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SUBSIMPLE, INJECTIVE, RETRACT
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(Received 7th November 1983)

Simple and subsimple objects were introduced in [6]. It was shown that if there are
enough simple objects in a category %, then there is no room for injectives in €. This
idea was exploited in [6] and [2] to show that several classes of groups, rings and
classes belonging to other categories do not possess non-trivial injectives or retracts. In
this note, the above results will be strengthened by introducing a weaker condition than
subsimple of [6]. As a consequence, and by employing some embedding theorems, we
show that some important classes do not possess non-trivial retracts.

All the categories are assumed to have a zero object.

Definition. Let € be a full subcategory of a category 2. An object 4 of € will be
called @-subsimple if there exist Seob2, Teob¥ such that 4 is a proper subobject of S,
$ is a subobject of T, and S is simple in 2 [6, Definition (i)].

Obviously a subsimple object in a category €, as defined in [6], is a ¥-subsimple
object.

Theorem 1 of [6] and Lemma 1 of [2] are extended as follows. (Let ¥ and 2 be as in
the definition above.)

Theorem 1. If a non-zero I €ob®¥ is an extremal quotient in @ of a 9-subsimple object
Aeob¥, then I is not injective in €.

Proof. Assume [ is injective in 4. Let 4 R A T, m non-invertible, S simple in 2,
Teob®, and let A1 be extremal [4, 17.9]. As [ is injective in € and hme¥(A4, T),
there exists fe€%(T,I) such that f(hm)=e. Clearly fh is a monomorphism since fh+0,
as I1#0. Hence fh is invertible, since e is extremal. So m is an extremal epimorphism
and a monomorphism, hence invertible. Contradiction.

Corollary 2. (i) A full category of groups containing the free groups and the symmetric
groups does not possess non-zero injectives. (ii) A full category of J-algebras, J an integral
domain, containing the free J-algebras and the algebras of endomorphisms of J-modules

does not possess non-zero injectives.

Theorem 3. A Z-subsimple object A€ ob¥ cannot be a retract in €. (¢ and @ are as
in the definition above.)
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Proof. Assume A is a retract in ¥ and 4355 T as in the proof of Theorem 1. Since
hme%(A, T), there exists ge %(T, ) such that g(hm)=1. But gh+#0 since A#0,s0 ghis a
monomorphism, hence invertible. So m is invertible. Contradiction.

Theorem 4. There are no non-trivial retracts in:

(i) the class of finitely generated groups, #g%r; (ii) the class of n-generator groups, n a
positive integer, nr; (iii) the class of countable, locally finite groups, €Lf%r; (iv) the
class of finitely generated groups with solvable word problem.

Proof. (i): Let G be a finitely generated group. In particular G is countable, so by a
theorem of Boone and Higman [1], there exists a simple countable group H such that
G £ H. Hence, by a theorem of Higman, B. H. Neumann and H. Neumann [5, Theorem
4], there exists a 2-generator group K with H<K. It follows that G is ¥r-subsimple in
F g%r, so by Theorem 3, there are no non-trivial retracts in #g%r.

(ii): The case n=1 can be easily proved directly. Let n>1. Again by the theorems of
[1] and [5] mentioned above, every group in n%r is %r-subsimple in n%r, hence there
are no non-trivial retracts in n@r, Theorem 3.

(iii): Let G be a countable, locally finite group. By a theorem of P. Hall [3], there
exists a simple, countable, locally finite group H such that GS H. Put K=H, and apply
Theorem 3 to obtain that there are no non-trivial retracts in €.% f%r.

(iv): Same proof as for (iii) but instread of P. Hall’s theorem we employ a theorem of
Thompson [7] to embed any finitely-generated group with solvable word problem into
a simple group of the same sort.
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