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Abstract. We investigate Cox rings of minimal resolutions of surface quotient
singularities and provide two descriptions of these rings. The first one is the equation
for the spectrum of a Cox ring, which is a hypersurface in an affine space. The second
is the set of generators of the Cox ring viewed as a subring of the coordinate ring of a
product of a torus and another surface quotient singularity. In addition, we obtain an
explicit description of the minimal resolution as a divisor in a toric variety.
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1. Introduction. Let X be a normal (pre)variety with finitely generated class
group. The Cox ring (or the total coordinate ring) of X is a Cl(X)-graded module

Cox(X)= P TI(X,0x(D)
[D]eCI(X)

with multiplication as in the field of rational functions on X, given by a choice of lifting
of divisor classes. It is defined for X over any algebraically closed field of characteristic
zero, but we consider only the complex case. If I'(X, O*) = C*, different choices of
representatives of divisor classes lead to isomorphic ring structures. A very important
question is whether the Cox ring of a variety is finitely generated.

One can describe this object from a geometric point of view if Cox(X) is finitely
generated. It follows from [2, Section 6.3] that X is a quotient of an open subset of
Spec(Cox(X)) by a quasitorus associated with CI(X). In particular, if X is smooth and
Pic(X) is torsion-free, one can consider the action of the Picard torus of X

T = Hom(Pic(X), C*)

on Spec(Cox(X)) and construct X as a geometric quotient of an open subset of this
space by 7. Thus, the Cox ring contains a lot of information on the geometry of X —
the variety is determined by Spec(Cox(X)) and some combinatorial data in its grading
group (see e.g. [18]).

In this paper, we study the case of minimal resolutions of surface quotient
singularities (over C), i.e. X is a minimal resolution of the quotient space C*>/G
for a finite subgroup G C GL(2, C). In this case, CI(X) = Pic(X) is torsion-free (see
Proposition 2.11).

The main results of this paper are two descriptions of the Cox rings of minimal
resolutions of surface quotient singularities: in terms of a single equation for its
spectrum (Theorem 5.3), and also by a (finite) set of generators, as a subring
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of the coordinate ring of the product of the Picard torus and a singular surface
(Theorem 6.12). While the first of these theorems is related to the results of [16] and
can be proven using the ideas presented there, the second one introduces a new method
of describing the Cox ring, designed to work in the case of quotient singularities.
Thus, the present paper can be thought of as a first step towards understanding
the total coordinate rings of resolutions of quotient singularities in general. The ideas
described in its final part possibly can be generalized and applied to higher-dimensional
singularities.

An important motivation for extending this work is the possibility of presenting
X as a geometric quotient of an open set of Spec(Cox(X)) in case where Cox(X) is
finitely generated. Roughly speaking, if one finds a way to understand the Cox ring of
a (hypothetical) resolution X of a (quotient) singularity, based only on some restricted
knowledge of the geometry of X, one may be able to construct some new resolutions
as geometric quotients of open sets of Spec(Cox(X)). An especially interesting case
is the one of four-dimensional symplectic quotient singularities and their symplectic
resolutions. The potential results may be used in the work on a generalization of the
classical Kummer construction, investigated in [1] and [11].

The first attempt to study Cox rings of resolutions of quotient singularities is a
recent paper [13], where the authors find the single relation of Cox(X) where X is the
minimal resolution of a Du Val singularity (i.e. G € SL(2, C)). However, their methods
rely heavily on the equations of an embedding of the singularity in an affine space,
and consequently their work seems to be very hard to generalize in a straightforward
manner. Cox rings of minimal resolutions of all surface quotient singularities can be
computed using the theory of varieties endowed with a (diagonal) torus action such
that its biggest orbits are of codimension one, see [16]. However, these results also do
not apply to singularities in higher dimensions, hence we deliberately chose different
approach to the problem, looking for one which would probably work also in a more
general setting.

1.1. Outline of the paper. Throughout the paper, X denotes the minimal
resolution of a surface quotient singularity C?/G, where G is a finite subgroup of
GL(2,C).

In Section 2, we recall basic information on the set-up: properties of finite (small)
subgroups of GL(2, C) and the structure of the special fibre of their minimal resolution
(after [7]). Then, in Section 3, we define an action of the Picard torus T of X on an
affine space which will become the ambient space for Spec(Cox(X)). We investigate the
properties of this action in the toric setting and describe the quotient as a toric variety.
In Section 3.3, a candidate S for Spec(Cox(X)) is proposed. Itis defined asa 7T-invariant
hypersurface in an affine space. Section 4 contains a description of a certain geometric
quotient of an open subset of S by the action of T as a divisor in a toric variety. We
show that it is the minimal resolution of C?>/G. This may seem to be a roundabout way
of reproving the results of Brieskorn [7]. However, we are planning to use the ideas
developed in t his work in cases of higher dimensional quotient singularities, where
resolutions do not have such a detailed description, and try to reverse the process:
construct resolutions of quotient singularities from their Cox rings. In Section 5, we
give the proof of the first of our main results, Theorem 5.3, which states that S is the
spectrum of the Cox ring of X. The proof is based on [2, Theorem. 6.4.3], the GIT
characterization of the Cox ring.
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The last section contains the second main result, summarized in Theorem 6.12.
It is a description of Cox(X) in terms of its generators, as a subring of C[x, y]%“ @
C[toil, e, zf_ll], where [G, G] denotes the commutator subgroup of G. We hope that
the last part of the paper will be the basis for generalizing these results to higher
dimensions.

2. The background material. This section starts with the list of groups for which
we consider the quotient singularity C?>/G. We describe the minimal resolution of
these singularities. We also compute commutator subgroups and abelianizations of
considered groups, which will be needed in the sequel, especially in Section 6.2.

2.1. Groups. We investigate the singularities constructed by taking the quotient
of C? by the linear action of a finite subgroup of GL(2, C). Such a quotient either is
smooth or has an isolated singularity in 0. However, it is worth noting that in higher
dimensions the singular locus of a quotient of an affine space by a finite linear group
action can be much more complicated.

The Chevalley—Shephard—-Todd theorem states that the ring of invariants of such
a group action is a polynomial ring if and only if the group is generated by pseudo-
reflections, i.e. linear transformations of dimension » which have 1 as an eigenvalue
with multiplicity n — 1 (see e.g. [24, Section 2.4]). Due to this result, we can restrict
ourselves to considering small groups, that is groups without pseudo-reflections. Finite
small subgroups of GL(2, C) are classified and listed e.g. in [7, Satz 2.9] and in [22]. It
is worth noting that conjugacy classes of the non-cyclic small subgroups of GL(2, C)
coincide with their isomorphism classes. Before listing the groups, we recall the notation
for the fibre product cases, repeated after [7].

By u: GL(2,C) x GL(2, C) = GL(2, C), we denote the matrix multiplication.

NoTtAaTION 2.1. Take Hy, Hy C GL(2,C) with normal subgroups N, and N,
respectively, such that there is an isomorphism ¢ : H/N| — Hy/N,. By [h;] we denote
the class of h; € H; in H;/N;. We will consider the image under . of the fibre product of
Hy and H; over ¢

(Hy, Ni; Hy, Np)g = p({(h1, ha) € Hy x Hy: [hp] = ¢([])}).

If the choice of ¢ is obvious, it will be denoted by (Hy, Ny; H», N»).

Throughout the text, we use the usual notation &, = e>*//",
PROPOSITION 2.2 ([7, Satz 2.9]). The conjugacy classes of finite small subgroups of
GL(2, C) are as follows:

(1) cyclic groups C, , = (diag(e,, 1)), where C,, is conjugate to C, . if and only if
g=¢q orqqd =1 mod n,
(2) non-cyclic groups contained in SL(2, C):
e binary dihedral groups BD,, (4n elements, n > 2, gives the Du Val singularity
Dn+2),
e binary tetrahedral group BT (24 elements, Du Val singularity Eg),
e binary octahedral group BO (48 elements, Du Val singularity E;),
e binary icosahedral group Bl (120 elements, Du Val singularity Eg),

https://doi.org/10.1017/50017089515000221 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089515000221

328 MARIA DONTEN-BURY

(3) images under w of fibre products of a group in SL(2, C) and a cyclic group Zj =

Cy.1 = diag(ey, &) contained in the center of GL(2, C):

e BD,,, for (m,n)=1, defined as (Zyn, Zoyn; BD,, BD,) for odd m and
(Zamy Zom; BD,,, Cay), where Cy,, <1t BDy, is cyclic of order 2n, when m is even,

e BT, defined as (Zyy, Zym; BT, BT) in the cases where (m,6) =1 and as
(Zéma Z2m; BT» BD2) when (mv 6) = 3,

e BO,, = (Zom, Zm; BO, BO) if (im, 6) = 1,

o B, = (ZZm7 Zom; Bl BI) lf(mv 30) =1

Generators of each of these groups can be found in [22].

Note that for m = 1 we obtain the subgroups of SL(2, C) listed above.

In what follows, by abuse of notation, we most often identify conjugacy classes of
subgroups of GL(2, C) and their representatives from the list in Proposition 2.2.

Quotients by cyclic groups are toric singularities. The structure of their Cox rings,
which are just polynomial rings, is well known. For the details, we refer to [8, Chapter
5]) and in what follows we consider only quotients by non-cyclic groups.

Generators of finite small subgroups of SL(2, C) are given e.g. in [20]. A simple
computation, performed for example in [14], allows to prove Lemma 2.3; the proofs of
Lemma 2.4 and Corollary 2.5 are straightforward.

LEMMA 2.3. The commutator subgroups and the abelianizations of finite small
subgroups of SL(2, C) are as follows:
[BD,, BD,] == Z,, it is generated by diag(e,, &, "), Ab(BD,) is Zy x Z, if n is even and
Z4 for odd n,
[BT, BT) = BD,, Ab(BT) ~ Zs,
[BO, BO] = BT, Ab(BO) >~ Z,,
[BI, BI| = BI, Ab(Bl) = 1.

LEMMA 2.4. The commutator subgroup of a small subgroup G C GL(2, C) from the
list in Proposition 2.2 (3) is the same as the commutator subgroup of the non-cyclic
factor of the corresponding fibre product structure given in Proposition 2.2.

Now the abelianizations of considered groups can be computed. Their
isomorphism types are given in the last column of the table in [7, Satz 2.11]. However,
the proof of Proposition 4.9 requires knowing generators of Ab(G), hence we list them
below (written as matrices in GL(2, C) whose classes generate G/[G, G]). To describe
these generators, we use

(0 1 140 -1+
B_(—l 0) and C‘§<1+i 1—1)‘

COROLLARY 2.5. Abelianizations of finite small subgroups of GL(2, C) are

o ifniseven, Ab(BDy ;) >~ Zom X Z; is generated by &3, - B and diag(eay, 827”1),
* ifnisodd Ab(BD, ) = 24, is generated by g4, - B for m even and ey, - B for m odd,
* Ab(BT,,) =~ Z5,, is generated by

— & Cif(m, 6) =1,

— &em - Cif(m,6) =3,
* Ab(BO,;) =~ Z,,, is generated by &,,, - diag(eg, 88_1),
e Ab(Bl,) ~ Z,, is generated by diag(e,,, &)
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Figure 1. Dual graph of the special fibre of the minimal resolution of C?/G.

2.2. Resolution of singularities. The singularities we consider are rational, so
the exceptional divisor of the minimal resolution is a tree of smooth rational curves,
meeting transversally. More precisely, for the surface quotient singularities it is a tree
with three chains of curves attached to a central component, that is the dual graph is a
T-shaped diagram (see Figure 1.). For small subgroups of SL(2, C), they are Dynkin
diagrams of the root systems D, for n > 4, Es, E; and Eg. In this case, all rational
curves in the exceptional fibre have self-intersection (—2). For considered groups not
contained in SL(2, C), the diagrams do not have to be Dynkin diagrams any more, and
also the self-intersection numbers can be less than (—2), see Example 2.8. The structure
of the exceptional divisors for small subgroups of GL(2, C) is described in detail e.g.
in [7] and [22]. Here, we recall some facts which will be useful in what follows. First of
all, we fix some notation.

For a chosen small group G C GL(2,C), we will denote by X the minimal
resolution of the quotient singularity C?>/G (it is unique, as we consider only the
surface case). We describe the special fibre of the resolution X — C?/G.

NOTATION 2.6. Let Ey be the curve corresponding to the branching point of the
diagram and E; ; be the jth curve in the ith branch, counting from Ey, as in Figure 1.. We
assume that the first branch always has the smallest length.

If we need to write these curves in a sequence, we order them as follows:

EO; El,ls ey El,nl;EZ,ls cey Ez,nz;E3,lv ) E3,n3-

The number of irreducible components of the special fibve isn = ny + ny + n3 + 1.

From the rationality of the resolution, we have E;; - Ex; = 1 (and Ey - Ej; = 1) if
these curves are adjacent, and 0 if they are different and not adjacent. Hence, we only
have to describe the self-intersection numbers E;; - E;; and Ej - Ey.

DEFINITION 2.7. We will denote by

(d; p1, q1; P2, @2 D3, 43),

an invariant consisting of seven integers, which contains full information about
the intersection numbers of components of the exceptional divisor of the minimal
resolution of C?/G for a non-cyclic small group G C GL(2, C). We will be using the
following information:

* d=—E- E,
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-2 BDa3,39
Figure 2. Dual graph of exceptional divisors of minimal resolution of C?/BD53 39.

¢ the jth entry of the expansion of p;/q; into the Hirzebruch—Jung continued fraction
isequal to —E;; - E;; (hence the length of a branch is the length of the corresponding
continued fraction),

e the exact rule how to restore these numbers from the group structure description
can be found in [7, Satz 2.11].

Broadly speaking, these numbers are connected to the fibre product description
of the group structure (see Proposition 2.2). This follows from the construction of
the resolution of C?>/G based on the well-understood minimal resolutions for the
subgroups of SL(2, C); for the details we refer to [7].

EXAMPLE 2.8. Starting from larger binary dihedral groups and taking the fibre
product with a suitable cyclic group, one can obtain resolutions much different from
the Du Val case. For example, for BD;3 39 the minimal resolution is described by
the sequence (d; 2, 1; 2, 1; 23, ¢), where, according to the rule in [7, Satz 2.11], 39 =
23(d — 1) — g. Thus, d = 3and g = 7, the continued fraction describing the last branch
is

23 1
i 1
7 2-54

and the dual graph (much smaller than the one for BD,3) is as in Figure 2.

Based on the intersection numbers of curves in the exceptional divisor of the
resolution, we define a matrix U which will be called an extended intersection matrix
for the singularity C?/G.

We start from the intersection matrix U° of the components of the exceptional
divisor. The curves are ordered as stated in Notation 2.6, so U,g ; is the intersection
number of the kth and /th curve in the sequence. We extend U° to a matrix U by
adding three columns: for i = 1, 2, 3, just after the column corresponding to E;,,, we
add a column filled with 0 except of the entry corresponding to E;,,, where we put
1. In fact, adding these columns corresponds to choosing three rational functions on
C?/ G, which are elements of the Cox ring of the singularity itself, and including them
in a generating set of the Cox ring of the minimal resolution. This attitude will be used
and explained in detail in Section 6.2.

This construction will be used to define an action of a torus on the (candidate for
the) spectrum of the Cox ring of the minimal resolution, which will be introduced in
Section 3.
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NOTATION 2.9. Throughout the paper, we think of U as if it was divided in several

blocks:

—d|/1 0 ... 0|01l O ... 00|l O ... 0]0

1 0

0 :

. Ay : 0 0 0 0

0 1

1 0

0

. 0 0 A 0 0

0 1

1 0

0 :
0 0 0 0 As :

: 0

0 1

The block denoted by A; is the matrix of intersection numbers of components in the
ith branch of the exceptional divisor:

—ai 1 0 0 0 0
I —a» 1 0 0 0
0 1 —as 1 0 0

0 0 0 1 —dain-1 1
0 0 0 0 1 —djy,

On the diagonal of A;, there is the sequence of the negatives of entries of the
Hirzebruch—Jung continued fraction associated with the ith branch of the exceptional
divisor. This means that A; is just the intersection matrix of the components of the
exceptional divisor of the minimal resolution of a certain cyclic quotient singularity
(see [21] and [7]). This singularity will appear later in the toric picture of the considered
situation in Section 3.2. (In fact, results of Brieskorn give even more restrictions for the

length of branches and self-intersection numbers of the exceptional divisor of the minimal
resolution, but we will not use them. )

Finally, we describe the Picard group and the class group of the singularity and
the resolution.

PROPOSITION 2.10. For the singularity C*/ G, we have
Pic(C?/G) = 0, CI(C?/G) ~ Ab(G).
Proof. These two properties are Theorems 3.6.1 and 3.9.2 in [4]. O

PROPOSITION 2.11. The Picard group of the minimal resolution X of C*/G is a free
abelian group generated by divisors dual to irreducible curves in the special fibre of this
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resolution. That is, if n is the number of exceptional curves of the minimal resolution, then

Pic(X) = CI(X) ~ 7".

Proof. Since X is smooth, CI(X) = Pic(X). We start from showing that Pic(X)
is a lattice. First, note that H'(X, Oy) = H*(X, Oy) = 0 because of the rationality
of C?/G. Then, from the exponential sequence

...— H'(X,0y) — H'(X,0%) — H*(X,7) — H*(X,0Ox) —> ...

we deduce that Pic(X) ~ H*(X, Z). By the universal coefficient theorem, we have a
short exact sequence

0 — Ext(H\(X, Z),Z) — H*(X,Z) — Hom(H»(X, Z),Z) —> 0.

Its first term is 0, because 7;(X) is trivial (the quotient space C?>/G is contractible
and by [17, Theorem 7.8] the blow-ups do not change the fundamental group). Thus,
Pic(X) >~ Hom(H»(X, Z), Z), which is torsion-free.

Because X can be contracted to the exceptional divisor, which by the rationality of
C?/Gis a tree of rational curves, H»(X, Z) is a lattice generated by classes of exceptional
curves. Thus, Pic(X) is indeed generated by divisors dual to exceptional curves. O

3. The Picard torus action. Let n be the number of components of the exceptional
fibre of the minimal resolution X of C?/G for a small subgroup G C GL(2, C). We
define the action of the Picard torus

T = Hom(Pic(X), C*) >~ (C*)"

on C"*3 and investigate geometric quotients of open subsets of this affine space. Then,
in Section 3.3, we propose a candidate for the Spec(Cox(X)), defined as a hypersurface
in C"*3, and prove that it is invariant under the action of T in order to consider
its quotients by 7T (see Section 4). An inspiration for this part of the paper is the
construction of the total coordinate ring of a toric variety, see e.g. [8, Section 5.2].

To define the action of T on C™"3, we use the extended intersection matrix U,
described in Notation 2.9. We fix the coordinates: let

C[y07y1,17 AR 5y1,n17 xl’y2,15 AR 7y2,n27 x27y3,17 AR 7y3,l’135 x3]
be the coordinate ring of C"+3.

DEFINITION 3.1. Define a Picard torus action 7' x C"*3 — C"*3 by the formula

&)=t t), D0, Y115 -+ s Y3y, X3)) >

= (@ y0, 1 Y1ty s T Vi, 17 X3)

where u; is the ith column of U and % = t(l"") I

REMARK 3.2. In other words, this is the composition of a homomorphism of tori
T — (C*)"3 c C"3 defined by U’ with a natural action of (C*)"* on C"*3.
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Before we move to considering certain quotients of open subsets of C"*3 by this
action (see Section 3.2), we need some technical observations. In Section 3.1, we
determine the kernel of the lattice map given by U, which appears later, in the toric
geometry setting.

3.1. The kernel map. We look at U as at the restriction of a map from R"*3 to
R” (in the standard basis) to the sublattice 7"+ ¢ R"*3. By ker U, we understand the
sublattice of Z"*3 carried to 0 by U. The aim of this section is to describe a convenient
set of its generators.

DEFINITION 3.3. Let 4 be a square matrix. Then, 4" denotes 4 with a new column
(0,...,0, 1) added on the right, 4” denotes A’ with a new column (1, 0, ..., 0)" added
on the left:

0 1| |0

These operations will be applied to matrices A4; describing the branches of the
exceptional divisor of X. We can think of A/ as if we cut out from U the block 4; with
the suitable parts of the first column and the column just after A;.

We will frequently use the following term:

DEFINITION 3.4. Vector & = (&1, ..., &, +1) € Z"*! is orthogonal to the ith branch,
of length n;, represented by the matrix 4;, if & = 1 and A4 = 0.

LEMMA 3.5. There exists a unique vector, which will be denoted by «; throughout
the text, orthogonal to the ith branch of the exceptional divisor of the minimal resolution
of a surface quotient singularity. It has integral and non-negative entries, which form an
increasing sequence.

Proof. Inductive computation of consecutive entries; non-negativeness follows
because the entries of 4; come from a Hirzebruch—Jung continued fraction. U

Now let us construct a basis of ker U.

NOTATION 3.6. Elements of ker U will be presented as quadruples (u, wy, wy, w3)
consisting of a number u and three vectors w; of lengths n; + 1 respectively, i.e.

(u, wi, Wy, w3) = (u, (w1)1 s ey (wl)nl+1, (IU2)1, ey (wz)n2+1 , (w3)1 N (w3),,3+]).

Such a partition is natural: when we multiply U by a vector of this form, the
number u is multiplied by the numbers in the column corresponding to the branching
point of the resolution diagram, and the remaining three parts correspond to the
branches. Thus, obviously

V) = (0, ar, 0, —Ol3) and V3 = (0, 0, o, —Ol3)

are in ker U. We construct v; such that {v, v, v3} is a basis of ker U.
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LEMMA 3.7. There is a unique vector v € ker U of the form
(1,00, %, ...,%),(0,%,...,%),(d,*,...,%))

where x stands for an integer and —d is the self-intersection number of the central curve
in the exceptional divisor of the minimal resolution.

Proof. First note that for any a, b € Z there is a unique integral vector in the
kernel of 47 of the form (a, b, *, ..., ). To see this, we just determine the entries by
an inductive procedure.

Consider vectors in kernels of 47 of two types:

Bi=(1,0,%,...,%x) and y;=(1,d,*,...,x*). (N

In addition, one can check (in the same way as to prove Lemma 3.5) that the entries
of each B; form a decreasing sequence and the entries of each y; form an increasing
sequence. By B; and ¥;, we denote vectors constructed from g; and y; by removing the
first entry. We compute U - v for

v = (1 ) Ev 13_2’ %)
and obtain v € ker U. Finally, v is uniquely determined, because if we write v =
(4, wy, wa, w3) then from the form of U we see that (u, (w;)1, ..., (W;),+1) must be in
the kernel of A7, so it is uniquely determined by u and (w;);. Il

NOTATION 3.8. Take vy = v from the above lemma and write vy, v,, vs in the rows of
a matrix K, divided into blocks in a similar way as U in Notation 3.6.

vy 110,s, ..., %] 0,% ..., |d * ... % 1B B| 7
K = 1% = 0 6731 0 —3 = 0 o1 0 —Q3
U3 0 0 (0%) —Q3 00 o) | —O3

The choice of the matrix K defining the kernel of U is obviously non-unique; we
choose one that is convenient for further computations.

REMARK 3.9. Notice that K indeed defines the kernel of the lattice map, not only
the map of vector spaces, i.e. vy, va, v3 span a full sublattice of Z"*3. This is because K
has an identity matrix as a minor: «; and «; start from 1 by Lemma 3.5.

3.2. The toric structure of quotients by the action of 7. We investigate geometric
quotients of open subsets of C"** by the action of the Picard torus T using toric
geometry as a tool. More precisely, what we do is the reverse of the toric quotient
construction, see [8, Chapter 5.1]. Instead of expressing a given toric variety as a
quotient of an open set of an affine space, we reconstruct this variety and the open
set knowing the torus action on an affine space. Obviously, it is not unique, hence we
recover only some properties and then it turns out that remaining parameters can be
chosen arbitrarily.

We think of the Picard torus T as of a subtorus of the big torus (C*)"*3 c C"*3;
the embedding is given by U’, see Remark 3.2. Look at the short exact sequence

0— T — (CY" — (C*) — 0.
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Let
M ~7" and M~73

be the lattices of characters of the big torus (C*)"*3 ¢ C"*3 (with the same fixed
coordinates) and of the quotient torus respectively. By P, we denote the monomial
lattice of 7, which can be identified with the Picard group of X. Then, we have a map
of monomial lattices

0—M— ML pP—so, Q)

where M can be identified with ker U € M’ and we may assume that the map M — M’
is given in standard coordinates by K’, where K is as in Notation 3.8.

Thus, we have described the monomial lattice M of a quotient variety. To
understand more of its structure, we prefer to look at the dual exact sequence

0— P L N E v o

We first describe the set of rays of the fan of a quotient and then look which points
have to be removed from C"3 to obtain a chosen variety with good properties as a
geometric quotient. (In other words, we will check which points of C"+* are unstable
with respect to chosen linearizations of the action.)

Note that this construction can be also described in terms of bunched rings, as
explained in [5]; then, one considers the picture in the lattice M rather than looking at
the map of fans from N’ to N. We will not introduce the terminology here, but we use
some results of this work in Section 4.

NOTATION 3.10. When we choose one of many possible geometric quotients of open
subsets of C"+3 by T, a fan of such a quotient will be denoted by %. And by X', we will
denote the fan of C"3 in N': the positive orthant and all its faces.

The discussion above leads to the following observation.

COROLLARY 3.11. Look at the third arrow in the sequence above: N’ K N. The rays
of T are the images of the rays of X' under the map given by K, so their coordinates are
Jjust columns of K.

REMARK 3.12. We will also use an analogous fact for a quotient C?>/ H by an abelian
group H C GL(2,C). Let [ai, ..., a;] be the Hirzebruch-Jung continued fraction
whose entries are the self-intersection numbers of components of the exceptional
divisor of the minimal resolution X of C?>/H. Let 4 be a matrix constructed in the same
way as the matrix 4; in Notation 2.9: with —g; on the diagonal, 1 just below and just
above the diagonal and 0 in other entries. Then, the matrix defining the homomorphism
ker A” < 7Z**+2_ constructed by taking two (general enough) vectors in the kernel of
A" as its rows, corresponds to the toric quotient of C"*2 by the Picard torus action. In
other words, the columns of this matrix are rays of the fan of the minimal resolution
of C?/H (in some chosen coordinates). In particular, a pair of adjacent columns is a
lattice basis, which will be used later on. (The details can be established based on [8,
Section 5.2] together with [21].)
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Some more information on the structure of fans of quotients can be obtained based
on these observations. Let x, y, z be the coordinates in Ng = N ® R corresponding to
the standard basis in N.

LEMMA 3.13. A fan ¥ C N with the set of rays as in Corollary 3.11 has the following
properties.:

(1) the rays of ¥ are divided into three groups, corresponding to the branches of the
diagram, of vectors lying in three planes: y =0,z =0and y = z,

(2) the intersection of these planes is the line y = z = 0, represented in X(1) by the
central ray (1, 0, 0), the first column of K,

(3) the rays in each group together with (1,0, 0), when considered as vectors not in
N, but in the plane containing them, form the 1-skeleton of a fan of the minimal
resolution of a cyclic quotient singularity. In particular, adjacent rays in each group
span the intersection of N with the plane containing this group.

Proof. Follows directly from the definition of K (see Notation 3.8). 0

DEFINITION 3.14. By the outer rays of X, we understand the set consisting of three
rays which are the last columns of K in each block corresponding to a branch of the
resolution diagram. Sometimes, we use the name inner rays for the remaining ones.
The first column (1, 0, 0) will be called the central ray.

We say that a ray lies on the ith branch if it is a column from the ith block of K
(excluding the one consisting only of the central ray). We assume that the central ray
belongs to all three branches.

In the following lemma, we describe the outer rays of ¥ in terms of Hirzebruch—
Jung continued fractions assigned to branches of the resolution diagram in
Definition 2.7.

LEMMA 3.15. Assume that the self-intersection numbers of the components of the ith
branch of the exceptional divisor are the negatives of the entries of a Hirzebruch-Jung
continued fraction p;/q;, and that —d is the self-intersection number of the central curve.
Then, the outer rays are

(dps — q3, —p3, —p3),  (=q2,0,p2),  (=q1,p1,0).

Proof. We have to find formulae for the last entries of vectors «;, B;, y; introduced in
Lemma 3.5 and the proof of Lemma 3.7. Notice that the natural recursive formula for
the entries of «; is also a formula for the numerator of the reversed continued fraction.
More precisely, if p;/q; = [a;1, ..., ai,], and «; is orthogonal to the ith branch, then
(@;)j+1 1s the numerator of [a; ., @ipn—1, - - ., Ain—j+1] forj € {1, ..., n;}. But the reversed
continued fraction to p;/q; is p;/q; where ¢; is reverse modulo p to ¢; (see e.g. [8,
Section 10.2]). Thus, (¢;)s,+1 = pi- We obtain in the same way that g; ends with —g;.

Let o) = (0, (&)1, - - ., (&;)n+1)- Then, y; = B; + da), because each of these vectors
is uniquely determined by their first two entries. Therefore, y; ends with dp; — ¢;. [

LEMMA 3.16. The outer rays span a convex cone which contains (1, 0, 0) inside.
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Figure 3. Faces that have to be in X (shown in a section).

Proof. To show that (1, 0, 0) is a positive combination of the outer rays, it suffices
to prove that

If d > 3 this is obvious, because ¢; < p;. And if d = 2, this can be checked case by case
using the table in [7, Satz 2.11], in which the continued fraction are assigned to group
structures. The cases where this number is smallest are the quotient by subgroups of
SL(2, C). O

NOTATION 3.17. We want to consider only fans ¥ C Ny with the set of rays as
described in Corollary 3.11 and such that the (set-theoretical) sum of all cones in X
(the support of ) is the convex cone spanned by the outer rays. Also, we consider only
simplicial fans. From now on, ¥ will denote a fan satisfying these conditions.

The choice of such a fan corresponds to the choice of the quotient Xy of an open
subset of C"*3 by T. More precisely, Xy is a geometric quotient of C"3\ Z(X) by
T, where Z(X) is the zero set of the irrelevant ideal of X. Since only simplicial fans
are admitted, these quotients are geometric. The structure of Z(X) is studied in more
detail in Section 4.1.

It turns out that some two- and three-dimensional cones have to belong to a fan
¥ satisfying the conditions of Notation 3.17, independently of the choice.

LEMMA 3.18. X contains the following cones:

(1) all faces spanned by two adjacent rays in one of the planes y =0,z =10, y = z,
(2) faces ((0,1,0),(0,0,1)), 0((0,1,0),(d, —1,-1)), 6((0,0, 1), (d, —1, —1)),
(3) three-dimensional cones containing the central ray: o((1,0,0,), (0, 1, 0), (0,0, 1)),
c((1,0,0),(0,0,1),(d, -1, 1)), a((1,0,0), (0, 1, 0), (d, —1, —1)).
Moreover, the cones containing the central ray are smooth and the divisor associated
with the central ray is a P

Proof. Straightforward analysis of the convex geometry of considered objects. [

Figure 3. is a schematic picture of a section of the cone spanned by the outer
rays with the sections of faces mentioned in Lemma 3.18 included. All considered fans
¥ correspond to triangulations of this diagram. Toric varieties obtained this way are
different geometric quotients of open subsets of C"*3 by 7. In general, there is no
smooth model, for example because of the fact that the cones containing the faces of
the cone spanned by the outer rays are most often non-smooth.
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3.3. The candidate for Spec(Cox(X)). We introduce a hypersurface S c C"*3,
which is our candidate for the spectrum of the Cox ring of the minimal resolution of
C?/G. Its equation can be determined from the resolution diagram together with the
self-intersection numbers of the components of the special fibre. We prove that it is
invariant under the Picard torus action.

CONSTRUCTION 3.19. We define a hypersurface S ¢ C"*3 by describing its ideal

I(S) CCyo, Yits -y Yims X1 V2,05 -« s Vo> X2, V3 15+« o s Y3mys X3),

which is generated by a single trinomial equation. Each monomial of this equation
corresponds to one branch of the resolution diagram. The variables, except g, are
divided into three sequences

(yi,lvyi,Z’ oo 7yi,n,~711yi,n[7 X,‘)

for i =1, 2,3, and all variables in the ith sequence appears only in the monomial
corresponding to the ith branch. As the ith vector of exponents we take the vector «;
orthogonal to the ith branch, so the equation is

3l e ), 3)
i=1,2,3

It can be easily seen that the hypersurface defined by this equation is irreducible.

REMARK 3.20. In Lemma 3.5, we proved that all entries of each «; are positive
integers and that («;); = 1. Hence, the equation above is indeed a polynomial and
variables y; 1, ¥2.1, 3.1 appear with exponent 1. Thus, it follows by [15, Theorem 1.9]
that the quotient of the polynomial ring by I(S), i.e. the coordinate ring of S, is a
unique factorization domain.

The choice of coefficients of monomials equal to 1 is arbitrary. For any other set
of coefficients, we would just obtain a different embedding of Spec(Cox(X)) in C"*3.

ExAMPLE 3.21. Let us look at a group which is not in SL(2, C): take BD»3 39, which
appeared already in Example 2.8. The extended intersection matrix is

31 o1 o1 0 0 0 0
[[—2 10 00 0 0 0 0
1[0 0-—2 1[0 0 0 0 0
UBDy33)=|"1[0 00 0-4 1 0 0 0
0lo0 oo o1 -2 1 0 0
0lo oo o0 1 -2 1 0
0lo oo o0 o0 1 -3 1

and the kernel matrix with the rays of X (BD>3 39) as columns is

110 —1l0 —1]3 11 19 27 62
K(BDn)= |01 20 0|-1 -4 -7 —10 -23
oo o1 2|-1 —4 -7 —10 -23
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The entries of vectors «;, which are the exponents in the equation, can be read out
from the second and third row of K(BD>3 39):

S(BD33.39) = {y1,1X] + ¥2.153 + y3.103 .05 3v4ux3. = O}

ExAMPLE 3.22. In the case of Du Val singularities, the equation is formed as
follows: for each variable its exponent is equal to the distance of the corresponding
vertex in the resolution diagram from the branching point (we may assume that x;
corresponds to a leaf added at the end of the ith branch, so its distance from the
branching point is the distance of y;,, plus 1).

LEMMA 3.23. The hypersurface S is invariant under the action of the Picard torus T
from Definition (3.1).

Proof. The weights of this action are given by the columns of U, so to compute
the weight vector of the action on the monomial corresponding to the ith branch
one multiplies U by (0, a1, 0, 0), (0, 0, @, 0) and (0, 0, 0, «3) respectively. Because «; is
orthogonal to the ith branch, the result is (1, 0, 0, ..., 0), which means that 7 acts on
each monomial, and therefore on the whole equation, by multiplication by ¢,. O

Therefore, we may consider geometric quotients of open subsets of S by 7'. They
will be presented as subsets in different geometric quotients of open sets in C"+3 by 7.

4. The resolution as a divisor in a toric variety. The aim of this section is to
describe properties of certain geometric quotients of open subsets of hypersurface
S ¢ €3, introduced in Construction (3.19), by the Picard torus action. Let us fix a
simplicial fan £ C R? satisfying conditions in Notation 3.17. In particular, its rays are
columns of matrix K (see Notation 3.8). We consider an open subset of S obtained by
removing zeroes of the irrelevant ideal

W=S8\2Z()cC\ Z()

and its quotient by the action of 7.

REMARK 4.1. Since the quotient X5 of C"3\ Z(X) by T is geometric and W =
S\ Z(X)is a T-invariant closed subset of C"*3 \ Z(X), the quotient of W by T is also
geometric (e.g. by [2, Proposition 2.3.9]).

We investigate the quotient ¥ = W/ T by looking at the embeddings which are
horizontal arrows in the following diagram and using toric geometry.

W=S\Z%)——Ct3\ Z(%)

)
Y=W/T“—«— X5
First, we prove the smoothness of Y (see Proposition 4.5), which, roughly speaking,
follows from the fact that the action of 7 on W is free and the smoothness of . In

Section 4.2, we construct a birational morphism from Y to the quotient C*/ G, coming
from the embedding in a toric variety, which implies that Y is a resolution of C?/G.
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The minimality of this resolution follows from the general theory of Cox rings, as
explained in Section 4.3.

4.1. Smoothness of the quotient. In order to prove that Y = W/T is smooth,
we first need to analyse the structure of the set Z(X) of zeroes of the irrelevant ideal
associated to the chosen fan X.

Let us recall that the coordinates of C"+3 are denoted

y()vyl,ls ~~'7y1,n11x13y2,17 -~-1y2,n37x2,Y3,1, '-~’y3,n39x3'

We say that y corresponds to the central ray of X (i.e. is a monomial dual to the ray
in a fan ¥’ of C"** which maps to the central ray in ¥), y;; corresponds to the jth ray
on the ith branch and x; corresponds to the ith outer ray.

LEMMA 4.2. The set W = S\ Z(X) C C"*3 consists of three sets of points:

(1) all points in S with all coordinates non-zero,

(2) all points in S with one coordinate equal to zero,

(3) all points in S with two coordinates equal to zero, such that these coordinates
correspond to a pair of adjacent rays on one branch.

1t follows that W is independent of the choice of X.

Proof. The argument is a straightforward analysis of the structure of the irrelevant
ideal B(X) = (x°: 0 € ,4). Recall that x% is the product of variables corresponding
to all the rays in X(1) that are not in o(1) and %,,,, in our case consists of three-
dimensional cones of X. Let us look at the number of coordinates equal to zero in a
point in Z(X).

First of all, if a point has > 4 zeroes on different coordinates, or 2 or 3 zeroes on
coordinates corresponding to the rays whose images do not span a cone in X, then
for any cone o € %,,,. one of these rays is not in o, so x° evaluated at this point is 0.
Hence all such points belong to Z(X).

If a point p € S has 3 zeroes on coordinates corresponding to the rays whose
images span a cone in X, then these rays lie on two different branches — ith and jth.
But then monomials in the equation of S (see formula (3)) which correspond to the
ith and jth branch are 0 at p, so the third monomial also is 0 at p. Hence, at least one
more coordinate of p is equal to zero. Thus, p € Z(X), which implies that W does not
contain any point with > 3 zeroes. The same argument works in the case where p has
2 zeroes on the coordinates corresponding to the rays from two different branches.

Therefore, the only property of ¥ on which W depends is the set of two-
dimensional cones spanned by adjacent rays on one branch. But Lemma 3.18 assures
that this set is the same in all fans we consider, hence for any choice of ¥ satisfying
conditions of Notation 3.17 one obtains the same W. U

We need a following technical observation, which can be proven easily by
performing suitable reductions with integral coefficients on columns of U.

LEMMA 4.3. If we remove from the extended intersection matrix U, any two columns
corresponding to a pair of adjacent vertices on one branch of the resolution diagram, the
remaining ones generate 7".

LEMMA 4.4. T acts freely on W.
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Proof. We have to check that a point p € W cannot have non-trivial isotropy group.
Assume that t = (#y, ..., t,_1) € T is such that zp = p. This means that all characters
defining the action, except these corresponding to the coordinates equal to zero in p,
give 1 evaluated at ¢.

Our aim is to show that #; =1 for i =0, ...,n — 1. Because p is of one of three
types listed in Lemma 4.2, this can be reformulated as follows: if we remove from U
the columns corresponding to the zero coordinates in p, then the remaining columns
span the lattice 7" c C". And this result follows directly from Lemma 4.3. ]

PROPOSITION 4.5. The quotient Y = W/ T is smooth.

Proof. We prove that W is smooth by checking that all the singular points of
S are in Z(X). Indeed, if the Jacobian of the equation of S is zero in a point
(Do, V1ds e+ -s XI5 Y21 - -+ » X2, V3,15 - - - » X3), then for each i = 1, 2, 3 at least one of the
coordinates corresponding to a ray from the ith branch is zero. Hence, there are at least
three coordinates equal to zero and, by Lemma 4.2, such a point is not in W.

Since Y is a geometric quotient of a smooth variety by a free action of T, it is
also smooth. A standard reference for such a statement is Luna’s slice theorem, but
we believe that this particular case can be much simpler. By the classical result of
Sumihiro [25, 26], any point w € W has a T-invariant affine neighborhood (note that
W is normal) and by applying Luna’s theorem [19] to this neighborhood we know that
the quotient is smooth in the image of w. O

4.2. The quotient is a resolution of C>/G. An embedding of the geometric
quotient Y = W/T in a toric variety Xy leads to a construction of a birational
morphism Y — C?/G, shown below. We start from describing the toric morphism
of ambient spaces.

Let A C Ny denote the fan consisting of a cone spanned by the outer rays of ¥ and
all its faces. As before, &' C Np, is the standard fan of C"3. Look at the composition
7 of two fan morphisms: X’ — X, given by the matrix K (as in Notation 3.8) and
¥ — A, induced by the identity on N. This last homomorphism — forgetting about all
rays except the outer ones — is a proper birational morphism of Xy to an affine variety,
which contracts torus invariant divisors corresponding to the omitted rays.

LEMMA 4.6. The toric morphism C'*3 — X, induced by m is a good categorical
quotient by the Picard torus action and C"3 ) T = X ~ C3/Ab(G).

Proof. Recall the exact sequence of lattices (2) describing the Picard torus action
on C"3 —it is the upper horizontal exact sequence in the diagram below. The invariant
monomials of this action are lattice points in the intersection of M with the positive
orthant in M’. Hence, looking at dual lattices, the good categorical quotient C"+3/ T is
the affine toric variety corresponding to the image of the positive orthantin 7 : N —
N, that is X (see e.g. [8, Proposition 5.0.9]). We will now prove that X, is isomorphic
to C*/Ab(G).
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0 0
D ZE] — D ZIE]
0 M M —L— Pic(X) —0
=l
0 M M" > Ab(G)
0 0

The left vertical sequence is just dividing the monomial lattice M’ of C"*3 by a
sublattice spanned by these basis elements which correspond to inner rays. That is,
M" ~ 73 and we consider the positive orthant in this lattice, which is the image of X'.
In the right one, the quotient of Pic(X) by the subgroup of divisors contracted by the
resolution of the singularity is just CI(C?/G), which is 4h(G) by Proposition 2.10.

The dotted arrow from M"” to Ab(G) is unique and makes the diagram commute,
it is surjective and the lower horizontal sequence is exact. Moreover, all these lattice
homomorphisms correspond to homomorphisms of considered fans. Finally, it follows
that the lower horizontal sequence gives a description of X, as the (toric) quotient
C3/4b(G).

The situation described by Lemma 4.6 above is the right-hand side part of the
following diagram. We would like to understand its left-hand side part, or, more
precisely, prove that the image of two grey arrows, which are restrictions of respective
morphisms from the right-hand side of the diagram, is isomorphic to the singularity
C?/G, embedded in C3/A4h(G). It follows then that the good categorical quotient
Spec(Cox(X))/ T is C?/G.

Wwe cn+3 \ Z(E)

\Sc ‘ \Cn+3
/T E

Xx,

/T

c

N

/G +Xp =~ C3/Ab(G)

. . . b(G

We first consider the (good categorical) quotient C? 145G, X, and prove that

the image of S and Y (or W) in X, can be described as a quotient by 4bh(G) of a
hypersurface in C?, given by an equation semi-invariant with respect to the action of
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Ab(G) (i.e. its eigenvector). Our argument is related to methods used in Section 6.2.
Another way of proving this statement would be to analyse lifting of semi-invariants

of Ab(G) through C"*+3 LANS'S A, however, the result is also not immediate. The second
step of our proof, contained in Lemma 4.8, is the observation that the quotient of
considered hypersurface in C* by the action of Ah(G) is indeed C?/G.

First of all, we describe the situation in the toric setting in more detail and introduce
a variety Xt NS, which will be used in the further part of the argument. Since A is
simplicial, X, is a quotient of C? by a finite group action. Let N” ~ Z* and T be the
fan consisting of the positive orthant in N” and all its faces.

N’ L N 3/ L b (4)
N T
N”T>N FT>A

Then, w: N” — N which sends the standard basis to the rays of A is the toric
description of this quotient map. But the embedding n: N” < N’, which maps the
standard basis to the rays corresponding to variables x|, x, and x3, commutes with
and w, i.e. the lower triangle in the diagram (4) is commutative.

In coordinates corresponding to the standard bases, 7 is just the embedding of
C3 by x1, x2, x3 to the subspace defined by yo = 1 and y;; = 1 for all possible i, ;.
Therefore, the restriction of Sto C3 ~ Xr C Xy ~ C"t3 with coordinates xj, x, x3 is
given by the equation obtained from the equation of S by leaving x|, x;, x3 without
change and substituting 1 for all other variables:

AT N =0 Q)

Recall that p; is the last entry of the vector «; orthogonal to the ith branch
(see Lemma 3.5), appearing also in the description of the minimal resolution by
Hirzebruch—Jung continuous fractions and in the formula for the outer rays of X,
see Lemma 3.15.

The next observation, technical but important, can be proven based on the fact
that the intersection matrix Uy, defining the action of T on variables yo and y;;, is
invertible.

LEMMA 4.7. The images of Xr N S, S and W in X (under morphisms corresponding
to w and 7 respectively) are equal.

Therefore, from now on we consider the image of the restriction of S to X1 in X
instead of the image of W or S.

LEMMA 4.8. The image of S N Xt in X, is isomorphic to C*/G.
Proof. From the table in [7, Satz 2.11], we can read out the parameters of the
minimal resolution of C?/G, i.e. the invariant (d;p1, qi;p2, q2; p3, q3) describing the

Hirzebruch—Jung continuous fractions associated with the resolution. Substituting
values of p; into equation (5), we obtain the following equations of S N Xr:
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BDpym @ Xj4+x3+x5=0

BT,, : x%+x%+x§=0
BO,, : x%+x§+x‘3‘:0
B, : xf + x% + xg =0

Comparing with Lemma 2.4 and [20, Table 1], we see that for a group G the
equation above is just an equation of an embedding of the quotient singularity
C?/[G, G] in C3. (For G = BT, i.e. [G, G] = BD,, the equation is most often given
in the form x? + x3 + xx3 = 0, but it is the same up to a change of coordinates.)

Recall that X, is a quotient of C? by an action of a finite group J = coker w. The
image of W in X, is then the quotient of S N X by J. We can write w in the standard
basis using the matrix with the outer vectors of ¥ as columns. For all considered
groups, it is easy to check that J is isomorphic to the abelianization of G. One has to
use again the numbers p;, ¢; associated with the minimal resolution (from [7, Satz 2.11])
to write down the outer rays and describe J, and then compare with the abelianizations
of small subgroups of GL(2, C) computed in Corollary 2.5.

Our aim is now to prove that the quotient (S N Xr)/J is isomorphic to C?/G ~
(C?/[G, G])/Ab(G). Thus, we have to argue that the isomorphism between S N X and
C?/[G, G] is equivariant with respect to considered actions of J ~ 4Ah(G). We do this
by comparing the actions on the coordinate rings: the action of generators of J on the
chosen coordinates of XT turn out to be identical to the action of the corresponding
generators of Ab(G) on the [G, G]-invariants which satisfy the equation of S N Xr.

The action of Ab(G) on the invariants of [G, G] is quite easy to describe. We
sketch the idea here and give an example of computations below. Sets of generators of
Clx, y]1%9 for small subgroups G C GL(2, C) are listed for example in [10]. However,
not every (minimal) generating set can be used here. We need a set of generators
which are eigenvectors of the action of Ab(G), because coordinates of Xr satisfy this
condition. For most types of groups, the invariants given in [10] are eigenvectors of
Ab(G) (and, in fact, there is no other choice of minimal generating set), only in the
case of BT,,, where the commutator subgroup is BD,, one has to take suitable linear
combinations of x* 4+ y* and x?y? (we give more details on the [G, G]-invariants which
are eigenvectors of the action of A5(G) in Section 6.2, we list them in Example 6.15.)
Finally, we take some representatives of the generating classes of 4b(G) and determine
their action on the chosen invariants by an explicit computation.

To describe the action of J >~ 4b(G) on variables x|, x5, x3 corresponding to the
rays of I', we take a vector of N representing a generator and evaluate it on the dual
characters to the rays of A, which are

1
up = ;(Plpz, q1P2, 42P1),

1
Uy = ;(plm, q1p3, dp1p3 — p193 — q1p3),

1
uz = ;(pzm, dpaps — 293 — q2p3, 4203),
where

r = dp\pap3 — q1P2P3 — P142D3 — P1P243
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is the order of J (equal to the determinant of the matrix which has the outer rays as
columns).

In all the cases of cyclic abelianizations, one can take as a generator of J one of the
standard basis vectors. In the only non-cyclic case (BD,,,, for even n), the generators
can be chosen for example (0, 1, 0) and (—1, 1, 1). However, these generators do not
necessarily give the same action of A5(G) on the chosen [G, G]-invariants, so one has to
find a suitable power of a generator to get exactly the same numbers. We have checked
that such generators can be found in all the cases. All the necessary computations are
very similar, we skip the remaining details. ]

The observations made above are summarized in the following statement.

T
PROPOSITION 4.9. The good categorical quotient C'+3 L s /Ab(G) restricts to

the good categorical quotient S ANy 2 /G, which induces a birational morphism from
Y = W/T onto C?/G.

COROLLARY 4.10. The quotient Y = W/ T is a resolution of the singularity C*/G.

Proof. The birational morphism from Y to C?/G constructed above is induced by
the fan morphism from ¥ to the fan A, which consists of a cone spanned by the outer
rays of ¥ and all its faces. This homomorphism is induced by the identity on the lattice
N, it is just forgetting about all the rays except the outer ones. Therefore, it gives the
identity on the orbits corresponding to all the faces of the maximal cone of A, i.e. on

(C*/G)\ (0} O

4.3. Minimality. To justify the minimality of the resolution Y we apply a result
of [5], formulated in the language of bunched rings. By [5, Definition 2.3] this requires
the factoriality of the coordinate ring of .S, see Remark (3.20), and the fact that the
variables define prime elements of this ring, which can be checked easily. Then [5,
Proposition. 5.2] implies that the class group of Y = W/ T is isomorphic to the class
group of the ambient toric variety Xy (by Lemma 4.4 the action of 7' on W is free, so the
pull-back of invariant Weil divisors is well defined). Hence, the order of Pic(Y) = CI(Y)
is n and thus Y is the minimal resolution of C?/G.

Note that this observation can be also proven directly, by analysing the structure
of Xy, describing the exceptional divisors and computing their intersection numbers
using methods of toric geometry. These results are summarized in the following
proposition.

PROPOSITION 4.11. Y is the minimal resolution of C* | G. Moreover, CI(Y) is generated
by restrictions to Y of divisors in Xs which are invariant under the action of the big torus
of this variety. The intersection numbers of these divisors and the exceptional curves are
the entries of the extended intersection matrix U.

5. The spectrum of the Cox ring. Here, we finish the proof of Theorem 5.3, which
states that the hypersurface S ¢ C"*3 introduced in Construction (3.19) is the spectrum
of the Cox ring of the minimal resolution X of a surface quotient singularity C?/G.
Our argument is based on Theorem 6.4.3 and Corollary 6.4.4 in [2], which provide a
characterization of the Cox rings via Geometric Invariant Theory.
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As before, we investigate S, its T-invariant open subset W =S\ Z(X)
(independent of the choice of X) and the geometric quotient ¥ = W/T. We need
to check a few properties of these spaces to see whether the assumptions of [2,
Theorem 6.4.4] are fulfilled. It is worth noting that the quotients considered here are
a special case of a much more general theory of good quotients of algebraic varieties
by reductive group actions, developed by Biatynicki-Birula and Swiecicka in a series
of papers including [6], which can be useful for a possible generalization of our results.

The first property is the strong stability of the action of 7" on W — for the definition
see [2, Definition 6.4.1].

PROPOSITION 5.1. The action of T on W is strongly stable.

Proof. We take W' := W. Then, obviously, W’ is T-invariant and the codimension
of its complement in W is > 2. Also, by Remark 4.1 all the orbits of T"in W are closed.
Finally, in Lemma 4.4 it is proven that T acts freely on W, which finishes the proof. [

PROPOSITION 5.2. S is T-factorial, i.e. every T-invariant Weil divisor on S is principal.

Proof. By Remark (3.20), S is factorial and it is easy to check that every invertible
function on S is constant. Thus, the 7-factoriality of S follows by [2, Corollary.
1.5.3.4]. g

We are ready to complete the proof of the first of our main results.

THEOREM 5.3. Let X be the minimal resolution of a surface quotient singularity
C?/G. If S is as defined in Construction (3.19), then S ~ Spec(Cox(X)).

Proof. S is a hypersurface in a smooth variety and its set of singular points has
codimension > 2, so it is a normal variety by the Serre’s criterion. Moreover, every
invertible function on S is constant. By Proposition 5.2, we know that S is 7-factorial.
Now W C S is an open and T-invariant subset such that codimg(S \ W) > 2. The
action of 7" on W admits a good quotient, as it was observed in Remark 4.1. Finally, by
Proposition 5.1 this action is strongly stable. Therefore, it follows by [2, Theorem. 6.4.4]
that S is the spectrum of the Cox ring of X. O

6. Generators of the Cox ring. In this section, we focus on investigating the
relation between Cox rings of the singularity C?/G and its minimal resolution X This
leads us to a description of generators of Cox(X) presented in a natural way as a
subring of the coordinate ring of C?/[G, G] x T (see Theorem 6.12). We expect that
the ideas sketched in this chapter work in a more general setting, and that they will
form a basis for the extension of this work to higher dimensional quotient singularities,
at least for some specific classes of groups, in particular four-dimensional symplectic
quotient singularities. The work presented here will be continued and developed in a
forthcoming paper [12].

6.1. The Cox ring of a quotient singularity. We start from statements concerning
the structure of the invariant ring CI%¢ and the Cox ring of a quotient singularity
(in arbitrary dimension). Consider a linear action of G C GL(n, C) on an affine space
V ~ C" and on C[V]. Look at the induced action of 45(G) on the ring C[V]¢ of
invariants of the commutator. Note that C[V']%% is a C[V']°-module and that the
character group of G satisfies G¥ = Ab(G)Y ~ Ab(G). Moreover, by [4, Theorem 3.9.2]
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we have CI(V/G) >~ Ab(G). We are interested in relative invariants of the action of G,
i.e. regular or rational functions on V' which are eigenvectors of G and the action on
such a function is the multiplication by values of a character u of G (see [4, Section 1.1]
or [23, Section 1]). In particular, we need to consider these relative invariants which
are contained in C[V](¢:¢1,

DEFINITION 6.1. By C[ fj we denote the eigenspace of the action of Ab(G) on

C[V]G-¢] corresponding to a linear character 4 € GV, i.e. a submodule (over C[V]%)
consisting of all f € C[V](¢ ¢ such that for any g € Ah(G) we have

g(f) = n(@rf.

In general, C[V] decomposes as a direct sum of its C[V']-submodules of relative
invariants (see e.g. [23, Section 1.1]). The following lemma describes restriction of this
decomposition to C[ V]I ; we skip the proof, which is standard.

LEMMA 6.2. The ring of invariants C[V]\% % decomposes as a sum of eigenspaces of
Ab(G) associated with all characters of G

cred = 6 g,

neGy

Each of these eigenspaces is a C[V]%-module of rank 1, associated with a class in
CI(V/G) ~ Ab(G).

The following proposition describes the Cox ring of a quotient singularity and
explains that the embedding Cox(X) < Cla, b]I“ @ C[T] we are about to construct
relates the Cox ring of the minimal resolution to the Cox ring of the singularity.

PROPOSITION 6.3. For a complex vector space V with an action of a finite group
G C GL(V, C) we have

Cox(V/G) ~ C[V]ie:4,

Note that this is the instance where the considered Cox ring is not graded by a free
group, see [2, Section 4.2].

Proof. The statement is proven in [3, Theorem 3.1].
A description of the module structure of Cox(}V'/G) follows also from Lemma 6.2:
rank one C[V']°-modules C[V']$ in the decomposition of C[V']l% can be identified

with O(V/G)-modules of global sections of Oy, (D) for D € CI(V/G) ~ Ab(G). [

6.2. Generators of Cox(X). Let us fix the notation. The coordinate ring of C? is
denoted by C[a, b], and of C"*3, which is the ambient space for S = Spec(Cox(X)) (see
Construction (3.19)), by

A = C[}/OJ/IM "‘9y1,n1’x15y2,19""yz,n27x27y3,1’ "'7y3.l135x3]'

The Picard torus T ~ (C*)" of the minimal resolution X acts on C"*3 and on S
by characters corresponding to columns of the extended intersection matrix U (see
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Notation 2.9), as described in Definition (3.1), and its coordinate ring is

Clm =Clet, ... !

> tn—14t
Our aim is to define a monomorphism

¢: Cox(X) < Cla, It ..., £ ] = Cox(C*/G) ® C[T]

> 'n—1
such that composed with evaluation at zp = ... = f,_; = 1 it gives the morphism
Cox(X) — Cox(V/G)

coming from the push-forward of divisorial sheaves. Then, we view Cox(X) as the
subring ¢(Cox(X)) of Cox(C?/G) ® C[T] and give a formula for a set of generators of
this ring. But before we show the construction, let us explain how this idea works in
the case of an abelian group G.

EXAMPLE 6.4. If G is abelian, then we have
Cox(C?*/G) = Cla, ] = C[a,b] and  Spec(Cox(X)) = C*V,

where X is the fan of the minimal resolution X. The coordinate ring of Cox(X) is then
Clx1, ¥1s - -+ » Yu» X2], where y; correspond to components of the exceptional divisor.
We define

¢: Cox(X) = Clx1, 1, ..., yu, X2] — Cla, bl ..., £

n—1

with the formula
X1 aty, X2 bty_1,  yir> xilto, ..., ta-1),

where x; is the character corresponding to the ith column of the intersection matrix of
the exceptional divisor of X.

Since the intersection matrix of X is non-singular (the absolute value of its
determinant is just the numerator of the corresponding Hirzebruch—Jung continued
fraction), ¢ is indeed a monomorphism. Its composition with the evaluation at
to=...=t,_1 = 1 gives the toric morphism from C'*(V! to C?> coming from forgetting
about rays of ¥ added to the fan of C?>/G in the process of resolution.

From now on, we assume that G C GL(2, C) is a non-abelian small group. In the
abelian case to define ¢ we need, apart from the characters of 7', two elements of
Cox(C?/G), which make a generating set of this ring. For non-abelian groups, we
have to choose three generators with special properties. They may be thought of as
sections of sheaves corresponding to divisors of C?>/G defined by the variables x;, x»,
X3, associated with the added columns of the intersection matrix U.

REMARK 6.5. For all small subgroups G C GL(2, C), there exist homogeneous
polynomials o1(a, b), 01(a, b), 03(a, b) invariant under the action of [G, G] on Cla, 2],
which are eigenvectors of the action of Ah(G) on C[a, b]l% %! and such that they make
a generating set of C[a, b]1% % as a C-algebra. In Example 6.15, we give a direct proof
of existence of such generating sets, i.e. we write them down.

Moreover, such generating sets are uniquely determined up to multiplying
its elements by constants. The uniqueness follows by analysing the numbers of
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independent [G, G]-invariants in small gradations. If we look at Molien series (which
can be computed for example in [14]), it turns out that a few non-zero gradations of
smallest degrees have rank 1 and are distributed in such a way that only one choice of
oi(a, b) is possible.

For most small subgroups of GL(2, C), the homogeneity condition of o;(a, b) is
forced by the assumption that this polynomial is an eigenvector of 4b(G). However,
sometimes it is not — for example, Ab(B) is trivial, so all invariants are the eigenvectors,
but only the choice of homogeneous ones gives a correct result.

DEFINITION 6.6. By oi(a, b) € Cla, b]l% for i = 1, 2, 3, we denote homogeneous
polynomials satisfying conditions in Remark 6.5, i.e. eigenvectors of the action of
Ab(G) on Cla, b]1%% such that the set {o}(a, b), 02(a, b), 03(a, b)} generates Cla, b7
as a C-algebra.

We will assume that they are ordered such that the numbers deg(o;) - («;),,41 are
equal (as usually, «; denotes the vector of exponents in the ith monomial in the equation
of Spec(Cox(X)), see Construction (3.19)).

In the description of ¢, we also use the characters of the Picard torus 7', so we
recall and introduce some notation.

NOTATION 6.7. As before, xi(ty, . . ., t,—1) denotes the monomial with exponents given
by the ith column of U, i.e. the ith character of the Picard torus T used to define its action
on C"*3 in Definition (3.1). Also, when we write xy,, Xyo OF Xy,,» we think of the character
from{x1, ..., xnsr3} which corresponds to the respective variable of the coordinate ring A
of C"3 (the order of their appearance is as in the definition of A above).

We start from defining a homomorphism
¢: A —> Cox(C?/G)® C[T]

and then prove that it factors through Cox(X) = 4/1(S), where I(S) is the ideal of
Spec(Cox(X)) in A4.

DEFINITION 6.8. Define ¢: 4 —> Cla, b0z, ..., £ ] as follows:
d(x;) = oi(a, b)xx(to, . ..., ta_t),

50’0) = Xyo(Z07 ceey tnfl)»
i) = xo,(tos oo tyr) fori=1,2,3,j=1,....n.

LEMMA 6.9. Using the embedding
S = Spec(Cox(X)) ¢ C"*3 = Spec(4)
given by equation (3) generating the ideal I(S) C A, the homomorphism ¢ factors through

¢: A/I(S) = Cox(X) —> Cla, BICNet £, £5].

* "n—1

Proof. We show that the image under ¢ of the equation of Spec(Cox(X)),
described in Construction (3.19), is zero. This equation is the sum of three monomials
corresponding to branches of the minimal resolution diagram. The vector of exponents
of the ith monomial is «;, which is orthogonal to the ith branch (see Definition 3.4).
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This condition translates exactly to the fact that the image of the ith monomial under
¢ is tg - 0,(a, b) @)+ Hence, it is sufficient to show that

o1(a, b)(vtl)n,+l + oo(a, b)(az)n2+1 + o3(a, b)(as)n3+1 =0.

From Lemma 3.15, we know that (w;),+1 = pi, i.e. the numerator of the
fraction describing the ith branch of the resolution diagram. We compare these
numbers to the exponents in equations of Du Val singularities C?/[G, G], exactly
as in the proof of Proposition 4.9 — they are the same. Hence, it is enough to
check that oy(a, b), 02(a, b), 03(a, b) satisfy the single relation in C[a, b]%% (up to
multiplication by some constants). This can be done in a straightforward way, since
the sets {o1(a, b), 02(a, b), o3(a, b)} for all small subgroups G C GL(2, C) are listed in
Example 6.15. O

NOTATION 6.10. We denote by

¥ Cla, b9, ... 2] — Cla, 5199

n—1

the homomorphism of evaluation at ty = ...=1t,_1 =1, that is V|cypea = id and
V(t) = 1fori=0,...,n— 1. Inageometric picture, it is just an embedding of C*/[G, G]
in C?/[G, G] x T to C*/[G, G] x {1}.

Note that the composition ¥ o ¢ is the map Cox(X) — Cox(C?/G) induced
by pushing forward of divisor classes and associated push-forward of sections of
corresponding sheaves.

The proof of the next lemma is technical. It is based on the structure of oy, 03, 03
(the single relation between them) and the linear independence of the columns of the
intersection matrix Uy, corresponding to the considered characters of 7; we skip the
details.

LEMMA 6.11. The homomorphism ¢ is a monomorphism.
As a direct result of Lemmata 6.9 and 6.11, we obtain

THEOREM 6.12. Cox(X) C Cla, BJONE!, £, ..., 2!\ is generated by the images
of the variables under ¢, as listed in Definition 6.8, i.e.

(1) oia,b)- xxi(to, ..., tao1) fori=1,2,3 and
(2) xolto, - .-, ta—1) and xi,(to, ..., ta—1) fori=1,2,3,j=1,...,n,.

Look at the composition

Cox(X)-2> Cox(CH/ Q! i, ..., i -5 Cox(C2/G),
that is the push-forward homomorphism between Cox rings. Theorem 6.12 mentions
two kinds of generators of Cox(X). These from the first group are pull-backs of
generators of Cox(C?/G), which come from the eigenspaces of A4h(G)-action on
Cla, b)), In particular, they are mapped to nontrivial elements of Cox(C?/G) by the
push-forward homomorphism. Other are mapped via ¥ o ¢ to 1 € Cox(C?/G), and
they depend only on the Picard torus action on Cox(X'), which in fact induces ¢. We
may say that generators of the first kind reflect the structure of the group G and these of
the second kind contain the information on the intersection numbers of components
in the exceptional divisor of the minimal resolution X. This idea of describing the
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generators of Cox(X) seems more general than just the two-dimensional case. In fact,
it can be proven that for any (minimal) resolution X of a quotient singularity V/G
there is a monomorphism

Cox(X) — Cox(V/G) ® C[T],

constructed using general ideas sketched in this chapter; in [12] we attempt to find
generators of this embedding in a certain four-dimensional case.
The following remark gives another point of view on the situation of Theorem 6.12.

REMARK 6.13. Define an action of 4h(G) ~ G* on Cla, b0 i, .. )]

as follows: take g € Ab(G), then

e the action of g on o; is induced by the considered representation of G on Cla, 5];
then by definition of o; we have g - 0; = ¢; - 0},

* we put gty = c;l - ty(py; recall that fxi) = x. (%, ..., t,—1) is the character of T
corresponding to x;, so the action is defined such that ¢(x;) are its fixed points,

¢ we extend the above definition (to other coordinates of T') such that all characters
Xy, and x,, of T are fixed by this action; one can check that these conditions
determine the action uniquely.

We see that the image of ¢ is a subring of the invariant ring of this action.

We finish with a few words about the geometric meaning of these results. The dual
map to ¢ is just the morphism from the torus bundle to the spectrum of the Cox ring:

¢u: C*/[G, G] x T —> Spec(Cox(X)).

Since ¢ is a monomorphism, the dual ¢4 is a dominant map. Moreover, it factors as the
quotient by the action of Ah(G) described in Remark 6.13 followed by an embedding.
One can prove this by checking that the cardinality of fibres over points in the image of
¢y is equal to |Ab(G)|. This follows by analysing the set of characters of T which define
¢ (given by columns of the intersection matrix) and applying the information from [7,
Satz 2.11] in a similar way as in the proof of Lemma 4.8; we skip the computations.

It is worth noting that the image of ¢ is not isomorphic to the ring of invariants of
the above Ah(G)-action, i.e. the image of ¢4 is a proper subset of Spec(Cox(X)). This
can be seen already in the case of an abelian group G, where the quotient is toric, see
Example 6.4. Then, the fan of C?>/[G, G] x T = C? x T has just two rays. The fan of
its Ab(G)-quotient also, since it has the same set of cones, only the lattice is denser.
But Spec(Cox(X)) ~ C*) (where as usual ¥ is the fan of the minimal resolution
of C?/G), hence its fan has more than two rays, so is cannot be isomorphic to the
fan of (C? x T)/Ab(G). Roughly speaking, this means that the ring of invariants of
the considered 4b(G)-action does not contain the information about the divisors in
Spec(Cox (X)) corresponding to the characters of T given by columns of the intersection
matrix. Analogous observations can be made for quotients by non-abelian groups.

6.3. Examples. The examples below describe the homomorphism ¢ and the
generators of Cox(X) explicitly in a few interesting cases. Also, in Example 6.15, we list
the eigenvectors of 4b(G) which generate Cla, b]I% ¢ for all small groups G € GL(2, C).

EXAMPLE 6.14 Binary dihedral groups BDg4,. We consider the case of Du Val
singularities, which was investigated in [13] but without describing generators of the
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Cox ring. In this example, we correct a mistake in [13, p. 9] — below we provide a set of
equations for an embedding of the du Val singularity D, for odd 7 in C°.

The commutator subgroup of BDy, is Z, = (diag(e,, £, ')). The ring of invariants
of the action of [BDy,, BD4,] on C[x, y]is generated by xy, x" and y". However, only the
first monomial is an eigenvector of the action of 4b(BDy,) on this ring of invariants and
we have to find suitable linear combinations of the remaining two (see Example 6.15).
As before, the coordinates on C? x (C*)" are (a, b, to, . . ., th_1).

If n is even, then the generators of Cox(X) are

o(xj) :  id" + by, (@ — b))y, 25 abt,_,

titaty to fo lfols I3ts lalg titiv2 31 Th2
¢()/0)a¢()}i,j) . [_27 [_2’ [_2’ t_za [_2’ [_2’...’ t2 EERICIRE [2 ’[2_.
0 1 b B 4 5 i+1 n—2 n—1
And if n is odd, we have
2
$(x) 1 (—id"+ By, (@ — i), 2habt,
titaty to fo lfols 13ts lalg tiliva 31 Th—2
d(o), P(yiy) : t—zvl—zvt—z,t—z,l—zvt—z,---, 2 TR 'z
0 1 b B 4 5 i+1 n—2 n—1

We can use the formula for ¢ (more precisely, for the associated morphism of
varieties) in the case of odd n to correct a false statement on page 9 of [13]. The authors
describe the quotient of C"*3 by the Picard torus action as

V =25 — ZsZs = 7175 — Z3Z4 = 7374 — Z3Z6 =
=737y — Z4Zs =72 — 2\ Zs = 73 — 7, Z5 = 0}

and attempt to realize C>/BDy, as a subvariety of V. They suggest that it is isomorphic
to

V =V N{Z{ +Zs+ Zs = 0},

where k = (n — 1)/2. However, this variety is reducible. One component (of dimension
2)is given by Z) = Z3 = Z4 = Z‘z‘ — ZsZs =0 and the second one, isomorphic to
C?/BDy,, is the closure of the set of points of ¥ with at least one of Z, Z3, Z4
nonzero.

To obtain the full set of equations of the second component, we first apply the
quotient morphism described in [13, Lemma 4.2] to the image of ¢, i.e. we compute
monomials Z, ..., Zs.

The relations between these monomials for a few small values of # can be computed
for example in Singular, [9]. Thus, we find two more equations, namely

ZV'Zy+ 234+ Z5=0 and Z{'Zy+Z3+Zs=0.
It turns out that they are sufficient for all odd n. i.e.
VOZE+ 234+ 2y =25 234+ 23+ 25 = 281 240+ 23 4+ 25 = 0)

is irreducible and by a direct computation one can check that its coordinate ring is
isomorphic to the one of C?/BDy,.
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This observation does not change anything in the main results of [13]. However,
this is a convincing example that the ideas used there may be hard to generalize to
more complicated singularities.

EXAMPLE 6.15. Let G be a finite non-abelian small subgroup of GL(2, C). We
compute the eigenvectors of the induced action of 4h(G) which generate C[x, y]l¢-¢1.
We use the list of generators of rings of [G, G]-invariants from [10] and Corollary 2.5.
The data included in this example, together with the description of the exceptional
divisor of the minimal resolution of C?/G given in Section 2.2, is entirely sufficient to
write down ¢ explicitly in all considered cases.

(1) For G = BD, ,,, we have [G, G] >~ Z,, C SL(2,C). The invariants of [G, G] are
generated by xy, x", y" with the relation (xy)" — x"y" = 0. Invariants that are
eigenvectors of Ab(G) are

xy, X"+ y", X" —y"forevenn and xy, x"+p", x" — H" for odd n.

(2) For G = BT,,, the commutator subgroup is [G, G] = BD, and its invariants are
generated by x%)%, x* + »*, xp(x* — y*) with the relation —4(x?y?)> + (x>»*)(x* +
2 — (xp(x* — y*))? = 0. The last polynomial is an invariant of BT, hence also an
invariant of Ab(BT,,). The remaining eigenvectors of Ab(G) are

Xt 4 2iv/3x%? and x* 4yt — 2ix/§x2y2.
(3) For G = BO,,, the invariants of [G, G] = BT are generated by

A=~ lOSxy(x4 — y4), B= —(x8 + 14x4y4 + yg),
C=x"2-33x%* — 3345 4+ 2

with the relation 4* + B3 4+ C?> = 0. Moreover, these generators lie in eigenspaces
of Ab(G).
(4) Finally, for G = Bl,, the invariants of [G, G] = BI are generated by

D = V1728xp(x'" 4+ 11x°y° — »'9),
E = _(x20 +y20) + 228(X15y5 _ x5y15) _ 494x10y10’
F = x30 +y30 + 522()625)/5 _ x5y25) _ 10005(x20y10 + xlOyZO)

with the relation D° 4+ E3 + F? = 0. As before, these generators lie in eigenspaces
of Ab(G).

EXAMPLE 6.16. Let us write down the generators of Cox(X) in a case of G =
BD»3 39. It was already explored in Examples 2.8 and 3.21, where the dual graph of the
exceptional divisor and the extended intersection matrix are shown. As before, choose
the coordinates on C!° to be

(V0> V1,15 X1, V2,15 X2, V3,1, V3,2, 3.3, V3.4, X3).
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We have [BD»3 39, BD2339] >~ Z»3 C SL(2, C) and n is odd, so the generators are

$(x1) = (—ia™ + ™)1, $(x2) = (@ — b2, p(x3) = —i Vabts,
d(vo) = tiatsty®, (i) = tot; %, d(va1) = tots %,
d(a1) = totatst, @) = tatsty?,  G(33) = tatsls®,  d(v3a) = tsty .

EXAMPLE 6.17. There is a case where the morphism of varieties ¢4 induced by ¢ is
an embedding of the trivial torus bundle over the singularity C?/BI in Spec(Cox(X)):
the Du Val singularity Eg. This is because [BI, Bl] >~ BI, so the abelianization is trivial.
By Remark 6.13, the morphism

¢u: C?/[BI, BI] x (C*)* — Spec(Cox(X))

is then a quotient by the trivial group action, so the image is isomorphic to C?/Bl x
(C*)®  Spec(Cox(X)).
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