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Abstract

Considered in this investigation is the three-dimensional, gravity-driven flow of a thin viscous fluid layer down an
incline, and spreading over topography. Three depth-integrated models are presented and contrasted. These include
an integral-boundary-layer model, a weighted-residual model and a hybrid model. A numerical solution procedure
suited for solving three-dimensional flows is also proposed. Numerous simulations have been conducted using the
models for various steady subcritical, and unsteady supercritical flows over several topographies. Good agreement
among the three models was found. In addition, the models were also validated using experimental results, and,
again, good agreement between the three models and with experiments was obtained.

Impact Statement

Gravity-driven thin flows are common occurrences in everyday life as witnessed, for example, when rainwa-
ter drains along a sloped pavement. Here, we present a comparative study of depth-integrated models that
describe three-dimensional thin flows over topography. Three models are discussed in detail with a focus on
their mathematical formulation, as well as on a practical numerical solution procedure using finite differences.
Various fully submerged topographies are selected to illustrate the versatility of the models. These include a
smooth Gaussian bump, a rectangular steep-sided trench and a wavy bottom. Because these flows are prone
to interfacial instabilities along the free surface, the stability of the flow for a flat inclined bottom is also
discussed in detail. Students and researchers new to this topic will benefit from the friendly introduction to
the background and fundamental concepts, while those already familiar with this subject will also gain some
insight into useful methods and techniques to better understand these interesting flows.

1. Introduction

Falling thin viscous flows are ubiquitous in both natural and human-made settings (Alekseenko,
Nakoryakov & Pokusaev 1994; Chang 1994; Chang & Demekhin 2002; Craster & Matar 2009; Kalli-
adasis et al. 2012). In industrial applications such layers provide a protective coat on surfaces as in
bearings, paintings and other manufacturing processes (Kistler & Schweizer 1997). On the other hand,
in the environment thin flows can be found in rivers, or may appear as lava flows (Huppert et al. 1982;
Griffiths 2000), ice flows (Rignot, Mouginot & Scheuchl 2011), mud slides (Ng & Mei 1994) or even
avalanches (Hakonardottir et al. 2003). Whereas in living organisms, thin fluid layers are known to play
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a vital role in lining the airways in lungs, and in the case of a tear film they form a protective surface on
the front of the eye (Braun 2012). Other examples include thin flows in human-made structures such as
aqueducts and spillways. Because thin fluid layers are susceptible to interfacial instabilities, variations
in fluid thickness typically occur, and this can lead to the formation of waves propagating along the
surface which can have adverse effects. In coating applications, for example, this can produce uneven
coatings. In human-made conduits such as open aqueducts, spillways of dams and runoff channels, the
flow instability generates a series of intermittent bores, known as roll waves, with surges that can dam-
age flow control and flow measuring devices, and can even raise the fluid level above the channel walls.
In naturally occurring debris flows, surface bores can drastically increase their destructive power. As
a result of this, thin fluid layers have been studied extensively. The first experiments were conducted
by the father and son Kapitza & Kapitza (1949), while the first theoretical predictions for the onset of
instability were made by Benjamin (1957), then Yih (1963) and later by Benney (1966). Shkadov (1967)
was the first to construct a simplified mathematical model for these flows. In the literature one can find
a plethora of two-dimensional investigations, but relatively few three-dimensional studies. Before pro-
ceeding further, it is worth defining what we mean by two- and three-dimensional flows. Depending on
the number of independent variables used, bottom topographies are either one- or two-dimensional. The
flow over a one-dimensional topography is defined to be two-dimensional (ignoring three-dimensional
patterns arising from instabilities), while the flow over a two-dimensional topography is defined to
be three-dimensional. This definition is consistent with that adopted by Aksel & Schorner (2018) and
others.

Owing to the numerous applications cited above, considerable effort has been invested in modelling
two-dimensional isothermal thin fluid layers. When the governing Navier—Stokes equations are cast in
dimensionless form, two dimensionless parameters emerge: the Reynolds number (Re) and the Weber
number (We). If the streamwise length scale is different from the cross-stream length scale, then
another dimensionless parameter given by the ratio of these length scales appears. This is known as the
shallowness parameter, d, and for thin fluid layers 6 < 1. The key finding discovered by Benjamin (1957),
Yih (1963) and Benney (1966) is that the critical Reynolds number, beyond which thin flow down a flat
surface inclined at an angle of 8 with the horizontal becomes unstable, is given by Re.,;; = 5cot 3/6.
For the applications listed above the Reynolds number can range from small to moderate values, and
hence the flows can vary from a stable flow having a uniform thickness to an unstable flow with waves
propagating along the free surface. For the cases presented in this study, we focus on Reynolds numbers
of order unity near criticality.

As noted above, the two-dimensional flow over a flat bottom becomes unstable when Re..; =
5cotB3/6. The influence of wavy bottom topography on the stability of a flow has been discussed in
several previous studies. For example, D’ Alessio, Pascal & Jasmine (2009) using the weighted-residual
(WR) model showed that with weak to moderate surface tension bottom topography acts to stabilize
the flow, while with strong surface tension bottom topography can destabilize the flow provided the
wavelength of the bottom undulation is sufficiently short. The stabilizing effect of bottom topography
on inclined flows was also reported by Wierschem, Lepski & Aksel (2005) for weak surface tension,
whereas the reversal in the stabilizing action of bottom topography was noted by Heining & Aksel
(2009) and Hicker & Uecker (2009) using the WR model. Heining & Aksel (2009) discovered this by
investigating the inverse problem, that is, they sought the corresponding bottom topography that gave
rise to a free-surface profile. On the other hand, Hicker & Uecker (2009) addressed the direct problem
by expressing the equations of motion in terms of curvilinear coordinates relative to the bottom profile.
The work by Heining & Aksel (2010) demonstrated that the critical Reynolds number of the neutral
stability curve shifts for gravity-driven films over corrugated bottoms compared with that over flat
bottoms. Moreover, the shift depends on several parameters. For large bottom corrugations the study
conducted by Wierschem & Aksel (2003) showed that the fluid particles do not follow the complete
solid bottom contour; instead, the particles slide on the separatrix of eddies created in the valleys of
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the bottom corrugations. In these cases the neutral stability curve changes drastically. For such complex
flow structures integral boundary layer (IBL) or WR simulations are not available in the literature.

In this investigation we are primarily interested in the hydrodynamic mode of instability, known
as the H mode, which is the result of long-wave deformations of the free surface due to inertia. It
occurs in both isothermal and non-isothermal flows. The stability of the H mode was originally studied
theoretically by Benjamin (1957), Yih (1963) and Benney (1966), while experiments were first carried
out by Kapitza & Kapitza (1949), and later by Liu, Paul & Gollub (1993). The physical mechanism
for this long-wave instability was advanced by Smith (1990). The scaling adopted in § 2 is well suited
to analyse the H mode. Although there is a shear mode, it has been shown by Floryan, Davis & Kelly
(1987) that this mode will only be important at small inclination angles. In addition, there are also P
and S modes of instability that arise when a thin film flows over a heated substrate. These modes were
identified by Goussis & Kelly (1991), and were also investigated by Pearson (1958) and Smith (1966).
In fact, Smith (1966) suggested that the instability observed by Bénard (1900) was likely due to the
Marangoni effect rather than to buoyancy effects. In order to capture the P and S modes one needs to
introduce a second scaling because the parameters involved in the neutral stability relation are in fact
implicitly dependent on the Reynolds number. Thus, a rescaling of the problem must be considered
which involves strictly independent parameters in order to ensure that all physical aspects are fully and
correctly taken into account.

To accurately represent an unsteady and non-uniform flow arising from interfacial instability, a
mathematical model must incorporate all the relevant physical factors, and possess the mathematical
complexity required to capture the spatiotemporal coupling and nonlinear dynamics of the flow. At the
same time, simplifications to the governing equations, warranted by physically justified assumptions,
can lead to a more complete and productive mathematical treatment. A general modelling approach is to
reduce the space dimensionality of the problem, and to exploit the assumed shallowness of the flow which
enables depth integration of the equations of motion. This strategy requires that the velocity variation
with depth is consistent with laminar flow, and hence can be specified a priori. A suitable approximation
can be constructed from the self-similar parabolic velocity profile resulting from a balance between
gravity and longitudinal shear which governs the steady uniform flow. Applying boundary conditions at
the top and bottom of the fluid layer then introduces the dependence on the fluid thickness which will be
transient and non-uniform for unstable flows. This leads to a two-equation system for the thickness and
flow rate of the fluid layer which is referred to as the IBL model. This was first developed by Shkadov
(1967) for two-dimensional flows. Although the IBL model can successfully reproduce certain aspects
of the flow, it overpredicts the critical conditions for the onset of instability for two-dimensional flow
over a flat bottom, when compared with the results from the Orr—Sommerfeld equations (Benjamin
1957; Yih 1963) and the experimental work of Liu et al. (1993). Despite efforts to rectify the IBL model
(Prokopiou, Cheng & Chang 1991; Uecker 2003), erroneous overpredictions for the onset of instability
plagued all attempts.

An alternative approach was proposed by Ruyer-Quil & Manneville (2000, 2002) where they con-
sidered a more accurate velocity profile obtained by means of a weighted-residual technique having
a polynomial expansion for the velocity. Their model, known as a WR model, also consists of a two-
equation system in terms of the flow rate and fluid thickness. More importantly, the WR model is able
not only to correctly predict the critical conditions for the onset of instability, but also to capture the
development of the supercritical flow as revealed by comparisons with the laboratory experiments of
Liu, Schneider & Gollub (1995) and the direct numerical simulations of Ramaswamy, Chippada & Joo
(1996). The ability of this model to accurately describe flows under unstable conditions far from criti-
cality qualifies it as an important improvement over the Benney equation (Benney 1966) which is only
valid near the instability threshold.

The success of the WR model created a lot of interest in extending it to more complex flows. For
example, Kalliadasis et al. (2003) applied the WR formulation to model flows down an even heated
incline, D’ Alessio et al. (2009) used it to model isothermal flows over a wavy incline, while Pascal &
D’ Alessio (2010) successfully applied it to inclined isothermal flows down an uneven porous surface.
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Several other extensions such as incorporating surfactants (D’ Alessio ef al. 2020) and heated flows over
wavy surfaces (D’ Alessio et al. 2010; Daly, Gaskell & Veremieiev 2022) have also been implemented, to
list a few. While most of these WR models listed above are second order in the shallowness parameter,
Veremieiev & Wacks (2019) have extended the WR formalism to include third- and fourth-order
terms.

Other approaches used to model slow viscous motion of a thin fluid layer include the application
of lubrication theory, or using Stokes flow. Many such investigations are summarized in the thorough
review carried out by Aksel & Schorner (2018). Lubrication theory is based on flows possessing a
slowly varying cross-section, such as in a journal bearing. If the fluid layer has a thickness, H, which is
small compared with its length, L, then it can be shown (Batchelor 1965; Leal 1992) that the left-hand
side of the Navier—Stokes equations becomes negligible if 6Re < 1, where 6 = H/L is the shallowness
parameter mentioned earlier, and to leading order the pressure becomes hydrostatic. Then, retaining
terms up to first order in ¢ yields parabolic profiles for the horizontal velocities. Finally, integrating
the continuity equation across the fluid layer leads to a single nonlinear evolution equation for the
fluid thickness. Some early studies include the case of thin-film flow over a one-dimensional trench
(Kalliadasis, Bielarz & Homsy 2000; Mazouchi & Homsy 2001; Bielarz & Kalliadasis 2003), while
Gaskell et al. (2004) considered both one- and two-dimensional topographies. More recently Hinton,
Hogg & Huppert (2019, 2020a, 2020b) used lubrication models, asymptotic analyses and laboratory
experiments to describe free-surface viscous flows over two-dimensional mounds, around a corner and
past cylinders of various cross-sections. D’ Alessio (2023a) also used a lubrication model to compute
flows past cylinders having circular and elliptical cross-sections.

Turbulent and laminar two-dimensional models based on the shallow-water equations have also been
used by Balmforth & Mandre (2004). However, the equations are not methodically derived and rely on
empirical terms. For example, the turbulent model included empirical terms to account for turbulent
friction and internal dissipation. As pointed out by Prokopiou ef al. (1991), both periodic and solitary
wave solutions to the shallow-water equations modified with a dissipative term produce amplitudes that
are strongly dependent on the viscosity coefficient which makes it difficult to estimate the value of this
parameter.

Three-dimensional thin fluid layers are intrinsically more complex than their two-dimensional coun-
terparts. Thus, it comes as no surprise that the work devoted to modelling three-dimensional thin fluid
layers is relatively rare compared with two-dimensional fluid layers. Listed here are some previous stud-
ies pertaining to three-dimensional flows spreading over topography. Baxter et al. (2009) considered
steady gravity-driven Stokes flow down an incline and over hemispherical obstacles. Stokes flow corre-
sponds to small-Reynolds-number flows whereby the inertial forces are neglected which leads to a linear
balance between viscous and pressure forces. The controlling parameters in their investigation were the
angle of inclination, the Bond number and the obstacle geometry. A key finding is that the free-surface
profiles had a peak upstream of the obstacle followed by a downstream trough. They also considered
cases where the obstacle penetrates the free surface, and in such cases a contact angle was specified.
The study by Buttle ez al. (2018), on the other hand, considered the steady flow of an ideal fluid using
a boundary-integral method. Both subcritical and supercritical regimes were explored for a variety of
bottom configurations. Their focus was on the nonlinear features of the wave patterns and their relation-
ship to ship wakes. Veremieiev et al. (2010) and Veremieiev, Thompson & Gaskell (2015) numerically
investigated two- and three-dimensional flow over step-like and trench topographies and obtained good
agreement with the experimental results of Decré & Baret (2003). Three-dimensional flows over a
wavy bottom were studied theoretically by Trifonov (2004); he derived a thin-film IBL model. Hein-
ing, Pollak & Aksel (2012) also worked on three-dimensional flows over a wavy bottom and solved the
problem analytically, numerically and experimentally. In addition, Hinton er al. (2019) investigated the
flow of a viscous free surface over bottom topography theoretically and numerically through the lens of
lubrication theory. Their work was motivated by the interaction of lava flows with obstructions. They
considered cases where the topography penetrated the free surface, which they termed dry zones, and
where dry zones would form in the wake of an obstacle. Rather than specifying a contact angle, they
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handled dry zones by introducing a small source term which had the effect of creating a virtual thin
film over the dry zone. More recently, D’ Alessio (2023b) developed a hybrid model which blends IBL
formalism with lubrication theory. Various bottom topographies were considered and good agreement
was found with the experimental work of Heining ef al. (2012) and with the numerical simulations of
Hinton et al. (2019).

The goal of the present study is to present and contrast three-dimensional IBL, WR and hybrid models.
The IBL and WR models were chosen since they tend to be the most common. The hybrid model was
also included because it is a cross between the IBL and lubrication models, and as such it can represent
lubrication-type models. Numerous numerical experiments are conducted spanning steady subcritical,
and unsteady supercritical flows. Various three-dimensional, fully submerged topographical flows are
entertained including a smooth localized bump, wavy periodic undulations and a steep-sided trench. The
paper is structured as follows. In the next section we formulate the problem mathematically, and derive
second-order IBL and WR models for three-dimensional flow. These models are second order in terms
of the shallowness parameter, 6, which is assumed to be small. Following that, in § 3 linear stability
analyses are carried out using the three models for the case of a flat inclined bottom to demonstrate that
the three-dimensional predictions made for the threshold of instability are in full agreement with those
arising from two-dimensional flows. Then in § 4 a new numerical solution procedure is proposed to
solve the model equations. Various steady and unsteady results are presented and discussed in § 5; the
three models are contrasted and validated by drawing comparisons with experimental data pertaining
to a case characterized by a two-dimensional wavy bottom topography. Finally, in § 6 we summarize
the main findings. Lastly, Appendix A, which outlines the derivation of the dynamic conditions applied
along the free surface, is also included.

2. Mathematical formulation

We consider the three-dimensional, laminar, gravity-driven, isothermal flow of a viscous, incompress-
ible, Newtonian, shallow liquid layer of thickness %(x, y, f) down a non-porous surface which is inclined
at an angle of 8 with the horizontal. The surface over which the fluid is flowing has a variable bottom
topography denoted by Mm(x, y). Here, M refers to the amplitude of the bottom topography. We define
a coordinate system (x, y, z) such that the down-slope coordinate is x, the cross-slope coordinate is y and
the normal coordinate above the inclined surface is z. Illustrated in figure 1 is a cross-sectional view in
the x direction along the centreline.
The continuity and Navier—Stokes equations expressed in dimensional form are given by

ou . ov N ow 0
ox dy oz
ou N ou +v3u . ou ap +pgsinf+ 0u N 0’u N 0%u
—tu—+v—+w—|=—— —t+t—+—],
Pl\ar " "ox Jy 0z ox T P8 Hlox 9y 072

2.1)
ov ov ov ov B (9_2v v 0%y

p(E+Ma—x+Va—y+Wa—Z)——a—y+,u(ax2+a—yz+a—zz),

6w u@_w+v(9_w+ 6_w __6_[7_ COSﬁ+ (92_W+62_W+62_W

E-'- ox dy Wﬁz 0z

where u, v, w are the velocity components in the x, y, z directions, respectively, p is the pressure, g is the
acceleration due to gravity, p is the density and u is the dynamic viscosity. We next cast the governing
equations in dimensionless form. In order to achieve this we choose the Nusselt thickness (Nusselt 1916)
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Mm(x, y)

Bottom

h(x, y, 1)

X, u

Figure 1. Cross-section of the flow and set-up.

of the liquid, given by

1/3
( 310 ) 2.2)

gpsinf

as the vertical length scale, while L to be the horizontal length scale. For a wavy topography L is typically
taken to be the wavelength of the bottom undulations, while for a localized topography such as a bump
or trench, L can be taken to be the length or width of the bump or trench. In the above Q denotes the
prescribed flow rate per unit width. The velocity scale is taken to be U = Q/H and the time scale is L/U.
For the pressure we use pU? as the scale. Using these scales we apply the following transformation:

L
(x,y,2) = (Ix",Ly*,HZ"), h=Hh", M=HM", t=5t*,

H (2.3a~)
(u,vyw) =U (u*,v*, zw*) , p=pU%,

where the asterisk denotes a dimensionless quantity. With these scalings in place, and dropping the
asterisks for notational convenience, the dimensionless equations within the liquid layer to second order
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in the shallowness parameter, 6 = H/L, become

ou Ov Ow
—+—+——=0, 2.4
6x+6y+ 0z @4
Ou Ou Ou Ou op 5 (0%u  0%u\ 0%u
Re [ 2% 402 1004 L W) = _sRe P g e 2.
66(6t+uax+vﬁy+waz) 566 +3+0 (8x2+6y2 32 2.5)
ov. ov  dv  Ov ap (0% %\ v
Re|=— +u— +v— = —Re—= —l+= 2.
0 e(6t+uﬁx+v6y+waz) 0 dy o (6x2 0y? +6zz’ 26)

ow ow ow ow (9]7 ()2W
2 — .7
5Re(_t+u_+v_+w Z)_ Re 2 3C0tﬁ+(5 Zz. ()

In the above Re = pQ/u refers to the Reynolds number. Equations (2.4)—(2.7) can be viewed as the
long-wave equations and mark the starting point of our mathematical formulation.

The system of equations (2.4)—(2.7) needs to be solved subject to the following boundary conditions.
Along the free surface, z = n = Mm + h, we impose the kinematic condition given by

_0h  On 67]
o T ox TVay (2:8)

The tangential stress conditions along the free surface (see Appendix A) correct to second order in 6
are given by

ou |00 (,0u dv\ On(du dv) dw

A Pl | Z -2 2.
FE [ ax( ax+ay) 3y (ay+ax) ax 29
ov L | 0n( 0v Ou (977 ou Jv\ Ow

RAMNRP LY bRl b A -2 2.1
oz ° [ ay( ay ax) ax (ay+ax) [)y] (210)

whereas the normal stress condition along the free surface (see Appendix A) to second order in 9 is

26 (0u v dndu Ondv n  9’n
=2 T 82 we | L+ 2L 2.11
P (6x+6y+(9x6z+(9y6z) e(5x2+3)’ @10

Here, We = yH/(pQ?) refers to the Weber number with y denoting surface tension. Along the bottom
boundary, z = Mm, we apply the no-slip and impermeability conditions

U=v=w=0. (2.12)

In this study we consider three depth-integrated models: the IBL model, the WR model and the
hybrid model. These are outlined below.

2.1. The IBL model

We begin by integrating equation (2.5) across the fluid layer from z = Mm to z = 5, and introduce the
down-slope flow rate, g,(x, y, t), defined by

n
qx=/ udz. (2.13)

Mm
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Noting that

dqg. o0 [ T Qu 677 T Qu 6h
= — I/[dZ = - d d )
ot 0t Jpm Mm Ot (9t M ot 6t
9 T 79, 2677
_- dz = — d 2.14
Ox Mm v «//;/lm ox (u ) e ax ( )
0 " T 9 on
— uvdz =/ —(uv) dz+ uv—
3y J mm M 0y dy

and

/'7 u%+v@+w% d
Mm \ Ox dy 0z <

:‘/.’7 (——( 2)+ﬁ(uv)+ﬁ(uw)—u(av+a—w)) dz

2 Ox dy 0z
T(a  , 0 oh 67] on
_ oh 2.1
/ (6x(u)+ (uv))dz+u(at+ o +v Gy) (2.15)

then leads to the following equation:

n n
(5Re(8q; +i/ u dz+i uvdz)

T dp 2/ ’u  0%u ou
= —0R —dz+3h+6 dz +
e/Mmax“ * Mm(axz oy ) <" Bz,

In arriving at this expression we have made use of the continuity equation (2.4), the no-slip and
impermeability conditions (2.12) and the kinematic condition (2.8).
Similarly, we introduce the cross-slope flow rate, g,(x, y, t), defined by

n
(2.16)

n
qyz'/ vdz, (2.17)

Mm
and integrate equation (2.6) from z = Mm to z = 57 to obtain

9 9 n 9 n
ORe i+— uvdz+ — v dz
ot ox Mm 8}7 Mm

n (5?2 o2 ov|?
——6Re/ —dz 62/ gr o dz+—v
Mm O Mm \Ox%  Oy? 0z | p

Lastly, integrating equation (2.4) across the fluid layer and using the kinematic condition (2.8) and
no-slip conditions (2.12) leads to

(2.18)

oh  dq. Ogy
an 9 . 2.1
ot T ox Ty 0 @.19)

In order to evaluate the various integrals appearing in (2.16)—(2.18) we need to specify u, v and p.
Although the velocity gradients along the free surface appearing in the last terms on the right-hand sides
of (2.16)—(2.18) are known from conditions (2.9) and (2.10), the velocity gradients along the bottom
are not. To make progress we propose the following profiles for # and v:

3%( b qY b

=53 =53 where b = 2(Mm + h)z — 22 — M*m? — 2 Mhm. (2.20a,b)
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These parabolic profiles are the three-dimensional equivalents of what are commonly used in modelling
two-dimensional flows. The pressure, p, on the other hand, can be obtained from (2.7) by retaining the
terms up to first order in ¢. This yields the equation

ap 0*w
Rea—Z :—3cotﬁ+6a—zz. (2.21)

Since the pressure term in (2.16)—(2.18) is already multiplied by ¢, we only need to consider the first-
order equation given by (2.21) to guarantee second-order accuracy. Integrating (2.21) and applying
condition (2.11) gives the following expression for the pressure to first order in ¢:

SCot,B 5 ow 6 aw|"
h- —+t —— . 2.22
“Re Mm+ Z)+R 8Z+Ret9z (222)

Note that the last term in (2.22) is to be evaluated along the free surface z = 7, while the second to last
term is evaluated at z. Also, we have assumed that the Reynolds and Weber numbers are of order unity.
Substituting these results into (2.16)—(2.18), after some algebra we obtain the following IBL model

equations which are cast in terms of 4, g, and gy:

oh 0 0
ot o0x  dy

=0, (2.23)

dq. 0 (6q> 3cotf , 6 4xqy 3 gx\ 3Mcotp om
(2% 1 po de| _ 2ATCP, om
ar " ox ( " Re "y 6y 5 1 ) GRe h? Re ox
i 262qx+62qx+zazqy _éﬁ 4(9_2h+a_2h _2& 62h
2 0x2  0y* 20xdy 2h\ o0x2 0y*] 2 h dxdy
6 a X 2 2
_i %aqx+4%aqx+a_h&+2%& +§&4 % + %
2h \ dy Ay Ox Ox  dx dy 6y Ox 2 h? ox dy
9 gy Oh Oh 2qx am\* (9m\?
T 2nox 6y [ M ax) * dy
M P M (pomge Gmdg. Ind

ox Ox * dy 0Oy * dy Ox

2 n\7a2 T a2 2n
LI d OmIm
h 0xdy h? dx dy

3M gy, Om Oh ﬂﬁ(@_m%+26m6h) (2.24)

Tﬁa_ya 2 nh2\dy dy Ox Ox

99y 0 (64ay) 0 (64 3coB ) 3 4 3Mcotp, om
ot 0x\5 h oy\5h  2Re B

SRe h? Re dy
5 [9 d%q, .\ 8%qy L7 0%qc 34y (462h . 82h) 9q, 0°h

20y 9x2  28x9y 2h\ 82 0x2) 2 h dxdy
6 ) a ) 2 2
_i 4%&+%6qx+3_hi+2%6qx +§@ % +4 %
2h\ 0y dy 09y 0x Ox ox ox Oy 2 h? |\ dx ay
9g,0h0n| & 20 [(9m\? (9m)?
e S Bdeiiutlell ISP P ) e
* 2 h? 0x dy +Re M n2 |\ ax * ady
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We note that for two-dimensional flow in the x direction (i.e. /dy = 0), this system recovers those in
previous studies (i.e. Shkadov 1967; D’ Alessio 2023b).

2.2. The WR model

The WR model equations are obtained using a similar procedure to that outlined in the previous section.
The only difference is that (2.5)—(2.6) are first multiplied by the weight function, b, and then integrated
across the fluid layer. Also, in order to incorporate the boundary conditions (2.8)—(2.12) into the WR
model equations, integration by parts was applied. For example,

9%y Ou”
b—dz=b — - 2q,. 2.26
/Mm 072 . 0% | pim 4 (2:26)

After some algebra we obtain

oh a0,
ot Ox Oy

=0, 2.27)

dg, 0
ot * ox
gx [9gx
(Bx * ay
73 qy 9%h

(24_?«+

16 h 0x0y h

2
qx oh 3
+h2[4(6x) T3
SM? g, am\* [(om\’
D [uiiia -
(&) -(5) |-
’m  0*m
ox?

ﬂ@(amﬁh

0
+__ _—
Re[ 2 n?
15M g,
-— = 4—
16 h(

"6 n2

da,, 0 (a4
ot ox\7 h
9 (94x , 99y
Th\dox Ody
73 g, 0%h

16 h 0x0y h

Scotg ,
4Re

5 [9 0%,
+—[= +
Re |2 0x%

0h dq,

9q,

dy ox
0 9%
+ay(

oh 0q,

Ox Ox

SM cotﬂhﬁ_m

9q:qy\ 5 x
h)+(9y(7 h )_26Re (h h2) 2Re  Ox
79 g 60_’% 2B 3*h
20xdy ax2 " 16 9y2
13 6h aqy 43 6h aqy)

9%qy
0y?
9 0h dq,
2 dx Ox

13 4, 0h dh

4 h? dx dy
1SM (0m dg _ om 9,
16h \ ox Oy

45M qy 62 SMZ Q\ om dm
ay 16 h axay

Bmﬁh)_ﬁ&(ﬁmah

dy dy 16 0x dy 16 dy 0x

oh\? N
dy

om ah) 22%)

Ox Ox

2 W ox Oy
Ox Oy 4 h2\ dy dy

S D
26Re h?

z 02‘1}6 qy (

SM cotﬂha_m
2Re dy
8*h 23 0%h

7 Toa)
43 0h 0q,
16 dx dy )

7h 4Re

5 [0%qy
— +
Re | 0x?
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16 9y 0x
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il (20)°,3 (2], agonon

h2 Oy "3 4 h? 6x Oy

o 5/\/(2 qy 8m N ISM Im g, Om 0q;
2 16h \ dy dx Ox ady

B ISM qy _m 62 45M 4x ’m  SM? qx Om dm
16 h oxdy 2 2 dx dy

16 nlae o)
Squ([)mah amah) Squ(BmBh amah)]

16 h? aﬁ_y_ dy ox 6x8x+ dy dy

s (2.29)

The WR model equations are also cast in terms of %, g, and g,. We note that for two-dimensional flow
in the x direction (i.e. 9/dy = 0), this system recovers those in previous studies (i.e. Ruyer-Quil &
Manneville 2000, 2002; D’ Alessio et al. 2009).

2.3. The hybrid model

The third model can be thought of as a hybrid model bridging lubrication theory and IBL formalism,
and was introduced by D’ Alessio (2023b). It is formulated in terms of g, and A, since the velocity, v,
and hence the flow rate, g,, can be determined from lubrication theory. The underlying assumption is
that the flow is largely unidirectional, and so the transverse (or spanwise) velocity, v, will be relatively
small. Here, we provide a brief derivation of the hybrid model equations; full details can be found in
D’ Alessio (2023Db).

An equation for v can be obtained by considering a balance between viscous and pressure forces, and
is given by

— = 6Re—. (2.30)

If we take the pressure to be hydrostatic, then

3cot,B

p= (Mm+h-7z). 2.31)

For convenience, and without loss of generality, we have taken the pressure along the free surface to be
zero. Substituting this into the above equation for v, integrating and applying the no-slip and zero-shear
conditions

0
v=0 onz=Mm, G_VZO onz=Mm+h, (2.32a,b)
Z

yields the following expressions for v and g,:

v-3600tﬁ(—+M )[ (2% - Mzmz)—(/\/lm+h)(z—/\/(m)],

n hoo8
q},:/ vdz——écotﬁ( + M m)h3
Mm 6})

(2.33)

These equations for v and g, are the same expressions that emerge from lubrication theory, and are
proposed here as a means of extending flows that are predominantly two-dimensional to three dimensions.
Inserting the equation for v into (2.16), and substituting the equation for g, into (2.19), then leads to the
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hybrid model equations given by

oh  0qy 0 oh om
— =dco " —_— 2.34
ot Fax T 0P [ (6y+M6y)] @34
dq. 0 (642 3cotf , 3 qx 3Mcot dm
i h-dx) o R m T
ot +6x(5 h ' 2Re 6Re( hZ) Re ' ox
) 762qx_9qx62h_3qu62m 6 Mﬁm 30h) (g« 0h  dqx
2 Ox? 2h Ox2 h  Ox? 20x)\h ox  ox
2 2 2 2 2 2 2
Mg om)’ O S 6h+Ma_m _ 3, (m
h? Ox 0y? 0y> 0y? h? dy
oh  dm\ (3q.0h 3 0q.
+(ay+May)(h2 dy hay)]
6 om Oh 0qx oh 0%h 0*m
—d cotBh —+—||h 2 hq, — 1. 2.35
HE Coﬂ[(M6y+6y)( 8y+q8y)+q(3y +M«9y2)} 239

Although the hybrid model equations are simpler than the IBL and WR model equations, we note that
the hybrid model is not fully second order (see D’ Alessio 20235b).

We point out that the Maple Computer Algebra System was implemented to carry out the tedious
algebra associated with the derivations of the IBL, WR and hybrid model equations. It is also worth
noting that all three models are invariant under the transformation

y—o -y, v - (2.36a,b)

This symmetry property is later exploited when prescribing suitable cross-slope boundary conditions.
In addition, the initial conditions, down-slope boundary conditions and bottom topography Mm(x, y)
needed to solve these model equations are also discussed later in § 5.

3. Linear stability

The stability of three-dimensional flow over topography has received little attention. Here, we show that
for three-dimensional flow over a flat bottom the threshold of instability is the same as that for two-
dimensional flow, namely Re.,; = 5 cot 8/6. We show this using the WR model equations, and begin by
linearizing equations (2.27)—(2.29) with M = 0 corresponding to a flat bottom. The steady-state solution
is easily shown to be h; = g,y = 1 and ¢y, = 0. Thus, we set h = 1 + h, qx = 1 +4, and g, = g, where the
hat denotes a small perturbation from the steady solution. The resulting linearized system then becomes

oh 84, 94,

— =0 3.1
ot " ax oy U G-

0ds 1804, (5cotp 9\ oh 934, _ dq. . 94y

6t+7 (9x+( 2Re 6x+76y_26Re(3 A)+ 6x+c')y

2 2 926 27 27
9 25“1x+3qx+2 a _ M_gﬂ (3.2)
2 0x*  0y*  20xdy  dx* 16 9y?
a4y, 904, Scotpdh 54, & (0°¢y, 90*¢, 10*G 73 0%h
Ody 204y  ScotBOh >4y | 6 (O7dy  FO0dy — (3.3)
ot 7 ox 2Re dy 26Re  Re \ 0x* 2 0y? 26x6y 16 0xdy
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Next, we assume a normal mode solution of the form

(h, Gv» 4y) = (ho, @x0» @y0) exp(at +i(kx +1y)), (3.4)

where k, [ denote the (real) wavenumbers in the x, y directions, respectively, while o = o + 107 is the
(complex-valued) growth rate. The sign of o, determines the temporal stability of the flow with o > 0
signalling instability, o, < O stability and o, = 0 neutral stability. Substituting these solutions into
(3.1)—(3.3) leads to a homogeneous system of equations, AX = 0, where

. ik il
ho 8il, 7K6
X=|qo| A= a1 2 7 " 3Re (3.5a,b)
a0 Sikcotp _ T3M6\ TKS
2Re 16Re | 2Re 33
and
5cotf 9\. 15 6 ( , 238
- ~2)ik- -2 a2+ 2.,
. ( 2Re 7)1 26Re  Re ( " T6
17k 5 & (9K
=0+ — A 3.6
=0t +26Re+Re(2 l)’ ©.6)
ay =0 + oik + > 2 K+ o8
3= 7 " 26Re ' Re 2 |

For non-trivial solutions we require det(A) = 0 which yields the dispersion relation. As with two-
dimensional flow, we assume that the most unstable modes correspond to long-wave perturbations (i.e.
k,1 — 0). Thus, we seek an asymptotic solution to the dispersion equation. For neutral stability we set
o, =0, so o = i0y, and then we expand o in the following series for small £, I

01 = 00 + 01k + ol + 03k + o4l + o5kl + -+ - 3.7)

This leads to a hierarchy of problems at various orders of k and /, which can be solved sequentially. For
example, oy can be determined by setting k = [ = 0 in matrix A, and setting det(A) = 0 which then
yields o = 0. Likewise, we find that o = 0. On the other hand, o satisfies the equation

17\ . S50 Scot  9). 15
+ —|ik+ = - =ik - . 3.8
o (”‘ 7 ) T 26Re ( 2Re 7) T 26Re 38
Equating the real parts of both sides we obtain o, = —3, and substituting this into the imaginary part

yields the desired result Re.; = 5cot/6 (since we are only after the leading non-zero term in the
expansion). We note that o, = 0 is equivalent to invoking Squire’s theorem, which states that it is
sufficient to consider only two-dimensional disturbances in order to determine the minimum critical
Reynolds number (Squire 1933; Drazin & Reid 1981).

Lastly, when this analysis is repeated for the IBL model equations (2.23)—(2.25) and the hybrid
model equations (2.34)—(2.35) we obtain Re..; = cot 8 for a flat bottom which is consistent with the
corresponding two-dimensional result. From this we see that the WR model correctly predicts the critical
Reynolds number for a flat bottom, while the IBL and hybrid models overpredict the critical Reynolds
number.

4. Numerical solution procedure

Systems (2.23)—(2.25), (2.27)—(2.29) and (2.34)—(2.35) were solved using finite differences (LeVeque
2007) on the rectangular domain L, < x < L;, =W < y < W having a width of 2W and a length of
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L, — L,. The computational domain was discretized into I equally spaced subintervals in the x direction
and J equally spaced subintervals in the y direction. This forms a network of (I — 1) x (J — 1) interior
grid points (x;,y;), where x; = L, +iAx, i = 1,2,..., ] - 1,and y; = =W +jAy, j=1,2,...,J -1,
with Ax = (L; — L,)/I and Ay = 2W/J denoting the uniform grid spacing in the x and y directions,
respectively.

The numerical solution procedure used to solve the hybrid model equations (2.34)—(2.35) is fully
explained in D’ Alessio (2023b), and thus is not repeated here. On the other hand, to numerically solve
the IBL system of (2.23)—(2.25) and the WR system of (2.27)—(2.29), the fractional-step method with
dimensional splitting was utilized LeVeque (2002). That is, we implemented the fractional-step method,
and split the multi-dimensional problem into a sequence of one-dimensional problems as explained
below. We illustrate the procedure using the WR system (2.27)—(2.29) with the understanding that it can
easily be applied to the IBL system (2.23)—(2.25). We first express the WR model equations in the form

oh  dq.  da,
- o,
ot * 0x * dy
dg: 0 (9¢> ScotB ,\ 0 (94
9 (724 e 2 (2 =R
ot +ax(7h T are V) a7 h 5 @1
dqy 9 (9away\ 9 (94 ScotB,,
RN — == h“]l =R
Bt+6x(7h Toy\7h T are >

where R; and R, denote the right-hand sides of (2.28)—(2.29). This system is solved in two steps: we
first solve

(28, S00). 2 (202
over a time step Az and then solve
O g, %o, (43a.b)

using the solution obtained from the first step as an initial condition for solving the second step. We note
that during the second step & remains constant. The second step then returns the solutions for gy, g, at
the new time 7 + Az, while the first step returns the solution for / at the new time 7 + At.

The first step amounts to solving a nonlinear system of hyperbolic conservation laws which, when
expressed in vector form, can be written compactly as

U IFW)  IGW) _

— 0, 4.4
ot " Tox | ay @4
where
qx q)’
h 9¢>  5cot Bh? 944y
U=|a|, FO)=|7,*"3pe |- GO =| "7 (4.5a—c)
qy 9qx‘]y 9& + 5 COt,B]’l2
Th Th 4Re
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To solve this system we utilize dimensional splitting by first solving the one-dimensional system in the
x direction given by

oU OF(U)
R (4.6)

and then solving the one-dimensional system in the y direction given by

ou N oGWU)
ot dy

0, 4.7

where the output from the first system is used as initial data for solving the second system. While
there are several schemes available to solve these one-dimensional systems, because of the complicated
eigenstructure of the above systems eigen-based methods will not be practical. Instead, MacCormack’s
method (MacCormack 1969) was adopted due to its relative simplicity. This is a conservative, second-
order-accurate finite-difference scheme which correctly captures discontinuities, and converges to the
physical weak solution of the problem. This explicit predictor—corrector scheme in the x direction takes

the form
* n At n n
1 At
n+l _ n * * *
U = E(Uj +U7) - Z—[F(UJ-) -F(U;_))], (4.9)

where the notation U} = U(x;, t,,) is used with Ax denoting the uniform grid spacing in the x direction
and At is the time step. Second-order accuracy is achieved through the consecutive forward and backward
differencing operations. A similar scheme is also applied in the y direction.

The second step reduces to solving a coupled system of generalized, two-dimensional, nonlinear
diffusion equations where % is known (from the first step, and remains constant during the second step).
These equations can be cast in the generic form

%_f ~ R(x,y.1), (4.10)
where y denotes either g, or g, and the function R(x, y, t) refers to the corresponding right-hand side.
Assuming the solution at time ¢ is known, we can advance the solution to time ¢ + At by integrating
(4.10) to obtain

1+At
XA = / Rdr, 4.11)
t

where At is the time increment. Next, we approximate the integral using
t+At
/ Rdr ~ At{wR(x,y,t+ Af) + (1 — w)R(x,y,1)], (4.12)
t

where w is a weight factor. In general, 0 < w < 1 and we used w = 1/2 which yields the Crank—Nicolson
scheme. With this approximation in place we obtain

xx,y,t+Af) = x(x,v,1) + At{wR(x, y,t + At) + (1 — w)R(x, y,1)]. (4.13)

Upon substituting the expression for R(x, y, t + At), and replacing all spatial derivatives using second-
order, central-difference approximations, (4.13) becomes a nonlinear system of algebraic equations
which were solved using the Gauss—Seidel iterative procedure to determine ¢, and g, at time ¢+ Az at all
the interior grid points. The convergence criterion adopted was that the maximum difference between
successive iterates must be less than a specified tolerance e.
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5. Results and discussion

Several numerical experiments were performed in order to determine optimal values for the computa-
tional parameters. Unless otherwise stated, the following values were used in all the simulations to be
presented, and no convergence problems were encountered: Ax = Ay = 0.04, At = 0.001 and € = 107,
As a numerical check the volume of fluid was computed at each time step, and it was found to remain
constant to several decimal places. Computations were carried out on a Windows 11 Pro 64-bit laptop
utilizing an Intel(R) Core(TM) 17-8650U CPU @ 1.90 GHz (8 CPUs) processor. The CPU time to
execute a typical time step took less than 1 s. A typical simulation took several hours in real time to
complete. The hybrid model, being the simplest model, took about half the time to run compared with
the WR and IBL models.

The width of the domain was taken to be 2W = 10, while the length of the domain depended
on whether the flow was subcritical or supercritical. Subcritical flows occur when Re < Re,,;, while
supercritical flows occur when Re > Re,,;. For subcritical flows the limiting unsteady simulations
were observed to approach a steady solution, whereas supercritical flows were found to be vulnerable
to instabilities which were manifested by the formation of waves along the free surface. Along the
upstream and downstream boundaries periodic conditions were applied. This is equivalent to imposing
a topography that repeats itself in the x direction having a period equal to the length of the domain.
Along the cross-slope boundaries y = +W we made use of the symmetry property discussed in § 2,
and thus applied Neumann conditions. For subcritical flows the values L, = —5 and L; = 20 were used
yielding a length of L, — L; = 25, while for supercritical flows the values L, = —10 and L; = 10 were
used. The topographies considered in this study ranged from a smooth localized bump satisfying the
condition that m(x,y) — 0 as x*> + y> — oo to wavy and trench-like topographies.

The problem is completely characterized by the dimensionless parameters Re, § and cot 3, and
the bottom topography Mm(x,y). Unless otherwise stated, the values cot = 1, § = 0.1 and initial
conditions h(x,y,t = 0) = g.(x,y,t = 0) = 1 and g,(x, y,t = 0) = 0 were used in all the simulations to
be presented. Thus, the critical Reynolds number for the WR model is Re.;; = 5cot 8/6 = 5/6 ~ 0.83,
while for the IBL and hybrid models the critical Reynolds number is Re,,; = cot 8 = 1. The results are
organized as follows. We begin with a subcritical case having Re = 0.1 over a smooth localized bump.
Following that we present another subcritical case with Re = 0.1 spreading over a trench-like bottom.
Then we discuss the instability threshold for flow over a flat bottom, and present some supercritical
results. Lastly, some comparisons with experiment for the case of a two-dimensional wavy bottom are
discussed.

5.1. Gaussian topography
We begin by considering the topography described by a smooth Gaussian bump given by

M=05, m(x,y) =exp(—(x*+y?)). (5.1a,b)

Plotted in figure 2 are comparisons in the steady cross-sections of the fluid thickness #(x,y = 0) and
h(x = 0,y) between the three models. Although the WR and IBL models are in excellent agreement,
there are (small) noticeable differences with the hybrid model. It was also observed that the hybrid model
attained a steady solution well before the WR and IBL models. This is because the hybrid model makes
use of lubrication theory in order to determine the cross-slope flow. For example, the hybrid model
reached a steady solution before t = 10, while the WR and IBL models had to be integrated to t = 15
before a steady solution emerged. Thus, the hybrid model can be thought of as a quasi-steady model.
Figure 3 shows the free surface as computed from the WR model along with the bottom topography.
We see that the free surface mirrors the topography.

Plotted in figure 4 are steady contour plots of the fluid thickness using the WR and hybrid models.
The contour plot using the IBL model was indistinguishable from the WR contour plot, and hence was
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Figure 2. (a) Comparison in the steady cross-sections of the fluid thickness h(x,y = 0). (b) Comparison
in the steady cross-sections of the fluid thickness h(x = 0,y).

not included. We see that the hybrid model produces a shorter wake region behind the bump when
compared with the WR and IBL models. Comparisons in the maximum and minimum values of the
fluid thickness, A4, and h,,;,, respectively, using the IBL, WR and hybrid models are listed in table 1,
and the agreement is excellent.

Lastly, comparisons in h,,, and h,,;, using the lubrication models of Hinton et al. (2019) and
D’ Alessio (2023b) for the same Gaussian topography yield the same values to three decimal places, and
are given by hy,,, = 1.183 and h,,;, = 0.519. Comparing these with the values listed in table 1 we see
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Figure 3. (a) Comparison in the steady cross-sections of the free surface h(x,y = 0) + Mm(x,y = 0).
(b) Comparison in the steady cross-sections of the free surface h(x = 0,y) + Mm(x =0, y).

reasonable agreement in A,,,,, while poor agreement in %,,;,. As noted in D’ Alessio (2023b), this points
to a shortcoming in lubrication theory.

5.2. Trench topography

We next consider a steep-sided trench. Trench topographies can be well approximated using arct-
angent or tangent hyperbolic functions. Following the lead of previous studies (Gaskell et al. 2004;
Veremieiev et al. 2010, 2015) we have decided to approximate a trench using the arctangent function
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(@)
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Figure 4. (a) Steady contour plot of h(x,y) using the hybrid model. (b) Steady contour plot of h(x,y)
using the WR model. For both plots the contours of h plotted are: 0.95, 0.96, 0.97, 0.98, 0.99, 1.01.

Table 1. Comparison in h,,, and hy;, using the IBL, WR and hybrid models.

hmax hmin
IBL WR Hybrid IBL WR Hybrid
1.018 1.017 1.019 0.939 0.939 0.944
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given by
+ S S
M X+ = xX—- =
Mm(x,y) = tan™! 2 | tan! 2
4 tan™! (S—l)tan‘1 (g—w) 4 A
22 22
Sy s
vES -3
x [tan™! — tan™! . 5.2)
A A

Here, s;, 5, and M < 0 denote the length, width and depth of the trench, respectively, while 1 is a
steepness parameter. Shown in figure 5 are cross-sections of the fluid thickness with trench parameters
s =2,8, =1, M =-0.5and 1 = 0.05 at steady state using the three models. As in the previous case,
the IBL and WR results were indistinguishable. We observe rapid variations in fluid thickness near the
edges of the trench. The free-surface profiles shown in figure 6 do not mirror the bottom topography as
closely as in the previous case.

Plotted in figure 7 are steady contour plots of the fluid thickness using the WR and hybrid models.
Again, the hybrid model produces a shorter wake region behind the trench compared with the WR and
IBL models, but overall the agreement between the contour plots is good.

Lastly, comparisons in A,,,, and h,,;, using the IBL, WR and hybrid models for the square trench
topography having parameter values s; = s, = 1.5, M = —0.25 and 4 = 0.2 are given in table 2.
Other parameter values include Re = 6 = 0.1 and an inclination of 8 = 30°. We see close agreement
in the values of the extreme fluid thicknesses among the three models. Using the lubrication model of
D’ Alessio (2023b), which corresponds to Re = 0, yields the values h,,,, = 1.382 and h,,;, = 0.802.

5.3. Instability threshold

As the Reynolds number increases beyond Re = 0.1 the flow will eventually become unstable. By
observing the growth of the disturbances as the perturbed solutions were marched in time we were able to
estimate the onset of instability by carrying out numerous numerical experiments. In these experiments
the bottom was flat (i.e. M = 0), the computational domain was taken to have a length of L = 20 and
periodic boundary conditions were imposed along the upstream and downstream boundaries. As noted
in § 3, the flow is most vulnerable to long-wave perturbations in the x direction. For this reason, the
initial fluid thickness was allowed to deviate from unity according to

2
h(x,y,0) :1+ssin(%) with & < 1. (5.3)

Although the domain length is arbitrary, based on our numerical experiments it was judged that L = 20
was sufficiently large to trigger the long-waveinstability.

Using the WR model with & = 0.01 the instability threshold was estimated to be in the interval
0.8 < Re < 0.9, while for the IBL and hybrid models with € = 0.01 it was estimated to lie in the interval
1.0 < Re < 1.1. These results agree well with the analytical predictions from § 3.

Shown in figure 8 are profiles of g, along the centreline y = 0 at various times for both the WR and
IBL models with € = 0.1. The fluid thickness profiles are very similar, and hence are not included here.
Although the two models use different values of Re, the profiles appear to be similar. This is likely due
to the fact that the departures from criticality for the two models are close; the departure from criticality
for the WR model is 0.9 — 0.83 = 0.07, while the departure for the IBL model is 1.1 — 1 = 0.1. Shown
in figure 9 are similar plots using the hybrid model. With the passage of time the growth in amplitude
of the perturbation saturates and the wavefront steepens. The emergence of a wave pattern consisting
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Figure 5. (a) Comparison in the steady cross-sections of the fluid thickness h(x,y = 0). (b) Comparison
in the steady cross-sections of the fluid thickness h(x = 0, y).

of several waves then appears as time increases. For very long times we see in figure 9 a pattern that
persists consisting of three solitary humps separated by a fixed distance.

5.4. Comparisons with experiments
We conclude this section by discussing some comparisons with experiments. For this purpose we have

used the experimental results from Heining et al. (2012). In their investigation they considered steady,
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Figure 6. (a) Comparison in the steady cross-sections of the free surface h(x,y = 0) + Mm(x,y = 0).
(b) Comparison in the steady cross-sections of the free surface h(x = 0,y) + Mm(x =0, y).

gravity-driven, free-surface, three-dimensional flows over periodic corrugations having

Mm(x,y) = M[cosx + cosy]. (5.4)
They tackled the problem analytically, numerically and experimentally. The analytical work followed
an IBL approach, and took the form of an expansion in powers of the steepness parameter which is

valid for small M. The numerical work, on the other hand, made use of the open source CFD software
OpenFOAM (2009) (see reference for details). The liquids used in the experiments were silicone oils;
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Figure 7. (a) Steady contour plot of h(x,y) using the hybrid model. (b) Steady contour plot of h(x,y)
using the WR model. For both plots the contours of h plotted are: 0.9, 0.925, 0.95, 0.975, 1.025, 1.05,
1.1, 1.15, 1.175, 1.2.

the free surface was tracked mechanically using a needle and high-speed camera, while the free-surface
flow was visualized using carbon powder tracer particles. They considered both weakly and strongly
corrugated topographies.

For our comparisons we focus on the weakly corrugated case where the bottom topography is fully
submerged. The parameters used in our simulations matched those in the experiment, and are given by

Re =0.0143, pB=11°, ¢6=v0.019, M =0.442. (5.5a-d)
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Table 2. Comparison in hy,, and hy,, using the IBL, WR and hybrid models.

hmax hmin
IBL WR Hybrid IBL WR Hybrid
1.059 1.058 1.060 0.970 0.971 0.968

(b)

qx

Figure 8. (a) Cross-sections of q, using the IBL model at times t = 5, 10,20 with Re = 1.1. (b) Cross-
sections of qx using the WR model at times t = 5, 10,20 with Re = 0.9.
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Figure 9. (a) Cross-sections of q, using the hybrid model at times t = 5,10,20 with Re = 1.1.
(b) Cross-sections of q. using the hybrid model at times t = 100, 150,200 with Re = 1.1.

Computations using the IBL, WR and hybrid models were carried out over the rectangular domain
0 <x < 2w, 0 <y < musing periodic conditions at x = 0 and x = 27, and Neumann conditions aty = 0
and y = 7 with a uniform grid spacing of 7t/100 in both the x and y directions. Simulations were run
to steady state. Shown in figures 10—12 are cross-sections of the free surface along y = 0, contrasting
numerical and experimental results. All three models yield good agreement with experiment, and it is
difficult to assess which model performs best. It is clear, though, that the IBL and WR model results are
very similar. Overall, the agreement between the model predictions and the experiments is comparable
to the agreement between the numerics and analytics presented in Heining er al. (2012). Although
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Figure 10. Comparison in the cross-section of the free surface along y = 0 between the IBL model and
experimental data taken from Heining et al. (2012).

not presented here, the agreement along y = m was equally good. Thus, this indirectly shows that the
models agree well with their analytical work as well as with the results obtained using the OpenFOAM
software.

6. Conclusions

Presented in this paper is the three-dimensional, steady and unsteady, gravity-driven flow down an
incline, and over fully submerged, two-dimensional topographies. Three models were presented: the
IBL, WR and hybrid models. The IBL and WR models were chosen since they tend to be the most
common, while the hybrid model was included to represent lubrication-type models. The IBL and
WR models are fully second order, while the hybrid model is not fully second order. Also, the hybrid
model is a quasi-steady model, and thus deviates from the other models for small z. However, as the
flow approaches steady state the hybrid model agrees well with the IBL and WR models for the cases
considered. The IBL and WR models are similar in complexity, while the hybrid model is the simplest.
A numerical solution procedure to solve the model equations was also outlined. Various numerical
simulations were conducted using the three models. The bottom topographies considered included a
smooth localized bump, a wavy bottom and a steep-sided trench.

For low Reynolds numbers the unsteady flow approached a steady solution for all the topographies
considered; however, for larger Reynolds numbers the flow became unstable, and succumbed to the
formation of waves along the free surface. The critical Reynolds number, Re,,;, signalling the onset
of instability was estimated through numerical simulations for the case of a flat bottom, and the
agreement with the corresponding expected values was good. The WR model correctly reproduces
the theoretical value Re.; = 5cot3/6, while the IBL and hybrid models yield the overprediction
given by Re.; = cotB. The models were validated by making comparisons with experimental data
corresponding to flow over two-dimensional, periodic corrugations. All three models agreed closely with
the data.

Which model is best? This depends on what one is after. For example, if one needs to estimate
Re.,;; accurately, then the WR model is the best choice. On the other hand, if one is only interested
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Figure 11. Comparison in the cross-section of the free surface along y = 0 between the WR model and
experimental data taken from Heining et al. (2012).

in qualitative results, then the hybrid model, being the simplest of the three, should be sufficient. If
detailed early-time simulations are sought after, then both the IBL and WR models will work fine. All
three models share some common underlying assumptions. One is that the shallowness parameter, J, is
small which limits the thickness of the fluid layer. In addition, all three models assume slowly varying,
unidirectional, parabolic velocity profiles. This assumption is actually supported by the experiments
of Alekseenko, Nakoryakov & Pokusaev (1985) and the direct numerical simulations of Malamataris,
Vlachogiannis & Bontozoglou (2002). Although this profile emerges naturally in the zero-Reynolds-
number limit, it is known to work well for the small- to moderate-Reynolds-number range which spans
subcritical and supercritical flows. The hybrid model further assumes a relatively weak, and slowly
varying spanwise flow obeying lubrication theory. Steep-sided topography may also pose a limitation,
since large spatial gradients may trigger numerical convergence problems. This was not encountered for
the cases considered in this study, but may arise for very steep topography.

An ambitious extension of this work would involve computing three-dimensional flows over partially
submerged topographies and obstacles. This is a non-trivial task since for unsteady flows it requires
computing the curve of intersection between the free surface and the exposed topography at each time
step, and imposing conditions along this unknown evolving curve. It is not clear if the numerical scheme
presented here can be modified to handle such cases. Numerical techniques that may be successful
in tackling unsteady, three-dimensional flows over partially submerged topographies are the level set
methods originally proposed by Osher & Sethian (1988). As noted in the review by Sethian & Smereka
(2003), the level set methods were designed to track the movement of interfaces in several dimen-
sions, and in situations where sharp corners and cusps are present. They represent a class of versatile
numerical schemes formulated as hyperbolic conservation laws that approximate the equation of motion
of an interface. They are equipped to handle complicated physics, and boundary conditions involving
jumps and curvature which apply to both compressible and incompressible flows, as well as bubble
dynamics. Other possible extensions include non-isothermal flows and flows spreading over a porous
surface.
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Figure 12. Comparison in the cross-section of the free surface along y = 0 between the hybrid model
and experimental data taken from Heining et al. (2012).
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Appendix A. Dynamic conditions along the free surface

The normal and tangential stress conditions along the free surface, z = 7 = Mm + h, can be formulated
in dimensional form as follows:

Pam +N+-7+N =—yV-N, (A1)
N-t-T,=0, (A2)
N-t-T, =0, (A3)

where p,, is the constant ambient pressure, which we conveniently take to be zero, v is surface tension,
N is the outward-pointing unit normal vector to the free surface, T, and T, are the unit tangent vectors
along the free surface in the x and y directions, respectively, and 7 is the stress tensor. Expressions for
N,T,, T, and 7 are given by

1 @ 2 6_ 2 X y
ox ady
1
To= (1,0, 6—’7) (AS)
2 ox
1+ %
Ox
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Substituting (A4)—(A7) into (A1)—(A3) and casting in dimensionless form leads to the following:
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