary 4.8]
when the field k is perfect, as a sum of copies of k. In this section, we give an analogous description
of these homotopy groups for a general field of characteristic 2 (and an analogous proof), where some
of the copies of k appearing in the calculation for perfect fields are replaced by expressions involving
𝑘 ⊗𝑆 𝑘 (which is isomorphic to k if k is perfect). This is Theorem 2.7 below, and its statement and proof
will be the content of §2.1.

The key algebraic input for extending the calculation to non-perfect fields lies in the following Lemma,
which we will use several times throughout the paper. For every elementary tensor 𝑎 ⊗ 𝑏 ∈ 𝑘 ⊗𝑆 𝑘 , let
us define

𝜙(𝑎 ⊗ 𝑏) := 𝑏𝑎2 ⊗ 𝑏 ∈ (𝑘 ⊗𝑆 𝑘)𝐶2 ,

where the 𝐶2-invariants on the right are with respect to the involution w. We note that this map does
not obviously extend to 𝑘 ⊗𝑆 𝑘 , as it is unclear how to define it on a sum of elementary tensors. It will
serve as a replacement of the Frobenius of k and will be related to the cyclotomic structure of THR(𝑘)
by Proposition 2.4 and to the fibre sequence of [Kat82, Theorem (1)] describing the Witt groups of k in
Remark 2.6.

Lemma 2.1. The assignment 𝜙 induces a well-defined additive isomorphism 𝑘 ⊗𝑆 𝑘
�
−→ (𝑘 ⊗𝑆

𝑘)𝐶2/𝐼𝑚(1 + 𝑤). This isomorphism moreover fits into a commutative diagram

𝑘 ⊗𝑆 𝑘

𝜇

��

�

𝜙
�� (𝑘 ⊗𝑆 𝑘)𝐶2/𝐼𝑚(1 + 𝑤)

𝜇

��

𝑘
(−)2

�� 𝑘

where the map 𝜇 is the multiplication map, which is an isomorphism if and only if k is perfect.
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Proof. It is easy to see that 𝜙 extends to a well-defined additive map after we quotient the image of
1 + 𝑤 in the target. To see that it is an isomorphism, choose a basis 𝑘 � ⊕𝑋𝑆 of k as an S-vector space.
This induces an isomorphism of 𝐶2-equivariant abelian groups

𝑘 ⊗𝑆 𝑘 �
⊕
𝑋×𝑋

𝑆,

where the involution on the right-hand side sends a basis element (𝑥, 𝑦) of 𝑋 × 𝑋 to (𝑦, 𝑥). Under this
isomorphism, the map 𝜙 corresponds to the map

⊕
𝑋×𝑋

𝑆 �
⊕
𝑋

(
⊕
𝑋

𝑆) �
⊕
𝑋

𝑘 � (
⊕
𝑋×𝑋

𝑆)𝐶2/𝐼𝑚(1 + 𝑤),

where the second isomorphism is the sum over X of the isomorphism 𝑘 � ⊕𝑋𝑆, and the last isomorphism
sends the summand x to the summand (𝑥, 𝑥) via the square map (−)2 : 𝑘

�
−→ 𝑆. �

We calculate the homotopy groups of TRR(𝑘; 2)𝜙Z/2 using the iterated pullback description of
[DMP24, Theorem 2.7], reviewed in §1. This description relies on the 𝐶2-equivariant homotopy type
of THR(𝑘)𝜙Z/2, which we calculate in Proposition 2.3 below using Lemma 2.1 and the following
decomposition of the geometric fixed points H𝑘 𝜙Z/2.

Lemma 2.2. Let k be a field of characteristic 2, and let us equip H𝑘 𝜙Z/2 with the Frobenius module
structure of §1. Then there is a natural splitting of k-modules

H𝑘 𝜙Z/2 �
⊕
𝑛≥0

Σ𝑛H(𝜑∗𝑘),

where 𝜑 = (−)2 : 𝑘 → 𝑘 denotes the Frobenius homomorphism of k.

Proof. Since k is a field, the Frobenius module structure on 𝑘 𝜙Z/2 provides an equivalence of k-modules

H𝑘 𝜙Z/2 �
⊕
𝑛≥0

Σ𝑛H(𝜋𝑛 (H𝑘 𝜙Z/2)).

Since the Frobenius module structure on H𝑘 𝜙Z/2 comes from a k-algebra H𝑘 → H𝑘 𝜙Z/2, the action
of k on 𝜋𝑛 (H𝑘 𝜙Z/2) is obtained by restricting, along the ring map 𝑘 = 𝜋0H𝑘 → 𝜋0 (H𝑘 𝜙Z/2), the
action of 𝜋0 (H𝑘 𝜙Z/2) on 𝜋𝑛 (H𝑘 𝜙Z/2) induced by the ring structure of H𝑘 𝜙Z/2. The 𝜋0 (H𝑘 𝜙Z/2)-module
𝜋𝑛 (H𝑘 𝜙Z/2) can be computed from the isotropy separation sequence as follows. The canonical ring
homomorphism H𝑘 = H𝑘Z/2 → H𝑘 𝜙Z/2 induces a long exact sequence of k-modules

. . .
𝜕
−→ 𝜋1H𝑘ℎZ/2 → 𝜋1H𝑘 → 𝜋1H𝑘 𝜙Z/2

𝜕
−→ 𝜋0H𝑘ℎZ/2 → 𝜋0H𝑘 → 𝜋0H𝑘 𝜙Z/2 → 0.

Since 𝜋𝑛H𝑘 = 0 for 𝑛 > 0 and since the transfer map 𝑘 = 𝑘Z/2 � 𝜋0H𝑘ℎZ/2 → 𝜋0H𝑘 = 𝑘 is
multiplication by 2 and hence also zero, all the connecting homomorphisms are isomorphisms of k-
modules 𝜋𝑛H𝑘 𝜙Z/2 � 𝜋𝑛−1H𝑘ℎZ/2 for 𝑛 > 0. The homotopy groups of the homotopy-orbit spectra are
equivalent to group-cohomology, and since k is of characteristic 2, the standard resolution

. . .
0
−→ 𝑘

2
−→ 𝑘

0
−→ 𝑘

2
−→ 𝑘 → 0

gives an isomorphism of k-modules 𝜋𝑛−1H𝑘ℎZ/2 � 𝐻𝑛−1(Z/2; 𝑘) � 𝑘 for every 𝑛 > 0. Moreover, again
because the transfer map is zero, the canonical map 𝑘 = 𝜋0H𝑘 → 𝜋0H𝑘 𝜙Z/2 is an isomorphism of rings.
Thus, we have completely identified the 𝜋0H𝑘 𝜙Z/2-module structure of 𝜋𝑛H𝑘 𝜙Z/2.
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It finally remains to show that under the isomorphism 𝑘 � 𝜋0H𝑘 𝜙Z/2 above, the ring map
H𝑘 → H𝑘 𝜙Z/2 defining the Frobenius module structure induces the Frobenius 𝜑 in 𝜋0. This follows ei-
ther from identifying this map with the Tate-valued Frobenius (see [NS18, Example IV.1.2. (i)]) or by
the following direct calculation. The counit 𝜖 : 𝑁Z/2𝑒 (H𝑘) → H𝑘 induces a map on isotropy separation
sequences

𝑘

𝜏
��

Δ
�

�����
����

����
����

�

(𝑘 ⊗ 𝑘)Z/2

��

�� 𝜋0 (𝑁
Z/2
𝑒 (H 𝑘))Z/2

𝜖 Z/2

��

�� 𝜋0 (𝑁
Z/2
𝑒 (H 𝑘))𝜙Z/2

𝜖 𝜙Z/2

��

𝑘
0 �� 𝑘

� �� 𝑘

where the map 𝜏 is the external norm map. We need to identify the composite 𝜖Z/2𝜏 of the two vertical
maps in the middle column. This is the norm of the constant Tambara functor 𝑘 associated to the
commutative ring k, and it is therefore the Frobenius 𝜑 (see also [DKNP23, Example 2.18] for an
explicit identification of the target of 𝜏). �

We denote by H(𝑘 ⊗𝑆 𝑘, 𝑤) the 𝐶2-equivariant Eilenberg-MacLane spectrum of the abelian group
𝑘 ⊗𝑆 𝑘 with 𝐶2-action w which switches the tensor factors.

Proposition 2.3. Let k be a field of characteristic 2. Then there is a natural equivalence of𝐶2-equivariant
spectra

THR(𝑘)𝜙Z/2 �
⊕
𝑛≥0

Σ𝑛𝜌H(𝑘 ⊗𝑆 𝑘, 𝑤) ⊕
⊕
(𝑛,𝑚)

0≤𝑛<𝑚

Σ𝑛+𝑚𝐶2+ ⊗ H(𝑘 ⊗𝑆 𝑘),

where 𝜌 is the regular representation of 𝐶2. It follows that there is a natural equivalence of spectra

(THR(𝑘)𝜙Z/2)𝐶2 � (
⊕
𝑛≥0

(
(
⊕

0≤ 𝑗<𝑛
Σ𝑛+ 𝑗H(𝑘 ⊗𝑆 𝑘)) ⊕ Σ2𝑛H(𝑘 ⊗𝑆 𝑘)𝐶2

)
) ⊕ (

⊕
(𝑛,𝑚)

0≤𝑛<𝑚

Σ𝑛+𝑚H(𝑘 ⊗𝑆 𝑘)).

Proof. Let H𝑘 be the Eilenberg MacLane 𝐶2-spectrum of the ring with trivial involution k. Using the
splitting of Lemma 2.2, we obtain from [DMP24, Lemma 4.3] an equivalence of 𝐶2-spectra

THR(𝑘)𝜙Z/2 �
⊕
𝑛≥0

Σ𝑛𝜌H𝑘 ⊗
𝑁

𝐶2
𝑒 H𝑘 𝑁𝐶2

𝑒 H(𝜑∗𝑘) ⊕
⊕
(𝑛,𝑚)

0≤𝑛<𝑚

Σ𝑛+𝑚𝐶2+ ⊗ H(𝜑∗𝑘 ⊗𝑘 𝜑∗𝑘).

This equivalence is moreover natural in k since the decomposition of H𝑘 𝜙Z/2 of Lemma 2.2 is natural.
Clearly, 𝜑∗𝑘 ⊗𝑘 𝜑∗𝑘 = 𝑘 ⊗𝑆 𝑘 , and therefore, to obtain the first decomposition of the proposition, it is
sufficient to show that the canonical map

H𝑘 ⊗
𝑁

𝐶2
𝑒 H𝑘 𝑁𝐶2

𝑒 H(𝜑∗𝑘) −→ H(𝑘 ⊗𝑘⊗𝑘 (𝜑∗𝑘 ⊗ 𝜑∗𝑘)) � H(𝑘 ⊗𝑆 𝑘, 𝑤)

is an equivalence, where the middle term is 𝜋0 of the underlying spectrum of the left term, with the
induced involution.

Let us choose a basis of the k-vector space 𝜑∗𝑘; that is, we write 𝜑∗𝑘 as a direct sum

𝜑∗𝑘 �
⊕
𝑋

𝑘
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over some set X. Since the norm commutes with direct sums, we obtain an equivalence of 𝐶2-spectra

H𝑘 ⊗
𝑁

𝐶2
𝑒 H𝑘 𝑁𝐶2

𝑒 H(𝜑∗𝑘) � H𝑘 ⊗
𝑁

𝐶2
𝑒 H𝑘 𝑁𝐶2

𝑒 H(
⊕
𝑋

𝑘)

�
⊕
𝑋×𝑋

H𝑘 ⊗
𝑁

𝐶2
𝑒 H𝑘 𝑁𝐶2

𝑒 H𝑘 �
⊕
𝑋×𝑋

H𝑘,

where the last term is the indexed sum of H𝑘 with the involution on 𝑋×𝑋 that swaps the product factors.
Under this equivalence, the canonical map above corresponds to the equivalence

⊕
𝑋×𝑋

H𝑘 � H((
⊕
𝑋

𝑘) ⊗𝑘 (
⊕
𝑋

𝑘), 𝑤) � H((𝜑∗𝑘) ⊗𝑘 (𝜑∗𝑘), 𝑤) = H(𝑘 ⊗𝑆 𝑘, 𝑤),

where the middle equivalence is the tensor product of two copies of the choice of basis above.
Now let us identify the 𝐶2-fixed points of THR(𝑘)𝜙Z/2. Notice that H(𝑘 ⊗𝑆 𝑘, 𝑤) is a module over

H𝑘 (via the ring map 𝑘 → 𝑘 ⊗𝑆 𝑘 that sends a to 𝑎2 ⊗ 1), and therefore, its 𝐶2-fixed-points spectrum
is an H𝑘-module. Therefore, it decomposes canonically as a wedge of Eilenberg-MacLane spectra. Its
homotopy groups are isomorphic to the Bredon homology groups

𝜋𝐶2
𝑖 (Σ

𝑛𝜌H(𝑘 ⊗𝑆 𝑘, 𝑤)) = 𝐻𝐶2
𝑖 (𝑆

𝑛𝜌; (𝑘 ⊗𝑆 𝑘, 𝑤)),

which in turn are the homology groups of the chain complex

0←− (𝑘 ⊗𝑆 𝑘)𝐶2 1+𝑤
←−−− 𝑘 ⊗𝑆 𝑘

1+𝑤
←−−− 𝑘 ⊗𝑆 𝑘

1+𝑤
←−−− . . .

1+𝑤
←−−− 𝑘 ⊗𝑆 𝑘 ←− 0,

where the first nonzero group on the left is in degree n and the last nonzero group on the right is in
degree 2𝑛 (notice that all the signs on the arrows are + since k has characteristic 2). It follows that all
the groups below n and above 2𝑛 vanish, that

𝜋𝐶2
2𝑛 (Σ

𝑛𝜌H(𝑘 ⊗𝑆 𝑘, 𝑤)) � (𝑘 ⊗𝑆 𝑘)𝐶2

and that

𝜋𝐶2
𝑖 (Σ

𝑛𝜌H(𝑘 ⊗𝑆 𝑘, 𝑤)) � (𝑘 ⊗𝑆 𝑘)𝐶2/𝐼𝑚(1 + 𝑤) �←− 𝑘 ⊗𝑆 𝑘

for every 𝑛 ≤ 𝑖 < 2𝑛, where the left-pointing isomorphism is the map 𝜙 from Lemma 2.1. �

In order to calculate the homotopy groups of TRR(𝑘; 2)𝜙Z/2 and TCR(𝑘; 2)𝜙Z/2, we also need
to determine the maps r and f (see §1), under the equivalences of Proposition 2.3. In the following
proposition, the summands are arranged exactly as in Proposition 2.3. In particular, the summands
indexed on (𝑛, 𝑚) with 𝑛 < 𝑚 in the source, and those indexed on (𝑛, 𝑚) with 𝑛 ≠ 𝑚 in the target,
correspond to the induced summands.

Proposition 2.4. For any field k of characteristic 2, the maps 𝑟, 𝑓 : (THR(𝑘)𝜙Z/2)𝐶2
→ THR(𝑘)𝜙Z/2

induce on 𝜋∗ the maps

𝑟, 𝑓 : (
⊕
(𝑛,𝑚)
𝑛+𝑚=∗
𝑛>𝑚≥0

𝑘 ⊗𝑆 𝑘) ⊕ (
⊕
(𝑛,𝑛)
2𝑛=∗
𝑛≥0

(𝑘 ⊗𝑆 𝑘)𝐶2) ⊕ (
⊕
(𝑛,𝑚)
𝑛+𝑚=∗
0≤𝑛<𝑚

𝑘 ⊗𝑆 𝑘) −→
⊕
(𝑛,𝑚)
𝑛+𝑚=∗
𝑛,𝑚≥0

𝑘 ⊗𝑆 𝑘,

where r kills the (𝑛, 𝑚)-summands with 𝑛 < 𝑚, maps the (𝑛, 𝑚)-summands with 𝑛 > 𝑚 to the (𝑛, 𝑚)-
summand via the identity, and maps the (𝑛, 𝑛)-summand to the (𝑛, 𝑛)-summand via the composite

(𝑘 ⊗𝑆 𝑘)𝐶2 𝜋
−→ (𝑘 ⊗𝑆 𝑘)𝐶2/𝐼𝑚(1 + 𝑤)

𝜙−1

−−−→ 𝑘 ⊗𝑆 𝑘
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of the quotient map and the isomorphism of Lemma 2.1. The map f kills the (𝑛, 𝑚)-summands with 𝑛 > 𝑚,
is the fixed-points inclusion on the summand (𝑛, 𝑛), and embeds diagonally the (𝑛, 𝑚)-summands with
𝑛 < 𝑚 into the sum of the summands (𝑛, 𝑚) and (𝑚, 𝑛).

Proof. By [DMP24, Lemma 4.3], the map r vanishes on the summands (𝑛, 𝑚) with 𝑛 < 𝑚. By the same
lemma, under the identification of Proposition 2.3, it is given on the other summands, for a fixed 𝑛 ≥ 0,
by the outer composite of the maps in the diagram

(Σ𝑛𝜌 H(𝑘 ⊗𝑆 𝑘, 𝑤))𝐶2

�Prop 2.3

��

�� Σ𝑛 H(𝑘 ⊗𝑆 𝑘, 𝑤)𝜙𝐶2

�

��

Σ𝑛 (H 𝑘 ⊗
𝑁

𝐶2
𝑒 H 𝑘

𝑁𝐶2
𝑒 H(𝜑∗𝑘))𝜙𝐶2

���

(
⊕

0≤ 𝑗<𝑛

Σ𝑛+ 𝑗 H(𝑘 ⊗𝑆 𝑘)) ⊕ Σ2𝑛 H(𝑘 ⊗𝑆 𝑘)𝐶2 ��
⊕
0≤ 𝑗

Σ𝑛+ 𝑗 H
( (𝑘 ⊗𝑆 𝑘)𝐶2

𝐼𝑚(1 + 𝑤)
)

Σ𝑛 (H 𝑘)𝜙𝐶2 ⊗
(𝑁

𝐶2
𝑒 H 𝑘) 𝜙𝐶2

(𝑁𝐶2
𝑒 H(𝜑∗𝑘))𝜙𝐶2

�

��

Σ𝑛 (H 𝑘)𝜙𝐶2 ⊗
H 𝑘

H(𝜑∗𝑘)

�

��

�

��

⊕
𝑗≥0

Σ𝑛+ 𝑗 H(𝑘 ⊗𝑆 𝑘)
� ��

⊕
𝑗≥0

Σ𝑛+ 𝑗 (H(𝜑∗𝑘)) ⊗
H 𝑘
(H(𝜑∗𝑘))

� �� Σ𝑛 (
⊕
𝑗≥0

Σ 𝑗 H(𝜑∗𝑘)) ⊗
H 𝑘
(H(𝜑∗𝑘)) .

Here, the left map on the top row is the canonical map, and the right map on the top row is the
equivalence of the proof of Proposition 2.3. In the right column, the top vertical map is the monoidality
of the geometric fixed points, the second map is the diagonal equivalence, and the third one is the
splitting induced by the Frobenius module structure. The two bottom horizontal maps are the canonical
equivalences.

Let us now consider the top left square. Its right vertical equivalence is given by splitting H(𝑘 ⊗𝑆
𝑘, 𝑤)𝜙𝐶2 as the sum of its homotopy groups using the H𝑘-module induced by the map 𝑘 → 𝑘 ⊗𝑆 𝑘 as
we did in Proposition 2.3 for H(𝑘 ⊗𝑆 𝑘, 𝑤)𝐶2 , and then by identifying these homotopy groups with the
homology of the chain complex

0←− (𝑘 ⊗𝑆 𝑘)𝐶2 1+𝑤
←−−− 𝑘 ⊗𝑆 𝑘

1+𝑤
←−−− 𝑘 ⊗𝑆 𝑘

1+𝑤
←−−− · · · ,

where the first nonzero group on the left is in degree zero. The horizontal map on the second row
sends the summand 𝑗 < 𝑛 to the summand j via 𝜙, and it maps the last summand to the summand
𝑗 = 2𝑛 via the projection map (here, 𝜙 appears because we used it to identify the homotopy groups of
the source of the map in the proof of Proposition 2.3). The square commutes by the naturality of the
canonical map from fixed points to geometric fixed points.

Thus, the identification of the map r follows once we prove that the equivalence from the bottom
left corner of the diagram to the second entry of the second row is the map 𝜙 on homotopy groups. Let
𝑎, 𝑏 : S→ H𝑘 , so that the suspension of 𝑎 ⊗ 𝑏 : S→ H(𝑘 ⊗𝑆 𝑘) is a generator of a homotopy group of
the bottom left entry of the diagram. The composite of the equivalences up to the top right corner of the
diagram sends 𝑎 ⊗ 𝑏 to the element of the homotopy group represented by 𝑎 ⊗ 𝑁𝐶2

𝑒 (𝑏). The remaining
two equivalences send this to the element represented by 𝑏 · 𝑎 ⊗ 𝑏, where the multiplication is with
respect to the k-module action on 𝜑∗𝑘 , and this is precisely 𝑏𝑎2 ⊗ 𝑏 = 𝜙(𝑎 ⊗ 𝑏).

The identification of f is simpler: by [DMP24, Lemma 4.3], it is the diagonal on the summands (𝑛, 𝑚)
with 𝑛 < 𝑚. The identification on the other summands follows from the fact that the restriction map

res𝐶2
𝑒 : 𝐻𝐶2

∗ (𝑆
𝑛𝜌; (𝑘 ⊗𝑆 𝑘, 𝑤)) → 𝐻∗(𝑆

2𝑛; 𝑘 ⊗𝑆 𝑘)

is the inclusion of fixed points in degree ∗ = 2𝑛, and zero otherwise. �
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Corollary 2.5. For every field k of characteristic 2, and every integer 𝑙 ≥ 0, there is an exact sequence

0→ 𝜋2𝑙TCR(𝑘; 2)𝜙Z/2 → (𝑘 ⊗𝑆 𝑘)𝐶2
𝜋−𝜙
−−−−→ (𝑘 ⊗𝑆 𝑘)𝐶2/𝐼𝑚(1 + 𝑤) → 𝜋2𝑙−1TCR(𝑘; 2)𝜙Z/2 → 0,

where 𝜋 quotients the image of 1 + 𝑤, and 𝜙 is the isomorphism of Lemma 2.1 restricted to the fixed
points. By Kato’s calculation [Kat82, Theorem (1)], this identifies 𝜋2𝑙TCR(𝑘; 2)𝜙Z/2 with the symmetric
Witt group of k, and 𝜋2𝑙−1TCR(𝑘; 2)𝜙Z/2 with the quadratic Witt group of k.

Proof. By Proposition 2.4, the map 𝑟 − 𝑓 is an isomorphism in 𝜋∗ when restricted and corestricted to
the summands (𝑛, 𝑚) with 𝑛 ≠ 𝑚. It is therefore an isomorphism in odd degrees, and its long exact
sequence decomposes into exact sequences

0→ 𝜋2𝑙TCR(𝑘; 2)𝜙Z/2 → (𝑘 ⊗𝑆 𝑘)𝐶2 ⊕
⊕
(𝑛,𝑚)
𝑛+𝑚=2𝑙
𝑛,𝑚≥0
𝑛≠𝑚

𝑘 ⊗𝑆 𝑘
𝑟− 𝑓
−−−→

⊕
(𝑛,𝑚)
𝑛+𝑚=2𝑙
𝑛,𝑚≥0

𝑘 ⊗𝑆 𝑘 → 𝜋2𝑙−1TCR(𝑘; 2)𝜙Z/2 → 0

for every 𝑙 ≥ 0. Again by Proposition 2.4, the kernel and cokernel of 𝑟 − 𝑓 are the same as those of

𝜄 − 𝜙−1𝜋 : (𝑘 ⊗𝑆 𝑘)𝐶2 −→ 𝑘 ⊗𝑆 𝑘,

where 𝜄 is the fixed-points inclusion. These are respectively isomorphic to the kernel and cokernel of
𝜋 − 𝜙, by applying the isomorphism 𝜙 of Lemma 2.1 to the target.

In [Kat82], Kato exhibits an exact sequence

0→W𝑠 (𝑘) → 𝑘 ⊗𝑆 𝑘
𝜋−𝜙
−−−−→ (𝑘 ⊗𝑆 𝑘)/𝐼𝑚(1 + 𝑤) →W𝑞 (𝑘) → 0,

where W𝑠 (𝑘) and W𝑞 (𝑘) are respectively the symmetric and quadratic Witt groups of k. It is easy to
see that the kernel and cokernel of 𝜋 − 𝜙 agree with those above, by restricting and corestricting the
maps to the fixed points. �

Remark 2.6. Corollary 2.5 in particular shows that the homotopy groups of the spectrum TCR(𝑘; 2)𝜙Z/2
agree with the homotopy groups of the cofibre L𝑛 (𝑘) of the canonical map

L𝑞 (𝑘) −→ L(Mod𝜔𝐴 , Ϙ
𝑔𝑠
𝑘 )

induced by the symmetrisation map from the quadratic to the genuine Poincaré structure, as defined in
[CDH+23, CDH+20a, CDH+20b]. This confirms a conjecture of Nikolaus, proved in [HNS21], in the
case of fields. This is because the even and odd homotopy groups of L𝑛 (𝑘), in degrees greater or equal
to −1, are respectively the Witt groups of symmetric and quadratic forms of k, as explained in [DMP24,
Remark 4.6].

Let us denote by 𝜋 : (𝑘 ⊗𝑆 𝑘)𝐶2 → (𝑘 ⊗𝑆 𝑘)𝐶2/𝐼𝑚(1 + 𝑤) the projection map, so that for every
𝑥 ∈ (𝑘 ⊗𝑆 𝑘)

𝐶2 , we can consider the element (𝜙−1𝜋) (𝑥) of 𝑘 ⊗𝑆 𝑘 . For every 𝑛 ≥ 0, we define a subgroup
of (𝑘 ⊗𝑆 𝑘)𝐶2 by

𝜙𝑛
(
(𝑘 ⊗𝑆 𝑘)𝐶2

)
:= {𝑥 ∈ (𝑘 ⊗𝑆 𝑘)𝐶2 | (𝜙−1𝜋) (𝑥) ∈ (𝑘 ⊗𝑆 𝑘)𝐶2 , (𝜙−1𝜋)2(𝑥) ∈ (𝑘 ⊗𝑆 𝑘)𝐶2 ,

(𝜙−1𝜋)3(𝑥) ∈ (𝑘 ⊗𝑆 𝑘)𝐶2 , . . . , (𝜙−1𝜋)𝑛 (𝑥) ∈ (𝑘 ⊗𝑆 𝑘)𝐶2 },

where by convention, 𝜙0((𝑘 ⊗𝑆 𝑘)𝐶2) = (𝑘 ⊗𝑆 𝑘)𝐶2 . Thus, by construction, there is a well-defined map

𝜙−1𝜋 : 𝜙𝑛
(
(𝑘 ⊗𝑆 𝑘)𝐶2

)
−→ 𝜙𝑛−1 ((𝑘 ⊗𝑆 𝑘)𝐶2

)
,
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for every 𝑛 ≥ 1, and a map (𝜙−1𝜋)𝑛+1 : 𝜙𝑛
(
(𝑘 ⊗𝑆 𝑘)𝐶2

)
→ 𝑘 ⊗𝑆 𝑘 . Let us consider the pullback

𝜙𝑛
(
(𝑘 ⊗𝑆 𝑘)𝐶2

)
×𝑘⊗𝑆𝑘 𝜙𝑛

(
(𝑘 ⊗𝑆 𝑘)𝐶2

)
��

��

𝜙𝑛
(
(𝑘 ⊗𝑆 𝑘)𝐶2

)

𝑤 (𝜙−1 𝜋)𝑛+1

��

𝜙𝑛
(
(𝑘 ⊗𝑆 𝑘)𝐶2

)
(𝜙−1 𝜋)𝑛+1

�� 𝑘 ⊗𝑆 𝑘

where we keep in mind that one of the two maps which we pull back is composed with the involution w
of 𝑘 ⊗𝑆 𝑘 .

Theorem 2.7. Let k be a field of characteristic 2. For any 𝑙 ≥ 1, there is an isomorphism

𝜋∗TRR𝑙+1 (𝑘; 2)𝜙Z/2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ⊕
(𝑛,𝑚) ,𝑛,𝑚≥0
𝑛≠𝑚,𝑛+𝑚=∗

𝑘 ⊗𝑆 𝑘
)
⊕
(
𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2

)
×𝑘⊗𝑆𝑘 𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2

) )
, ∗ even

⊕
(𝑛,𝑚) ,𝑛,𝑚≥0
𝑛≠𝑚,𝑛+𝑚=∗

𝑘 ⊗𝑆 𝑘 , ∗ odd

In particular, in degree zero, we obtain a ring isomorphism

𝜋0TRR𝑙+1(𝑘; 2)𝜙Z/2 � 𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2
)
×𝑘⊗𝑆𝑘 𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2

)
.

The maps 𝑅, 𝐹 : TRR𝑙+1(𝑘; 2)𝜙Z/2 → TRR𝑙 (𝑘; 2)𝜙Z/2 and the Weyl action are described on homotopy
groups as follows.

The map R kills the (𝑛, 𝑚)-summands with 𝑛 ≠ 𝑚, and in even degrees, it sends an element (𝑥, 𝑦) of
the right-hand pullback to (𝜙−1𝜋(𝑥), 𝜙−1𝜋(𝑦)).

The map F kills the (𝑛, 𝑚)-summands with 𝑚 < 𝑛, embeds the (𝑛, 𝑚)-summands with 𝑛 < 𝑚
diagonally into the sum of the (𝑛, 𝑚) and (𝑚, 𝑛)-summands, and in even degrees, it sends an element
(𝑥, 𝑦) of the right-hand pullback to (𝑥, 𝑥).

The Weyl action swaps the (𝑛, 𝑚)-summand and the (𝑚, 𝑛)-summand for all 𝑛 ≠ 𝑚, and in even
degrees takes an element (𝑥, 𝑦) in the pullback to (𝑦, 𝑥).

Proof. By [DMP24, Theorem 2.7] and §1, for every 𝑙 ≥ 1, there is a pullback square of ring spectra

TRR𝑙+1 (𝑘; 2)𝜙Z/2 𝑅 ��

(𝑐𝐹 𝑙−1 ,𝑐𝐹 𝑙−1𝜎𝑙+1)
��

TRR𝑙 (𝑘; 2)𝜙Z/2

(𝐹 𝑙−1 ,𝜎1𝐹
𝑙−1𝜎𝑙)

��

(THR(𝑘)𝜙Z/2)𝐶2 × (THR(𝑘)𝜙Z/2)𝐶2
𝑟×𝜎1𝑟 �� THR(𝑘)𝜙Z/2 × THR(𝑘)𝜙Z/2

where 𝜎𝑙 denotes the action of the generator of the Weyl group of Z/2 in 𝐷2𝑙/𝐶2𝑙−1 , which is of
order 2. We prove, by induction on l, that the connecting homomorphism in the Mayer-Vietoris long
exact sequence of this pullback square vanish, and therefore that the square gives a pullback square of
homotopy groups. One can see, again by induction, that these pullbacks of homotopy groups indeed
match the description of the homotopy groups of the Theorem. However, we will need to prove the
vanishing of the connecting maps and the explicit description of the pullback in the same induction step.

For 𝑙 = 1, the pullback above describing TRR2 (𝑘; 2)𝜙Z/2 is equivalent to the pullback

(THR(𝑘)𝜙Z/2)𝐶2×THR(𝑘)𝜙Z/2 (THR(𝑘)𝜙Z/2)𝐶2
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along the maps r and 𝜎1𝑟 (since the right vertical map in the square above is the diagonal for 𝑙 = 1).
By the characterisation of r of Proposition 2.4, the map 𝑟 − 𝜎1𝑟 in the corresponding Mayer-Vietoris
sequence is surjective in every degree. Therefore, there is a pullback

𝜋∗TRR2 (𝑘; 2)𝜙Z/2 �
( ( ⊕
(𝑛,𝑚) ,𝑛,𝑚≥0
𝑛≠𝑚,𝑛+𝑚=∗

𝑘 ⊗𝑆 𝑘
)
⊕ (𝑘 ⊗𝑆 𝑘)𝐶2 )

)
𝑟 ×𝜎1𝑟

( ( ⊕
(𝑛,𝑚) ,𝑛,𝑚≥0
𝑛≠𝑚,𝑛+𝑚=∗

𝑘 ⊗𝑆 𝑘
)
⊕ (𝑘 ⊗𝑆 𝑘)𝐶2 )

)

in even degrees and an analogous pullback without the summands (𝑘 ⊗𝑆 𝑘)𝐶2 in odd degrees. Here, the
subscripts of the product indicate which maps we are pulling back along. By the description of r from
Proposition 2.4, this is isomorphic to the pullback of the statement of the Theorem. The characterisation
of the maps 𝑅, 𝐹 and of the Weyl action follows by the description of the corresponding maps of
[DMP24, Theorem 2.7].

Now let 𝑙 ≥ 2, and suppose that the decomposition above holds for 𝜋∗TRRℎ (𝑘; 2)𝜙Z/2 for all ℎ ≤ 𝑙,
and that the maps 𝑅, 𝐹 : TRRℎ (𝑘; 2)𝜙Z/2 → TRRℎ−1 (𝑘; 2)𝜙Z/2 and 𝜎ℎ are given in homotopy groups
by the formulas of the Theorem. We will show that the same holds for 𝑙+1. The Mayer-Vietoris sequence
of the pullback square above is then (we recall that 𝜎1𝐹 = 𝐹)

. . .
𝜕 �� 𝜋∗TRR𝑙+1 (𝑘; 2)𝜙Z/2

(𝑐𝐹 𝑙−1 ,𝑐𝐹 𝑙−1𝜎𝑙+1 ,𝑅)
��[ ( ⊕

(𝑛,𝑚) ,𝑛,𝑚≥0
𝑛≠𝑚,𝑛+𝑚=∗

𝑘 ⊗𝑆 𝑘
)
⊕ (𝑘 ⊗𝑆 𝑘)𝐶2

]
⊕
[ ( ⊕
(𝑛,𝑚) ,𝑛,𝑚≥0
𝑛≠𝑚,𝑛+𝑚=∗

𝑘 ⊗𝑆 𝑘
)
⊕ (𝑘 ⊗𝑆 𝑘)𝐶2

]

⊕
[ ( ⊕
(𝑛,𝑚) ,𝑛,𝑚≥0
𝑛≠𝑚,𝑛+𝑚=∗

𝑘 ⊗𝑆 𝑘
)
⊕
(
𝜙𝑙−1((𝑘 ⊗𝑆 𝑘)𝐶2) ×

𝑘⊗𝑆𝑘
𝜙𝑙−1((𝑘 ⊗𝑆 𝑘)𝐶2)

) ]

𝑟 ⊕𝜎1𝑟−(𝐹
𝑙−1 ,𝐹 𝑙−1𝜎𝑙)

��

(
⊕

(𝑛,𝑚) ,𝑛,𝑚≥0
𝑛+𝑚=∗

𝑘 ⊗𝑆 𝑘) ⊕ (
⊕

(𝑛,𝑚) ,𝑛,𝑚≥0
𝑛+𝑚=∗

𝑘 ⊗𝑆 𝑘)
𝜕 �� . . .

for ∗ even, and a similar expression without the fixed points terms for ∗ odd. An argument completely
analogous to that of the proof of [DMP24, Theorem 4.7] shows that the bottom vertical map is surjective
and identifies its kernel with the formula of the Theorem. The description of the maps R and F also
follows by a similar argument. �

Remark 2.8. From the proof of Theorem 2.7, we see that the isomorphism for the 0-th homotopy group
is explicitly given by the map

(𝐹𝑙 , 𝐹𝑙𝜎) : 𝜋0TRR𝑙+1(𝑘; 2)𝜙Z/2 �
−→ 𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2

)
×𝑘⊗𝑆𝑘 𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2

)
,

where we implicitly identify the target 𝜋0THR(𝑘; 2)𝜙Z/2 of 𝐹𝑙 with 𝑘 ⊗𝑆 𝑘 , and 𝜎 := 𝜎𝑙 denotes the
Weyl action on the source of this map. We can see this directly as follows. Let us express the source of
this map as the iterated pullback

𝜋0TRR𝑙+1 (𝑘; 2)𝜙Z/2 �
−→ (𝑘 ⊗𝑆 𝑘)𝐶2

𝑟× 𝑓 . . . 𝑟× 𝑓 (𝑘 ⊗𝑆 𝑘)𝐶2
𝑟×𝑤𝑟 (𝑘 ⊗𝑆 𝑘)𝐶2

𝑓 ×𝑤𝑟 . . . 𝑓 ×𝑤𝑟 (𝑘 ⊗𝑆 𝑘)𝐶2

as in [DMP24, Remark 2.8], where the pullback has 2𝑙 factors, and the isomorphism is given by the map
(𝐹𝑙 , 𝐹𝑙−1𝑅, 𝐹𝑙−2𝑅2, . . . , 𝐹𝑅𝑙−1, 𝐹𝜎𝑅𝑙−1, . . . , 𝐹𝑙−2𝜎𝑅2, 𝐹𝑙−1𝜎𝑅, 𝐹𝑙𝜎). We still have a pullback after
applying 𝜋0 because the connecting maps of the Mayer-Vietoris sequences vanish as seen in the proof
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of Theorem 2.7. By Proposition 2.4, 𝑟 = 𝜙−1𝜋 and f is the fixed points inclusion (𝑘 ⊗𝑆 𝑘)𝐶2 → 𝑘 ⊗𝑆 𝑘 .
Since f is injective, the projection onto the first and last factors defines an isomorphism between this
pullback and 𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2

)
×𝑘⊗𝑆𝑘 𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2

)
, and the composite map is indeed (𝐹𝑙 , 𝐹𝑙𝜎).

2.2. The canonical generators of TRR

We recall that for every commutative ring R, the ring of 2-typical (𝑛+1)-truncated Witt vectors W〈2𝑛 〉 (𝑅)
is the set 𝑅×𝑛+1 equipped with the unique functorial ring structure which makes the Witt polynomials
into ring homomorphisms (see, for example, [Hes15, §1]). Additively, it is generated by the elements

𝑉𝑛−𝑖𝜏𝑖 (𝑎) = (0, . . . , 0, 𝑎, 0, . . . , 0),

where the entry a is in the (𝑛− 𝑖 +1)-st component, a ranges through the elements of R and 𝑖 = 0, . . . , 𝑛.
The goal of this section is to define canonical generators for the pullback of Theorem 2.7, analo-

gous to the generators 𝑉𝑛−𝑖𝜏𝑖 (𝑎) of the (𝑛 + 1)-truncated Witt vectors, thus providing generators for
𝜋0TRR𝑛+1 (𝑘; 2)𝜙Z/2 analogous to those of W〈2𝑛 〉 (𝑘).

Recall that for every elementary tensor 𝑎 ⊗ 𝑏 ∈ 𝑘 ⊗𝑆 𝑘 , we have defined

𝜙(𝑎 ⊗ 𝑏) := 𝑏𝑎2 ⊗ 𝑏 ∈ (𝑘 ⊗𝑆 𝑘)𝐶2

(see Lemma 2.1). Similarly, for any elementary tensor 𝑎 ⊗ 𝑏 ∈ 𝑘 ⊗𝑆 𝑘 and 𝑛 ≥ 0, let us iterate this
construction and define

𝜙𝑛 (𝑎 ⊗ 𝑏) := 𝑏2𝑛−1𝑎2𝑛 ⊗ 𝑏 ∈ 𝜙𝑛−1 ((𝑘 ⊗𝑆 𝑘)𝐶2
)
,

as well as 𝜏0 (𝑎 ⊗ 𝑏) := 𝑎 ⊗ 𝑏 ∈ 𝑘 ⊗𝑆 𝑘 . We will show in Proposition 2.9 that 𝜙𝑛 (𝑎 ⊗ 𝑏) indeed belongs
to 𝜙𝑛−1 ((𝑘 ⊗𝑆 𝑘)𝐶2

)
, and as a consequence, the pairs defined by

𝜏𝑛 (𝑎 ⊗ 𝑏) := (𝜙𝑛 (𝑎 ⊗ 𝑏), 𝜙𝑛 (𝑏 ⊗ 𝑎))

𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) := (𝜙𝑖 (𝑎 ⊗ 𝑏) + 𝜙𝑖 (𝑏 ⊗ 𝑎), 0)
𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) := (0, 𝜙𝑖 (𝑎 ⊗ 𝑏) + 𝜙𝑖 (𝑏 ⊗ 𝑎))

for every 0 ≤ 𝑖 < 𝑛 belong to the pullback 𝜙𝑛−1((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙𝑛−1 ((𝑘 ⊗𝑆 𝑘)𝐶2). Here, we recall that

the pullback is taken with respect to the maps (𝜙−1𝜋)𝑛 and 𝑤(𝜙−1𝜋)𝑛 (see the diagram above Theorem
2.7), and 𝜎 is the Weyl action which switches the two pullback components.

Proposition 2.9. Let k be a field of characteristic 2. For every 𝑛 ≥ 0, the subgroup 𝜙𝑛
(
(𝑘 ⊗𝑆 𝑘)𝐶2

)
of

𝑘 ⊗𝑆 𝑘 is generated by elements of the form 𝜙𝑛+1(𝑎 ⊗ 𝑏) and 𝜙𝑖 (𝑎 ⊗ 𝑏) + 𝜙𝑖 (𝑏 ⊗ 𝑎), for 0 ≤ 𝑖 ≤ 𝑛 and
𝑎 ⊗ 𝑏 ∈ 𝑘 ⊗𝑆 𝑘 .

It follows that, for every 𝑛 ≥ 1,

𝜋0TRR𝑛+1 (𝑘; 2)𝜙Z/2 � 𝜙𝑛−1((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙𝑛−1 ((𝑘 ⊗𝑆 𝑘)𝐶2)

is generated by the elements 𝜏𝑛 (𝑎 ⊗ 𝑏), 𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) and 𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏), for 0 ≤ 𝑖 ≤ 𝑛 − 1 and
𝑎 ⊗ 𝑏 ∈ 𝑘 ⊗𝑆 𝑘 .

Proof. Let us first show that the proposed generators belong to 𝜙𝑛
(
(𝑘 ⊗𝑆 𝑘)𝐶2

)
. For the first, we see

that for every 1 ≤ 𝑗 ≤ 𝑛, we have that

(𝜙−1𝜋) 𝑗 (𝜙𝑛+1(𝑎 ⊗ 𝑏)) = 𝜙𝑛+1− 𝑗 (𝑎 ⊗ 𝑏),
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16 E. Dotto

which belongs to (𝑘 ⊗𝑆 𝑘)𝐶2 since 𝑛 + 1 − 𝑗 ≥ 1. However, for all 0 ≤ 𝑖 ≤ 𝑛 − 1, we have that

(𝜙−1𝜋) 𝑗 (𝜙𝑖 (𝑎 ⊗ 𝑏) + 𝜙𝑖 (𝑏 ⊗ 𝑎)) = 𝜙𝑖− 𝑗 (𝑎 ⊗ 𝑏) + 𝜙𝑖− 𝑗 (𝑏 ⊗ 𝑎)

if 0 ≤ 𝑗 ≤ 𝑖, which is a fixed point, and for 𝑖 < 𝑗 ≤ 𝑛, this is

(𝜙−1𝜋) 𝑗 (𝜙𝑖 (𝑎 ⊗ 𝑏) + 𝜙𝑖 (𝑏 ⊗ 𝑎)) = (𝜙−1𝜋) 𝑗−𝑖 (𝑎 ⊗ 𝑏 + 𝑏 ⊗ 𝑎) = 0

since 𝜋 quotients off the image of 1 + 𝑤.
The proof that these elements generate 𝜙𝑛

(
(𝑘 ⊗𝑆 𝑘)𝐶2

)
is by induction on n. For 𝑛 = 0, consider the

exact sequence

𝑘 ⊗𝑆 𝑘
1+𝑤
−−−→ (𝑘 ⊗𝑆 𝑘)𝐶2 −→ (𝑘 ⊗𝑆 𝑘)𝐶2/𝐼𝑚(1 + 𝑤) → 0.

By Lemma 2.1, the right term is generated by the equivalence classes of the elements of the form
𝜙(𝑎 ⊗ 𝑏), and the image of 1 + 𝑤 is generated by the elements of the form 𝑎 ⊗ 𝑏 + 𝑏 ⊗ 𝑎, which proves
the claim.

Now suppose that the claim holds for 𝑛 − 1, and consider the exact sequence

𝑘 ⊗𝑆 𝑘
1+𝑤
−−−→ 𝜙𝑛 ((𝑘 ⊗𝑆 𝑘)𝐶2) −→ 𝜙𝑛 ((𝑘 ⊗𝑆 𝑘)𝐶2)/𝐼𝑚(1 + 𝑤) → 0.

By an argument analogous to the proof of Lemma 2.1, 𝜙 defines an isomorphism between 𝜙𝑛−1((𝑘 ⊗𝑆
𝑘)𝐶2) and 𝜙𝑛 ((𝑘 ⊗𝑆 𝑘)𝐶2)/𝐼𝑚(1 + 𝑤). Thus, by the inductive assumption, the classes of 𝜙𝑛+1 (𝑎 ⊗ 𝑏)
and 𝜙𝑖 (𝑎 ⊗ 𝑏) + 𝜙𝑖 (𝑏 ⊗ 𝑎), for 1 ≤ 𝑖 ≤ 𝑛 and 𝑎 ⊗ 𝑏 ∈ 𝑘 ⊗𝑆 𝑘 , generate the quotient. The image of 1 + 𝑤
is generated by the elements of the form 𝑎 ⊗ 𝑏 + 𝑏 ⊗ 𝑎, which concludes the induction.

The proof for 𝜋0 TRR𝑛+1 (𝑘; 2)𝜙Z/2 is completely analogous, by induction on the exact sequences

(𝑘 ⊗𝑆 𝑘) ⊕ (𝑘 ⊗𝑆 𝑘)

(1+𝑤,0)+(0,1+𝑤)
��

𝜙𝑛−1 ((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙𝑛−1 ((𝑘 ⊗𝑆 𝑘)𝐶2)

(𝜙−1 𝜋,𝜙−1 𝜋)

��

𝜙𝑛−2 ((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙𝑛−2 ((𝑘 ⊗𝑆 𝑘)𝐶2)

��

0 �

Next, we want to understand the effect of the transfer and norm maps of TRR(𝑘) under the isomor-
phism of Theorem 2.7, and their relation to the generators of Proposition 2.9. For every 0 ≤ ℎ < 𝑙, let

tran𝐷2𝑙
𝐷2ℎ

: 𝜋0TRRℎ+1(𝑘; 2)𝜙Z/2 → 𝜋0TRR𝑙+1 (𝑘; 2)𝜙Z/2

be the transfer map associated to the subgroup inclusion 𝐷2ℎ ≤ 𝐷2𝑙 .

Proposition 2.10. For every 0 < ℎ < 𝑙, the map tran𝐷2𝑙
𝐷2ℎ

corresponds, under the isomorphism of
Theorem 2.7, to the group homomorphism

𝑉 𝑙−ℎ : 𝜙ℎ−1((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙ℎ−1((𝑘 ⊗𝑆 𝑘)𝐶2) −→ 𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙𝑙−1((𝑘 ⊗𝑆 𝑘)𝐶2),
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which sends (𝑥, 𝑦) to (𝑥 + 𝑦, 0). For ℎ = 0, it corresponds to the group homomorphism

𝑉 𝑙 : 𝑘 ⊗𝑆 𝑘 −→ 𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙𝑙−1 ((𝑘 ⊗𝑆 𝑘)𝐶2),

which sends 𝑎 ⊗ 𝑏 to (𝑎 ⊗ 𝑏 + 𝑏 ⊗ 𝑎, 0).

Proof. Let us first suppose ℎ > 0. We need to show that the unique map in the bottom row of the
commutative square

𝜋0TRRℎ+1(𝑘; 2)𝜙Z/2
tran

𝐷2𝑙
𝐷2ℎ ��

(𝐹ℎ ,𝐹ℎ𝜎)�

��

𝜋0TRR𝑙+1(𝑘; 2)𝜙Z/2

(𝐹 𝑙 ,𝐹 𝑙𝜎)�

��

𝜙ℎ−1((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙ℎ−1((𝑘 ⊗𝑆 𝑘)𝐶2) �� 𝜙𝑙−1((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙𝑙−1((𝑘 ⊗𝑆 𝑘)𝐶2)

agrees with𝑉 𝑙−ℎ , where the vertical maps are the isomorphisms of Theorem 2.7 and Remark 2.8. By the
double coset formula of the 𝐷2𝑙 -Mackey functor 𝜋0THR(𝑘), the upper composite has first component

𝐹𝑙tran𝐷2𝑙
𝐷2ℎ

= res𝐷2𝑙
Z/2 tran𝐷2𝑙

𝐷2ℎ
=

∑
𝑔∈Z/2/𝐷2𝑙 /𝐷2ℎ

tranZ/2𝑔𝐷2ℎ∩Z/2
𝑐𝑔res𝐷2ℎ

𝐷2ℎ∩Z/2𝑔
.

The double coset Z/2/𝐷2𝑙/𝐷2ℎ is the quotient of the cyclic group 𝐶2𝑙−ℎ by the involution which acts by
inversion. It therefore consists of two fixed points (the unit and the rotation 𝑔0 of order 2 in 𝐷𝑙) which
conjugate Z/2 to itself, and (2𝑙−ℎ − 2)/2 points whose corresponding intersection 𝐷2ℎ ∩Z/2𝑔 is trivial.
Thus,

𝐹𝑙tran𝐷2𝑙
𝐷2ℎ

= res𝐷2ℎ
Z/2 + 𝑐𝑔0 res𝐷2ℎ

Z/2 +
∑

1,𝑔0≠𝑔∈Z/2/𝐷2𝑙 /𝐷2ℎ

tranZ/2𝑒 𝑐𝑔res𝐷2ℎ
𝑒

= res𝐷2ℎ
Z/2 + res𝐷2ℎ

Z/2 𝑐𝑔0 = 𝐹ℎ + 𝐹ℎ𝜎,

where the transfer tranZ/2𝑒 is zero since k has characteristic 2 (see [DMPR21, Theorem 5.1]), 𝜎 is the
action of the Weyl group of 𝐷ℎ in 𝐷𝑙 , and the equality is regarded as elements of 𝑘 ⊗𝑆 𝑘 . The map 𝐹ℎ is
determined in Theorem 2.7: it sends an element in the upper left corner of the square, corresponding to
(𝑥, 𝑦) in the bottom left corner, to x. Thus, the unique bottom horizontal map in the square above sends
(𝑥, 𝑦) to the pair with first component 𝑥 + 𝑦.

Now let Z/2′ be the subgroup of 𝐷𝑙 generated by a reflection non-conjugate to Z/2. Similarly to the
calculation above, the second component of the top composite is

𝐹𝑙𝜎tran𝐷2𝑙
𝐷2ℎ

= res𝐷2𝑙
Z/2′tran𝐷2𝑙

𝐷2ℎ
=

∑
𝑔∈Z/2′/𝐷2𝑙 /𝐷2ℎ

tranZ/2
𝑔𝐷2ℎ∩Z/2

𝑐𝑔res𝐷2ℎ
𝐷2ℎ∩Z/2𝑔

.

Now the double coset Z/2′/𝐷2𝑙/𝐷2ℎ is the quotient of the cyclic group 𝐶2𝑙−ℎ by the free involution,
and none of the conjugates of Z/2 is contained in 𝐷2ℎ . Thus,

𝐹𝑙𝜎tran𝐷2𝑙
𝐷2ℎ

=
∑

𝑔∈Z/2′/𝐷2𝑙 /𝐷2ℎ

tranZ/2𝑒 𝑐𝑔res𝐷2ℎ
𝑒 = 0,

again since tranZ/2𝑒 = 0. Thus, the second component of the bottom horizontal map is null as claimed.
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The proof of the case ℎ = 0 is similar, by calculating the upper composite of the diagram

𝜋0THR(𝑘)𝜙Z/2
tran

𝐷2𝑙
Z/2

��

�

��

𝜋0TRR𝑙+1(𝑘; 2)𝜙Z/2

(𝐹 𝑙 ,𝐹 𝑙𝜎)�

��

𝑘 ⊗𝑆 𝑘 �� 𝜙𝑙−1((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙𝑙−1((𝑘 ⊗𝑆 𝑘)𝐶2)

where the left vertical map is the isomorphism of [DMPR21, Theorem 5.1]. �

Remark 2.11. The notation used in Proposition 2.10 for the transfer map is consistent with our notation
for the generators of Proposition 2.9, since

𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) = 𝑉𝑛−𝑖 (𝜙𝑖 (𝑎 ⊗ 𝑏), 𝜙𝑖 (𝑏 ⊗ 𝑎)) = (𝜙𝑖 (𝑎 ⊗ 𝑏) + 𝜙𝑖 (𝑏 ⊗ 𝑎), 0).

The generators 𝜏𝑛 (𝑎 ⊗ 𝑏) also have a somewhat topological interpretation, as we now explain. As
seen at the end of §1, the there is a non-additive norm map

𝑁𝐷2𝑛
Z/2 : 𝜋0THR(𝑘)Z/2 = 𝜋0TRR1 (𝑘; 2)Z/2 −→ 𝜋0TRR𝑛+1(𝑘; 2)Z/2 = 𝜋0THR(𝑘)𝐷2𝑛 .

Moreover, since k is of characteristic 2, the canonical map 𝜋0THR(𝑘)Z/2 → 𝜋0THR(𝑘)𝜙Z/2 is an
isomorphism (since the transfer from the trivial subgroup to Z/2 is zero by [DMPR21, Theorem 5.1]),
and therefore, by post-composing with the canonical projection, we also obtain a non-additive map

𝜋0THR(𝑘)𝜙Z/2 � 𝜋0THR(𝑘)Z/2
𝑁

𝐷2𝑛
Z/2
−−−−−→ 𝜋0TRR𝑛+1 (𝑘; 2)Z/2 −→ 𝜋0TRR𝑛+1(𝑘; 2)𝜙Z/2

on geometric fixed points, which we still denote by 𝑁𝐷2𝑛
Z/2 .

Proposition 2.12. Under the isomorphism of Theorem 2.7, the map 𝑁𝐷2𝑛
Z/2 corresponds to the map

𝑁𝑛 : 𝑘 ⊗𝑆 𝑘 → 𝜙𝑛−1 ((𝑘 ⊗𝑆 𝑘)𝐶2) ×𝑘⊗𝑆𝑘 𝜙𝑛−1((𝑘 ⊗𝑆 𝑘)𝐶2) that sends an elementary tensor 𝑎 ⊗ 𝑏 to

𝑁𝑛 (𝑎 ⊗ 𝑏) = 𝜏𝑛 (𝑎𝑏 ⊗ 1) = (𝜙𝑛 (𝑎𝑏 ⊗ 1), 𝜙𝑛 (1 ⊗ 𝑎𝑏)).

In particular, we find that

𝜏𝑛 (𝑎 ⊗ 𝑏) = 𝑁𝑛 (𝑎 ⊗ 1) · 𝜎𝑁𝑛 (𝑏 ⊗ 1).

Proof. The identification of 𝑁𝑛 (𝑎 ⊗ 𝑏) is similar to the proof of Proposition 2.10. It is sufficient to show
that the unique map in the bottom row of the commutative square

𝜋0TRR1(𝑘; 2)𝜙Z/2
𝑁

𝐷2𝑛
Z/2

��

�

��

𝜋0TRR𝑛+1 (𝑘; 2)𝜙Z/2

(𝐹𝑛 ,𝐹𝑛𝜎)�

��

𝑘 ⊗𝑆 𝑘 �� 𝜙𝑛−1((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙𝑛−1((𝑘 ⊗𝑆 𝑘)𝐶2)

agrees with 𝑁𝑛 on the elementary tensors 𝑎 ⊗ 𝑏. Indeed, the value on a general element in the tensor
product is determined by iterations of the relation

𝑁 (𝑥 + 𝑦) = 𝑁 (𝑥) + 𝑁 (𝑦) +𝑉 (𝑥𝑦).
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By the multiplicative double coset formula of the 𝐷2𝑙 -Tambara functor 𝜋0THR(𝑘), the upper composite
has first component

𝐹𝑛𝑁𝐷2𝑛
Z/2 = res𝐷2𝑛

Z/2 𝑁𝐷2𝑛
Z/2 =

∏
𝑔∈Z/2/𝐷2𝑛 /Z/2

𝑁Z/2𝑔Z/2∩Z/2𝑐𝑔resZ/2
Z/2∩Z/2𝑔 .

The double coset Z/2/𝐷2𝑛/Z/2 is the quotient of the cyclic group 𝐶2𝑛 by the involution which acts by
inversion, and consists of two fixed points (the unit and the rotation 𝑔0 of order 2 in 𝐷𝑛) which conjugate
Z/2 to itself, and (2𝑛 − 2)/2 points whose corresponding intersection Z/2 ∩ Z/2𝑔 is trivial. Moreover,
since the cyclic group acts trivially on 𝜋0THH(𝑘) = 𝑘 , the conjugation 𝑐𝑔 is trivial except for 𝑔 = 𝑔0.
Thus,

𝐹𝑛𝑁𝐷2𝑛
Z/2 = (id) · (𝑐𝑔0 ) · (𝑁

Z/2
𝑒 resZ/2𝑒 )

2𝑛−1−1.

Since the restriction map resZ/2𝑒 corresponds to the multiplication map 𝜇 : 𝑘 ⊗𝑆 𝑘 → 𝑘 and 𝑁Z/2𝑒 to the
map 𝑘 → 𝑘 ⊗𝑆 𝑘 which sends a to 𝑎2 ⊗ 1 (see [DMPR21, Corollary 5.2]), this sends 𝑎 ⊗ 𝑏 to

𝑎 ⊗ 𝑏 · 𝑏 ⊗ 𝑎 · ((𝑎𝑏)2 ⊗ 1)2
𝑛−1−1 = (𝑎𝑏)2

𝑛−1 ⊗ 𝑎𝑏 = 𝜙𝑛 (1 ⊗ 𝑎𝑏).

Similarly, by letting Z/2′ be the subgroup of 𝐷𝑛 generated by a reflection non-conjugate to Z/2, the
second component of the upper composite in the square above is

𝐹𝑛𝜎𝑁𝐷2𝑛
Z/2 = res𝐷2𝑛

Z/2′ 𝑁
𝐷2𝑛
Z/2 =

∏
𝑔∈Z/2′/𝐷2𝑙 /Z/2

𝑁Z/2
′

𝑔Z/2∩Z/2𝑐𝑔 resZ/2
Z/2∩Z/2′𝑔 .

Now the double coset Z/2′/𝐷2𝑛/Z/2 is the quotient of the cyclic group 𝐶2𝑛 by the free involution, and
since Z/2 and Z/2′ are not conjugate,

𝐹𝑛𝜎𝑁𝐷2𝑛
Z/2 = (𝑁Z/2

′

𝑒 resZ/2𝑒 )
2𝑛−1

.

Thus, the second component of the bottom horizontal map of the square sends 𝑎 ⊗ 𝑏 to

((𝑎𝑏)2)2
𝑛−1
⊗ 1 = 𝜙𝑛 (𝑎𝑏 ⊗ 1).

This identifies the map 𝑁𝑛 as claimed. Finally, observe that

𝑁𝑛 (𝑎 ⊗ 1) · 𝜎𝑁𝑛 (𝑏 ⊗ 1) = (𝑎2𝑛 ⊗ 1, 𝑎2𝑛−1 ⊗ 𝑎) · (𝑏2𝑛−1 ⊗ 𝑏, 𝑏2𝑛 ⊗ 1)

= (𝑎2𝑛𝑏2𝑛−1 ⊗ 𝑏, 𝑎2𝑛−1𝑏2𝑛 ⊗ 𝑎) = 𝜏𝑛 (𝑎 ⊗ 𝑏). �

Remark 2.13. For the usual Witt vectors, the elements 𝜏𝑛 (𝑎) = (𝑎, 0, . . . , 0) assemble into a (non-
additive) multiplicative map 𝜏𝑛 : 𝑅 → 𝑊〈2𝑛 〉 (𝑅), which is a section for the truncation map R. We
do not think that this is the case for 𝜋0 TRR𝑛+1(𝑘; 2)𝜙Z/2 since there seems to be no way of ex-
tending 𝜏𝑛 (𝑎 ⊗ 𝑏) to a sum of elementary tensors. Even without a canonical splitting for the trun-
cation map 𝑅 : 𝜋0 TRR𝑛+1 (𝑘; 2)𝜙Z/2 → 𝜋0 TRR1(𝑘; 2)𝜙Z/2 at hand, having a set of generators for
𝜋0 TRR𝑛+1 (𝑘; 2)𝜙Z/2 defined from the 𝜏𝑖 (𝑎 ⊗ 𝑏) will suffice for our purposes.

https://doi.org/10.1017/fms.2025.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.40


20 E. Dotto

2.3. The fundamental ideal of TRR

The components of the geometric fixed points of any connective Z/2-spectrum X admit a restriction
map, defined as the canonical map of cokernels

𝜋0 (𝑋ℎZ/2)

�

��

tranZ/2𝑒 �� 𝜋0 (𝑋
Z/2)

resZ/2𝑒

��

�� 𝜋0 (𝑋
𝜙Z/2)

��
�
�
�

�� 0

(𝜋0𝑋)Z/2
1+𝑤 �� (𝜋0𝑋)

Z/2 �� (𝜋0𝑋)
Z/2/𝐼𝑚(1 + 𝑤) �� 0

where w is the action of the generator of Z/2 on 𝜋0𝑋 . This map is moreover a monoidal natural
transformation. By applying this construction to the Z/2-spectrum TRR𝑛+1 (𝑘; 2), we obtain a ring
homomorphism which we denote by

res𝐷2𝑛
𝐶2𝑛

: 𝜋0TRR𝑛+1 (𝑘; 2)𝜙Z/2 −→ (𝜋0TR𝑛+1 (𝑘; 2))Z/2/(1 + 𝑤) � W〈2𝑛 〉 (𝑘)/2.

Here, W〈2𝑛 〉 (𝑘) is the ring of (𝑛 + 1)-truncated 2-typical Witt vectors of k, and the isomorphism is from
[HM97, Theorem F]. Here, we use that the isomorphism of [HM97, Theorem F] is Z/2-equivariant,
where the Z/2-action on W〈2𝑛 〉 (𝑘) is trivial (see the proof of [DPM22, Theorem 3.7], where the first
paragraph of page 522 holds also for 𝑝 = 2. This can more generally be applied to the case where k has
a nontrivial involution, in which case the involution on 𝜋0TR𝑛+1 (𝑘; 2) corresponds to the map induced
on W〈2𝑛 〉 (𝑘) by the involution on k under the functoriality of the Witt vectors).

The goal of this section is to describe explicitly the map res𝐷2𝑛
𝐶2𝑛

under the isomorphism of Theorem
2.7, and provide generators for its kernel. We recall that for every commutative ring R, as a set,
W〈2𝑛 〉 (𝑅) = 𝑅×𝑛+1, with the unique functorial ring structure which makes the Witt polynomials into
ring homomorphisms. For any F2-algebra R, we moreover have that as a set

W〈2𝑛 〉 (𝑅) = 𝑅 × (𝑅/𝑅2)×𝑛.

We denote by 𝑉𝑛−𝑖𝜏𝑖 (𝑎) = (0, . . . , 0, 𝑎, 0, . . . , 0) the canonical additive generators of W〈2𝑛 〉 (𝑅), for
𝑎 ∈ 𝑅.

Proposition 2.14. Let k be a field of characteristic 2, and 𝑛 ≥ 1. Under the isomorphisms of Theorem
2.7 and [HM97, Theorem F], the restriction map corresponds to the unique ring homomorphism

res𝐷2𝑛
𝐶2𝑛

: 𝜙𝑛−1 ((𝑘 ⊗𝑆 𝑘)𝐶2) ×
𝑘⊗𝑆𝑘

𝜙𝑛−1 ((𝑘 ⊗𝑆 𝑘)𝐶2) −→W〈2𝑛 〉 (𝑘)/2,

which sends the respective generators of Proposition 2.9 to

res𝐷2𝑛
𝐶2𝑛

𝜏𝑛 (𝑎 ⊗ 𝑏) = (𝑎𝑏, 0, . . . , 0) = 𝜏𝑛 (𝑎𝑏)

res𝐷2𝑛
𝐶2𝑛

𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) = (0, . . . , 0, [𝑎𝑏], 0, . . . , 0) = [𝑉𝑛−𝑖𝜏𝑖 (𝑎𝑏)]

res𝐷2𝑛
𝐶2𝑛

𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) = (0, . . . , 0, [𝑎𝑏], 0, . . . , 0) = [𝑉𝑛−𝑖𝜏𝑖 (𝑎𝑏)]

for all 0 ≤ 𝑖 ≤ 𝑛 − 1, where the mod 𝑘2 reduction [𝑎𝑏] of 𝑎𝑏 sits in the (𝑛 − 𝑖 + 1)-st component.

Proof. Since 𝜋0 THR(𝑘) is a 𝐷2𝑛 -Tambara functor, the restriction res𝐷2𝑛
𝐶2𝑛

is a ring homomorphism, and
by the double-coset formulas, it commutes with norms and transfers, and with the Weyl action. The
operators 𝑉𝑛−𝑖 and 𝜏𝑖 are described in terms of norms and transfers by Propositions 2.10 and 2.12, and
by [HM97, Theorem 3.3] for the usual Witt vectors. It therefore follows that

res𝐷2𝑛
𝐶2𝑛

𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) = [𝑤𝑉𝑛−𝑖𝜏𝑖resZ/2𝑒 (𝑎 ⊗ 𝑏)] = [𝑉𝑛−𝑖𝜏𝑖 (𝑎𝑏)],
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where resZ/2𝑒 is the multiplication map of 𝑘 ⊗𝑆 𝑘 by [DMPR21, Theorem 5.1]. The proof for the other
generators is similar. �

Definition 2.15. The fundamental ideal 𝐽〈2𝑛 〉 of 𝜋0 TRR𝑛+1 (𝑘; 2)𝜙Z/2 is the kernel of the ring homo-
morphism

𝐽〈2𝑛 〉 := ker
(
res𝐷2𝑛

𝐶2𝑛
: 𝜙𝑛−1((𝑘 ⊗𝑆 𝑘)𝐶2) ×

𝑘⊗𝑆𝑘
𝜙𝑛−1((𝑘 ⊗𝑆 𝑘)𝐶2) −→W〈2𝑛 〉 (𝑘)/2

)

from Proposition 2.14, for 𝑛 ≥ 1, and for 𝑛 = 0, it is the kernel of the multiplication map

𝐽〈1〉 := ker
(
resZ/2𝑒 : 𝑘 ⊗𝑆 𝑘 −→ 𝑘 = W〈1〉 (𝑘)/2

)
.

Proposition 2.16. For every 𝑛 ≥ 0, 𝐽〈2𝑛 〉 is the subgroup of 𝜋0 TRR𝑛+1 (𝑘; 2)𝜙Z/2 generated by the
elements

𝜏𝑛 (𝑎 ⊗ 𝑏) + 𝜏𝑛 (𝑎𝑏 ⊗ 1),
𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) + 𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏),

𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) +𝑉𝑛−𝑖𝜏𝑖 (𝑎𝑏 ⊗ 1),

for all 0 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑎 ⊗ 𝑏 ∈ 𝑘 ⊗𝑆 𝑘 .

Proof. The proof is by induction on n. For 𝑛 = 0, this is the claim that the kernel of the multiplication
map

𝜇 : 𝑘 ⊗𝑆 𝑘 −→ 𝑘

is generated by 𝑎 ⊗ 𝑏 + 𝑎𝑏 ⊗ 1 for 𝑎 ⊗ 𝑏 ∈ 𝑘 ⊗𝑆 𝑘 , which is clear.
Now suppose the claim holds for n, and consider the commutative diagram with exact rows

𝐾
𝑉 𝑛+1+𝜎𝑉 𝑛+1

��

��

𝐽〈2𝑛+1 〉
𝑅 ��

��

𝐽〈2𝑛 〉

��

(𝑘 ⊗𝑆 𝑘) ⊕ (𝑘 ⊗𝑆 𝑘)
𝑉 𝑛+1+𝜎𝑉 𝑛+1

��

𝜇+𝜇

��

𝜋0TRR𝑛+2 (𝑘; 2)𝜙Z/2 𝑅 ��

res
𝐷2𝑛+1
𝐶2𝑛+1

��

𝜋0TRR𝑛+1 (𝑘; 2)𝜙Z/2 ��

res𝐷2𝑛
𝐶2𝑛

��

0

0 �� 𝑘/𝑘2 𝑉 𝑛+1
�� W〈2𝑛+1 〉 (𝑘)/2

𝑅 �� W〈2𝑛 〉 (𝑘)/2 �� 0

where the vertical maps from the top row to the middle row are kernel inclusions. The middle row is
exact by [DMP24, Proof of Theorem 4.9], or by the explicit calculation of Theorem 2.7 and Proposition
2.10. Thus, if we find a set of generators for K and show that the map R in the first row is surjective,
then 𝐽〈2𝑛+1 〉 is generated by the image by 𝑉𝑛+1 + 𝜎𝑉𝑛+1 of the generators of K, and by a choice of lifts
of the generators of 𝐽〈2𝑛 〉 given by the inductive assumption. The kernel K consists of those elements
(𝑥, 𝑦) such that 𝜇(𝑥) + 𝜇(𝑦) is a square in k. Since every square 𝑐2 in k is hit by 𝑐 ⊗ 𝑐 under 𝜇, K is the
subgroup of elements of the form (𝑥, 𝑦), where

𝑥 = 𝑦 + 𝑐 ⊗ 𝑐 + 𝑧

for some 𝑐 ∈ 𝑘 and 𝑧 ∈ ker(𝜇). Since the kernel of 𝜇 is generated by elements of the form 𝑎 ⊗ 𝑏+𝑎𝑏 ⊗ 1,
we conclude that K is generated by elements of the form (𝑎 ⊗ 𝑏, 𝑎 ⊗ 𝑏), and elements of the form
(𝑎 ⊗ 𝑏 + 𝑎𝑏 ⊗ 1+ 𝑐 ⊗ 𝑐, 0). The images of these generators by 𝑉𝑛+1 +𝜎𝑉𝑛+1 are respectively of the form
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𝑉𝑛+1 (𝑎 ⊗ 𝑏) + 𝜎𝑉𝑛+1 (𝑎 ⊗ 𝑏)

and

𝑉𝑛+1 (𝑎 ⊗ 𝑏 + 𝑎𝑏 ⊗ 1 + 𝑐 ⊗ 𝑐) + 𝜎𝑉𝑛+1(0) = 𝑉𝑛+1 (𝑎 ⊗ 𝑏) +𝑉𝑛+1(𝑎𝑏 ⊗ 1) +𝑉𝑛+1 (𝑐 ⊗ 𝑐),

where𝑉𝑛+1 (𝑐⊗𝑐) = 0 by Proposition 2.10. It therefore remains to show that by applying R to the elements
𝜏𝑛+1 (𝑎 ⊗ 𝑏) +𝜏𝑛+1 (𝑎𝑏 ⊗ 1),𝑉𝑛+1−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) +𝜎𝑉𝑛+1−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) and𝑉𝑛+1−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) +𝑉𝑛+1−𝑖𝜏𝑖 (𝑎𝑏 ⊗ 1),
for 1 ≤ 𝑖 ≤ 𝑛, we hit all the generators of 𝐽〈2𝑛 〉 given by the inductive assumption. This is the case since
𝑅𝜏𝑖+1 = 𝜏𝑖 , 𝑅𝑉𝑛+1−𝑖 = 𝑉𝑛−𝑖𝑅, and 𝑅𝜎 = 𝜎𝑅, by Theorem 2.7 and Proposition 2.10. �

Corollary 2.17. For every 𝑛 ≥ 0, the ideal 𝐽〈2𝑛 〉 is generated, as a 𝜋0 TRR𝑛+1 (𝑘; 2)𝜙Z/2-module, by
the elements of the form

𝜏𝑛 (1 ⊗ 𝑐) + 𝜏𝑛 (𝑐 ⊗ 1) = 𝑉0𝜏𝑛 (𝑐 ⊗ 1) + 𝜎𝑉0𝜏𝑛 (𝑐 ⊗ 1),
𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) + 𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏),

for all 0 ≤ 𝑖 ≤ 𝑛−1, 𝑎⊗𝑏 ∈ 𝑘⊗𝑆 𝑘 and 𝑐 ∈ 𝑘 . In particular, 𝐽〈2𝑛 〉 is generated, as a 𝜋0 TRR𝑛+1(𝑘; 2)𝜙Z/2-
module, by fixed points for the involution 𝜎.

Proof. By Proposition 2.16, the corollary follows from the identities

𝜏𝑛 (𝑎 ⊗ 𝑏) + 𝜏𝑛 (𝑎𝑏 ⊗ 1) = 𝜏𝑛 (𝑎 ⊗ 1) · (𝜏𝑛 (1 ⊗ 𝑏) + 𝜏𝑛 (𝑏 ⊗ 1)),

𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) +𝑉𝑛−𝑖𝜏𝑖 (𝑎𝑏 ⊗ 1) = (𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 1) + 𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑏 ⊗ 1)) · (𝑉𝑛−𝑖𝜏𝑖 (𝑏 ⊗ 1) + 𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑏 ⊗ 1)),

which can be easily verified from the definitions. �

3. Real TR and the de Rham-Witt complex

3.1. The Witt complex associated to TRR

Since the operators 𝐹,𝑉, 𝜎 and R of Theorem 2.7 and Proposition 2.10 commute with the restriction
map to the Witt vectors modulo 2, they induce maps on the fundamental ideals

𝐹, 𝑅 : 𝐽〈2𝑛+1 〉 → 𝐽〈2𝑛 〉 , 𝑉 : 𝐽〈2𝑛 〉 → 𝐽〈2𝑛+1 〉 𝑎𝑛𝑑 𝜎 : 𝐽〈2𝑛 〉 → 𝐽〈2𝑛 〉

for all 𝑛 ≥ 0.

Proposition 3.1. For every integer 𝑞 ≥ 2, the maps 𝐹, 𝑅,𝑉, 𝜎 above restrict to maps

𝐹, 𝑅 : 𝐽𝑞
〈2𝑛+1 〉 → 𝐽𝑞

〈2𝑛 〉 , 𝑉 : 𝐽𝑞
〈2𝑛 〉 → 𝐽𝑞

〈2𝑛+1 〉 𝑎𝑛𝑑 𝜎 : 𝐽𝑞
〈2𝑛 〉 → 𝐽𝑞

〈2𝑛 〉 .

Moreover, 1 + 𝜎 induces a well-defined map

1 + 𝜎 : 𝐽𝑞
〈2𝑛 〉 → 𝐽𝑞+1

〈2𝑛 〉 ,

which satisfies (1 + 𝜎)2 = 0.

Proof. The claim about 𝑅, 𝐹 and 𝜎 are clear since these maps are multiplicative. For the map V, we
employ Corollary 2.17. First suppose that 𝑛 ≥ 1, so that the power 𝐽𝑞

〈2𝑛 〉 is additively generated by
elements of the form

(𝑥, 𝑦) · (𝑥1, 𝑥1) · · · · · (𝑥𝑞 , 𝑥𝑞) = (𝑥𝑥1 . . . 𝑥𝑞 , 𝑦𝑥1 . . . 𝑥𝑞),
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where (𝑥, 𝑦) is a generator of 𝜋0 TRR𝑛+1 (𝑘; 2)𝜙Z/2 from Proposition 2.9, and (𝑥𝑙 , 𝑥𝑙) is a generator of
𝐽〈2𝑛 〉 from Corollary 2.17, which is diagonal since they are invariant by the Weyl action 𝜎. Since V is
additive, it is sufficient to show that V sends these elements to 𝐽𝑞

〈2𝑛+1 〉 . Now by Proposition 2.10, we
have that

𝑉 (𝑥𝑥1 . . . 𝑥𝑞 , 𝑦𝑥1 . . . 𝑥𝑞) = ((𝑥 + 𝑦)𝑥1 . . . 𝑥𝑞 , 0)
= (𝑥 + 𝑦, 𝑥 + 𝑦) · (𝑥1, 𝑥1) · · · · · (𝑥𝑞−2, 𝑥𝑞−2) · (𝑥𝑞−1, 𝑥𝑞−1) · (𝑥𝑞 , 0).

The first factor is

(𝑥 + 𝑦, 𝑥 + 𝑦) = 𝑉 (𝑥, 𝑦) + 𝜎𝑉 (𝑥, 𝑦),

which belongs to 𝐽〈2𝑛+1 〉 since it is sent to zero by the restriction map by Proposition 2.14. By Corollary
2.17, each of the factors (𝑥1, 𝑥1), . . . , (𝑥𝑞−1, 𝑥𝑞−1) is of the form

𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) + 𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏)

for some 0 ≤ 𝑖 ≤ 𝑛, which as an element of 𝜋0 TRR𝑛+2 (𝑘; 2)𝜙Z/2 is of the form

𝑉𝑛+1−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) + 𝜎𝑉𝑛+1−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏)

for 0 ≤ 𝑖 ≤ 𝑛, and therefore belongs to 𝐽〈2𝑛+1 〉 . Thus, it suffices to show that (𝑥𝑞−1, 𝑥𝑞−1) · (𝑥𝑞 , 0) is also
in 𝐽〈2𝑛+1 〉 . But since (𝑥𝑞 , 𝑥𝑞) is of the form 𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) + 𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏), we have that (𝑥𝑞 , 0) is a
well-defined element of 𝜋0 TRR𝑛+2 (𝑘; 2)𝜙Z/2, and since 𝐽〈2𝑛+1 〉 is an ideal, (𝑥𝑞−1, 𝑥𝑞−1) · (𝑥𝑞 , 0) indeed
belongs to 𝐽〈2𝑛+1 〉 .

If 𝑛 = 0, the ideal 𝐽𝑞
〈1〉 of 𝑘 ⊗𝑆 𝑘 is additively generated by elements of the form 𝑥𝑥1 . . . 𝑥𝑞 with

𝑥 ∈ 𝑘 ⊗𝑆 𝑘 and 𝑥1, . . . , 𝑥𝑞 fixed by the involution w. Then by Proposition 2.10,

𝑉 (𝑥𝑥1 . . . 𝑥𝑞) = (𝑥𝑥1 . . . 𝑥𝑞 + 𝑤(𝑥𝑥1 . . . 𝑥𝑞), 0) = ((𝑥 + 𝑤(𝑥))𝑥1 . . . 𝑥𝑞 , 0),

and one can repeat the argument used in the case 𝑛 ≥ 1.
Finally, let us show that 1 + 𝜎 sends 𝐽𝑞

〈2𝑛 〉 to 𝐽𝑞+1
〈2𝑛 〉 . By Corollary 2.17, every element of 𝐽𝑞

〈2𝑛 〉 is a
sum of elements of the form 𝑧 · 𝑔1 · · · · · 𝑔𝑞 with 𝑧 ∈ 𝜋0 TRR𝑛+1(𝑘; 2)𝜙Z/2 and each 𝑔𝑖 ∈ 𝐽〈2𝑛 〉 fixed
by 𝜎. Since 1 + 𝜎 is additive, we only need to show that these elements are sent to 𝐽𝑞+1

〈2𝑛 〉 . Since 𝜎 is
multiplicative, we have that

(1 + 𝜎) (𝑧 · 𝑔1 · · · · · 𝑔𝑞) = 𝑧 · 𝑔1 · · · · · 𝑔𝑞 + 𝜎(𝑧) · 𝜎(𝑔1) · · · · · 𝜎(𝑔𝑞) = (𝑧 + 𝜎(𝑧)) · 𝑔1 · · · · · 𝑔𝑞 .

It therefore suffices to show that 𝑧 +𝜎(𝑧) belongs to 𝐽〈2𝑛 〉 , which is the case since the restriction map to
the Witt vectors modulo 2 is invariant under the action of 𝜎. Clearly, since 𝜎2 is the identity, we have
that (1 + 𝜎)2 = 0. �

For every 𝑛 ≥ 0, let us denote by 𝐽∗
〈2𝑛 〉/𝐽

∗+1
〈2𝑛 〉 the graded ring defined by the quotients 𝐽𝑞

〈2𝑛 〉/𝐽
𝑞+1
〈2𝑛 〉 for

𝑞 ≥ 0, and by the multiplication of 𝐽〈2𝑛 〉 . We will show that the sequence of graded rings 𝐽∗
〈2𝑛 〉/𝐽

∗+1
〈2𝑛 〉

where 𝑛 ≥ 0, equipped with the operators 𝑅, 𝐹,𝑉 and 𝑑 := (1 + 𝜎), define the structure of a 2-
typical Witt complex. We recall its definition, from [Cos08], in the special case where the base ring has
characteristic 2. In this case, item v) simplifies since 𝑑 log[−1] = 0, and the definition agrees to the one
for odd primes from [HM04].

Definition 3.2 [Cos08]. A 2-typical Witt complex over an F2-algebra A consists of

i) a graded-commutative pro-graded ring {𝐸∗𝑛, 𝑅 : 𝐸∗𝑛+1 → 𝐸∗𝑛}𝑛≥0,
ii) a strict map of pro-rings 𝜆 : W〈2• 〉 (𝐴) → 𝐸0

• from the pro-ring of 2-typical Witt vectors of A,
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iii) a strict map of pro-graded rings 𝐹 : 𝐸∗
•+1 −→ 𝐸∗• such that 𝜆𝐹 = 𝐹𝜆,

iv) a strict map of pro-graded 𝐸∗•-modules 𝑉 : 𝐹∗𝐸∗• −→ 𝐸∗
•+1 such that 𝜆𝑉 = 𝑉𝜆 and 𝐹𝑉 = 2. The

linearity of V means that 𝑉 (𝑥)𝑦 = 𝑉 (𝑥𝐹 (𝑦)) for all 𝑥 ∈ 𝐸∗𝑛 and 𝑦 ∈ 𝐸∗𝑛+1,
v) a strict map of pro-graded abelian groups 𝑑 : 𝐸∗• → 𝐸∗+1• , which is a derivation, in the sense that

𝑑 (𝑥𝑦) = 𝑑 (𝑥)𝑦 + (−1) |𝑥 |𝑥𝑑 (𝑦)

for all 𝑥, 𝑦 ∈ 𝐸∗𝑛, and which satisfies the relations

𝐹𝑑𝑉 = 𝑑

𝑑𝑑 = 0
𝐹𝑑𝜆𝜏𝑛 = (𝜆𝜏𝑛−1) · (𝑑𝜆𝜏𝑛−1),

where 𝜏𝑛 : 𝐴→W〈2𝑛 〉 (𝐴) is the Teichmüller map sending a to (𝑎, 0, . . . , 0).
Before showing that the graded ring defined by the ideals 𝐽〈2𝑛 〉 admits the structure of a Witt-complex,

let us point out that since the map res𝐷2𝑛
𝐶2𝑛

is surjective by Propositions 2.14, it induces an isomorphism

𝐽0
〈2𝑛 〉/𝐽〈2𝑛 〉 = 𝜋0TRR𝑛+1 (𝑘; 2)𝜙Z/2/ker(res𝐷2𝑛

𝐶2𝑛
)
�
−→ 𝜋0TR𝑛+1 (𝑘; 2)/2 � W〈2𝑛 〉 (𝑘)/2,

where the last isomorphism is from [HM97, Theorem F].
Proposition 3.3. The sequence of graded rings {𝐽∗

〈2𝑛 〉/𝐽
∗+1
〈2𝑛 〉 }𝑛≥0 equipped with the operators 𝑅, 𝐹,𝑉

and 𝑑 := (1 + 𝜎) from Proposition 3.1, and the quotient maps

𝜆 : W〈2𝑛 〉 (𝑘) −→W〈2𝑛 〉 (𝑘)/2 � 𝐽0
〈2𝑛 〉/𝐽〈2𝑛 〉

defines a 2-typical Witt complex over the field k of characteristic 2.
Proof. First of all, the maps 𝑅, 𝐹,𝑉 and 𝑑 := (1 +𝜎) are well defined on the quotients of the powers of
the ideals by Proposition 3.1. Axioms i)–iv) of Definition 3.2 follow immediately from either the fact
that 𝐹,𝑉 and res𝐷2𝑛

𝐶2𝑛
are induced from the maps of a Mackey functor, or from their explicit formulas

from Theorem 2.7 and Propositions 2.10 and 2.14. This is except from the identity 𝐹𝑉 = 2 (which in our
case is zero), since by these arguments, we only know that 𝐹𝑉 = 1 + 𝜎. However, for every 𝑥 ∈ 𝐽𝑞

〈2𝑛 〉 ,
we have that

𝐹𝑉 (𝑥) = 𝑥 + 𝜎(𝑥)

belongs to 𝐽𝑞+1
〈2𝑛 〉 by Proposition 3.1, and it is therefore indeed zero in 𝐽𝑞

〈2𝑛 〉/𝐽
𝑞+1
〈2𝑛 〉 .

Let us show axiom v). To see that d satisfies the Leibniz rule, let 𝑥 ∈ 𝐽𝑞
〈2𝑛 〉/𝐽

𝑞+1
〈2𝑛 〉 and 𝑦 ∈ 𝐽𝑞

′

〈2𝑛 〉/𝐽
𝑞′+1
〈2𝑛 〉 ,

and let us calculate

𝑑 (𝑥𝑦) + 𝑑 (𝑥)𝑦 + 𝑥𝑑 (𝑦) = 𝑥𝑦 + 𝜎(𝑥)𝜎(𝑦) + (𝑥 + 𝜎(𝑥))𝑦 + 𝑥(𝑦 + 𝜎(𝑦))

= 𝑥𝑦 + 𝜎(𝑥)𝜎(𝑦) + 𝜎(𝑥)𝑦 + 𝑥𝜎(𝑦) = (𝑥 + 𝜎(𝑥)) (𝑦 + 𝜎(𝑦))

= 𝑑 (𝑥)𝑑 (𝑦).

Since 𝑑 (𝑥) belongs to 𝐽𝑞+1
〈2𝑛 〉 and 𝑑 (𝑦) to 𝐽𝑞

′+1
〈2𝑛 〉 by Proposition 3.1, we have that 𝑑 (𝑥)𝑑 (𝑦) belongs to

𝐽𝑞+𝑞
′+2

〈2𝑛 〉 , and therefore it vanishes in 𝐽𝑞+𝑞
′+1

〈2𝑛 〉 /𝐽
𝑞+𝑞′+2
〈2𝑛 〉 .

Let us now verify the last three identities involving d in axiom v). For the first one, let 𝑥 ∈ 𝐽𝑞
〈2𝑛 〉/𝐽

𝑞+1
〈2𝑛 〉 .

Then

𝐹𝑑𝑉 (𝑥) = 𝐹𝑉 (𝑥) + 𝐹𝜎𝑉 (𝑥) = 𝐹𝑉 (𝑥) = (1 + 𝜎) (𝑥) = 𝑑 (𝑥)
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in 𝐽𝑞+1
〈2𝑛 〉/𝐽

𝑞+2
〈2𝑛 〉 , where 𝐹𝜎𝑉 (𝑥) = 0 by the double coset formula (or by direct calculation). For the second

identity, we have that

𝑑2 = (1 + 𝜎)2 = 1 + 2𝜎 + 𝜎2 = 2 + 2𝜎 = 0

since 𝜎 has order 2. Finally, for the third one, let 𝑎 ∈ 𝑘 = W〈1〉 (𝑘). On the one hand, by Proposition 2.14,

𝐹𝑑𝜆𝜏𝑛 (𝑎) = 𝐹𝑑𝜏𝑛 (𝑎 ⊗ 1) = 𝐹 (𝜏𝑛 (𝑎 ⊗ 1) + 𝜎𝜏𝑛 (𝑎 ⊗ 1))

= 𝜏𝑛 (𝑎 ⊗ 1) + 𝜎𝜏𝑛 (𝑎 ⊗ 1) = (𝑎2𝑛 ⊗ 1 + 𝑎2𝑛−1 ⊗ 𝑎, 𝑎2𝑛−1 ⊗ 𝑎 + 𝑎2𝑛 ⊗ 1),

where the third equality holds by the formula for F of Theorem 2.7. On the other hand,

(𝜆𝜏𝑛−1(𝑎)) · (𝑑𝜆𝜏𝑛−1(𝑎)) = 𝜏𝑛−1 (𝑎 ⊗ 1) · (𝜏𝑛−1 (𝑎 ⊗ 1) + 𝜎𝜏𝑛−1 (𝑎 ⊗ 1))

= (𝑎2𝑛−1
⊗ 1, 𝑎2𝑛−1−1 ⊗ 𝑎) · (𝑎2𝑛−1

⊗ 1 + 𝑎2𝑛−1−1 ⊗ 𝑎, 𝑎2𝑛−1−1 ⊗ 𝑎 + 𝑎2𝑛−1
⊗ 1)

= (𝑎2𝑛 ⊗ 1 + 𝑎2𝑛−1 ⊗ 𝑎, 𝑎2𝑛−2 ⊗ 𝑎2 + 𝑎2𝑛−1 ⊗ 𝑎),

and these are equal since we are tensoring over S. �

3.2. The Milnor conjecture for the de Rham-Witt complex

Let us endow the sequence 𝐽∗
〈2• 〉/𝐽

∗+1
〈2• 〉 with the structure of a 2-typical Witt complex of Proposition 3.3.

We recall that, by definition, the 2-typical de Rham-Witt complex W〈2• 〉Ω∗𝑘 of k is the initial object in
the category of 2-typical Witt complexes over k (see [Cos08] and [HM04]). Thus, there is a unique map
of 2-typical Witt complexes

W〈2• 〉Ω
∗
𝑘 −→ 𝐽∗〈2• 〉/𝐽

∗+1
〈2• 〉 .

Let us denote by W〈2• 〉Ω∗𝑘/2 the degreewise cokernel of the multiplication by 2 map. Since all the maps
defining the structure of a Witt complex are additive, this is again a Witt-complex, where the map

W〈2• 〉 (𝑘) −→W〈2• 〉Ω
0
𝑘/2 = W〈2• 〉 (𝑘)/2

is the quotient map. Since 2 vanishes in 𝐽∗
〈2• 〉/𝐽

∗+1
〈2• 〉 , the unique map above descends to a unique map of

Witt-complexes

𝑢 : W〈2• 〉Ω
∗
𝑘/2 −→ 𝐽∗〈2• 〉/𝐽

∗+1
〈2• 〉 .

Theorem 3.4. The unique map of Witt-complexes 𝑢 : W〈2• 〉Ω∗𝑘/2→ 𝐽∗
〈2• 〉/𝐽

∗+1
〈2• 〉 is an isomorphism.

Remark 3.5. Let us discuss a few special cases of this theorem. For ∗ = 0, the unique map u is by
construction the isomorphism

𝜆 : W〈2• 〉Ω
0
𝑘/2 = W〈2• 〉 (𝑘)/2

�
−→ 𝜋0TR(𝑘; 2)/2 � 𝜋0TRR•+1(𝑘; 2)𝜙Z/2/𝐽〈2• 〉

where the arrow is the isomorphism of [HM97, Theorem F].
However, for • = 0, the map u is the unique map of commutative differential graded algebras

W〈1〉Ω
∗
𝑘/2 = Ω∗𝑘 −→ 𝐽∗〈1〉/𝐽

∗+1
〈1〉 .

This is well known to be an isomorphism, as claimed in [Kat82] (see, for example, [Ara20] for a proof,
which is also recasted in Lemma 3.6 below). In particular, for ∗ = 1, this is equivalent to the fact that
since k has characteristic 2, a Z-linear derivation out of k is automatically S-linear (where we recall that
𝑆 ≤ 𝑘 is the subfield of squares).
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The rest of the section is dedicated to the proof of Theorem 3.4. The proof is by induction on n, by
means of the exact sequences

Ω𝑞
𝑘 ⊕ Ω𝑞−1

𝑘

𝑉 𝑛+𝑑𝑉 𝑛
�� W〈2𝑛 〉 Ω

𝑞
𝑘/2

𝑅 �� W〈2𝑛−1 〉 Ω
𝑞
𝑘/2 �� 0

from [Cos08, Lemma 3.5], where 𝑛, 𝑞 ≥ 1.
The base case for the induction 𝑛 = 1 seems to be well known to the experts and is used without proof

in [Kat82]. We recall the argument from [Ara20, Fact 1] for the reader’s convenience, and to introduce
some notation that we will use in the proof of the induction step.

Lemma 3.6 [Ara20]. The unique map 𝑢 : Ω∗𝑘 −→ 𝐽∗
〈1〉/𝐽

∗+1
〈1〉 of commutative differential graded algebras

is an isomorphism.

Proof. For every 𝑎 ∈ 𝑘 , let us denote Δ (𝑎) := 1 ⊗ 𝑎 + 𝑎 ⊗ 1 ∈ 𝑘 ⊗𝑆 𝑘 . We note that the map u is
necessarily given by the formula

𝑢(𝑎𝑑𝑎1 . . . 𝑑𝑎𝑞) := 𝑎Δ (𝑎1) · · · · · Δ (𝑎𝑞).

In order to show that this is an isomorphism, we choose suitable bases of the source and target as k-
vector spaces. Let {𝑥𝑖}𝑖∈𝐼 be a 2-basis of k. We recall that this is a set of elements of k whose differentials
{𝑑𝑥𝑖}𝑖∈𝐼 form a basis of the k-vector space Ω1

𝑘 or, equivalently, such that the elements

𝑥 𝜉 :=
∏
𝑖∈𝜉

𝑥𝑖

form a basis of k as an S-vector space, where 𝜉 ranges through the finite subsets of I (see [Gro67,
Chapter 0, §21.4]). Here, we use the convention that 𝑥∅ = 1, and we will write 𝜉 ⊂ 𝑓 𝐼 if 𝜉 is a finite
subset of I. It is easy to see that the set {1 ⊗ 𝑥 𝜉 }𝜉 ⊂ 𝑓 𝐼 is a basis of 𝑘 ⊗𝑆 𝑘 as a k-vector space, where k
acts by multiplication on the left tensor factor. Now let us denote

Δ (𝑥) 𝜉 :=
∏
𝑖∈𝜉

Δ (𝑥𝑖)

for every 𝜉 ⊂ 𝑓 𝐼 (with the convention that Δ (𝑥) ∅ = 1 ⊗ 1). These elements satisfy the identities

Δ (𝑥) 𝜉 =
∑
𝜈⊂𝜉

𝑥 𝜉\𝜈 · (1 ⊗ 𝑥𝜈) (3.1)

1 ⊗ 𝑥 𝜉 =
∑
𝜈⊂𝜉

𝑥 𝜉\𝜈 · Δ (𝑥)𝜈 (3.2)

for every finite subset 𝜉 of I. It follows that {Δ (𝑥) 𝜉 }𝜉 ⊂ 𝑓 𝐼 is also a basis of 𝑘⊗𝑆 𝑘 . Since the multiplication
map sends Δ (𝑥) 𝜉 to a nonzero element of k if and only if 𝜉 = ∅, it follows that {Δ (𝑥) 𝜉 }∅≠𝜉 ⊂ 𝑓 𝐼 is a basis
for 𝐽〈1〉 as a k-vector space with respect to multiplication on the left factor. It then readily follows that the
elements Δ (𝑥) 𝜉 with |𝜉 | ≥ 𝑞 form a basis of 𝐽𝑞

〈1〉 , and that the elements Δ (𝑥) 𝜉 with |𝜉 | = 𝑞 form a basis
of 𝐽𝑞

〈1〉/𝐽
𝑞+1
〈1〉 . Since for every 𝜉 ⊂ 𝐼 with |𝜉 | = 𝑞, the map u sends a basis element (𝑑𝑥) 𝜉 :=

∏
𝑖∈𝜉 𝑑𝑥𝑖 of

Ω𝑞
𝑘 to Δ (𝑥) 𝜉 , the claim follows. �

The induction step for proving Theorem 3.4 will rely on the following two key technical Lemmas.
Let us choose a 2-basis {𝑥𝑖}𝑖∈𝐼 of k as in the proof of Lemma 3.6.
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Lemma 3.7. Let 𝑞 ≥ 1, and let 𝜇𝜈 ∈ 𝑘 for every subset 𝜈 ⊂ 𝐼 with |𝜈 | = 𝑞 − 1. Suppose that
∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

Δ (𝜇𝜈)Δ (𝑥)
𝜈 ∈ 𝐽𝑞+1

〈1〉 .

Then
∑
𝜈⊂𝐼 , |𝜈 |=𝑞−1 𝑉 (𝜇𝜈 (𝑑𝑥)

𝜈) is divisible by 2 in W〈2〉Ω
𝑞−1
𝑘 .

Proof. Let us write 𝜇𝜈 ∈ 𝑘 uniquely as a linear combination 𝜇𝜈 =
∑

𝛿⊂ 𝑓 𝐼 𝑠
2
𝜈, 𝛿𝑥

𝛿 with respect to the
basis {𝑥 𝛿}𝛿⊂ 𝑓 𝐼 of k as an S-vector space. Let us notice that, since we are tensoring over S, the map
Δ : 𝑘 → 𝑘 ⊗𝑆 𝑘 is S-linear. Then by applying formula (3.2),

Δ (𝜇𝜈) =
∑
𝛿⊂ 𝑓 𝐼

𝑠2
𝜈, 𝛿Δ (𝑥

𝛿) =
∑
𝛿⊂ 𝑓 𝐼

𝑠2
𝜈, 𝛿 (1 ⊗ 𝑥 𝛿 + 𝑥 𝛿 · (1 ⊗ 1))

=
∑
𝛿⊂ 𝑓 𝐼

𝑠2
𝜈, 𝛿

∑
𝛾⊂𝛿

𝑥 𝛿\𝛾Δ (𝑥)𝛾 +
∑
𝛿⊂ 𝑓 𝐼

𝑠2
𝜈, 𝛿𝑥

𝛿 · Δ (𝑥) ∅ =
∑

∅≠𝛾⊂𝛿⊂ 𝑓 𝐼

𝑠2
𝜈, 𝛿𝑥

𝛿\𝛾Δ (𝑥)𝛾 ,

where the last equality holds since the sum
∑

𝛿⊂ 𝑓 𝐼 𝑠
2
𝜈, 𝛿𝑥

𝛿 · Δ (𝑥) ∅ is equal to the term 𝛾 = ∅ in the
previous sum. It follows that

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

Δ (𝜇𝜈)Δ (𝑥)
𝜈 =

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

(
∑

∅≠𝛾⊂𝛿 𝑓 ⊂𝐼

𝑠2
𝜈, 𝛿𝑥

𝛿\𝛾Δ (𝑥)𝛾)Δ (𝑥)𝜈 =
∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

∑
∅≠𝛾⊂𝛿⊂ 𝑓 𝐼
𝛾∩𝜈=∅

𝑠2
𝜈, 𝛿𝑥

𝛿\𝛾Δ (𝑥)𝛾�𝜈 ,

where in the last sum 𝛾 and 𝜈 are disjoint, since Δ (𝑎)Δ (𝑎) = 0 in 𝑘 ⊗𝑆 𝑘 for all 𝑎 ∈ 𝑘 . Since, by
assumption, this element belongs to 𝐽𝑞+1

〈1〉 , and the Δ (𝑥) 𝜉 with |𝜉 | = 𝑞 + 1 are a basis for 𝐽𝑞+1
〈1〉 , we must

have that, for every 𝜈 ⊂ 𝐼 with |𝜈 | = 𝑞 − 1 and every 𝑗 ∈ 𝐼 \ 𝜈 (corresponding to the terms 𝛾 = { 𝑗} in
the sum above),

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

∑
𝛿⊂ 𝑓 𝐼

∑
𝑗∈𝛿\𝜈

𝑠2
𝜈, 𝛿𝑥

𝛿\ 𝑗Δ (𝑥) 𝑗�𝜈 = 0.

Since the Δ (𝑥) 𝜉 are linearly independent, we have that, for every subset 𝜉 ⊂ 𝐼 with |𝜉 | = 𝑞 (correspond-
ing to the terms 𝜖 = 𝑗 � 𝜈), the coefficient of Δ (𝑥) 𝜉 must vanish – that is, that

0 =
∑
𝑗∈𝜉

∑
𝛿⊂ 𝑓 𝐼
𝑗∈𝛿

𝑠2
𝜉\ 𝑗 , 𝛿𝑥

𝛿\ 𝑗 =
∑
𝛼⊂ 𝑓 𝐼

∑
𝑗∈𝜉\𝛼

𝑠2
𝜉\ 𝑗 ,𝛼� 𝑗𝑥

𝛼 .

Since the 𝑥𝛼 form a basis of k as an S-vector space, we find that for every finite 𝛼 ⊂ 𝐼 and 𝜉 ⊂ 𝐼 with
|𝜉 | = 𝑞, the corresponding coefficient must vanish:

∑
𝑗∈𝜉\𝛼

𝑠2
𝜉\ 𝑗 ,𝛼� 𝑗 = 0. (3.3)

We now show that these relations among the coefficients 𝑠𝜈, 𝛿 imply that 𝑉 (
∑
𝜈⊂𝐼 , |𝜈 |=𝑞−1 𝜇𝜈 (𝑑𝑥)

𝜈) is
divisible by 2 in W〈2〉Ω

𝑞−1
𝑘 . We do this by showing that the sum

∑
𝜈⊂𝐼 , |𝜈 |=𝑞−1 𝜇𝜈 (𝑑𝑥)

𝜈 is in the image of
the Frobenius map. The claim will then follow since, by the linearity of V of axiom iv) of Definition 3.2,

𝑉 (𝐹 (𝑧)) = 𝑉 (1) · 𝑧

for every 𝑧 ∈ W〈2〉Ω
𝑞−1
𝑘 , and 𝑉 (1) = 2 ∈ W〈2〉 (𝑘) since k has characteristic 2.
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By rearranging the terms and grouping pairs (𝜈, 𝛿) with the same intersection 𝛽, we can write

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

𝜇𝜈 (𝑑𝑥)
𝜈 =

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

∑
𝛿⊂ 𝑓 𝐼

𝑠2
𝜈, 𝛿𝑥

𝛿 (𝑑𝑥)𝜈 =
∑
𝛽⊂ 𝑓 𝐼

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

∑
𝛿⊂ 𝑓 𝐼
𝛿∩𝜈=𝛽

𝑠2
𝜈, 𝛿𝑥

𝛿 (𝑑𝑥)𝜈

=
∑
𝛽⊂ 𝑓 𝐼

𝑥𝛽 (𝑑𝑥)𝛽
∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

∑
𝛿⊂ 𝑓 𝐼
𝛿∩𝜈=𝛽

𝑠2
𝜈, 𝛿𝑥

𝛿\𝛽 (𝑑𝑥)𝜈\𝛽 .
(3.4)

Each term 𝑥𝛽 (𝑑𝑥)𝛽 is in the image of the Frobenius, since by axiom v) of Definition 3.2 (we recall that
in the de Rham-Witt complex the map 𝜆 is the identity),

𝑥𝛽 (𝑑𝑥)𝛽 =
∏
𝑖∈𝛽

𝑥𝑖𝑑𝑥𝑖 =
∏
𝑖∈𝛽

𝜏0(𝑥𝑖)𝑑𝜏0(𝑥𝑖) =
∏
𝑖∈𝛽

𝐹 (𝑑𝜏1 (𝑥𝑖)) = 𝐹 (
∏
𝑖∈𝛽

𝑑𝜏1(𝑥𝑖)).

It is therefore sufficient to show that for every fixed 𝛽 ⊂ 𝐼, the double sum in equation (3.4) is in the
image of the Frobenius. Let us now group those terms by the union 𝜆 of 𝜈 and 𝛿, and write

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

∑
𝛿⊂ 𝑓 𝐼
𝛿∩𝜈=𝛽

𝑠2
𝜈, 𝛿𝑥

𝛿\𝛽 (𝑑𝑥)𝜈\𝛽 =
∑
𝜆⊂ 𝑓 𝐼

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

∑
𝛿⊂ 𝑓 𝐼
𝛿∩𝜈=𝛽
𝛿∪𝜈=𝜆

𝑠2
𝜈, 𝛿𝑥

𝛿\𝛽 (𝑑𝑥)𝜈\𝛽 . (3.5)

We now show that for every fixed 𝛽, 𝜆 ⊂ 𝑓 𝐼, the inner double sum in (3.5) is in the image of the Frobenius.
Notice that, after fixing 𝛽 and 𝜆, the subset 𝛿 is determined by 𝜈, and let us write 𝛿𝜈 := (𝜆 \ 𝜈) � 𝛽. That
is, we show that

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1
𝛽⊂𝜈⊂𝜆

𝑠2
𝜈, 𝛿𝜈

𝑥 𝛿𝜈\𝛽 (𝑑𝑥)𝜈\𝛽 =
∑
𝜈⊂𝐼
|𝜈 |=𝑞−1
𝛽⊂𝜈⊂𝜆

𝑠2
𝜈, 𝛿𝜈

𝑥𝜆\𝜈 (𝑑𝑥)𝜈\𝛽 (3.6)

is in the image of the Frobenius. Let us first treat the case where 𝛽 = 𝜆 (with 𝑞 − 1 elements, otherwise
the sum is trivially zero). In this case, the sum is just 𝑠2

𝛽,𝛽 , and every square of k is in the image of the
Frobenius since 𝑠2 = 𝐹 (𝜏1 (𝑠)). Thus, suppose that 𝛽 is a proper subset of 𝜆, and choose an element
𝑗0 ∈ 𝜆 \ 𝛽. We claim that (3.6) is equal to

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1
𝛽⊂𝜈⊂𝜆
𝑗0∈𝜈

𝑠2
𝜈, 𝛿𝜈

𝑑 (𝑥 (𝜆\𝜈)� 𝑗0 ) (𝑑𝑥) (𝜈\𝛽)\ 𝑗0 .

This will conclude the proof, since any square is in the image of the Frobenius by the argument above,
and so is each differential by the relation 𝑑 = 𝐹𝑑𝑉 of axiom v) (observe that 𝜆 \ 𝜈 and 𝜈 \ 𝛽 are disjoint,
with union 𝜆 \ 𝛽, so that no summands contain the square of a differential). To see that the last claim
holds, let us notice that by iterating the Leibniz rule,

𝑑 (𝑥 𝜉 ) =
∑
𝑗∈𝜉

𝑥 𝜉\ 𝑗𝑑𝑥 𝑗

https://doi.org/10.1017/fms.2025.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.40


Forum of Mathematics, Sigma 29

for every finite subset 𝜉 ⊂ 𝐼, and therefore
∑
𝜈⊂𝐼
|𝜈 |=𝑞−1
𝛽⊂𝜈⊂𝜆
𝑗0∈𝜈

𝑠2
𝜈, 𝛿𝜈

𝑑 (𝑥 (𝜆\𝜈)� 𝑗0 ) (𝑑𝑥) (𝜈\𝛽)\ 𝑗0 =
∑
𝜈⊂𝐼
|𝜈 |=𝑞−1
𝛽⊂𝜈⊂𝜆
𝑗0∈𝜈

∑
𝑗∈(𝜆\𝜈)� 𝑗0

𝑠2
𝜈, 𝛿𝜈

𝑥 ( (𝜆\𝜈)� 𝑗0)\ 𝑗 (𝑑𝑥 𝑗 ) (𝑑𝑥)
(𝜈\𝛽)\ 𝑗0

=
∑
𝜈⊂𝐼
|𝜈 |=𝑞−1
𝛽⊂𝜈⊂𝜆
𝑗0∈𝜈

(
𝑠2
𝜈, 𝛿𝜈

𝑥𝜆\𝜈 (𝑑𝑥)𝜈\𝛽 +
∑
𝑗∈𝜆\𝜈

𝑠2
𝜈, 𝛿𝜈

𝑥 ( (𝜆\𝜈)� 𝑗0)\ 𝑗 (𝑑𝑥) (𝜈\𝛽)\ 𝑗0� 𝑗
)

=
( ∑

𝜈⊂𝐼
|𝜈 |=𝑞−1
𝛽⊂𝜈⊂𝜆
𝑗0∈𝜈

𝑠2
𝜈, 𝛿𝜈

𝑥𝜆\𝜈 (𝑑𝑥)𝜈\𝛽
)
+
( ∑

𝜈⊂𝐼
|𝜈 |=𝑞−1
𝛽⊂𝜈⊂𝜆
𝑗0∈𝜈

∑
𝑗∈𝜆\𝜈

𝑠2
𝜈, 𝛿𝜈

𝑥 ( (𝜆\𝜈)� 𝑗0)\ 𝑗 (𝑑𝑥) (𝜈\𝛽)\ 𝑗0� 𝑗
)
.

By setting 𝜁 = (𝜈 \ 𝑗0) � 𝑗 in the second sum, and observing that 𝛿𝜈 = (𝛿𝜁 \ 𝑗0) � 𝑗 , we find that this
is equal to
( ∑
𝜈⊂𝐼
|𝜈 |=𝑞−1
𝛽⊂𝜈⊂𝜆
𝑗0∈𝜈

𝑠2
𝜈, 𝛿𝜈

𝑥𝜆\𝜈 (𝑑𝑥)𝜈\𝛽
)
+
( ∑

𝜁 ⊂𝐼
|𝜁 |=𝑞−1
𝛽⊂𝜁 ⊂𝜆
𝑗0∉𝜁

∑
𝑗∈𝜁 \𝛽

𝑠2
(𝜁 � 𝑗0)\ 𝑗 , (𝛿𝜁 \ 𝑗0)� 𝑗

𝑥 ( (𝜆\(𝜁 � 𝑗0\ 𝑗))� 𝑗0)\ 𝑗 (𝑑𝑥) ( (𝜁 � 𝑗0\ 𝑗)\𝛽)\ 𝑗0� 𝑗
)

(3.7)

=
( ∑
𝜈⊂𝐼
|𝜈 |=𝑞−1
𝛽⊂𝜈⊂𝜆
𝑗0∈𝜈

𝑠2
𝜈, 𝛿𝜈

𝑥𝜆\𝜈 (𝑑𝑥)𝜈\𝛽
)
+
( ∑

𝜁 ⊂𝐼
|𝜁 |=𝑞−1
𝛽⊂𝜈⊂𝜆
𝑗0∉𝜁

( ∑
𝑗∈𝜁 \𝛽

𝑠2
(𝜁 � 𝑗0)\ 𝑗 , (𝛿𝜁 \ 𝑗0)� 𝑗

)
𝑥𝜆\𝜁 (𝑑𝑥)𝜁 \𝛽

)
. (3.8)

Finally, by applying the relation (3.3) for 𝜉 = 𝜁 � 𝑗0 and 𝛼 = 𝛿𝜁 \ 𝑗0, so that 𝜉 \ 𝛼 = (𝜁 \ 𝛽) � 𝑗0, we
find that

∑
𝑗∈𝜁 \𝛽

𝑠2
(𝜁 � 𝑗0)\ 𝑗 , (𝛿𝜁 \ 𝑗0)� 𝑗

= 𝑠2
𝜁 , 𝛿𝜁

,

which identifies (3.7) and (3.6). �

Let us remark that if (𝑥, 𝑦) is one of the generators of 𝐽〈2𝑛 〉 of Proposition 2.16, then x and y, when
regarded as elements of 𝑘 ⊗𝑆 𝑘 , belong to 𝐽〈1〉 . Thus, if an element (𝑧, 𝑤) of 𝜋0 TRR𝑛+1 (𝑘; 2)𝜙Z/2

belongs to 𝐽𝑞+1
〈2𝑛 〉 for some 𝑞 ≥ 0, then z and w belong to 𝐽𝑞+1

〈1〉 . The following lemma strengthens this
property when the second component w is zero.

Lemma 3.8. Let 𝑧 ∈ (𝑘 ⊗𝑆 𝑘)𝐶2 be such that (𝑧, 0) belongs to 𝐽𝑞+1
〈2𝑛 〉 for some 𝑞 ≥ 0. Then z belongs to

𝐽𝑞+2
〈1〉 .

Proof. By the characterisation of 𝐽〈2𝑛 〉 of Proposition 2.16, we see that (𝑥, 0) can be expressed as a sum
of elements 𝑢1 . . . 𝑢𝑞+1, with 𝑢 𝑗 ∈ 𝐽〈2𝑛 〉 , of three types:

i) At least one of the 𝑢 𝑗 is of the form 𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) +𝑉𝑛−𝑖𝜏𝑖 (𝑎𝑏 ⊗ 1) for 𝑎, 𝑏 ∈ 𝑘 and 0 ≤ 𝑖 ≤ 𝑛 − 1.
We can then write this generator in components as

𝑢1 . . . 𝑢𝑞+1 = (𝑤1 + 𝑤
′
1, 0)𝑢2 . . . 𝑢𝑞+1,

where 𝑤1 is the first component of 𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) and 𝑤′1 the first component of 𝑉𝑛−𝑖𝜏𝑖 (𝑎𝑏 ⊗ 1).
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ii) All of the 𝑢 𝑗 are of the form 𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) + 𝜎𝑉𝑛−𝑖𝜏𝑖 (𝑎 ⊗ 𝑏) for 𝑎, 𝑏 ∈ 𝑘 and 0 ≤ 𝑖 ≤ 𝑛 − 1. Then
each factor is diagonal; that is, 𝑢 𝑗 = (𝑣 𝑗 , 𝑣 𝑗 ) where 𝑣 𝑗 is in 𝐽〈1〉 , and

𝑢1 . . . 𝑢𝑞+1 = (𝑣1 . . . 𝑣𝑞+1, 𝑣1 . . . 𝑣𝑞+1).

iii) It is not of the first two types. In this case, at least one of the 𝑢 𝑗 is of the form 𝜏𝑛 (𝑎 ⊗ 𝑏) + 𝜏𝑛 (𝑎𝑏 ⊗ 1)
and the other factors are diagonal. We can then write such a generator as

𝑢1 . . . 𝑢𝑞+1 = (𝑡1, 𝑡
′
1) . . . (𝑡𝑙 , 𝑡

′
𝑙 ) (𝑠𝑙+1, 𝑠𝑙+1) . . . (𝑠𝑞+1, 𝑠𝑞+1)

= (𝑡1 . . . 𝑡𝑙𝑠𝑙+1 . . . 𝑠𝑞+1, 𝑡
′
1 . . . 𝑡

′
𝑙 𝑠𝑙+1 . . . 𝑠𝑞+1)

for some 1 ≤ 𝑙 ≤ 𝑞 + 1, where 𝑡 𝑗 = 𝜙𝑛 (𝑎 𝑗 ⊗ 𝑏 𝑗 ) + 𝜙𝑛 (𝑎 𝑗𝑏 𝑗 ⊗ 1), 𝑡 ′𝑗 = 𝜙𝑛 (𝑏 𝑗 ⊗ 𝑎 𝑗 ) + 𝜙𝑛 (1 ⊗ 𝑎 𝑗𝑏 𝑗 ),
and 𝑠 𝑗 is in 𝐽〈1〉 .

Thus, let us write (𝑧, 0) as a sum of these types of generators, where we omit the indexing from the
sums to make this expression more digestible:

(𝑧, 0) =
∑
(𝑤1 + 𝑤

′
1, 0)𝑢2 . . . 𝑢𝑞+1 +

∑
(𝑣1 . . . 𝑣𝑞+1, 𝑣1 . . . 𝑣𝑞+1)

+
∑
(𝑡1 . . . 𝑡𝑙𝑠𝑙+1 . . . 𝑠𝑞+1, 𝑡

′
1 . . . 𝑡

′
𝑙 𝑠𝑙+1 . . . 𝑠𝑞+1).

Since the second component of (𝑧, 0) is null, we must have that
∑

𝑣1 . . . 𝑣𝑞+1 =
∑

𝑡 ′1 . . . 𝑡
′
𝑙 𝑠𝑙+1 . . . 𝑠𝑞+1.

By replacing the left-hand side in the first component above, we have that z is, by denoting 𝑟 𝑗 the first
component of 𝑢 𝑗 , of the form

𝑧 =
∑
(𝑤1 + 𝑤

′
1)𝑟2 . . . 𝑟𝑞+1 +

∑
𝑡 ′1 . . . 𝑡

′
𝑙 𝑠𝑙+1 . . . 𝑠𝑞+1 +

∑
𝑡1 . . . 𝑡𝑙𝑠𝑙+1 . . . 𝑠𝑞+1

=
∑
(𝑤1 + 𝑤

′
1)𝑟2 . . . 𝑟𝑞+1 +

∑
(𝑡1 . . . 𝑡𝑙 + 𝑡

′
1 . . . 𝑡

′
𝑙 )𝑠𝑙+1 . . . 𝑠𝑞+1.

Thus, since the 𝑟 𝑗 and 𝑠 𝑗 belong to 𝐽〈1〉 , to conclude the proof, it is sufficient to show that 𝑤1 + 𝑤′1
belongs to 𝐽2

〈1〉 and that (𝑡1 . . . 𝑡𝑙 + 𝑡 ′1 . . . 𝑡
′
𝑙 ) belongs to 𝐽𝑙+1

〈1〉 . For the first case, we have that

𝑤1 + 𝑤
′
1 = 𝜙𝑖 (𝑎 ⊗ 𝑏) + 𝜙𝑖 (𝑏 ⊗ 𝑎) + 𝜙𝑖 (𝑎𝑏 ⊗ 1) + 𝜙𝑖 (1 ⊗ 𝑎𝑏)

= 𝑎2𝑖−1𝑏2𝑖 ⊗ 𝑎 + 𝑏2𝑖−1𝑎2𝑖 ⊗ 𝑏 + (𝑎𝑏)2
𝑖−1 ⊗ 𝑎𝑏 + (𝑎𝑏)2

𝑖
⊗ 1

= (𝑎𝑏)2
𝑖−1(𝑏 ⊗ 𝑎 + 𝑎 ⊗ 𝑏 + 1 ⊗ 𝑎𝑏 + 𝑎𝑏 ⊗ 1)

= (𝑎𝑏)2
𝑖−1(1 ⊗ 𝑎 + 𝑎 ⊗ 1) (1 ⊗ 𝑏 + 𝑏 ⊗ 1),

which indeed belongs to 𝐽2
〈1〉 . For the second case, we have that (𝑡1 . . . 𝑡𝑙 + 𝑡 ′1 . . . 𝑡

′
𝑙 ) is equal to

𝑙∏
𝑗=1
(𝜙𝑛 (𝑎 𝑗 ⊗ 𝑏 𝑗 ) + 𝜙𝑛 (𝑎 𝑗𝑏 𝑗 ⊗ 1)) +

𝑙∏
𝑗=1
(𝜙𝑛 (𝑏 𝑗 ⊗ 𝑎 𝑗 ) + 𝜙𝑛 (1 ⊗ 𝑎 𝑗𝑏 𝑗 ))

=
𝑙∏
𝑗=1
(𝑎2𝑛−1

𝑗 𝑏2𝑛
𝑗 ⊗ 𝑎 𝑗 + (𝑎 𝑗𝑏 𝑗 )

2𝑛−1 ⊗ 𝑎 𝑗𝑏 𝑗 ) +
𝑙∏
𝑗=1
(𝑏2𝑛−1

𝑗 𝑎2𝑛
𝑗 ⊗ 𝑏 𝑗 + (𝑎 𝑗𝑏 𝑗 )

2𝑛 ⊗ 1)

=
𝑙∏
𝑗=1

(
((𝑎 𝑗𝑏 𝑗 )

2𝑛−1 ⊗ 𝑎 𝑗 ) · (𝑏 𝑗 ⊗ 1 + 1 ⊗ 𝑏 𝑗 )
)
+

𝑙∏
𝑗=1

(
((𝑎 𝑗 )

2𝑛 (𝑏 𝑗 )
2𝑛−1 ⊗ 1) · (𝑏 𝑗 ⊗ 1 + 1 ⊗ 𝑏 𝑗 )

)
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=
( 𝑙∏
𝑗=1
((𝑎 𝑗𝑏 𝑗 )

2𝑛−1 ⊗ 𝑎 𝑗 ) +
𝑙∏
𝑗=1
((𝑎 𝑗 )

2𝑛 (𝑏 𝑗 )
2𝑛−1 ⊗ 1)

)
·

𝑙∏
𝑗=1
(𝑏 𝑗 ⊗ 1 + 1 ⊗ 𝑏 𝑗 )

=
( 𝑙∏
𝑗=1
(𝑎 𝑗𝑏 𝑗 )

2𝑛−1(1 ⊗ 𝑎 𝑗 ) +
𝑙∏
𝑗=1
(𝑎 𝑗𝑏 𝑗 )

2𝑛−1 (𝑎 𝑗 ⊗ 1)
)
·

𝑙∏
𝑗=1
(𝑏 𝑗 ⊗ 1 + 1 ⊗ 𝑏 𝑗 )

= (
𝑙∏
𝑗=1
(𝑎 𝑗𝑏 𝑗 )

2𝑛−1)
(
1 ⊗ (

𝑙∏
𝑗=1

𝑎 𝑗 ) + (
𝑙∏
𝑗=1

𝑎 𝑗 ) ⊗ 1
)
·

𝑙∏
𝑗=1
(𝑏 𝑗 ⊗ 1 + 1 ⊗ 𝑏 𝑗 ),

which belongs to 𝐽𝑙+1
〈1〉 . �

Proof of Theorem 3.4. By Remark 3.5, in degree 𝑞 = 0, the map 𝑢𝑛 is an isomorphism for all 𝑛 ≥ 0.
Thus, let 𝑞 ≥ 1. By Lemma 3.6, the map 𝑢0 : Ω𝑞

𝑘 −→ 𝐽𝑞
〈1〉/𝐽

𝑞+1
〈1〉 is an isomorphism for every 𝑞 ≥ 1.

Thus, let 𝑛 ≥ 1, assume that 𝑢𝑛−1 is an isomorphism, and let us show that 𝑢𝑛 is an isomorphism. Since
𝑢𝑛 is a map of Witt complexes, it clearly hits all the generators of 𝐽𝑞

〈2𝑛 〉 from Proposition 2.16, and it is
therefore surjective. To see that it is injective, consider the commutative diagram with exact rows

Ω𝑞
𝑘 ⊕ Ω𝑞−1

𝑘

𝑉 𝑛+𝑑𝑉 𝑛
�� (W〈2𝑛 〉 Ω

𝑞
𝑘 )/2

𝑅 ��

𝑢𝑛

��

(W〈2𝑛−1 〉 Ω
𝑞
𝑘 )/2 ��

𝑢𝑛−1�
��

0

𝐽𝑞
〈2𝑛 〉/𝐽

𝑞+1
〈2𝑛 〉

𝑅 �� 𝐽𝑞
〈2𝑛−1 〉

/𝐽𝑞+1
〈2𝑛−1 〉

�� 0

where the top row is exact by [Cos08, Lemma 3.5]. It then suffices to show that 𝑢𝑛 is injective when
restricted to the image of the top left horizontal map 𝑉𝑛 + 𝑑𝑉𝑛. Thus, let 𝑎 ∈ Ω𝑞

𝑘 and 𝑏 ∈ Ω𝑞−1
𝑘 , and

suppose that 𝑢𝑛 (𝑉𝑛 (𝑎) + 𝑑𝑉𝑛 (𝑏)) can be represented by an element of 𝐽𝑞+1
〈2𝑛 〉 . We need to show that

𝑐 := 𝑉𝑛 (𝑎) + 𝑑𝑉𝑛 (𝑏) is divisible by 2 in W〈2𝑛 〉Ω
𝑞
𝑘 . Let us explicitly calculate 𝑢𝑛 (𝑉

𝑛 (𝑎) + 𝑑𝑉𝑛 (𝑏)).
Given a 2-basis {𝑥𝑖}𝑖∈𝐼 of k, let us write

𝑎 =
∑
𝜉 ⊂𝐼
|𝜉 |=𝑞

𝜆 𝜉 (𝑑𝑥)
𝜉 and 𝑏 =

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

𝜇𝜈 (𝑑𝑥)
𝜈 ,

where 𝜆𝜉 , 𝜇𝜈 ∈ 𝑘 and (𝑑𝑥) 𝜉 =
∏

𝑖∈𝜉 𝑑𝑥𝑖 . Since u is a map of Witt complexes, we must have that

𝑢𝑛 (𝑉
𝑛 (𝑎) + 𝑑𝑉𝑛 (𝑏)) = 𝑉𝑛 (𝑢0(𝑎)) + 𝑑𝑉𝑛 (𝑢0(𝑏)) =

∑
𝜉 ⊂𝐼
|𝜉 |=𝑞

𝑉𝑛 (𝜆𝜉Δ (𝑥)
𝜉 ) +

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

𝑑𝑉𝑛 (𝜇𝜈Δ (𝑥)
𝜈).

Recall from Proposition 2.10 that for every 𝑥 ⊗ 𝑦 ∈ 𝑘 ⊗𝑆 𝑘 , we have that 𝑉𝑛 (𝑥 ⊗ 𝑦) is represented by
(tran(𝑥⊗ 𝑦), 0) in 𝜋0 TRR𝑛+1(𝑘; 2)𝜙Z/2, where tran(𝑥⊗ 𝑦) = 𝑥⊗ 𝑦+𝑦⊗𝑥. Thus, since 𝑑 = 1+𝜎, we have

𝑢𝑛 (𝑉
𝑛 (𝑎) + 𝑑𝑉𝑛 (𝑏)) =

∑
𝜉 ⊂𝐼
|𝜉 |=𝑞

(tran(𝜆𝜉Δ (𝑥) 𝜉 ), 0) +
∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

(tran(𝜇𝜈Δ (𝑥)𝜈), tran(𝜇𝜈Δ (𝑥)𝜈)).

By choosing 𝑖 ∈ 𝜉, we can write

tran(𝜆𝜉Δ (𝑥) 𝜉 ) = tran(𝜆𝜉Δ (𝑥𝑖)Δ (𝑥) 𝜉\𝑖) = tran(𝜆𝜉Δ (𝑥𝑖))Δ (𝑥) 𝜉\𝑖 = tran(𝜆𝜉 ⊗ 𝑥𝑖 + 𝜆 𝜉 𝑥𝑖 ⊗ 1)Δ (𝑥) 𝜉\𝑖

= (𝜆 𝜉 ⊗ 𝑥𝑖 + 𝜆 𝜉 𝑥𝑖 ⊗ 1 + 𝑥𝑖 ⊗ 𝜆𝜉 + 1 ⊗ 𝜆 𝜉 𝑥𝑖)Δ (𝑥)
𝜉\𝑖 = Δ (𝜆𝜉 )Δ (𝑥𝑖)Δ (𝑥)

𝜉\𝑖

= Δ (𝜆 𝜉 )Δ (𝑥)
𝜉 ,
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where the second equality holds since Δ (𝑥) 𝜉\𝑖 is fixed by the involution. Similarly, tran(𝜇𝜈Δ (𝑥)𝜈) =
Δ (𝜇𝜈)Δ (𝑥)𝜈 (which is obvious in the case where 𝑞 = 1 and 𝜈 = ∅). Thus, we find that

𝑢𝑛 (𝑉
𝑛 (𝑎) + 𝑑𝑉𝑛 (𝑏)) =

∑
𝜉 ⊂𝐼
|𝜉 |=𝑞

(Δ (𝜆𝜉 )Δ (𝑥)
𝜉 , 0) +

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

(Δ (𝜇𝜈)Δ (𝑥)
𝜈 ,Δ (𝜇𝜈)Δ (𝑥)

𝜈)

=
( ∑

𝜉 ⊂𝐼
|𝜉 |=𝑞

Δ (𝜆𝜉 )Δ (𝑥)
𝜉 +

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

Δ (𝜇𝜈)Δ (𝑥)
𝜈 ,

∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

Δ (𝜇𝜈)Δ (𝑥)
𝜈 ) ,

and this element is by assumption in 𝐽𝑞+1
〈2𝑛 〉 . Let us analyse the two components separately, starting from

the second one. As observed above Lemma 3.8, these components must in fact belong to 𝐽𝑞+1
〈1〉 , and

therefore,
∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

Δ (𝜇𝜈)Δ (𝑥)
𝜈 ∈ 𝐽𝑞+1

〈1〉 .

By Lemma 3.7, 𝑉 (𝜇𝜈 (𝑑𝑥)𝜈) vanishes in the de Rham Witt complex modulo 2, and therefore so does

𝑑𝑉𝑛 (𝑏) = 𝑑𝑉𝑛−1 (
∑
𝜈⊂𝐼
|𝜈 |=𝑞−1

𝑉 (𝜇𝜈 (𝑑𝑥)
𝜈)).

Our original element 𝑐 = 𝑉𝑛 (𝑎) + 𝑑𝑉𝑛 (𝑏) is then equal to 𝑉𝑛 (𝑎) in the de Rham-Witt complex modulo
2, and the map 𝑢𝑛 sends this element to

𝑢𝑛 (𝑐) = 𝑉𝑛 (𝑎) =
( ∑

𝜉 ⊂𝐼
|𝜉 |=𝑞

Δ (𝜆𝜉 )Δ (𝑥)
𝜉 , 0

)
.

Moreover, this element is by assumption in 𝐽𝑞+1
〈2𝑛 〉 . By applying Lemma 3.8, the first component∑

𝜉 ⊂𝐼
|𝜉 |=𝑞

Δ (𝜆𝜉 )Δ (𝑥) 𝜉 in fact belongs to 𝐽𝑞+2
〈1〉 . Again by Lemma 3.7, we find that

𝑐 = 𝑉𝑛 (𝑎) = 𝑉𝑛−1𝑉 (
∑
𝜉 ⊂𝐼
|𝜉 |=𝑞

𝜆 𝜉 (𝑑𝑥)
𝜉 ) = 0

in (W〈2𝑛 〉Ω
𝑞
𝑘 )/2, proving that 𝑢𝑛 is injective. �

3.3. The Milnor conjecture and TCR

Let us recall that the 2-typical topological cyclic homology spectrum TC(𝑘; 2) of k can be defined as
the equaliser

TC(𝑘; 2) �� TR(𝑘; 2)
id ��

𝐹
�� TR(𝑘; 2)

of the identity and the Frobenius map of TR(𝑘; 2). Let us denote W〈2∞〉Ω∗𝑘 the limit of W〈2𝑛 〉Ω∗𝑘 over
the map R, and define 𝜈𝑑𝑅𝑊 /2∗ (𝑘; 2) and 𝜖𝑑𝑅𝑊 /2∗ (𝑘; 2) respectively as the equaliser and coequaliser of
the parallel group homomorphisms
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𝜈∗
𝑑𝑅𝑊 /2(𝑘; 2) �� (W〈2∞〉 Ω∗𝑘 )/2

id ��

𝐹
�� (W〈2∞〉 Ω∗𝑘 )/2 �� 𝜖∗

𝑑𝑅𝑊 /2(𝑘; 2) .

Then, since the parallel arrows are ring homomorphisms, 𝜈∗
𝑑𝑅𝑊 /2(𝑘; 2) is a graded ring, and

𝜖∗
𝑑𝑅𝑊 /2 (𝑘; 2) is a graded 𝜈∗

𝑑𝑅𝑊 /2(𝑘; 2)-module (where the action on the latter is defined via either of
the maps id or F). We now prove a version of the Milnor conjecture for 𝜈∗

𝑑𝑅𝑊 /2(𝑘; 2) and 𝜖∗
𝑑𝑅𝑊 /2(𝑘; 2),

which describes these in terms of the graded ring associated to the kernel of the restriction map

𝐾 := ker
(
resZ/2𝑒 : 𝜋0TCR(𝑘; 2)𝜙Z/2 −→ (𝜋0TC(𝑘; 2))Z/2/𝐼𝑚(1 + 𝑤)

)
,

where the involution on 𝜋0TC(𝑘; 2) is induced by the involution underlying theZ/2-spectrum TCR(𝑘; 2).
The restriction map is defined as we did at the beginning of §2.3. Let us also define the 𝜋0TCR(𝑘; 2)𝜙Z/2-
module

𝑇−1 := 𝜋−1TCR(𝑘; 2)𝜙Z/2,

so that the quotients 𝐾∗𝑇−1/𝐾
∗+1𝑇−1 form a graded 𝐾∗/𝐾∗+1-module.

Theorem 3.9. Let k be a field of characteristic 2. There is an isomorphism of graded rings

𝜈∗𝑑𝑅𝑊 /2(𝑘; 2) � 𝐾∗/𝐾∗+1,

and an isomorphism of graded 𝐾∗/𝐾∗+1-modules

𝜖∗𝑑𝑅𝑊 /2(𝑘; 2) � 𝐾∗𝑇−1/𝐾
∗+1𝑇−1.

Proof. Let 𝜈∗(𝑘) and be 𝜖∗(𝑘) be respectively the equaliser and coequaliser of the projection map and
the inverse Cartier operator

𝜈∗(𝑘) �� Ω∗𝑘
𝜋 ��

𝐶−1
�� Ω∗𝑘/𝑑 (Ω

∗−1
𝑘 )

�� 𝜖∗(𝑘) .

The map R of the de Rham-Witt complex induces multiplicative maps 𝜈∗
𝑑𝑅𝑊 /2(𝑘; 2) → 𝜈∗(𝑘) and

𝜖∗
𝑑𝑅𝑊 /2 (𝑘; 2) → 𝜖∗(𝑘), which are isomorphisms by the proof of [CMM21, Proposition 2.26]. Moreover,

by [Kat82, Theorem (2)], the graded ring associated to the fundamental ideal I of the symmetric Witt
group is isomorphic to 𝜈∗(𝑘), and the graded module 𝐼∗W𝑞 (𝑘)/𝐼∗+1W𝑞 (𝑘) to 𝜖∗(𝑘). Thus, since [Kat82,
Theorem (1)] and Corollary 2.5 identify W𝑠 (𝑘) and 𝜋0TCR(𝑘; 2)𝜙Z/2, as rings, with the equaliser of

(𝑘 ⊗𝑆 𝑘)𝐶2
𝜋 ��

𝜙
�� (𝑘 ⊗𝑆 𝑘)𝐶2/𝐼𝑚(1 + 𝑤) ,

and W𝑞 (𝑘) and 𝑇−1, as modules, with their coequaliser, it suffices to show that I and K correspond to
the same ideal under these identifications.

For the symmetric Witt group, the isomorphism with the equaliser is given by the unique additive map
that sends the rank 1 form 〈𝑎〉, with 𝑎 ∈ 𝑘×, to 𝑎−1 ⊗ 𝑎. For 𝜋0TCR(𝑘; 2)𝜙Z/2, it is induced by the map

𝜋0TCR(𝑘; 2)𝜙Z/2 𝑅
−→ 𝜋0TRR2(𝑘; 2)𝜙Z/2 𝑐

−→ 𝜋0 (THR(𝑘)𝜙Z/2)𝐶2 ,

followed by the identification of the target with (𝑘 ⊗𝑆 𝑘)𝐶2 from Proposition 2.3. Let us note that, after
including the fixed points into 𝑘 ⊗𝑆 𝑘 , this is the map

𝜋0TCR(𝑘; 2)𝜙Z/2 𝑅
−→ 𝜋0THR(𝑘)𝜙Z/2 � 𝑘 ⊗𝑆 𝑘,
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where the isomorphism is from [DMPR21, Theorem 5.1] (there it is stated for the fixed points, but since
the transfer map of k is zero, the isomorphism descends to the geometric fixed points). Thus, in order to
compare I and K, it suffices to show that, under the isomorphism of Corollary 2.5, the restriction map
from 𝜋0TCR(𝑘; 2)𝜙Z/2 to (𝜋0TC(𝑘; 2))Z/2/𝐼𝑚(1 + 𝑤) sends 𝑎−1 ⊗ 𝑎 to 1. As we do not have a good
handle of 𝜋0TC(𝑘; 2) for a general field k, we found ourselves unable to prove this by direct calculation.

Instead, we can employ the existence of a trace map of Z/2-equivariant spectra tr : KR(𝑘) →
TCR(𝑘; 2) which lifts the trace map K(𝑘) → TC(𝑘; 2) from [BHM93]. This trace map is constructed in
the forthcoming paper [HNS21] in the setting of Poincaré ∞-categories. For the purpose of our paper,
we content ourselves with giving a point-set construction of this trace map in the case of rings with
involution, as carried out in Proposition A.1 below. In fact, we need very little from this trace map: since
tr : KR(𝑘) → TCR(𝑘; 2) is a map of Z/2-equivariant spectra and W𝑠 (𝑘) � 𝜋0KR(𝑘)𝜙Z/2, it induces a
commutative square

W𝑠 (𝑘)

𝑟 𝑘

��

tr ������� 𝜋0TCR(𝑘; 2)𝜙Z/2

resZ/2𝑒

��

𝑅 �� 𝜋0THR(𝑘)𝜙Z/2 � 𝑘 ⊗𝑆 𝑘

Z/2 tr �� (𝜋0 TC(𝑘; 2))Z/2/𝐼𝑚(1 + 𝑤)

where the bottom map is induced by the usual trace map from [BHM93]. The composite on the top row
sends the rank 1 form 〈𝑎〉 to 𝑎−1 ⊗ 𝑎, as proved in Proposition A.1. It follows that the top trace map
must be an isomorphism, and since the bottom map is a ring homomorphism and therefore injective,
the respective vertical kernels I and K are then isomorphic. �

Remark 3.10. In the proof of Theorem 3.9, we are using the Milnor conjecture twice: once in order to
identify 𝜈∗(𝑘) with the graded ring of I, and then in order to identify I with the kernel of 𝜋 − 𝜙. It seems
plausible that one could find a proof of the theorem which does not use Kato’s Theorems. Define W and
T respectively as the equaliser and coequaliser of

𝑊 �� 𝑘 ⊗𝑆 𝑘
𝜋 ��

𝜙
�� (𝑘 ⊗𝑆 𝑘)/𝐼𝑚(1 + 𝑤) �� 𝑇 ,

and K as the kernel of the multiplication map 𝜇 : 𝑊 → Z/2. One can then try to directly show that the
induced sequence

0→ 𝐾𝑛/𝐾𝑛+1 → 𝐽𝑛/𝐽𝑛+1
𝜋−𝜙
−−−−→ 𝐽𝑛/((𝐽𝑛+1 + 𝐵) ∩ 𝐽𝑛) → 𝐾𝑛𝑇/𝐾𝑛+1𝑇 → 0

remains exact, where B is the subgroup of 𝑘 ⊗𝑆 𝑘 generated by the elements 𝑎 ⊗ 𝑏 + 𝑏 ⊗ 𝑎. This would
then prove Theorem 3.9 because, under the isomorphism Ω∗𝑘 � 𝐽∗/𝐽∗+1, the kernel of the middle map
corresponds to 𝜈∗(𝑘), and the cokernel to 𝜖∗(𝑘) (see [Ara20, Fact 6]).

A. The real trace map for rings with involution

Let us finish the paper with a construction of a Z/2-equivariant lift of the trace map tr : K→ TC(−; 𝑝),
for every prime p. The trace was first constructed by Bökstedt-Hsiang-Madsen in [BHM93] as a natural
transformation K→ TC on the category of ring spectra. This construction has been extended to various
settings, most notably as a natural transformation of functors from stable infinity categories; see, for
example, [BGT14].

A Z/2-equivariant extension of this map as a natural transformation KR → TCR of functors
from Poincaré categories will appear in forthcoming work of Harpaz-Nikolaus-Shah [HNS21]. For the
purpose of this article, it will be more than sufficient to define the Z/2-equivariant trace map on the
category of discrete rings with involution. We will give a construction in line with the construction of
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the Dennis trace as carried out in [Mad94, §2.6]. After restricting down to THR, this construction agrees
with the one from [DO19], which was defined for ring spectra with involution.

Let A be a ring with involution 𝑤 : 𝐴𝑜𝑝 → 𝐴, and GL𝑛 (𝐴) the group of invertible 𝑛 × 𝑛-matrices
with the involution that sends M to 𝑀∗ := 𝑤(𝑀)𝑇 , where (−)𝑇 denotes the matrix transposition and w
is applied to M entrywise. The set of fixed points of GL𝑛 (𝐴) is the set of symmetric matrices

GL𝑛 (𝐴)
Z/2 = {𝑀 ∈ GL𝑛 (𝑘) | 𝑀

∗ = 𝑀}

and GL𝑛 (𝐴) acts on it by 𝑔 ·𝑀 = 𝑔𝑀𝑔∗. We let 𝐵𝜎GL𝑛 (𝐴) be the classifying space 𝐵GL𝑛 (𝐴) with the
involution of [BF84, Proposition 1.1.3]. Its Z/2-fixed-points space is the bar construction of the action
of GL𝑛 (𝐴) on GL𝑛 (𝐴)

Z/2 above (see also [DO19, §2.1] for the details). For the purpose of this paper,
we define KR(𝐴) to be the Z/2-equivariant group-completion of the Z/2-equivariant 𝐸∞-monoid with
involution

∐
𝑛≥0

𝐵𝜎GL𝑛 (𝐴),

where the monoid operation is induced by the direct sum of matrices. This is in fact the classifying space
of the symmetric monoidal category with duality of finite dimensional free A-modules, and therefore
indeed a Z/2-equivariant 𝐸∞-monoid. By construction, 𝜋0 (KR(𝐴)Z/2) is the group-completion of the
commutative monoid

∐
𝑛≥0

𝜋0 ((𝐵
𝜎GL𝑛 (𝐴))

Z/2) �
∐
𝑛≥0

GL𝑛 (𝐴)
Z/2/GL𝑛 (𝐴),

which is the Grothendieck-Witt group GW𝑠 (𝐴) of symmetric forms of free A-modules. The transfer
map is induced by the functor that sends a free module of rank n to the hyperbolic matrix of size 2𝑛,
and therefore, 𝜋0 (KR(𝐴)𝜙Z/2) is the symmetric Witt group 𝑊 𝑠 (𝐴) (again of free A-modules).

Let us also recall from [DMPR21, Theorem 5.1] that there is an isomorphism of abelian groups

𝜋0 (THR(𝐴)Z/2) � (𝐴Z/2 ⊗ 𝐴Z/2)/𝑇,

where 𝐴Z/2 is the subgroup of fixed points of the involution w, and the quotient is by the subgroup T
generated by the elements of the form (i) and (ii) from [DMPR21, Theorem 5.1]. In particular, for 𝐴 = 𝑘
a ring of characteristic 2 with trivial involution, this is 𝑘 ⊗𝑆 𝑘 , and since the transfer map (𝑎 +𝑤(𝑎)) ⊗ 1
of [DMPR21, Theorem 5.1] is in this case zero, we have as well that 𝜋0 (THR(𝑘)𝜙Z/2) � 𝑘 ⊗𝑆 𝑘 .

Proposition A.1. Let A be a ring with involution. For every prime p, there is a map of Z/2-spectra
tr : KR(𝐴) → TCR(𝐴; 𝑝) which forgets to the K-theoretic trace map of [BHM93]. The composite

GW𝑠 (𝐴) = 𝜋0 (KR(𝐴)Z/2) tr
−→ 𝜋0 (TCR(𝐴; 2)Z/2) 𝑅

−→ 𝜋0 (THR(𝐴)Z/2) � (𝐴Z/2 ⊗ 𝐴Z/2)/𝑇

sends the element of GW𝑠 (𝐴) represented by a symmetric form x on 𝐴⊕𝑛 to

tr(𝑥) =
𝑛∑
𝑖=1

(
(𝑥−1)𝑖𝑖 ⊗ 𝑥𝑖𝑖 − (𝑥

−1)𝑖𝑖𝑥𝑖𝑖 ⊗ 1
)
+ 𝑛 ⊗ 1,

where 𝑥𝑖𝑖 are the entries of the matrix of x for the standard basis of 𝐴⊕𝑛, and 𝑥−1 denotes the inverse
matrix.

Proof. We construct the trace by employing a construction completely analogous to the one from
Dennis and Bökstedt-Hsiang-Madsen, as explained in [Mad94, §2.6]. Let 𝐵𝑑𝑖GL𝑛 (𝐴) be the dihedral
bar construction of GL𝑛 (𝐴), defined as the geometric realisation of the dihedral nerve 𝑁𝑑𝑖GL𝑛 (𝐴),
which is the cyclic nerve of GL𝑛 (𝐴) with the involution analogous to the one of THR(𝑘) from §1.
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Its Z/2-fixed-points space is the two-sided bar construction of the action of GL𝑛 (𝐴) on GL𝑛 (𝐴)
Z/2, and

we refer to [DO19, §2.1] for the details.
We define the trace map from maps of Z/2-spaces

𝐵𝜎GL𝑛 (𝐴)
𝑠
→ 𝐵𝑑𝑖GL𝑛 (𝐴) → 𝐵𝑑𝑖M𝑛 (𝐴) → Ω∞(THR(M𝑛 (𝐴))

𝐶𝑟 )
𝑚
� Ω∞(THR(𝐴)𝐶𝑟 ), (A.1)

for every 𝑟 ≥ 1, by taking the disjoint union over 𝑛 ≥ 0 and group-completing the source with respect
to direct sums. The maps in this composite are defined as follows. The map s is the canonical section,
which is defined on an n-simplex (𝑔1, . . . , 𝑔𝑛) by

𝑠(𝑔1, . . . , 𝑔𝑛) = ((𝑔1 . . . 𝑔𝑛)
−1, 𝑔1, . . . , 𝑔𝑛).

The second map of (A.1) is the inclusion of invertible matrices into the monoid of all (𝑛 × 𝑛)-matrices
M𝑛 (𝐴), again with the transposition of matrices and entrywise w as involution. For the third map, we
use that 𝐵𝑑𝑖M𝑛 (𝐴) is the geometric realisation of the dihedral nerve 𝑁𝑑𝑖M𝑛 (𝐴), and therefore has an
action of the dihedral group 𝐷𝑟 of order 2𝑟 , for every integer 𝑟 ≥ 1. The realisation of the r-subdivision
sd𝑟 of [BHM93, §1] applied to the dihedral nerve 𝑁𝑑𝑖M𝑛 (𝐴) has a Z/2-action, and its geometric
realisation is 𝐷𝑟 -equivariantly isomorphic to 𝐵𝑑𝑖M𝑛 (𝐴) (see [DMP24, §1.2] for a detailed discussion
about subdivisions of dihedral objects). Thus, we obtain Z/2-equivariant isomorphisms

𝐵𝑑𝑖 M𝑛 (𝐴)
Δ𝑟

�
�� | (sd𝑟 𝑁𝑑𝑖 M𝑛 (𝐴))

𝐶𝑟 |
𝐸𝑟

�
�� (𝐵𝑑𝑖 M𝑛 (𝐴))

𝐶𝑟

where the first map is induced by the diagonal map degreewise, and the second map is the canonical
isomorphism 𝐸𝑟 : |sd𝑟𝑋 | → |𝑋 | for a dihedral set X, from [BHM93, Lemma 1.1] (which is denoted by
𝐷𝑟 there). By denoting Δ 𝑘 the standard k-simplex space

Δ 𝑘 := {(𝑡0, . . . , 𝑡𝑘 ) ∈ R𝑘+1 | 𝑡0 + 𝑡1 + · · · + 𝑡𝑘 = 1, 𝑡𝑖 ≥ 0 for all0 ≤ 𝑖 ≤ 𝑘},

the map 𝐸𝑟 sends the equivalence class of (𝑥; 𝑡), with 𝑥 ∈ (sd𝑟𝑋)𝑘 = 𝑋𝑟 (𝑘+1)−1 and 𝑡 ∈ Δ 𝑘 , to the class
of (𝑥; 𝛿𝑟 (𝑡)), where 𝛿𝑟 : Δ 𝑘 → Δ𝑟 (𝑘+1)−1 sends t to (𝑡, . . . , 𝑡)/𝑟 (with r-many components). The third
map of (A.1) is then defined to be the adjoint of the composite of the maps of Z/2-spectra

Σ∞+ 𝐵
𝑑𝑖 M𝑛 (𝐴)

Σ∞+ (𝐸𝑟Δ𝑟 )
�� Σ∞+ (𝐵

𝑑𝑖 M𝑛 (𝐴))
𝐶𝑟 �� (Σ∞+ 𝐵

𝑑𝑖 M𝑛 (𝐴))
𝐶𝑟

� �� (𝐵𝑑𝑖Σ∞+ M𝑛 (𝐴))
𝐶𝑟

��

THR(M𝑛 (𝐴))
𝐶𝑟 (𝐵𝑑𝑖 H M𝑛 (𝐴))

𝐶𝑟
=��

which are respectivelyΣ∞+ (𝐸𝑟Δ𝑟 ), the tom Dieck splitting, the monoidality of the equivariant suspension
spectrum functor, and the Hurewicz map. Finally, the last map of (A.1) is induced by the inclusion of
A into M𝑛 (𝐴) as (1, 1)-entry, and it is a Z/2-equivalence by [DMPR21, Theorem 4.9] (which visibly
restricts to 𝐶𝑟 -fixed points).

A direct verification shows that the map of (A.1) is compatible with the direct sum of matrices and
with its symmetry isomorphism, and therefore by setting 𝑟 = 𝑝𝑚−1, we obtain a map of Z/2-spectra

tr𝑚 : KR(𝐴) −→ THR(𝐴)𝐶𝑝𝑚−1 = TRR𝑚(𝐴; 𝑝)

for every integer 𝑚 ≥ 1 and prime p. To obtain a map to TCR(𝐴; 𝑝) we need to show that the maps tr𝑚
are compatible with the restriction and Frobenius 𝑅, 𝐹 : TRR𝑚+1(𝐴; 𝑝) → TRR𝑚(𝐴; 𝑝). Unravelling
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the definitions, it is sufficient to provide Z/2-equivariant homotopies between the composites from the
bottom left to the bottom right Z/2-spaces of the diagram

(𝐵𝑑𝑖 M𝑛 (𝐴))
𝐶𝑝𝑚

𝑅

��

𝐹

��

𝐵𝜎 GL𝑛 (𝐴) 𝑠
�� 𝐵𝑑𝑖 M𝑛 (𝐴)

𝐸𝑝𝑚Δ 𝑝𝑚
�����������������

𝐸𝑝𝑚−1Δ 𝑝𝑚−1
�� (𝐵𝑑𝑖 M𝑛 (𝐴))

𝐶𝑝𝑚−1

The vertical map R is defined by identifying the 𝐶𝑝-fixed points of the 𝑝𝑚-fold subdivision with the
𝑝𝑚−1-fold subdivision, and then taking 𝐶𝑝𝑚−1 -fixed points. It follows from [BHM93, (1.12)] that the
inner most triangle commutes strictly. The vertical map F is the inclusion of fixed points. To see how
the outer triangle commutes when restricted along s, we decompose the diagram as

| (sd𝑝𝑚 𝑁𝑑𝑖 M𝑛 (𝐴))
𝐶𝑝𝑚 |

𝐸𝑝𝑚
��

��

(𝐵𝑑𝑖 M𝑛 (𝐴))
𝐶𝑝𝑚

𝐹

��

| (sd𝑝𝑚 𝑁𝑑𝑖 M𝑛 (𝐴))
𝐶𝑝𝑚−1 |

𝐸𝑝
��

𝐸𝑝𝑚

������
������

���

𝐵𝜎 GL𝑛 (𝐴) 𝑠
�� 𝐵𝑑𝑖 M𝑛 (𝐴)

Δ 𝑝𝑚

		��������������������

Δ 𝑝𝑚−1
�� | (sd𝑝𝑚−1 𝑁𝑑𝑖 M𝑛 (𝐴))

𝐶𝑝𝑚−1 |
𝐸𝑝𝑚−1

�� (𝐵𝑑𝑖 M𝑛 (𝐴))
𝐶𝑝𝑚−1

where the unlabelled map is the inclusion of fixed points. The lower right triangle commutes by [BHM93,
(1.12)], and the square above it by naturality of the inclusion of fixed points. We then need to define a
Z/2-equivariant homotopy that makes the the triangle on the left commute when restricted along s. By
factoring Δ 𝑝𝑚 = Δ 𝑝𝑚−1 ◦ Δ 𝑝 , it is sufficient to treat the case where 𝑚 = 1. The homotopy provided in
[BHM93, Proposition 2.5] is not quite Z/2-equivariant, but we can use a small variation of it. Let us
define ℎ𝑘 : Δ 𝑘 × [0, 1] → Δ 𝑝 (𝑘+1)−1 for every 𝑘 ≥ 0, by

ℎ(𝑡, 𝑠) = (𝑠𝑡/𝑝 + (1 − 𝑠)𝑡, . . . , 𝑠𝑡/𝑝, 𝑠𝑡/𝑝)

where the right-hand side has p components. If we apply the subdivision sd𝑒 as in [DMP24, §1.2] to make
the Z/2-actions on the spaces of the diagram simplicial, the upper composite sends the equivalence class
of (𝑔1, . . . , 𝑔2𝑘+1; 𝑡), with (𝑔1, . . . , 𝑔2𝑘+1) a k-simplex of sd𝑒𝑁𝜎GL𝑛 (𝐴) and 𝑡 ∈ Δ 𝑘 , to the equivalence
class of

(Δ 𝑝 ((𝑔1 . . . 𝑔2𝑘+1)
−1, 𝑔1, . . . , 𝑔2𝑘+1); 𝛿𝑝 (𝑡)).

The lower composite is simply the functor sd𝑒 applied to the section s. Thus, by sending the same equiv-
alence class to the class of (Δ 𝑝 ((𝑔1 . . . 𝑔2𝑘+1)

−1, 𝑔1, . . . , 𝑔2𝑘+1); ℎ𝑘 (𝑠, 𝑡)), we obtain a Z/2-equivariant
homotopy from the upper composite to

[Δ 𝑝 ((𝑔1 . . . 𝑔2𝑘+1)
−1, 𝑔1, . . . , 𝑔2𝑘+1); 𝑡, 0, . . . , 0] = [𝑑 (𝑘+1) (𝑝−1)

𝑙 Δ 𝑝 ((𝑔1 . . . 𝑔2𝑘+1)
−1, 𝑔1, . . . , 𝑔2𝑘+1); 𝑡],

where each 0 on the left is the zero vertex of Δ 𝑘 , and 𝑑𝑙 is the last face map of sd𝑒𝑁𝑑𝑖M𝑛 (𝐴). Since this
last face map multiplies the central three components 𝑎𝑞 , 𝑎𝑞+1 and 𝑎𝑞+2 of a q-simplex (𝑎0, . . . , 𝑎2𝑞+1)

of sd𝑒𝑁𝑑𝑖M𝑛 (𝐴), we find that, by denoting 𝑔0 := (𝑔1 . . . 𝑔2𝑘+1)
−1,

𝑑 (𝑘+1) (𝑝−1)
𝑙 Δ 𝑝 (𝑔0, . . . , 𝑔2𝑘+1)=(𝑔0, . . . , 𝑔𝑘 , (𝑔𝑘+1 . . . 𝑔2𝑘+1 (𝑔0 . . . 𝑔2𝑘+1)

𝑝−2𝑔0 . . . 𝑔𝑘+1), 𝑔𝑘+2, . . . , 𝑔2𝑘+1).
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The middle entry is equal to 𝑔𝑘+1 since 𝑔0 = (𝑔1 . . . 𝑔2𝑘+1)
−1, and it follows that the end of the homotopy

is indeed the subdivision of s. We can therefore lift tr𝑚 along R and F to obtain a map of Z/2-spectra
tr : KR(𝐴) → TCR(𝐴; 𝑝), for every prime p.

Let us now identify the effect of the trace in 𝜋0 of the fixed points. By construction, if we compose
tr with the map R all the way to THR(𝐴) we recover the map tr0 : KR(𝐴) → THR(𝐴). Thus, for this
calculation, we need to describe the map (A.1) for 𝑟 = 1. On fixed points, the map s is the map of bar
constructions

𝐵(GL𝑛 (𝐴); GL𝑛 (𝐴)
Z/2)

𝑠
−→ 𝐵(GL𝑛 (𝐴)

Z/2; GL𝑛 (𝐴); GL𝑛 (𝐴)
Z/2),

which sends a k-simplex (𝑔1, . . . , 𝑔𝑘 , 𝑥), with 𝑔𝑖 ∈ GL𝑛 (𝐴) and 𝑥 ∈ GL𝑛 (𝐴)
Z/2, to

𝑠(𝑔1, . . . , 𝑔𝑘 , 𝑥) = ((𝑔1 . . . 𝑔𝑘𝑥𝑔
∗
𝑘 . . . 𝑔

∗
1)
−1, 𝑔1, . . . , 𝑔𝑘 , 𝑥),

where (−)∗ denotes the involution on GL𝑛 (𝐴). Thus, after applying 𝜋0 and identifying the components
of THR using [DMPR21, Theorem 5.1], the map of (A.1) becomes a map

GL𝑛 (𝐴)
Z/2/∼

𝑠
→ (GL𝑛 (𝐴)

Z/2 × GL𝑛 (𝐴)
Z/2)/∼→ (M𝑛 (𝐴)

Z/2 ⊗M𝑛 (𝐴)
Z/2)/𝑇

𝑚
� (𝐴Z/2 ⊗ 𝐴Z/2)/𝑇,

where the quotients on the two sets on the left are for the respective actions of GL𝑛 (𝐴). By the
calculation of s above, this map sends the isomorphism class of a form of rank n, represented by a
matrix 𝑥 ∈ GL𝑛 (𝐴)

Z/2, to 𝑚(𝑥−1 ⊗ 𝑥). For the proof of Theorem 3.9, we were only interested in rank 1
forms (since these generate the Witt group of a field), and since for 𝑛 = 1 the map m is the identity, we
immediately find that the class of a symmetric form determined by a unit a of A fixed by the involution
is sent to 𝑎−1 ⊗ 𝑎.

For larger values of n, we need to determine the isomorphism

𝑚 : (M𝑛 (𝐴)
Z/2 ⊗M𝑛 (𝐴)

Z/2)/𝑇
�
−→ (𝐴Z/2 ⊗ 𝐴Z/2)/𝑇.

Let us decompose a symmetric matrix 𝑀 ∈ M𝑛 (𝐴)
Z/2 as 𝑀 =

∑𝑛
𝑖=1 𝑀𝑖𝑖𝑒𝑖𝑖 +

∑
1≤𝑖< 𝑗≤𝑛 (𝑀𝑖 𝑗𝑒𝑖 𝑗 +

𝑤(𝑀𝑖 𝑗 )𝑒 𝑗𝑖), where 𝑒𝑖 𝑗 is the canonical basis element with 1 in the entry (𝑖, 𝑗) and with all the other
entries equal to zero. By regarding the abelian group with involution M𝑛 (𝐴) as a Mackey functor, we
can then write the fixed point M as

𝑀 =
𝑛∑
𝑖=1

𝑀𝑖𝑖𝑒𝑖𝑖 +
∑

1≤𝑖< 𝑗≤𝑛
tran(𝑀𝑖 𝑗𝑒𝑖 𝑗 ),

where tran denotes the transfer map of the Mackey functor, which sends a matrix N to 𝑁 + 𝑁∗. By
applying the same decomposition to a second fixed point 𝑀 ′ ∈ M𝑛 (𝐴)

Z/2, we find that

𝑀 ′ ⊗ 𝑀 =
𝑛∑

𝑙,𝑖=1
𝑀 ′𝑙𝑙𝑒𝑙𝑙 ⊗ 𝑀𝑖𝑖𝑒𝑖𝑖 +

𝑛∑
𝑙=1

∑
1≤𝑖< 𝑗≤𝑛

𝑀 ′𝑙𝑙𝑒𝑙𝑙 ⊗ tran(𝑀𝑖 𝑗𝑒𝑖 𝑗 )

+
∑

1≤𝑙<𝑘≤𝑛

𝑛∑
𝑖=1

tran(𝑀 ′𝑙𝑘𝑒𝑙𝑘 ) ⊗ 𝑀𝑖𝑖𝑒𝑖𝑖 +
∑

1≤𝑙<𝑘≤𝑛

𝑛∑
1≤𝑖< 𝑗≤𝑛

tran(𝑀 ′𝑙𝑘𝑒𝑙𝑘 ) ⊗ tran(𝑀𝑖 𝑗𝑒𝑖 𝑗 ).
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By the relation (ii) of [DMPR21, Theorem 5.1] defining the subgroup T, this is equivalent to

𝑀 ′ ⊗ 𝑀 =
𝑛∑

𝑙,𝑖=1
𝑀 ′𝑙𝑙𝑒𝑙𝑙 ⊗ 𝑀𝑖𝑖𝑒𝑖𝑖 +

𝑛∑
𝑙=1

∑
1≤𝑖< 𝑗≤𝑛

tran(𝑀 ′𝑙𝑙𝑒𝑙𝑙𝑀𝑖 𝑗𝑒𝑖 𝑗 ) ⊗ 1

+
∑

1≤𝑙<𝑘≤𝑛

𝑛∑
𝑖=1

1 ⊗ tran(𝑀 ′𝑙𝑘𝑒𝑙𝑘𝑀𝑖𝑖𝑒𝑖𝑖) +
∑

1≤𝑙<𝑘≤𝑛

∑
1≤𝑖< 𝑗≤𝑛

tran(𝑀 ′𝑙𝑘𝑒𝑙𝑘 (𝑀𝑖 𝑗𝑒𝑖 𝑗 + 𝑤(𝑀𝑖 𝑗 )𝑒 𝑗𝑖)) ⊗ 1

=
𝑛∑

𝑙,𝑖=1
𝑀 ′𝑙𝑙𝑒𝑙𝑙 ⊗ 𝑀𝑖𝑖𝑒𝑖𝑖 +

∑
1≤𝑖< 𝑗≤𝑛

tran(𝑀 ′𝑖𝑖𝑀𝑖 𝑗𝑒𝑖 𝑗 ) ⊗ 1 +
∑

1≤𝑙<𝑘≤𝑛
1 ⊗ tran(𝑀 ′𝑙𝑘𝑀𝑘𝑘𝑒𝑙𝑘 )

+
∑

1≤𝑙<𝑘< 𝑗≤𝑛
tran(𝑀 ′𝑙𝑘𝑀𝑘 𝑗𝑒𝑙 𝑗 ) ⊗ 1 +

∑
1≤𝑙,𝑖<𝑘≤𝑛

tran(𝑀 ′𝑙𝑘𝑤(𝑀𝑖𝑘 )𝑒𝑙𝑖) ⊗ 1,

where the last equality follows from carrying out the matrix multiplication on the canonical basis.
Again by [DMPR21, Theorem 5.1], the transfer map of the Mackey functor 𝜋0THR(M𝑛 (𝐴)) sends the
equivalence class of a matrix M in 𝜋0THH(M𝑛 (𝐴)) � M𝑛 (𝐴)/[M𝑛 (𝐴), M𝑛 (𝐴)], to 1 ⊗ tran(𝑀) =
tran(𝑀) ⊗ 1 in (M𝑛 (𝐴)

Z/2 ⊗M𝑛 (𝐴)
Z/2)/𝑇 . The map m from [DMPR21, Theorem 4.9] is a map of Z/2-

spectra, and therefore, it commutes with the transfer. Moreover, since the underlying map of spectra is
the trace map of [BHM93], in 𝜋0 it sends a matrix to its trace, and therefore, the terms involving 𝑒𝑖 𝑗
vanish for 𝑖 ≠ 𝑗 . We then find that

𝑚(𝑀 ′ ⊗ 𝑀) =
𝑛∑

𝑙,𝑖=1
𝑚(𝑀 ′𝑙𝑙𝑒𝑙𝑙 ⊗ 𝑀𝑖𝑖𝑒𝑖𝑖) +

∑
1≤𝑙<𝑘≤𝑛

tran(𝑀 ′𝑙𝑘𝑤(𝑀𝑙𝑘 )) ⊗ 1

in (𝐴Z/2 ⊗ 𝐴Z/2)/𝑇 . By the definition of m of [DMPR21, Proof of Theorem 4.9], it sends 𝑒𝑖 𝑗 ⊗ 𝑒𝑙𝑘 to 1
if 𝑗 = 𝑙 and 𝑘 = 𝑖, and to zero otherwise. Thus,

𝑚(𝑀 ′ ⊗ 𝑀) =
𝑛∑
𝑖=1

𝑀 ′𝑖𝑖 ⊗ 𝑀𝑖𝑖 +
∑

1≤𝑙<𝑘≤𝑛
tran(𝑀 ′𝑙𝑘𝑤(𝑀𝑙𝑘 )) ⊗ 1.

Since M is symmetric (i.e., 𝑤(𝑀𝑙𝑘 ) = 𝑀𝑘𝑙), we may write this expression as

𝑚(𝑀 ′ ⊗ 𝑀) =
𝑛∑
𝑖=1

𝑀 ′𝑖𝑖 ⊗ 𝑀𝑖𝑖 + tr(𝑀 ′𝑀) ⊗ 1 −
𝑛∑
𝑖=1

𝑀 ′𝑖𝑖𝑀𝑖𝑖 ⊗ 1,

where tr denotes the usual trace of a matrix. When 𝑀 ′ ⊗ 𝑀 = 𝑥−1 ⊗ 𝑥 for some 𝑥 ∈ GL𝑛 (𝐴)
Z/2, this

gives the formula we wanted. �
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