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ABSTRACT

For V' a two-dimensional p-adic representation of G, , we denote by B(V') the admissible
unitary representation of GL2(Qp) attached to V' under the p-adic local Langlands
correspondence of GLy(Q,) initiated by Breuil. In this paper, building on the works
of Berger-Breuil and Colmez, we determine the locally analytic vectors B(V )., of
B(V) when V is irreducible, crystabelian and Frobenius semisimple with distinct
Hodge—Tate weights; this proves a conjecture of Breuil. Using this result, we verify
Emerton’s conjecture that dim Ref”¥ (V) = dim Exp™1®*¥(B(V)an @ (2| - | o det)) for
those V' which are irreducible, crystabelian and Frobenius semisimple.
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Introduction

Fix a prime p > 2 as well as a finite extension L of Q, to be the coefficient field. Recall that for any
integer k > 2, the set of two-dimensional semistable and non-crystalline L-linear representations
of G, with Hodge-Tate weights (0, & — 1) is parameterized by L via the .Z-invariant. For any
£ € L, we denote by V(k, &) the L-linear representation of Gig, corresponding to .. In [Bre04],
Breuil constructed a family of locally analytic representations (3X(k,.Z)) of GL2(Q)) associated
to the family of L-linear representations (V' (k, £)) of Gq, for all £ € L. Breuil’s work suggested
the possible existence of a p-adic version of the local Langlands correspondence for GL2(Qy).
In fact, Breuil conjectured that there should be a p-adic local Langlands correspondence for
GL2(Qp) which attaches to any two-dimensional potentially semistable L-linear representation
of Gg, a p-adic admissible unitary representation of GL2(Q,). Thanks to much recent work,
especially that of Colmez, one can now extend this conjecture to all two-dimensional L-linear
representations of Gg,; we denote this correspondence by V i+ B(V). Although the present
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version of the p-adic local Langlands correspondence for GLy(Q,) is formulated at the level of
Banach space representations, it is very useful, as in Breuil’s work (and many other examples),
to have the information of the space of locally analytic vectors B(V)a, of B(V). This is the theme
of this paper.

In the rest of the introduction, we will sketch some relevant background which is useful for
the reader to understand the main results of this paper. We refer the reader to [Col08, Coll0d,
Eme06a] and the body of the paper for more details.

Trianguline representations and p-adic local Langlands correspondence for GL2(Qp)
As usual, let R, denote the Robba ring over L. The - and I'-actions on R are defined by
o(T)=(1+T)» —1and v(T) = (1 + T)X") — 1 for any v € T. For any 6 € Homeont (Q), L), we
associate to ¢ a rank one (¢, I')-module R (d) over Ry, as follows: the (¢, I')-module R, (5) has
an Rp-basis e such that the ¢, I'-actions on R (J) are defined by the formulas

p(re) =d(p)p(x)e, ~(xe) =d(x(v))v(x)e

for any x € Ry, and v €', where x is the cyclotomic character, as usual. Conversely, if M
is a rank one (p,I')-module over Ry, then there exists a unique 6 € Homeont(Q,, L) such
that M = Rp(J) [Col08, Proposition 3.1]. We define the weight w(d) of § by the formula
w(J) = log §(u)/log u, where u € Z) is not a root of unity. The local reciprocity map allows
us to view J as a continuous character of Wg,. If val(d(p)) = 0, then one can uniquely extend §
to a continuous character of Gg,. In this case, w(d) is just the generalized Hodge-Tate weight
of § and Rp,(8) = Df,,(0).

Recall that a (¢, I')-module over R, is called triangulable if it can be expressed as successive
extensions of rank one (¢, I')-modules over Ry, and an L-linear representation V of Gg, is called
trianguline if Diig(V) is triangulable in the category of (¢, I')-modules over Ry. In the rest of
the introduction, let V' be a two-dimensional L-linear representation of Gg,. If V' is trianguline,
then Djig(V) fits into a short exact sequence

0 — Rp(d1) — D, (V) — Ry (52) — 0

for some 41, 62 € Homeont (Q), L*). We denote by h € H(R1(615; ")) = Ext! (RL(d2), Rr(61))
the extension corresponding to Diig(V); then V is determined by the triple (41, d2,h). It
follows that val(d1(p)) + val(d2(p)) = 0, and w(d1), w(d2) are the generalized Hodge-Tate weights
of V. Conversely, for any triple s=(d1,d2,h) such that d1,d2 € Homeont(Qy, LX) and h e
H'(Rp(6165")), we denote by D(s) the extension of Rr(d2) by Rz (61) defined by h. If a € L*
and if s’ = (01, d2, ah), then D(s) and D(s’) are isomorphic. Thus, if h # 0, then the isomorphism
class of D(s) only depends on the image h of h in PY(H'(R(615;5"))). Following the notation

of Colmez, we denote by .} (L) the set of triples s = (1, d2, h), where d1, 2 € Homeont (Q;’ L*)
are such that val(d;(p)) + val(da2(p)) = 0 and val(61(p)) =0, and h € PLY(H (R (6165 "))); then
D(s) is well defined for any s € ., (L). In the case when D(s) is étale, we denote by V(s) the
L-linear representation of G, such that Dlig(V(s)) = D(s).
For any s € .7, (L), we set
u(s) = val(d1(p)) = —val(62(p)), w(s) = w(d1) — w(d2).
In [Col08], Colmez defined three subsets .78, .7 and .75t of .7, (L) as follows:
(1) .#® is the set of s such that w(s) is not an integer >1 and u(s) > 0;
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(2) .78 is the set of s such that w(s) is an integer >1, 0 < u(s) < w(s) and h = oo;
(3) .75t is the set of s such that w(s) is an integer >1, 0 < u(s) < w(s) and h # occ.

Here the exponents ‘ng’,‘cris’ and ‘st’ refer to ‘non-geometric’, ‘crystalline’ and ‘semistable’,
respectively. Let

%rr:y*ngﬂyfrisﬂy*st.

It was proved by Colmez that if s € .4y, then D(s) is étale and V(s) is irreducible (and of
course trianguline); conversely, if V' is irreducible and trianguline, then V =V(s) for some
5 € Sy [Col08, Théoreme 0.5(i)(ii)]. For any ? € {ng, cris, st}, we say that V € .7 if V=V (s)
for some s € ... (By [Col08, Théoréme 0.5(iii)], we know that V € .7/ for at most one ?.) More
precisely, we have that V € .7 if and only if V is a twist of an irreducible and crystabelian
representation, and V € .75 if and only if V is a twist of an irreducible and semistable, but
non-crystalline, representation [Col08, Théoreme 0.8].
In [Col05], Colmez found a direct link between B(V') and the (¢, I')-module associated to V'
in the semistable case. More precisely, Colmez showed that if V € .5, then the following is true:
the dual of B(V) is naturally isomorphic to (lim D(V))°

as Banach space representations of B(Q,). v

(0.1)

Subsequently, Berger and Breuil proved (0.1) for those V €.7%% which are not
exceptional [BB10] and Paskunas proved (0.1) for V exceptional and p > 2 [Pas09]; for V € .S,
we call V' exceptional if the associated Weil-Deligne representation of V' is not Frobenius
semisimple, and Colmez proved (0.1) for V € .#;'® [Col10b]. The isomorphism (0.1) suggests
a functorial construction of the p-adic local Langlands correspondence for GL2(Q),) by using the
theory of (o, I')-modules. On this track, Colmez recently established the p-adic local Langlands
correspondence for GLy(Q,) for all two-dimensional irreducible L-linear representations of
Gq, [Coll0d]. To state Colmez’s construction, let D be a rank-two, irreducible and étale (¢, I')-
module over Rp. In [Col10d], Colmez first equipped D K P! with a continuous GL2(Q,)-action.
Then he showed that D% X P! is stable under the given GLa(Q,)-action; to prove this assertion,
Colmez improved (0.1) to the following form:

the dual of B(V) is naturally isomorphic to D(V)" K P!
as Banach space representations of GL2(Q)) (0.2)

when V' € .79 is not exceptional. Let II(D) = (D X P')/(D? X P'); Colmez showed that the
right-hand side is an admissible unitary representation of GL2(Q,). Colmez set the p-adic local
Langlands correspondence for GL2(Q,) as V — II(V) :=II(D(V)).

Locally analytic vectors of unitary principal series of GL2(Qp)
In [Eme06a], Emerton made the following conjecture (see [Eme06a, Conjecture 3.3.1(8)]).
CONJECTURE 0.1. For any 7, v € Homeont(Q,, L), we have

dim Ref"¥ (V) = dim Exp"®®*(B(V )y ® (z|2] o det)).

(Note that the right-hand side of Conjecture 0.1 is dim Exp"®®*%(B(V)., @ (x]z| o det))
instead of dim Exp”#I®*¥(B(V),,) in Emerton’s formulation. This is because our normalization
of the p-adic local Langlands correspondence for GL2(Q,) differs by a twist of (z|z])~! o det
from Emerton’s normalization. See § 3.1 for more details.) Here Ref" ¥ (V') denotes the space of
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equivalence classes of refinements [R] of V such that o(R) = (7, ¥); for alocally analytic GL2(Q))-
representation W of compact type, we denote by EXp"®¢(W) the space of one-dimensional
T(Qp)-invariant subspaces of the Jacquet modules Jg(q,)(W) on which T(Q,) acts via the
character ) @ . Granting Emerton’s conjecture, we see that Jg(q,)(B(V)an) # 0 if and only if V/
has at least one refinement; this is equivalent to the fact that V is trianguline. Thus, inspired by
the classical theory of smooth representations of GLg, it is reasonable to think of B(V'), when V'
is trianguline, as a ‘unitary principal series representation of GLa(Q))’. So far as we know, this
point of view has not yet been accepted as a formal definition, but it has been adopted in some
literature (e.g. [Coll0b]). We follow this point of view in this paper.

The motivation of this paper is to have an explicit description of B(V)a, for V € .,
By the classification of the representations V € .7 mentioned in 0.1, it suffices to figure
out B(V)a, when V is an irreducible and crystabelian representation of Hodge—Tate weights
(0, k — 1) for some integer k > 2. By a result of Colmez [Col08, Proposition 4.14], such a V is
uniquely determined by a pair of smooth characters (o, 3) of Q.. Furthermore, Berger and

Breuil showed that B(V)= B(«)/L(a), where B(a)= (Indg?&()@p) a® xk_2ﬂ\x|_1)c_val(a(p))

and L(«) is a certain closed subspace of B(«) [BB10]. We denote by m(«) the locally algebraic

representation (Indg?&g@”) a® P 2p|z| )18 and A(a) the locally analytic principal series

(Indg(LQii()@p) a® zF 282|712 we set () and A(B) by replacing a with 3. Breuil constructed
a natural continuous GLa(Qp)-equivariant map from A(a) @5 A(B) to B(V)an, and made the

following conjecture.
CONJECTURE 0.2 [BB10, Conjectures 5.3.7 and 4.4.1]. If a# [, then the natural map
A(a) @r(gy A(B) — B(V)an is a topological isomorphism.

The main result of this paper is the following theorem.

THEOREM 0.3 (Theorem 4.1). Conjecture 0.2 is true.

Our proof of Theorem 0.3 largely relies on Colmez’s identification of the locally analytic

vectors of II(V). In fact, Colmez showed that if D is a rank-two, irreducible and étale (¢, T")-
module over Ry, then (II(D)ay)* = DEig X P! [Col10d]. To apply his result, we will construct a
GL2(Qp)-equivariant commutative diagram,

(B(a)/L(a))*

D4V, 5) X P!

l (0.3)

(A() @r() A(B))" — DA, (Vo 5) K P

rig
where the upper horizontal line is the natural isomorphism of Conjecture 0.2. Then Theorem 0.3

follows easily from (0.3). As an application of Theorem 0.3, we finally prove Conjecture 0.1 for
those V € .78 which are not exceptional.

COROLLARY 0.4 (Corollary 5.7). Conjecture 0.1 is true when V € .7 is not exceptional.

Notation and conventions

Throughout this paper, we fix a finite extension L over Q, to be the coefficient field. Let
val denote the p-adic valuation on Q,, normalized by val(p)=1; the corresponding norm
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is denoted by |z|. Let a, denote a pair of smooth characters «,3:Q; — L* such that
—(k —1) < val(a(p)) < val(B(p)) < 0 and val(a(p)) + val(B(p)) =k — 1 for an integer k > 2. Let
ap, By denote a(p)~t, B(p) !, respectively. For any smooth character 7: 2% — Of, we let n(r)
denote the conductor of 7. If n(7) = 0, then we say that 7 is unramified. Otherwise, we say that
T is ramified.

As usual, let x denote the cyclotomic character. For any m > 0, let y,= denote the set of p™th
roots of unity in @p; we use 7,n to denote a primitive p™th root of unity. Following Fontaine’s
notation of p-adic Hodge theory, we suppose that € = [(€(™),,,50] € W (R), where (¢(™)),,50 is a
compatible sequence of primitive p"th roots of unity such that (€(m+1))p =¢e(M)_ For any y € Qp,
if y € p~™Z, for some m € Z, then we set 2™ = (e(™)P™ which is independent of the choice
of m. Put Fp, = Qp(ppm) and Ly, = L ®q, Frn. Let Fioo = Um>0 Fy, and T'= Gal(Fi/Qp). The
Galois group I' is isomorphic to Z; via the p-adic cyclotomic character x. For any m > 1 and
p > 2 (respectively p = 2), we set I'y, = x 11 + p™Z,) (respectively I'y, = x~1(1 4+ p™+1Z,)). If
7:I' — OF is a smooth character and if n(7) = m, then, for any n,m, we define

Glrympm)= > 7 ()v(npm) € Lim.
’Yer/r'm

We set G(1) = G(r, ™).

Let Wg, denote the Weil group of Q. The local Artin map induces a topological isomorphism
Q, = W&l;, which we normalize by identifying p with a lift of Frob, 1 (i.e. geometric Frobenius).
This allows us to identify the set of characters of Q, with the set of characters of Wg;
For any integer n, we write ™ to denote the character defined by z+— z™. If c € L*, we let
ur(c) : Q; — L* denote the character that maps p to ¢ and is trivial on Z;. If we regard x as a
character of Q) via the local Artin map, then it is equal to z|z|.

Let B denote the subgroup of upper triangular matrices of GL9 and let T denote the subgroup
of diagonal matrices of GLs.

1. Irreducible crystabelian representations of GL2(Qp)

In this section, we will study some locally algebraic representations m(«) (respectively m((3)) of
GL2(Qp) and their universal unitary completions B(«)/L(c) (respectively B(8)/L(3)). These
representations were first introduced by Breuil in the context of his p-adic local Langlands
program of GL2(Qp). The terminology ‘irreducible crystabelian representations of GL2(Qp)’
refers to the unitary admissible representations of GL2(Q,) which correspond to two-dimensional
irreducible crystabelian representations of Gg, via the p-adic local Langlands correspondence
for GL2(Qp). In fact, as will be explained in §3.1, B(a)/L(c) are the unitary admissible
representations assigned to certain two-dimensional irreducible crystabelian representations
Va,p of Gg, by the p-adic local Langlands correspondence for GL2(Q,). Hence, B(«a)/L(c)
are examples of the irreducible crystabelian representations of GL2(Qp). Furthermore, we
will see in §2.1 that the set of two-dimensional irreducible crystabelian representations of
Gq, consists of the representations V, g(n) for all the pairs (a, ) and n € Z. It follows that
the set of irreducible crystabelian representations of GLg(Q)) consists of the representations
B(a)/L(e) ® (z|z| o det)™ for all @ and n € Z. This fact explains the title of this section.
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1.1 Some locally algebraic representations of GL2(Qj)

Following the notation of [BB10], we define the locally algebraic representations 7(«) and 7(3) as

7r(a) _ (IndGLz(Qp) a® wk—2ﬁ|x|—1)lalg o Symk—Q 1.2 ®r (IndGL2(Qp) a® ﬁ|x‘—1)sm’

B(Qp) B(Qp)
w(B) = (Indg%&()@p) B® xk_2a|x\_1)lalg o Symk_2 L’ ®; (Ind(B;(L(SZ()()@p) B ® oz|x\_1)sm.

We equip 7(«) (respectively m(3)) with the unique locally convex topology such that the open
sets are the lattices (a lattice of an L-vector space V is an Op-submodule which generates V'
over L) of m(«a) (respectively 7(83)).

For any F € m(a), we put f(z)=F((_{!)). The map F > f identifies () with the set
of functions f:Q, — L which are locally polynomials with coefficients in L and degree <k — 2
such that ﬂa‘l(z)|z|_1f(1/z)]Zp_{0} extend to elements of Pol*"%(Z,, L) (the set of functions
f:7Z, — L which are locally polynomials with coefficients in L and degree <k — 2). Under this
identification, the action of GL2(Q,) is given by the formula

(¢ 0) -5 =atat—bga ez e ol ey (220 )

—cz+a

Exchanging o and 3, we get the similar description of 7(f3).

1.2 Unitary completions

To introduce a few general definitions concerning L-Banach space representations, let K be an
intermediate field of L/Q, and let G be a locally K-analytic group such as the K-points of
an algebraic group (in this paper, K = Q, and G = GL2(Q))).

DEFINITION 1.1. An L-Banach space representation U of G is an L-Banach space U together
with an action of G such that G x U — U is continuous. An L-Banach space representation U
is called unitary if the topology of U may be defined by a G-invariant norm.

DEerFINITION 1.2. Let V be a locally convex topological L-vector space equipped with a contin-
uous G-action and let U be a unitary L-Banach space representation of G. We say that a given
continuous L-linear G-equivariant map V — U realizes U as a universal unitary completion of
V' if any continuous L-linear G-equivariant map V — W, where W is a unitary L-Banach space
representation of GG, factors uniquely through the given map V — U.

The following is devoted to the constructions of the universal unitary completions of m(«)
and 7(/3), which are due to Berger and Breuil. See [BB10] for more details. Let

B(a) = (Indg 2 (¥ o @ ah~2g]a) 1™

and

— — Val(ﬁp)
B(B) = (Indg 2§ g @ o*2al2| =",

For any F € B(a), set f(z) = F((_? 1)). In this way, we identify B(«) with the L-vector space
of functions f:Q, — L satisfying the following two conditions:

(1) flz, is a ¢valler)_function;

(2) (ﬂa‘l)(z)_l]z\zk_2f(1/z)|zp,{0} can be extended to a C¥(@») function on Z,.
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The action of GL2(Q)) is given by the same formula as in (1.1). By this identification, we can
write
B(Oé) ~ Cval(oép) (Zp, L) D Cval(oép) (Zp, L), f — fl ) f2’

where f1(2) = f(pz)|z, and f2(z) is the extension of (ﬁa_l)(z)_lzk_2f(1/z)]Zp,{o} to Zp. The
resulting L-Banach space structure of B(«) is defined by the norm

||f|| = max(”fluval(ap)v ||f2||val(ap))'

It is not difficult to show that GL2(Q)) acts on B(«a) by continuous automorphisms with respect
to this norm [BB10, Lemme 4.2.1], and the natural GLy(Q,)-equivariant inclusion 7, — B(«)
is continuous. Let L(a) C B(a) denote the closure of the L-subspace generated by 2/ and
(Ba~Y)(z — a)|z — a| (2 — a)*~277 for all @ € Q, and integers j such that 0 < j < val(a,) (the
fact that 2/ and (Ba™')(z — a)|z — a|~'(z — a)*~277 are contained in B(«a) is proved in [BB10,
Lemme 4.2.2]). It is stable under the action of GLy(Q,) by [BB10, Lemme 4.2.3].

Exchanging « and 3, we get the similar description of B(f3), and we set L(f3) as the closure
of the L-subspace generated by 2/ and (a8 !)(z —a)|z — a|7}(z — a)*"277 for all a € Q, and
integers j such that 0 < j < val(53,).

ProposITION 1.3 [BB10, Théoreme 4.3.1]. The continuous GL2(Q))-equivariant map m(o) —
B(a)/L(«) realizes B(«)/L(«) as the universal unitary completion of m(a). The same result
holds if we replace a by (3.

1.3 Intertwining operators
Recall that there exists, up to multiplication by a non-zero scalar, a unique non-zero GL2(Q,)-

equivariant morphism

Sm G — sm G — sm
™ (Indg 23 B @ ala| 7)™ — (Indg 2 7 a @ la| ™)

defined by (in terms of locally constant functions on Q)

I (h)(z) = / (Ba™N)(z = 2)|a — 2" h(z) dz, (1.2)

Qv

where dx is the Haar measure on Q,. Tensoring with the identity map on Sym* =2 L2, we get

a non-zero GL2(Qp)-equivariant morphism I : 7(3) — m(«). It is well known that I°™ is a non-
trivial isomorphism if o # 3, §|z|, and is the identity if o = 3 (see [Bum98g]).

PROPOSITION 1.4. We have the following commutative GLy(Q,)-equivariant diagram,

() —— ()

L,

B(B)/L(B) —= B(a)/L(a)

where 1 is the continuous GL2(Qp)-morphism induced from I. In the case o # [3|z|, I and T are
isomorphisms.

Proof. This follows from the functoriality of universal unitary completions and the fact that I is
an isomorphism in the case a # [z O
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Now suppose that a = §|z|; in particular, val(a,) = (k — 2)/2. The operator I°™ induces the
following two exact sequences of GL2(Q))-representations:

0— Bodet — (Indg ') 8 @ alz| 7)™ = (8 o det) @1, St — 0 (1.3)
and

0— (Bodet) ®p St — (Indp 2P o © Bla| )™ — Bo det — 0, (1.4)
where St = (Indg?&()@p) 1)*™/1 is the Steinberg representation of GLg(Qp). Thus, I induces the

following two exact sequences of GL2(Q))-representations:

0 — (Bodet) ®f Sym* 2 L? — 7(6) 1, ((Bodet) ® Sym* 2 L?) @ St — 0 (1.5)
and
0 — ((Bodet) ®z Sym" 2 L?) @1, St — 7(a) — (B o det) ® Sym* 2 L? — 0. (1.6)

For I, let K (6) € B(B) be the closure of the L-subspace generated by L() and the functions
f:Qp — L of the form

F(2) =) Az = z)" val(z — 2), (1.7)
JjeJ
where J is a finite set, A\; € L, z; € Qp, ny € {[(k —2)/2] +1,...,k —2} and deg(d_,c s Aj(z —
zj)") < (k —2)/2 (by [BB10, Lemma 5.4.1], the functions of the form (1.7) are contained in
B(), so K(B) is well defined).

PropOSITION 1.5 [BB10, Proposition 5.4.2]. We have the GL2(Qp)-equivariant short exact
sequence of Banach spaces

0 — K(B)/L(5) — B(B)/L(5) = B(a)/L(a) — 0.
Thus, T induces an isomorphism from B(B)/K(B) to B(a)/L(«).

In the rest of this section, we will compute I°™(1,nz, - e?™%Y) for any n € Z and y € Q,
which will be used later. To do the computation, we set m(c, 3) = sup(n(Ba~1), 1) and

5 m(aaﬁ)
(p> if Ba~! is ramified;

pa

Clop )= )
1~ Pp/PY if Ba~! is unramified.
1L —ap/Bp

For the main results of this paper, we need the computation in the cases n =0, 1 and val(y) <
—m(a, 3) — 1 only.

LEMMA 1.6. For n € Z, we have

sm 2mizy ﬁp vel) -1 27y /pm{(eP)tval(y) 2mizy
I (1p"Zp e ) =C(oy, Bp) o G ase )1anp e
P

if n+ val(y) < —m(a, B).
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Proof. For z € p"Z,, we have

P (1pnz, - XYY (z) = / otz — 2)|z — 2| Le?™ Y dx
P ZLp

— e27rizy ﬂafl(w”x‘fle%rizy dx
p"Zp
= 2mizy Zpl / (ﬁa_l)(:l:)e%”y dx. (1.8)
l=n plZ;f

If we let Sy, C Z, be a system of representatives of (Z/p™Z)* for any m > 1, then we get

/lZ>< (ﬂafl)(x)e%rixy dx
-y (B ) (pla)e?™* da

pla+pl+m(a,ﬁ) Zp

S (BaYa) / R

! l+m(e.8)7,
aGSm(a’m p a+p P

l
p‘l‘m(a’m(%) ST (BaH(@)e*™ 'Y it L+ m(a, B) > —val(y);

aGSm(aﬁ)
0 if | +m(a, B) < —val(y). (1.9)
Since n + val(y) < —m(«, (), it follows from (1.8) that

o0

!
5™, _627rixy 2) = 627rizy —m(a,f3) <al’> a—l a e?m’play. 1.10
Lz, - €7 (2) l:m(%val(y)p 7)) 2 (Bah@ (1.10)

We treat the case when Ba~! is ramified firstly. If [ +m(a, 3) > —val(y), then we set m =
max{—! — val(y), 0} < m(«, 3), and we have

> (B (a)erey

aESm(a’g)

a65m<aﬂ)
-
—y (Y ()
beSm a€Sp(a,B),a=b(mod p™Zp)

B G(B 1o, 62my/pm<a,5)+val<y>) if I + m(a, B) = —val(y);
o if I +m(a, B) > —val(y). (1.11)

Hence, by (1.10), I™(1,nz, - €27*¥)(2) is equal to

9. + 1

—m(ap) (B gyl —1,, 2miy/pm(V)Tvalw)y omizy

p G(B  a,e Je
Qp

= C(Oép, 6p)G(ﬁ_1a’ 627Tiy/29m<v)+val(y))627rizy

when Ba~! is ramified. If Ba~! is unramified, then we have

S (BaH ()W = p— 1

aESm(a’ﬂ)
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if [+ 1> —val(y), and

> (Ba (@ =1

aESm(a”@)
if I +1=—val(y). So, in this case, I (1pnz, - €*™¥)(2) is equal to

<_1 (%>Val(y)1 N E i <Oép>l) e?ﬂ'izy
p ﬁp b /610

I=—val(y)
1
_ 1-— /Bp/pap <,3p>va (y)€27rizy
1—ap/Bp \
_ C(ap, ﬁp)G(ﬂfla, ezmy/pm(V)-&-val(y))egm'zy’ (1‘12)
since G(B~la, eZ“iy/pm(VHval(y)) =1 when Ba~! is unramified. O

Remark 1.7. The above lemma is singled out from the proof of [BB10, Lemme 5.1.2].

1.4 Locally analytic representations

In this subsection, we collect some of the basic notions and facts concerning the theory of locally
analytic representations of p-adic analytic groups, which will be used in the rest of this paper. In
most of the cases, we follow the notation used by Schneider and Teitelbaum. For more details,
we refer the reader to their fundamental papers [ST02a, ST02b, ST03].

Throughout this subsection, we let U denote an L-Banach space representation of G.

DEFINITION 1.8. In the case when G is compact, an L-Banach space representation U is called
admissible if there is a G-invariant bounded open Op-submodule M of U such that, for any open
normal subgroup H of G, the Or-module (U/M)* is of cofinite type. If G is not compact, we
call U admissible if it is admissible as a representation for one (or equivalently any) compact
open subgroup of G.

For compact G, the dual of the L-valued continuous functions on G is isomorphic to
Al[G]] := L ®z, Zy|[G]], the Iwasawa algebra of measures. The G-action on U extends naturally
to an action of the algebra A[[G]] by continuous linear endomorphisms on U. By functoriality,
A[[G]] also acts on the continuous dual U* of U. Then U is admissible if and only if U* is finitely
generated as a A[[G]]-module [ST02b, Lemma 3.4].

DEFINITION 1.9. A locally analytic G-representation W over L is a barrelled locally convex
Hausdorff L-vector space W equipped with a G-action by continuous linear endomorphisms
such that, for each v € V', the orbit map g+ ¢ - v is a W-valued locally analytic function on G.

Let A be an L-Fréchet algebra. For a continuous seminorm ¢ on A, it induces a norm on
the quotient space A/{a € A:q(a) =0}. Let A; denote the completion of the latter with respect
to g. For any two continuous seminorms ¢’ < ¢, the identity on A extends to a continuous linear
map ¢f : Ag— Ay
DEFINITION 1.10. The L-Fréchet algebra A is called an L-Fréchet-Stein algebra if there is a

sequence g1 < - - - < gp < - -+ of continuous seminorms on A which define the Fréchet topology
such that for any n € N, we have:

(1) Ay, is left noetherian;

(2) A, is flat as a right A an

-module via ¢g, , ;.

dn+1

We fix an L-Fréchet—Stein algebra A and a sequence (g, )nen as in the above definition.
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DEFINITION 1.11. A coherent sheaf for (A, (gy)) is a family (My, )nen, where each M, is a finitely
generated Ag,,-module together with isomorphisms A, ®4 _— M, 1 = M, as Ag,-modules for
any n € N. The global sections of (M,,),, are defined by
L((Mn)n) :=lim M.
n

DEFINITION 1.12. A left A-module M is called coadmissible if it is isomorphic to the module
of global sections of some coherent sheaf (M,), for (A, (¢,)). Each M, carries its canonical
Banach space topology as a finitely generated A,,-module. We equip M with the projective
limit topology which makes M into an L-Fréchet space. We call this topology the canonical
topology of M.

Remark 1.13. A simple cofinality argument shows that the canonical topology of a coadmissible
module is independent of the choice of the sequence (g )n.

For compact G, let D(G, L) denote the algebra of locally analytic distributions on G. This
algebra is the continuous dual of the locally analytic K-valued functions on GG, with multiplication
given by convolution. For a locally analytic representation W over L, the G-action extends
naturally to an action of D(G, L), yielding an action of D(G, L) on W*. The crucial property of
D(G, L) is that of the following proposition.

ProPOSITION 1.14 [ST03, Theorem 5.1]. D(G, L) is a Fréchet-Stein algebra.

DEFINITION 1.15. In the case when G is compact, an admissible locally analytic
G-representation over L is a locally analytic G-representation on an L-vector space of compact
type W such that the strong dual W} is a coadmissible D(G, L)-module equipped with its
canonical topology. For general G, a locally analytic G-representation over L is called admissible
if it is admissible as an H-representation for one (or equivalently any) open compact subgroup
H of G.

DEFINITION 1.16. A vector u € U is called locally analytic if the continuous orbit map g — g - u
is a U-valued locally analytic function on G. We denote by U,y the L-vector subspace of locally
analytic vectors of U, and we equip U,, with the subspace topology.

Since the locally analytic functions are a subspace of the continuous functions, there is a
natural morphism A[[G]] — D(G, L).

ProposiTiON 1.17. If U is an admissible L-Banach space representation, then Uy, is an
admissible locally analytic G-representation and (Uan); = D(H, L) @) U* for any open
compact subgroup H of G.

Proof. See [ST03, Theorem 7.1]. O
Ezample 1.18. The locally analytic principal series A(«a) = (Indgg&égp) a® zF2p]z|~1)* and
A(B) = (Indgi&()@p ) B @ xF2alz|~1)* are admissible locally analytic representations. As for

B(a), for any F € A(a), we associate F' with f(z) = F((_{!)). The map F  f identifies A(a)
with the L-vector space of functions f:Q, — L satisfying the following two conditions:

(1) flz, is a locally analytic function;
(2) (,Bofl)(z)*l|z]zk*2f(1/z)|zp,{0} extends to a locally analytic function on Z,,.
We make the similar identification of A(/5).
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2. Crystabelian representations of Gy,

This section is devoted to the study of (two-dimensional) crystabelian representations of Gg,.
To fix notation, recall that an L-linear (respectively Op-) representation of Gg, is a finite-
dimensional L-vector space V (respectively finite-type Op-modules M) equipped with a
continuous linear action of Gg,. Throughout this section, let V' be an L-linear representation of
Gq, and let M be a free Op-representation.

2.1 Classification of two-dimensional irreducible crystabelian representations of G,

DEFINITION 2.1. We call an L-linear representation V' of Gg, crystabelian (crystalline abelian) if
there exists n > 0 such that the restriction of V' to G, is crystalline or, in other words, V becomes
crystalline over an abelian extension of Q,. We then define n(V') as the minimal integer n > 1
such that the restriction of V' on Gp, is crystalline. We define m (V) = min,; n(V (7)), where 7
goes through all the finite-order characters of I'. We call m(V') the essential conductor of V.

For V crystabelian, we define Deris(V) = U, —o(Beris ®q, V)G = (Beris ®q, V)G for any
n = n(V'), which is a weakly admissible filtered (¢, Gg,)-module over L. If F},(y) C K C Fi, then
we have K ®q, Dais(V) = K ®g, Dar(V'). Note that GF,, acts trivially on Deris(V).

In the following, we will classify the set of two-dimensional irreducible crystabelian

representations of Gg, with Hodge-Tate weights (0,5 — 1) in terms of the weakly admissible
(¢, Gg,)-modules Deis(V).

DEFINITION 2.2. Let D(a, 3) denote the filtered (p, Gg,)-module over L defined by D(a, 3) =
Le, ® Leg and:

(i) if a # B, then ¢(ea) = a(p)ea, (e) = B(p)es and y(ea) = a(x(7))ea; Y(es) = B(x(7))es
for v € I" and for, n > max{n(«a), n(3)},

L, ®1 D(a, B) if i <—(k—1);
Fil'(L, ® D(a, B)) =} Ly - (ea + G(aB Vep) if —(k —2) <i <0;
0 if i >1;

(i) if a=p, then ¢(ea) =(p)ea, pleg) =PB(p)(es —ea) and vy(ea) = a(x(7))ea, V(eg) =
B(x(v))es for v €T and, for n > n(a),

L, ®r D(a, ) ifi<—(k—1);

Fil'(L, ®1 D(a, B)) =X Ly, - eg if —(k—2)<i

0 ifi>1.

N

PROPOSITION 2.3 [Col08, Proposition 4.14]. If V' is a two-dimensional irreducible crystabelian
representation of Gg, with Hodge-Tate weights (0,k — 1), then there exists a unique pair
(a, B) such that D(c, 3) = Deis(V'). Conversely, for any pair («, 3), there exists a unique two-
dimensional irreducible crystabelian representation V' of Gg, with Hodge-Tate weights (0, k — 1)
such that Deyis(V) = D(«, 3).

Henceforth, we denote by V, g the crystabelian representation V' such that Deais(V) =
D(a, B). We have n(V, ) = max(n(a), n(3)) and m(V,,g) = max(n(af1), 1) = m(a, B).

COROLLARY 2.4. IfV is a two-dimensional irreducible crystabelian representation of Gg,, then
there exists a unique pair (a, 3) and n € Z such that V' is isomorphic to V,, g(n).
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2.2 (¢, I')-modules

In this subsection, we recall some of the basic theory of (¢, I')-modules of p-adic representations.
The theory of (p, I')-modules is the main ingredient of Colmez’s construction of the p-adic local
Langlands correspondence for GL2(Q,), as will be explained in the next section. The notion
of (o, I')-modules will also be used in §2.3. For our purpose, we restrict to the case of Gg,-
representations. We refer the reader to the papers [Ber02, BB10, CC98, Col10a, Fon90] for more
details.

We begin by recalling some of the rings used in the theory of (¢, I')-modules.

(i) Let & denote the ring L ®0, Or[[T]].

(ii) Let Og, be the ring consisting of series ), a;T" such that a; € O and a; — 0
as ¢ — —oo. We equip Og, with a valuation w by setting w(g(T)) = min;ez val(a;) if g(T) =
Yicz a;T*. One can show that Og, is a complete discrete valuation ring with respect to w. The
fraction field of Og, is &, = Og, [1/p]; this is a local field of dimension two.

(iii) Let 5]0’7"] be the ring of formal series g(T) = },., a;T" such that g(T) is convergent on

the annulus r > val(T") > 0. We define a norm || - ||, on Eg)’r} by the formula

|g(T)|r = sup |a;[p~""
i€EZ

Let Ry =U,~0 EEJ’T}. In other words, R is the set of p-adic holomorphic functions on the
boundary of the open unit disk. Let R} =R N L[[T]].

(iv) Let E(O’T] &N E]O’T] Then 5(0’T] can be regarded as the subring of 5}-40’7"] consisting of
series with bounded coefficients. Let 52 = Ur>0 6(0 - =R, NEL and ng =R NOg,. One can
show that OST is a discrete valuation ring with respect to w, and Ez is the fraction field of (’)

The ring OgL is the completion of O £l with respect to w.

We equip Og, with the weak topology by taking {7} Og, + T?OL[[T]]}i 0 as a basis of
open neighborhoods of 0. The weak topology on &, :U,@O T;kOgL is the inductive limit
topology. This topology induces the (7, T)-adic topology on EZF. We equip RZL with the
Fréchet topology defined by the set of norms {|| - ||, }r>0-

Let R denote any of the rings 5L+, OgL,SL,Ez,R}JL and Ry. We equip the ring R with
commuting actions of ¢ and I' by setting ¢(g(T)) =g((1+T)? —1) and ~(9(T)) =g((1 +
T)X() — 1) for any g(T) € R and y€T. It is not difficult to see that I' acts on R by
isometries, and ¢ is continuous. The ring R is a finite free ¢(R)-module of rank p with a
basis {(1 + T)"}o<i<p—1. Thus, for any g € R, we can write g in the form g =>""_ (1 +T)o(g;)
uniquely. We define the operator ¢ : R — R by the formula ¥(g) = go. Then 1t follows that
gi=U((1+T)"tg),%(o(g)h) = gu(h) for any g, h € R, and 7 commutes with I,

A p-module over Og, is a finite-type Og, -module D equipped with a ¢-semilinear Og, -
morphism ¢ : D — D. We call D étale if the natural Og, -linear map ¢*D = Og, ®p,0s, D — D,
sending g ® x to gp(x) for g€ Og, and z € D, is an isomorphism. A ¢-module over &, is a
finite-dimensional £r-vector space D equipped with a ¢-semilinear £r-morphism ¢: D — D.
A ¢p-module D over &, is called étale if D has an Og, -lattice which is ¢-stable and étale.
We define the notion of p-modules over EZ and Ry, similarly. If D' is a @-module over SZ,
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then D =& @+ D' is a p-module over Sz, and we call DT étale if D is. A p-module D,z over
L

R1 is called étale if D, is pure of slope 0 in the sense of Kedlaya [Ked08]. We have the following
result [Ked08, Proposition 1.5.5].

THEOREM 2.5. The functor D — R, Qg D', from the category of étale p-modules over E}E to
L
the category of étale p-modules over R, is an equivalence of categories.

For any R of the rings O, , &1, E}J and Rz, a (¢, ')-module over R is a p-module D over R
equipped with a continuous semilinear I'-action which commutes with . We call D ¢étale if D
is étale as a w-module over R. If D is an étale p-module over R and if x € D, then we can write
x = Ef:_ol(l +T)'(x;), where z; € D is uniquely determined for 0 <i <p — 1. We define the
operator ¢ : D — D by the formula 9 (z) = xq. It follows that z; =¥ ((1 +T) 'z), ¥ (¢(g)x) =
g (z), ¥(g(p(x))) =9(g)z for any g € R and z € D. If D is further an étale (p, I')-module, then
1 commutes with I.

If D is an étale (o, I')-module over & (respectively Og, ), then V(D) = (E,/E\r ®e, D)=L
(respectively V(D) = ((955\r ®0¢, D)¥=1) is an L-linear (respectively free Op-) representation
of Gg,. One can show that dim(V(D)) = dimg, D (respectively ranko,(V(D)) = ranko,, D).
We have the following result [Fon90, A3.4].

THEOREM 2.6. The functor D+ V (D), from the category of étale (p,I')-modules over &,
(respectively Og, ) to the category of L-linear (respectively free Op-) representations of Gg,,

is an equivalence of categories. The inverse functor is given by D(V) = (ggr 1 V)Gal(@v/ Foo)
(respectively D(M) = (Ogz ®0,, M)@/Fs)).
L

Let B'", BT and AT be the rings constructed in [Ber02, 1.3]. Here Bf =, B! is a subfield
of é{gr and Al is contained in Bf. Both AT and B are stable under the ¢, I'-actions. For any
r>0, Let DI7(V) = (B @y V)G @/Fe) Let DI(V) =J,o, DI"(V) = (Bf @, V)Gl @/ Fx)
and DF (M) = (AT @0, M)Cal@p/F) We have the following result [CCI8].

THEOREM 2.7. There exists an r(V)) such that D(V) = &L ® o D' (V) if r = r(V). Equi-
L
valently, DY(V) is an étale (yp,T')-module over Sz with dimg; (DY (V))=dim; V. As a
L

consequence, the functor DY, from the category of L-linear (free Op-) representations of

G, to the category of étale (o, I')-modules over é'z (respectively O, ), is an equivalence of
L

categories. The inverse functor is given by V(D)= (&} Rt DN#=1 (respectively V(D')=

L
__ T)p=1

(Oggr ®O££ D ) )
b 07

Let DI (V) =& g g0 D7 (V) and DI

rig rig
Theorems 2.7 and 2.5, we get the following result.

(V)= Ur>0 DI{Q(V) =R ¢, DT(V). Combining

THEOREM 2.8. We have that DL’Q(V) is a free Sy’r]—module with rank o, (DL’Q(V)) =dimy V
L

for r sufficiently large. As a consequence, the functor DLg, from the category of L-linear

representations of G, to the category of (p, I')-modules over Ry, is an equivalence of categories.

If D is a finite-type Og, -module of rank d, then we equip D with the weak topology induced
from the weak topology of O, .
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DEFINITION 2.9. A trellis of a finite-type Og,-module D is a compact Of[[T]]-submodule N
of D such that the image of N in D/m D is a ki [[T]]-lattice. A trellis of a finite-dimensional
Er-vector space D is a trellis of an Og, -lattice of D.

ProPOSITION 2.10 [Coll0a, Proposition 2.17]. If D is an étale p-module over Og,, then there
exists a unique trellis Df of D satisfying the following properties:

(i) for every z € D and i €N, there exists n(z,i) €N such that ¢"(z) € D* + mi D if n>
n(z, i);
(i) $(D%) = D",
Moreover:
(iii) if N is a trellis of D and i € N, then there exists n(N, i) such that ¥'""(N) C D* +m% D if
and only if n > n(N,1i);
(iv) if N is a trellis of D stable under v such that 1)(N) = N, then TD* C N C D%,

ProprOSITION 2.11 [Coll0a, Corollaire 2.31]. If D is an étale p-module over Og, , then the set
of y-stable trellises of D admits a unique minimal element D?, and v(D") = D".

We let D#(M) denote the trellis associated to D(M) by Proposition 2.10. If V is an
L-linear representation of Gg,, we choose M to be a Gg,-invariant lattice of V', and put
D}(V) = D!(M) ®¢, L; it is independent of the choice of M. We define D¥(M), D¥(V') similarly.

2.3 Wach modules of crystabelian representations of G,

In this subsection, we recall some of the basic theory of Wach modules of crystabelian
representations of Gg, developed in [BB10]. The notation of Wach modules is used to relate
Berger—Breuil’s and Colmez’s constructions in the case of crystabelian representations, as we
will see in § 3.

Let B = A} [1/p| be the ring constructed in [Fon90, B1.8]. The ring BT is contained in éflLl\r

and stable under the ¢, I-actions. We define D*(V) = (B ®q, V)Gal(@/F) which is a finite-
type Szr—submodule of D(V). Recall that a Hodge-Tate representation is called positive if its
Hodge—Tate weights are all <0. We have the following result [BB10, Théoréme 3.1.1].

THEOREM 2.12. If V is a positive crystabelian representation, then there exists a unique Ef—
submodule N(V') of DT (V) satisfying the following conditions:

(i) we have D(V)=¢&L Dg+ N(V);
(ii) the I'-action preserves N(V') and is finite on N(V')/TN(V');
(iii) there exists h >0 such that T"DT (V) c N(V).
The module N(V') is also stable under the yp-action.
For any m > 1, the map ¢, =¢ ™ : BT — BIR induces a map t,, : DT(V) — BIR ®q, V.
We extend it to a map ¢y, : R} [1/1] Ret D* (V) — Bar ®q, V by setting 1, (T') = ™et/P" — 1.

Here ¢, is a special case of the localization map. For the construction and general properties of
the localization map, we refer the reader to [Ber02] for more details.

For a general crystabelian representation V', we may choose an integer h > 0 such that V(—h)
is positive, and we define N(V) = T~"N(V(—h)); it is independent of the choice of h. We call
N(V') the Wach module of V.
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ProrosITION 2.13 [BB10, Théoréme 3.2.1]. If V' is a positive crystabelian representation, then
Dais(V) = (R} Bet N(V))F'» for n sufficiently large.

Thus, for a positive crystabelian representation V', we have RJLF ®r1 Deais(V) C RJLF ®5L+ N(V).

Moreover, if the Hodge-Tate weights of V' are in the interval [—h, 0] for some h >0, then we
have R} ®er N(V) C t "R} @1 Dexis(V) [BB10, Corollaire 3.2.7].

Using the map ¢, we get
Lin{[t]) @1 Deris (V) € Lin[[]] @7 N(V) 7" Lyn[[t]] @1 Deris(V)-
We further have the following result [BB10, Lemme 3.3.1].
PROPOSITION 2.14. If m >0, then the image Ly,[[t]] ®2’% N(V) in Lp((t)) ®r Deis(V) is
contained in Fil°(t " L,,,[[t]] ®1 Deris(V)) and, if m > m(V'), then the map
Ll ®g3 N(V) — Fil® (7" L [[]] @1 Dexis(V))

is an isomorphism.

3. p-adic local Langlands correspondence for GL2(Qj)

3.1 Breuil’s p-adic local Langlands program of GL2(Qp)

In this subsection, we give a sketch of the motivation of Breuil’s p-adic local Langlands program
of GL2(Q)), and we show that B(«)/L(«) is the admissible unitary representation corresponding
to Va3, as announced in § 1. The main source of our exposition is Emerton’s paper [Eme06a].

Let [ be a prime and let V' be a two-dimensional continuous representation of Gg, over @p.
Applying either the recipe of Deligne [Del71] if [#p, or the recipe of Fontaine [Fon94]
if [=p and V 1is potentially semistable, we may attach to V a Frobenius semisimple
Weil-Deligne representation o*5(V): WDg, — GL2(Q,), which corresponds to an admissible
smooth representation (V) :=m(c*(V)) of GL2(Q;) via the classical local Langlands
correspondence 7.

In the case | # p, Deligne’s procedure to construct (V) from V is convertible. So, if V' is
Frobenius semisimple (as is conjectured to be the case when V' is the restriction to Gg, of a
global p-adic Galois representation attached to a cuspidal newform), then it is determined up to
isomorphism by the associated GL2(Q;)-representation m;(V').

On the other hand, if [=p and V is potentially semistable, then the construction of
o(V) involves passing to the potentially semistable Dieudonné module Dy (V') of V, and then
forgetting the Hodge filtration. In general, for a given (¢, N, Gg,)-module, one can equip it with
an admissible filtration (a filtration so that it becomes an admissible filtered (, N, G, )-module)
in many different ways. Therefore, V' is usually not uniquely determined by m,(V').

Breuil conjectured that there should be a p-adic local Langlands correspondence which
attaches to V a p-adic Banach space representation B(V'). This representation B(V) should
determine V' up to isomorphism. (Breuil’s original conjecture was limited to the case that V is
potentially semistable; Colmez constructed this correspondence for all irreducible V' later on,
as will be explained in §3.2.) For our purpose, we restrict to the case when V has distinct
Hodge—Tate weights k1 < ko. Consider the following locally algebraic representation:

(V) i=m (V) ® Sym™~F=1 12 @ deth T @ ((x]z]) 7! o det),
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which encodes the Hodge-Tate weights of V', where 7" is a modified version of the classical local
Langlands correspondence for GLg introduced by Breuil (for more details about 7, see [Eme06a,
2.1.1]). Breuil’s idea is that the representation B(V') should be regarded as a completion of 7, (V')
with respect to a certain GLg(Q))-invariant norm, and that this extra data should determine the
Hodge filtration uniquely. Note that our definition of 7,(V') differs by a twist of (z|z])~! o det
from the definition of 7,(V') given in [Eme06a, 3.3.1(7)]. This is because Emerton normalized
the p-adic local Langlands correspondence for GL2(Q,) by requiring that the central character
of B(V) is equal to det V(z|z|) [Eme06a, 3.3.1(2)]. But, the normalization chosen by Breuil and
Colmez, which is the one we use in this paper, satisfies the requirement that the central character
of B(V) is equal to det V (z|z|)~!

Going back to the case V, g, if we view «, 3 as characters of W(g; via the isomorphism
Q) = W@E provided by the local Artin map, then we have 0%(V, 3) =0(Vag) =L -eqa @ L -eg
(with trivial monodromy action) by Fontaine’s recipe. Recall that if a8~! # |z|*!, then we
have 70 (L - eq @ L - eg) = (IndG(L2 ) Blx| @ a)*™; while, if a1 = |z| (respectively |z|~1), then

T (Va,g) = (IndG(LQ?(?p) alz| ® B)*™ (respectively (IndGL2 Q) Blz| ® a)s™). Tt follows that

(Ve

( ) > (Va,8) ® Sym* 2 L? @ det @((z]z]) ™! o det)
_ {ﬂ(ﬁ) if o flal;
(@)

et

if a = f|z|
(@)

by intertwining operators. It is not difficult to see that the Hodge filtration of Deis(Va,g) is
the only admissible filtration (up to isomorphism) of the (¢, Gg,)-module o(V, ) (in fact, for a
two-dimensional potentially semistable representation V of Gg,, the (¢, N, Gg, )-module Dy (V')
has a unique admissible filtration if and only if V' is irreducible and potentially crystalline and
o(V) is abelian). Hence, we should have B(V, 3) to be the universal unitary completion of
m(a), i.e. B(a)/L() by Proposition 1.3, according to Breuil’s idea. However, a priori it is
not clear whether B(«)/L(«) is non-zero. Inspired by the work of Colmez [Col05], Berger and
Breuil showed that B(«a)/L(«) is non-zero by means of (¢, I')-modules, as will be explained
in §3.4.

3.2 Colmez’s construction of the p-adic local Langlands correspondence for GL2(Qp)

We recall Colmez’s construction of the p-adic local Langlands correspondence for GL2(Q)) and
his identification of locally analytic vectors in this subsection. We refer the reader to [Col10d] for
a complete treatment. We start with the notion of products of (¢, I')-modules with open subsets
of Qp. For this, see [Coll0b, III.1] for more details.

Let D be a finite free étale (¢, I')-module over Og, and let Dt D,ig be the corresponding étale
(¢, I')-modules over Ez, R, respectively. For any a € Z, let 0, denote the element of I' such
that x(0,) =a. We equip D with a P(Z,) = <Z§ Zl> action by setting (&%) z = (1+1T1)%04(2)
for any z € D. For any subset i + p"Zj, of Z,, we set Resjynz, (2) = (1 + T)'"y"((1 4+ T) " "2).
This is independent of the choice of the representative i. In general, if U is an open compact
subgroup of Z,, and if k is sufficiently large such that U is a union of some translations of
p*Z,, then the Op-linear map > acU mod p+Z, R€8atphz,, 18 independent of the choice of k£, and we
denote it by Resy. For any Op-submodule M of D stable under P(Zy)- and 1-actions, we define
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the Op-submodule M X U of D as the image Resyy M, which is stable under the P(Z,)-action.
For example, it is clear that D X Z, = D and D R Z} = D¥=".

If M is further stable under ¢, we define M X Q, as the set of sequences (Z(n))neN of elements
of M, such that 1/1(2("+1)) =2 for any n € N, and we identify M as a submodule of M X Qp
by sending z € M to (¢"(2))nen. We extend the P(Zy)-, 1- and g-actions to M X Q, by the

formulas
a b) a b
e = (5 1))
<0 1 0 1 neN

(2" )nen) = " nen,  @((z1)nen) = (2 )en,

where we put z2(—1 = 0. For U open compact in Zy,, we define the map Resy : M X Q, — M X Q,
by the formula

Resy (2" )nen) = (¢ (Resy (2\7)) Jnen € M B Q,
where Resy(2(?)) € M XU C M. Thus, Resy/(M X Q,) C M XU C M, where M is identified as
a submodule of M X Q,, as above. If U is an open compact subset of Q,, and if k£ € N such that
p*U C Z,, then we define M XU C M K Q, and Resy : M X Q, — M X U as

M&U:W“(MﬁpkU) and ReSU:ﬂ}kORespkU ospk;

they are independent of the choice of k. Moreover, when U is contained in Z,, this definition
coincides with the definition above, regarding U as a compact open subset of Z,. Note that all
the constructions above apply to D[1/p], DT, Dyig.

From now on, we further suppose that rankp, D = 2. Then A2D is of the form Of ® o
for some continuous character d,: Q) — Of. Let dp be the character defined by dp(z) =
(z2]) 716 (2). If g=(24) € GL2(Qp) and U is open compact in Q, such that —d/c is not
in U, then we set ¢g(i) = (ai+b)/(ci+d) for any i € U. For any z€ DX U, the operator
Hy: DXU — DXU is defined as

g ARV DL (D)

Here ¢/(i) = (ad — be)/(ci + d)? is the derivative of g(i). Put w = (9 }). Let wp be the restriction
of Hy, on DK Z;; hence,

wp(z)=tm 3 sp(i) (_6_2 211) Respnzp<<(1) ‘i) z>.

i€Z, mod p"Zy
We define
DRP'={z=(z,2)€eDxD, Res; (z2) = wD(Respr (z1))}.
For any U open compact in Q, and z = (z1, 22) € D K P!, we define Resy(2) € DX U by
Resy(2) = Resynz, (21) + Huw(Reswunpz, (22)) = Resyrpz, (21) + Huw(Reswunz, (22))-
The last equality holds, as Res; x (z2) =w D(ResZ; (z1)).
THEOREM 3.1 [Col10d, Théoréme II.1.4]. There exists a unique G-action on D X P! such that
Resy(g-2) = Hg(ReSg—lUﬂZp(zl)) + ng(ReS(gw)—lUﬂpr(ZZ))
for any g € GL2(Qp) and U open compact in Q.
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The following proposition describes the G-action more precisely.

PROPOSITION 3.2 [Coll0d, Proposition I1.1.8]. The GL2(Q,)-action on DX P! satisfies the
conditions that if z = (z1, z2), then:
(1) §0)z=(22,21);
(i) if a € Q), then (§9)z= (dp(a)z1, dp(a)z2);
) ifa€Zy, then (§9)z=((¢9)21,0p(a )(“61 0) 23);
(iv) if 2/ = (89) 2, then Resyz, 2/ = (89) 21 and Resz, (3 §) 2’ = 6p(p)(22);
(v) if bepZy, and if 2/ = (}%)z, then Resz, 2’ = (}4) 21 and Resyz, (9 )2 = up(Respz, (22)),
where u, = up = 6~ 1(1 + b) [(1) ’ﬂ o wg o [(1“6”)2 b(lf‘b)} ows o Ll) 1/(11”’)} on DX pZ,.

(iii

For any z€ DX P! by [Coll0d, Proposition I1.1.14(i)], (Reszp((;l ?))neN is an element
of DX Q,; we denote this element by Resg, z. We define DIX P! = {xe DX P! , Resq, z €
DR Q,}.

Let Repyors GL2(Qp) be the category of smooth O [GL2(Qp)]-modules which are of finite
length and admit central characters. Let Repp, GL2(Qp) be the category of Or[GL2(Qp)]-

modules IT which are separated and complete for the p-adic topology, p-torsion free and satisfy
IT/p"II € Repyys GL2(Q)) for any n € N.

THEOREM 3.3 [Col10d, Théoreme I1.3.1]. Keep notation as above. The following are true.

i) The submodule D* X P! of D K P! is stable under GLa(Q
P

(ii) The representation TI(D)= (DX P')/(D* K P') is an obJect of Repp, GL2(Qp) with
central character 6p, and D* X P is naturally isomorphic to II(D)* @ (6p o det). Thus, we have
the following exact sequence:

0 — I(D)*® (6p o det) — DR P! — II(D) — 0.

We denote TI(D) by TI(D). Here D = Homg, (D, E..(dT/(1 4 T))) is the Tate dual of D, where
the ¢, I'-actions on dT/(1+T) are defined as @(dT/(1+T))=dT/(1+T),vdT/(1+T))=
x(7)dT/(14T). It is clear that if D =D(V), then D =D(V); here we denote by V the Tate
dual of V. Note that D= D ® d5'. Tt follows that II(D) = TI(D) ® (65" o det), so D" K P! is
naturally isomorphic to (II(D))*. The wp-action induces an involution on D[1/p] X Zy , and the
GL2(Qp)-action naturally extends to

D[1/p] X P! = {(21, z) € D[1/p] x D[1/p], U)D(RGSZX z1) = ReSZ; 29}

We set II(D[1/p]) =TI(D)[1/p] and TI(D[1/p]) =TI(D)[1/p]; they are admissible unitary
representations of GL2(Q)).

If C is a pro-p cyclic group and if ¢ is a topological generator of C, the set of g(c — 1) for
g(T) € O[[T]] is independent of the choice of ¢; the resulting ring is denoted by Az (C'). For any
ring R of 520’“, ET, RZ, E]LO’T] and Ry, we define R(C) similarly. Let A be the torsion subgroup
of T'; then I' = A x I';. We define Af(T') = Or[A] @ AL(T'1) and we define R(I") = L[A] @ R(T'1).
For any h > 1, it is clear that A (I") (respectively R(T")) is finite free over Ar(I',) (respectively
R(T',)), and Ar(T') (respectively R(I')) has a A (I'y,)-basis (respectively R(I'j)-basis) consisting
of elements in I'. For a finite free module M over Ap(T") (respectively R(T")) equipped with a
continuous semilinear I'-action, we define a continuous action of Ap(I'1) (respectively R(I'1))
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on M by setting

(St = 1)) = sl s = 1),
where 71 is a topological generator of I';. We further extend this action to a continuous action
of AL(T") (respectively R(I")) on M by setting (f ® g)(m) = f(g(m)).
Suppose that V(D) =V and dimy V =d. Let D" = D" (V) and Dji’g = DL’g(V). We have
the following result [Col10d, Théoreme V.1.12].
THEOREM 3.4. For r sufficiently large, the following are true.

(i) If s >r, then D™ X Zy is a free 520’5] -modaule of rank d generated by D" X Ly

(ii) If s >r, then DL’; X Z; is a free E}LO’S] -module of rank d generated by D" X Zy .

As a consequence, Dt X Z, is a free 52 (T')-module of rank d, and

DiigRZY =RL(T) ®t oy DT RZS

£L(T)
is a free R (I')-module of rank d.

The following proposition follows from [Col10d, Lemme V.2.4].

PROPOSITION 3.5. DI X Z; is stable under the action of wp.

For any character 7: Z, — OF and n € Z, suppose that |7(1 + p"7Z,) — 1| < 1 for some h > 1.
Then A\(y — 1) = A7 (x(y))7" — 1) for any A(y — 1) € R (I'},) defines an L-linear automorphism
on Rr(I'y). We can extend this automorphism uniquely to Rp(I") by sending v to 7(x(v))y"
for any v € I". The resulting automorphism on Ry (I') is independent of the choice of h, and we
denote it by T ,. It is obvious that 1%, ,, o Tr, n, = Tr 7y m14n,s- We use T to denote Tr o for
simplicity. Both R} (I') and Sz (I') are stable under the action of T ,,.

Applying the proposition above, we extend the action of wp to Dyig K Z; =RL(T) ®5£ )
D' Zy by the formula wp(A ® z) =Ts, —1(A) @ wp(z) for A € Ry (') and 2 € D' Zy . Then
we define

D,y X P! = {(21, 22) € Drig X Diig, ResZ; 29 = ’LUD(RGSZ;; z1)}.

ProposITION 3.6 [Coll10d, Propositions V.2.8, V.2.9].

(i) DTR P! = {(21, 20) € DR P!, 21, 2o € D'} is stable under the action of GLa(Q)).

(ii) The GL2(Qp)-action on DT X P! extends to a continuous GLa(Qp)-action on Dyjg X P!
satisfying the formulas listed in Proposition 3.2.

By [Col10d, Théoréme 1.5.2], we know that (1 — ¢)D¥=! is a free Az (T')-module of rank d.
The following proposition will be used in §4.1.

PROPOSITION 3.7 [Coll0d, Corollaire V.1.6(iii)]. The inclusion (1 —)D¥=!C Dig X Z
induces an isomorphism from Rp(I') @4, ) (1 — ©)D¥=! to Dy X Ly

For w = g dT a differential 1-form with g =3, aT* € £r, we define the residue resy(w) =
a—1. We define the pairing {, } : D x D — L by the formula

{z, y} =reso((0-1 - 7)(y)).
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We further extend {, } to a pairing { , }p1 : DX P! x DX P! — L by the formula

{(21, 22), (21, 25) }pr = {21, 21} + {Respzp 22, Resyz, 25}

THEOREM 3.8 [Col10d, Théoreme I1.1.13]. The pairing { , } is perfect and GL2(Q,)-equivariant.

THEOREM 3.9 [Col10d, Théoréme I1.2.11]. D* X P! and D X P! are orthogonal complements
of each other.

We define the pairing {, }p: :Drig X Pl x Dyig X P! — L similarly; it is also perfect and
GL2(Qp)-equivariant. Let Dflg X P! denote the orthogonal complement of D? X P! in Dy K P!
with respect to {, }p1.

THEOREM 3.10 [Col10d, Théoréme V.2.12]. (i) II(D)a, = (D[1/p] R P1)/(D%1/p] X P!) and

DE, P! = (II(D)an)*.

(ii) The natural map (D'[1/p]RPY)/(D[1/p] K P) — (Dyg X Pl)/(DElg XP!) is an

isomorphism.

For V a two-dimensional L-linear representation of Gg,, we set II(V) =II(D(V)) and II(V) =
I(D(V)).

3.3 Amice transformation

For any h €N, let LA; denote the space of functions f:Z, — L such that f is analytic on
a—i—pth for any a €Z,. If f€ LAy, then, for any 29 € Z,, we expand f on z +pth in

the form
e zZ Z i
— <0
f<z>|z0+pth=2ah,i<zo>< — )

1=0

where ayp, i(20) is a sequence of elements in L such that |ap ;| — 0 as i — co. We set || f|ln,2 =
max;{|apn|} and [[fllLa, =sup. ez, [[fllz,n Let LA =], LA, denote the space of L-valued
locally analytic functions on Z,. A continuous distribution on Z, is an L-linear homomorphism
from LA to L such that the restriction to each LAy is continuous. Let Deont(Zp, L) denote the
set of continuous distributions on Z,. We set, for any h € N, a norm || - ||r,a, on Deont(Zp, L) by
the formula

1, £ du(2)
lullLa, = sup  ————
fELA,—0 HfHLAh

We equip Deont(Zp, L) with the Fréchet topology defined by the norms || - |1, for h € N.
Let pt € Deont(Zyp, L). For any v € I', we define y(1t) € Deont(Zp, L) by the formula

/fdv /f du(2).

We define (1), (@) € Deont(Zy, L) by the formulas

[ 10 aei ) = [ ) dute /f ) dib() (=) = / f<p> au(2).

Zp

respectively. It is clear that ¥ (¢(n)) = p and ¢(1(p)) is the restriction of p on pZ,,.
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For any pt € Deont(Zyp, L), we associate it with the Amice transformation A(u), which is an
element of R} defined as

Alp) =§;T" / p (5) dut)= [ 77 auto)

P
If h €N, put pp = p~/P=DP" Note that p;, = [n — 1| for any 1 € pin1.

PROPOSITION 3.11 (Amice transformation). The map p — A(u) is a topological isomorphism
from Deont(Zyp, L) to Rz respecting the ¢-, I'- and -actions. Moreover, we have

Ao < leellua, < pIAG)ons -

Proof. 1t is straightforward to verify that the Amice transformation commutes with -, I'- and -
actions. We leave it as an exercise for the reader. The rest is exactly [Coll0c, Théoreme 11.2.2]. O

Thus, for any p € Deont(Zy, L), we have
Ap) € (RY)P=0 <= 0= 0¥ (A(n))) = Alp(¥ (1)) <= @((1)) = 0 <= Supp(u) C Zy;.

We will need this equivalence later.

3.4 B(Va,p) 2 I1(Vag)

In this subsection, we will explain the compatibility of Colmez and Berger—Breuil’s constructions
in the case when V € . is not exceptional (for Va3, this is equivalent to « # 3). Since
every element of .7 is a twist of V, g for some (o, B), it reduces to show that B(V,z)
is naturally isomorphic to II(V, g) for any («, ) such that o # 3. This is the main result
of [BB10]. First note that the central character of B(a)/L(a) is §(z) = (af)(2)|z|~12¥~2, which
coincides with the central character dp (here D = D(V,, 3)) of II(V,, g). From now on, we suppose
that a # (.

DEFINITION 3.12. For any crystabelian representation V', we define M(V') as the set of elements
g € RY[1/t] ®1 Deris(V) such that ty,(g) € Fil®(Lp ((t)) ®1 Deris(V)) for every m > m(V).

PropoOSITION 3.13 [BB10, Proposition 3.3.3]. If V' is a crystabelian representation with Hodge—
Tate weights in [—h, 0] for some h >0, then the R} -module M(V) is free of rank dimy, V, and
it satisfies

T™'RY @gr N(V) SM(V) C "™V "HT) ' RE @4 N(V).
COROLLARY 3.14. The R} -module M(V,, ) is contained in DIig(Vaﬁ).

Proof. Applying the above proposition to the positive crystabelian representation V, g(1 — k),
we get M(Vy, (1 — k) € ¢"Ve #) “UT)IFRE @cy N(Vy, 51— k) C Df, (Va, a(1 — k).
Since  RY ®r Deris(Va,g) = t' "R} @1 Deris(Vayg(1 — k)  and  Fil®(Ly[[t] ®1 Deris(Va,g)) =
Fil®(Lyn[[t] ©1 Deris(Va,3(1 — k))), we conclude that M(Vy,5) € D, (Va,)-

)

a

LEMMA 3.15 [BB10, Lemme 5.1.2]. Let m > m(V, g) and cq, cg € Rz Let o =A"Y(ca), pg =
A_l(%) denote the corresponding locally analytic distributions over Z,. Then the condition

tm(Cata + cgeg) € FilO(Lm[[tH ®L Deris(Va,3))
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is equivalent to

_ m—m(V) . .
G(B e, ngm )az“/ 2 pm dpa(2) :ﬂ;l/ 2 npm dpp(2)
ZP ZP
for every j € {0, ...,k — 2} and every primitive p™th roots of unity nym in @p.

COROLLARY 3.16. Let o € A(a)* and pg € A(B)*. We regard palz,, pglz, as elements of
D(Zyp, L), and let co = A(pialz,), cs = Alpglz,). If 1o and pg are related by the condition

1
Fins(a) = iy | 1) dnal) (31)
/Qp Clap, Bp) Ja,
for any f € n([3), then we have coeq + cgeg € M(V, g). Here C(ay, 3,) is the constant we defined

in §1.3.

Proof. For any 0 <j <k —2, y€Qy such that val(y) < —m(V), by (3.1) and Lemma 1.6, we
have

o 1 i omi
o p2mizy d,u (Z) — 71(1 ny - 2162mzy) d,LLa(Z)
/Zp ﬁ QP C(Oép, ﬁp) g ’

-G -1 27riy/p"a1(y)+m(v> ﬁp vally) J 2mizy
=G a,e | — i e dua(z).  (3.2)
P

Qp

Now, for any m >m(V, ) and a primitive p™th root of unity n,m, we choose yy such that
Xm0 = mym; so val(yo) = —m < —m(Va, ). Setting y = yo in (3.2), we obtain

m iz — m=m(V) oy iz
B, / 2 npm dup(z) = G(B la, Mym ), / 2 npm dpa(2). (3.3)
Zp Zyp
We conclude that coeq + cgeg € M(V,, 3) by Lemma 3.15. O

For any g € (R})"=", we set ()9 =A(({ §) (A""(9))) (respectively ({ §)59=A((] §) (A~
(9)))) € (R})¥=°, where we regard A~!(g) as an element of A(a)* (respectively A(3)*) supported
in Z.

Suppose that z =cqeq + cgeg € Diig(vaﬁ) NZX N (Rjea®Ries). We would have 0=
Y(2) = apb(ca)ea + Bptb(cg)eg, yielding cq, ¢ € (RE)¥=0. We define

<[1) (1)>z=<(1’ (1)>Q<ca>ea+<(1’ é)ﬁ@)eﬁ.

We now construct a map F from (B(«)/L(«))* to
TV, 5)* =2 (D*(V, ) RPY) @ (67! o det).
Let i, denote the natural morphism A(a) — B(a)/L(a); the dual map is denoted by iy,. We set
i and tj similarly. For any p € (B(a)/L(a))*, we associate po with pug = (1/C(ap, Bp))pa o I €
(B(B)/L(B))*. We regard pq and pis as elements of A(a)* and A(B)”* via i, and ij, respectively.

Suppose that cq = A(jialz, ), ca = Aljialz, ) and &, = A(Q D a)lz): ¢y = AUC D o)l ). Let
Zo = Ca€a + cgeg and 2, = cleq + c’ﬁe/g. By Corollary 3.14, we first have z, € M(V,,3). From
[BB10, Lemme 5.2.6], the fact that p, and pg are of orders val(oy,) and val(fy) respectively
further ensures that z, € D#(V,, 5). From [Coll0a, Corollaire I11.5.21], we get D#(V,, 5) = D*(V,, 5)

because V, s is irreducible; hence, z, € Dh(Va,g). Similarly, we have z/, € Dh(Va”@) because I is
GL2(Qp)-equivariant.

50

https://doi.org/10.1112/50010437X11005525 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X11005525

LOCALLY ANALYTIC VECTORS OF SOME CRYSTABELIAN REPRESENTATIONS OF GL2(Q))

LEMMA 3.17 [Col10d, Lemme I1.3.13]. For any z € D%(V, 3) K ZY, we have wp(z) = (}§) (2).

Note that D*(V,3) CM(Vap) CRieq ® Ries following [BB10, Corollaire 3.3.10]. So,
(0 )(2) is defined for any z € D¥(V, 3) WZX. By the definition of z, and 2z, we see that
Res; x 2, =01% Resyx 20 = wD(ReSZ; Za). Hence, (zq, 2,) is an element of D(V, 5) X P1. We
pick a basis e of the one-dimensional representation ! o det. We define F by setting F(uq) =
(2a, zL,) ® e. The following result is the combination of [BB10, Proposition 3.4.6] and [Col10d,
Proposition II.3.8].

THEOREM 3.18. The dual of F is a topological isomorphism from I1(V,, 3) to (B(a)/L(a)) as
L-Banach space representations of GLy(Q)). Furthermore, the B(Q,)-action on B(a)/L(«) is
topologically irreducible.

COROLLARY 3.19. B(«))/L(«) is non-zero.

Proof. For any rank-two étale (¢, T')-module D over 1, DX P! is non-zero because D! X P!
contains D! X Z, = D". Therefore, (B(a)/L())* is non-zero, yielding that B(«a)/L(«a) is non-
Z€ro. O

4. Determination of locally analytic vectors

We keep assuming that a# (3 in this section. Let 4,,i3 denote the natural maps
A(a) — B(a)/L(a), A(B) — B(B)/L(B), respectively. Since A(a), A(B) are locally analytic
representations of GL2(Qp), both maps i, and Ioig factor through (B(a)/L())an =
B(Va,8)an. It is clear that the map ia®Io ig: A(o) ® A(B) — B(Va,8)an reduces to a map
ia® 1o ig: A(a) @rg) A(B) — B(Va,3)an, Where we map m(3) to A(a) via the intertwining
operator I. Note that if o = f3|z|, since ker I = (3 o det) ®7, Sym*~2 L? and =(3)/( o det) @,
Sym*=2 L2 = ((Bodet) ® Sym* 2 L2) @1 St by (1.5), we further have A(a) Dr(g) A(B) =
A(a) B ((godet o Symb—2 12y, st (A(B)/((B o det) @r Sym*~2 L2)). The main result of this paper

is the following theorem.

THEOREM 4.1. If av# 3, then the map ing=iq @ To ig: Ala) ©rp) A(B) = B(Va,g)an is a
topological isomorphism.

This section is devoted to the proof of Theorem 4.1.

4.1 Extension of F

Let i denote the inclusion B(V,, g)an — B(V4 ). In this subsection, we will construct a continuous
GL2(Qp)-equivariant morphism  Fay : (A(a) ©q(5) A(B))" — DLg(Vaﬂ) X P! satisfying the
following commutative diagram.

(B(a)/L(e))* Vo) X P!
l(z’oi&,m* l (4.1)
(A(Q) @n(g) A(B))" —*"—= DI, (Vo 5) K P!

Let 64,03:Qf — L* be the characters defined as 64(2) = (Ba™')(2)]z|712"2, 65(2) =
(@B~ 1)(2)|2] 7122
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LEMMA 4.2. For h € N and h > n(Ba™"), we have [|(9 §),(9)llp, <Pllgllpnss and (9 5)5(9)]lon <
pllgllp,., for any g€ (Rf)¥=Y. As a consequence, both (9}), and (9 (1))5 are continuous with
respect to the Fréchet topology of RZF

Proof. Let jio = A~ (g). We regard ji, as an element of A(a)*. For any f € A(a), we have

[10a((} g)m) @=L ((§ o)tz n) @

= [ B0 0u(2) £(1/2) dpta(2): (4.2)

Zy

Thus, for any a € Z), h > n(Ba~") and m > 0, it follows that

Lo, G) a((F o)m)e

= [ DR () et
=B(=1)(=1)*Ba" (a™) /a_1+p% 22 (%);‘l)m dpta (2). (4.3)
From
1a*1+pth ' <1/;h—a>m = 1a*1+pth ’ (a/(l * a(zp; a‘l)) — a>m

> . . z — a_l i\ m
= 1a,1+p% . <Z ph(z—l)az-‘rl( o ) > :
=1

we get [|1,-1 4,07, - ((1/2 — a)/p")™||La, < 1, yielding

el 1/z—a\™ 1/2—a\™ PR
ly-14phz, * 2 —— < |largprz, | —— N2 s, < 1
p LAh p LAh
This implies that | [, uy ((z—a)/p")™d((§§) ha)(2)] < [lallLa,. Hence, |9 §)pallLa, <

ltallLa, (in fact, we have | (3)nallLa, = l|pallLa, since (§3) is an involution). So, by

Proposition 3.11, we get
01 01
(G 0], =G )

ie [ 0)a @llon < Plgllonss- We get [|(©8)5 (9o, < Pllgllp,,, similarly. o

< HU&HLAh < pHA(Ma>th+17
LA,

LEMMA 4.3. Forany A € R} (T) and g € (R})¥=°, we have A(${),,9) = (1 8),, (Ts...—1(A)(9)) and
AT 0)g9) =@ )5 (Tss,-1(M)(9))-

Proof. Let jio = A7Y(g), regarded as an element of A(a)*. For any v € ', we have

(G o), )= eemral(o)m)eo)

_ 7( [ senntaea e du<z>) (by (4.2))

X
P
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= [ B(=1)(=1)F6(z)(1 + TV du(z)
Zy

=/ Sa(X(M)B(=1)(=1)*8(z)(1 + T)"/*d(v"" ) (2)

= [ Salx(")+T)*d <((1) (1)>a (’y—lﬂa)>

Zp
-(1 o) @) (4.4

So, the lemma holds for A =+. Let h =n(Ba~!). It reduces to prove the lemma for any \ €
R T (T}). Let v be a topological generator of I'y,. In general, for any A = >0, a;(y — 1)* € Rf (Th),

we first have |
((8),9) = oo (( ). )
= Jim <(1) é)a (Téa,l (Z; a;(y — 1)i) (9)>.

Since lim; Zgzo Ty, —1(ai(y — 1)) (g) = Ts,.—1(N\)(g), applying Lemma 4.2, we get

i (] 3)Q(T5a,1(:0 wtr=1) @) = | 0)@(}3& gna,l(am—l)i)(g))
()

7

S0, M(96)a9) = (} 0 (T5.,-1(N)(9))- We get M((96)59) = ({ §)5 (Ts5,-1(N)(9)) similarly. O
PROPOSITION 4.4. The map R} (') — (R})¥=Y sending A to A\(1 +T) is a bijection.

Proof. See [Per01, B.2.8] for a reference, where Perrin-Riou established a bijection from Sz(F)
to (52)1”:0 sending A to A(1 4 T'). Her proof also works in our situation. O

The inverse of this map is the Mellin transformation; we denote it by Mel. So, if ¢(T') €
(RE)¥=Y, then g(T) = Mel(g)(1 + T).

LEMMA 4.5. If z = cqeq + cgeg € Diig(va,ﬁ) XZX N (Rjea® Rieg), then

wno)= (7 o) G
0

Hence, (} }) = wp is an involution on Diig(Vaﬁ) XZy N (Riea®Riep).

Proof. By Proposition 3.7, there exist A, Ag,..., A\, € Rp(I') and z1,29,...,2, € (1 —¢)
D(V, 3)¥=! for some n>1 such that z=3"7" \;z;. Since D(V)¥=! c D(V)* for any p-adic
representation V', we have z; € D(Vaﬂ)ﬁ X Z, . Suppose that z; = caieq + cgieg for 1 <i<n.
It follows that

n

Z Nizi = Z Ai(Caji€a + cpi€8) = Z(Ta()\i)ca’iea + Ts(\i)cs,iep),
i=1 i=1 i=1
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yielding cq = > 1 To(Ni)ca,i and cg = ;- Ta(Ni)ca,i. Taking a Mellin transformation for the
latter equalities, we get

Mel(ca)(1+T) = ZT ) Mel(co)(1+T), Mel(cg)(1+T)= ZTg ) Mel(cg,i)(1+T).
We conclude that

n

Mel(co) = Y Ta(Ai) Mel(ca) and  Mel(cg) = ZTﬁ ) Mel(cg.;). (4.5)
=1

Following the definition of wp and Lemma 4.3, we have

z):wp<g/\¢zz'> ZT5 1(A)wp(2) ZTé 1( <<(1) é) (Zz‘)>

= <Zn: Ta_157_1()\,-)<<§) (1)>a (ca,i)>>ea + (; Th-15-1(N\) <<(1) é)ﬁ (Cﬁ,i)>>€ﬂ

<ZT_15 LT, _1(Mel(cm))(<(1) é)a(1+T))>ea
(ZTB 51 ()T, 1(Mel(cm))(<(1] é)ﬂ(l—i—T)))eg. (4.6)

On the other hand, we have

((1) (1)> (2) = <‘1) é)a(Mel(ca)(l 4 T))ea + (? é)ﬁ(Mel(cg)(l +T))eg

— Ty 1 (Mel(ca) <(‘1) é)a (1+ T)> o

+ Ty, 1 (Mel(cs) ((? é)ﬁ (1+ T))e@. (4.7)
Now, by (4.5), we get
Ts,,—1(Mel(ca)) = T, 1 (Z T (\i) Mel(cq i ) Z To15(N)Ts,, —1(Mel(ca )
because ad, = a~!§. Similarly, we have Ts,,—1(Mel(cg)) = >0y Tp-15(Mi)Ts,,—1(Mel(cg)). We
obtain the desired result by comparing (4.6) and (4.7). O

We define F,, as follows. First note that
(A(a) Dr(gy A(B))"

— ker(A(a)* ® AQB)” — 7(8)")
={<ua,uﬁ>eA<a>*@Aw>* [ tanster= [ 1)t anyfeﬂ(ﬂ)}-

For any (ta, #5) € (A(0) r(a) A(B))", let ca = Aljialz, ), 3 = (1/Clap, By)Alpglz,) and ¢ =
AT 0) Halz, ), 5 = (1/Clap, Bp)) AR §) 1z, ). Put za =caea + cgep and 2z, = chea + chep.
By Corollaries 3.14 and 3.16, we have z,,z), € Drlg(Va,B)- Since Resyx 2o = @ Res « zh,

o4
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we get Res; za:wD(ResZ;z(’l) by Lemma 4.5. So, (za,z,,) is a well-defined element of

Dilg(va,ﬁ) X P!. We define F,, by setting Fan(ta, 3) = (2a, 2h) ® € € Dilg(f/aﬁ) X PL. It is clear

that Fan is an extension of F. Using Proposition 3.6, it is straightforward to verify that Fy, is
GL2(Qp)-equivariant. The continuity of Fay is obvious.

4.2 Proof of Theorem 4.1
LEMMA 4.6. V5 =Hom(Vy g, Q) is isomorphic to Vg-1|yk-1 g-1|gk-1(1 — k).
Proof. Note that
Dcris(V;ﬁ) = HomL(Dcris(Vaﬁ)v L) =Homy(D(e, B), L)
as filtered (¢, Gg,)-modules over L. Let e, ej; € Homp(D(a, 3), L) be defined by eg,(ea) =
esleg) =1 and eg(eg) =ej(eq) =0. It follows that Deis(Vy 5) = L-eq @ L-ej; the ¢- and

a,
G, -actions are given by p(€l,) = a(p) e, ple) = A(p) ey and (eh) = a(x(7)"eh, 1(e) =
I6; (X(’y))*le%j for any « € I'. The filtration is given by the formula
Fil'(Ly @1, Homp (D(a, §), L)) =Fil'™(Ln ®1, D(a, §))*.
Thus, a short computation shows that for n > n(V, ), if a # 3, then

Ln-efleBLn-e’ﬂ if 1 <0;
Fil' (L, @1, Deris(Var 5)) = § L - (=€ + G(aBVel,) i 1<i<k— 1
0 ifi > k.
If o« =, then
L, e, &L, eﬂ if 7 <0;
Fil'(Ly, @ Dexis(Vig)) = < Ly - €, if1<i<k—1;
0 if i > k.

Since Ba~t = o~z [F~1(B7 x| 71) 7L, we immediately see that Deyis( o.p(k — 1)) is isomorphic
to D(B7 x|, a7 z[F71) as filtered (¢, Gg,)-modules over L by mapping —ejg, €, (with
twisted actions) to eg-1jyr-1, €q-1jyk-1, respectively. Thus, V;4(k—1) is isomorphic to

Vi3-1|zk=1,a-1|z4-1, Yielding the desired result. O
LEMMA 4.7. Suppose that g€ R} and a; € L for 1<i <! such that |a;| <1 for every i and
a; # a; for any i # j. Then, for any ki, ...,k >1, we have

(e ) :g RN T () )

1

Proof. For 1 <i<land 0<k<k; — 1, we set

bije = H#z(l — ((;;)k_lg)(ai).

Then a short computation shows that

< )( Zzb““ — ai) H(T—ag)’“>(az)—o

i=1 k=0 JFi
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for every 1<i<!l and 0<j <k;—1. This implies that there exists an hERJLr such that
i— !
g-SF, zk:(} bie(T — ai)* [1;(T — a;)" = [Ti—y (T — a;)**h. Hence,
g ko k-1 b
i,k
—_ = ————+h. (4.8)
1 . Nki—k
[[i1 (T = ai) ; k=0 (T a:)

Note that for |a| < 1, we have

! ! ! S S 2+
T—a T 1-a/T T T \T ‘

dT 1 ifk=1;
_ ’ 4.9
resO((T—a)"“) {0 if k> 2. (4.9)

Following (4.8) and (4.9), we conclude that

ot ) = (S & e )

i=1

So,

yielding the desired result. O

LEMMA 4.8. The natural map 7(a) — B(a)/L(«) is injective.

Proof. In the case a# f|z|, as m(a) is irreducible and the image is dense in a non-zero
space B(«a)/L(«), we conclude that 7(a) — B(«)/L(«) is injective. In the case a = (|z|, since
val(ay) + val(B,) = k — 1, we get val(5,) = (k — 2)/2, yielding k > 2. If m(a) — B(«v)/L(v) is not
injective, then the image must be (f o det) ®;, Sym*~2 L? because this is the only non-trivial
quotient of 7(a), as shown in (1.6). Hence, we must have (3 o det) ®7, Sym*~2 L? = B(a)/L(«)
since (3o det) ®z Sym* 2 L? is finite dimensional and dense in B(a)/L(c). This leads to a
contradiction because (3 o det) @7, Sym*~2 L? does not possess a GLa(Q,)-invariant norm when
k > 2 [Eme06a, Corollary 5.1.3]. O

PROPOSITION 4.9. {D¥(V,,3) P!, Fun((A(a) @5y A(B))*) }p1 =0.

Proof. Let €' be the basis of § o det dual to e. Note that each element of D¥(V,, ) is of the form
2®dT/(1+T) for some z € Du(Vo’Zﬁ). Since D¥(V, 5) P! = (Df(V,, 5) K P) ® 6, it reduces to
show that

dar ,  dT ,
Aas A =0 4.11
{<Z®I+T’Z®1+T>®e’]:an( o ﬁ)}P1 (4.11)
for any (Ao, Ag) € (A(a) @5 A(B))" and (z,2') € Dh(V;ﬂ) X P!. By Lemma 4.6, Vag is
isomorphic to Vﬂ—l‘x|k—1,a—1|x‘k—1(1 — k). Moreover, the explicit description of this isomorphism
shows that there exist ca, cg and ¢, cj; € R} such that

(Caeﬁflmkq + Cgea—1|zk-1, C;eﬂ—lm‘k—l + Clﬁeafl‘xlkfl) € Du(Vﬁquq’aquil) X Pl,

and

z:tlfkcBe;—tlfkcae/'g, =ik ’ﬁ Ltk eﬂ
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Suppose that Fan(Aa, Ag) = (da€a + dgeg, dyeq + dgep) ® e. By Theorem 3.18, we may suppose
that

(Caeﬁflmk& T Caea—1|z|k-1, 6;6571@%71 + Clﬁea—lu“k—l) Qe = F(pa)
for some j1o € (B(B87 2 |F~1) /LB z|F1))*. Put ug = (1/C(ap, Bp))a © I. By the definition of

{+, -}p1, we have
ar T
an )‘ou)‘
{( @ —F— 1 7 ®1+T>®6 Fan( g)}

P1
= < C/g o_1- d )
B-1)ealo1 - ds) + al-Dpp(csob(o 1 )
dr
- B-Dpbleeulo - &) 7 ) (112)

Put

S =t""a(-1)eg(o-1 - da) = B(=1)cal0-1 - dg) + (=1 ptp(ch) (o1 - dy,)
— B(=1)e(ca) (o1 - dp)).

For any j > 0, we have

SO L) () Lemroncs)
:Zj!/z <':>(1+T)H' dug(z)/ <j__zi>(1+T)i—j‘Z dAa(2)

1=0 P ZP

1+T Z/Z < ) (1+T)" dpp(z) /Z <j_zi)(1+T)z dAa(2).

Thus, for 0 < j <k —2and T'=n — 1 such that |n — 1| < 1, we get

((;;)j(cﬁ(a—l 'da))> (n—1)
Z / ()n dps(2) / (j—_:)n_z dAa(2)
Clay, 5p 7 2/ ( >IS‘“ 1) dua(z)/ ({_’1) 2 Ao (2).

We compute other terms similarly. Finally, we obtain

<<dcff>j5) =y

o7

https://doi.org/10.1112/50010437X11005525 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X11005525

R. Liu

en (s [ (2w

1

(7)o

¢ ()t

A (G e P

For m > m(V, ) +1 and n =0, 1, applying Lemma 1.6, we get that

By

bap
B

pap

Ism(lp”Zp ' 77;:55) = C(ay, Bp) ( > G(ﬁ_lav n;:)t%)(lpnzp 77;:55)

=C(ap,ﬂp)< ) BaH(EDG(B a, mym ) (Lpnz, - m57).

Let 7 = nym; by (4.13), we get that (d/dT)? S(nym — 1) =0for 0 < j <k —2and m > m(V, g) + 1.
Let q = ¢(T)/T. Recall that t =T - (q¢/p) - (#(q)/p) - (¥*(q)/p) - - - . The roots of
& @)/p=(1+TP"" = 1)/(p((1+T)" - 1)

are fipn+1\ppn. Let t' = Hn>m(vaﬂ)(<p”(q)/p). Since ((d/dT)?S)(nym —1) =0 for 0<j <k — 2
and m > m(V,5)+1, we conclude that (¢')*~! divides S in R} ; we denote by S’ the quotient.

The right-hand side of (4.12) is equal to

( S ) < pE=1)(m(Vap)=1) g7 )
res T o | = TeS .
P\ETAHT)) L s (T 1= )

Applying Lemma 4.7, we get that

reso( k=D m(Va 5) 1) g7 )
[T rtvap_ (T+1=m)t

-y ph D) D ((d/dT)* 28" /(1 + T))(n — 1)

-2)! — k-1
V) (k=2 mves o, (0= 70)
B (/0 i TR VYUY -
pk—l(k _ 2)| ) .
npm(Va’B):1

m(Va,g)
where we used [] wov,»  (n—n')=((d/dT)TP Vo8 )(n) = p™Vers) /.
n'r =Ln'#n

o8
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The last line of (4.14) is equal to

mm%i»11*;Tkl2ﬂ<§§<kj2><<é§)jg>(f+2§:£z>(n1)

J

- = Sl s)o

k-2 J k
_ Z Z jn]
ph 1@'9—1 Nk —2—j)!

m<v04’ﬁ>71 ,]:0 1=0

7717

X ((é)jis> <ddT>i(t’)1 ’f> (n—1). (4.15)

A short computation shows that for any ¢>0, there exists a c¢(i) €Z, such that
((d/dT) () %) (n — 1) = c(i)n~* for any n € Hn Vo, )+ Thus, the last line of (4.15) is equal to

3 S Qipk Zé’iin(t;(]_ 2113) ((;;)iS)(U—l)- (4.16)

" Ve,p) _ -1 j=0 i=

Put C(i, j) = (—1)*Je(j — i) /C(a, B)p*~1(j —i)!(k — 2 — j)!. Then (4.16) is equal to

mé)_l kZ 223 C(i, j) ;(a<_1> / p (7)rmaz, v duate) [ p (7))

_ =0

: /@p <§) t1)> <(j__zi

We now prove that (4 17) is equal to 0. Let Y be the L-vector space generated by all the
%),

i
(on)n = () Az, ), (Q0) ((Z3) Lz, - 77) and (§5) ((Z5) 1 (Lpz, - n~)) for all 0<
h<i<k—2andne€ [y (Ve ) Let e ={f1(2), ..., fn(2)} be an L-basis of Y. We expand (4.17)

in the form
E gm\z d,Ufa z Tm(2 d)\a < 4.18
m=1 /Qp ( ) ( ) /Qp ( ) ( ) ( )

for some g,(2) € 7(B7z[F~1). We claim that all the terms pr gm(2) dua(z) are zero. In fact,

for any 1 <mg <n, since Y C 7(a) C B(a)/L(«), applying the Hahn-Banach theorem to the
Banach space B(«a)/L(«), we pick X, € (B(a)/L(«))* such that pr fm(2) dX,(2) #0 if and

™ (1,7, - n—z)) d)\a(z)). (4.17)
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only if m=mg. Let Xy =X, o I. By Theorem 3.18, we know that F(X\,, Ag) € D4V, 5) X P
Hence, {(z @ dT'/(1 +T),2' @ dT'/(1 +T)) ® €', F(A,, A5) }pr = 0 by Theorem 3.9. This implies

that
0=%" / 9m(2) dpta2) / fonl2) AN (2) = / G (2) dpta(2) / Fono () AN (2),
m=1"7Qp Qp Qp Qp
yielding pr Gmo () dpg(z) = 0. We conclude that (4.17) is zero. O

Remark 4.10. Although it is not difficult to compute each integral appearing in (4.17), it looks
very difficult to show that (4.17) is equal to zero by a direct computation. Here we show
that (4.17) is zero by Theorem 3.18, which is actually proved by some topological argument
(see [Col10d] for more details).

Proof of Theorem 4.1. By Proposition 4.9, we have Fan((A(a) ©r(g) A(3))") C Dflg(f/aﬁ) X P!

because DElg(Vaﬂ) X P! is the orthogonal complement of D*(V, 3) X P!. By Theorem 3.10(i),
we have D' (Va3) R P = (TI1(Vyy.5)an)*- So, (4.1) implies the following commutative diagram.

rig
(B(a)/L())* a (Va,s)*

i(ioiawg)* i

(A(Q) @) AB))* — L2~ (T(Viy g)an)*

From Proposition 1.17, we get that F,, o ¢* a8 is an isomorphism because F is an isomorphism. By
the construction of Fy,, it is clear that ]-'an is injective. We conclude that both ¢* o8 and F,, are
isomorphisms. Therefore, ¢* apisa topological isomorphism because the topology of coadmissible
modules is canonical, yleldlng that i, g is a topological isomorphism. O

Remark 4.11. Note that the mere existence of (4.1) already implies that i} o5 1s injective. In
fact, by (4.1), we see that Fan o, 5 maps ((B(a)/L())an)" one-to-one onto DElg(Vaﬁ) X PL
This yields that ¢* o, 1s injective. One can also prove the surjectivity of ¢* .8 Dy results from
representation theory [BB10, Corollaires 5.3.6, 5.4.3]. Our treatment here is completely different.
We actually prove the surjectivity of za,ﬁ by Proposition 4.9. The advantage of our method is
that the way of proving Proposition 4.9 is quite general. One can adapt it to prove similar results

in other cases.

5. Computation of Jacquet modules

In [Eme06b], Emerton introduced the notion of locally analytic Jacquet modules. Recall that
if W is a locally analytic GL2(Q))-representation of compact type, then the Jacquet module
JB(Q,) (W) is a certain locally analytic representation of T(Q,) over L functorially associated
to W. We do not recall the definition here (see [Eme06b] for more details). But, we do recall that
JB(g,)(U) is additive and left exact. In this section, we will prove [Eme06a, Conjecture 3.3.1(8)]
for those V € .7 which are not exceptional. We learned this proof from Emerton. We are
grateful to him for allowing us to put it in this paper.

PROPOSITION 5.1. If a # (3, then
Tp(@p) B(Vag)an) = L- ("2 @ ale| ™) @ L+ (=" *a® plz| 7).
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Proof. Note that there is a short exact sequence

0— () — A(B) — (Indyg 2P ¥ B @ aala)) ™)™ — 0,

(This follows from the short exact sequence (x) on page 123 of [STO01].) It follows from
Theorem 4.1 that B(V,, g)an fits into the following short exact sequence:

0 — (Indy 2% 0 @ 25 25]2|71)™ — B(Vag)an — (Indgy2 ¥ o1 @ a(afz])~1)™ — 0.

(@p) (@Qp)
(5.1)
Applying the functor Jg(q,) to (5.1), we obtain a short exact sequence
GL2(Qp - —1yan
0 — Jp(gy) (52T o @ 252 ~))
GL - —1yan
— I3y (B(Vag)an) — i, (Indg 3 ) 2415 @ a(ale])~)™) (5.2)

because Jacquet functor is left exact. By [Eme06b, Proposition 5.2.1(1), (3), (4)], we get
GL _ “1yan _ _ _ _
Tn(g,) (dg o7 @ @ 2 28Je| 1)) = L- (e* 2B @ ale| ) & L+ (2F 2a @ Bla] )
and

Jngy) (dg 23 o515 @ a(ale) ™)™ = L+ (27 a @ 2" la| ).

We claim that the map from the middle term to the last term in (5.2) vanishes. It is obvious that
this claim yields the desired result. We will prove this claim in the rest of the section. If the claim
is not true, then the map from the middle term to the last term in (5.2) must be surjective since

JB(@,) ((IndCB;(L(SZE?" ) k-1 B ® a(z|z])~1)*) is only one dimensional. So, there must be an inclusion

L-(z7'a®2*18)z|™h) — JB(Q,)(B(Va,g)an) because the character 7 'a @ 2 13]2| 7! does not

appear in JB(QP)((Indg(L@?p) a® F=28|2|~1)2). Tt follows from [Eme06a, Theorem 5.2.5] that

this inclusion leads to a map

(ndS2 (%) 2518 @ a(z]z]) ™)™ = B(Va.g)an

B(Qp)
which would split the exact sequence (5.1). However, by [Eme0O6a, Lemma 6.7.4], we know
that (5.1) is non-split, yielding a contradiction. O

We next recall some notation introduced in [Eme06al. In the following, let V' be a two-

dimensional L-linear representation of Gg,.
DEFINITION 5.2. A refinement of V' is a triple R = (n, ¢, r), where:

(i) nis a continuous character Gg, — L* such that V(™) has at least one Hodge—Tate weight

equal to zero;

(ii) ce L*;
(iii) 7 is a non-zero Gg,-equivariant L-linear map V*(n) — (L ®q, Beris)?™°
Note that we may regard r as a non-zero element of DI. (V(n71))#=¢. We say that a pair
of refinements Ry = (11, ¢1,71) and Ry = (12, ¢2,72) are equivalent if there exist ¢ € O and
0# € (L®q, Q},‘r)“’:c/ such that ro = 271 (and hence such that 7 = niur(¢"!) and ¢ = 'cq).
Let [R] denote the equivalence class of refinements which R belongs to.

DEFINITION 5.3. If R=(n,¢,r) is a refinement of V, then we define the associated abelian
Weil group representation to be the map o(R): W(a}; = Q, — T(L) defined via the characters

(nur(c), (det V)n~tur(c™!)). If R is equivalent to R, then it is clear to see that o(R') = o(R).
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Remark 5.4. One can show that V has at least one refinement if and only if V' is a trianguline
representation. In fact, suppose that R = (1, ¢, r) is a refinement of V. We regard r as an element

of DI .(V(n=1)) C (Diig(V(n_l)))F. Let M be the saturation of the rank-one (¢, I')-submodule
Rrrin Diig(V(nfl)). Twisting the short exact sequence

0— M — Dl (V(n")) —Df

gV 1)/M —0

of (¢, I')-modules with R (n), we obtain a triangulation

0 — M(n) — D, (V) — DL (V)/(M(n)) — 0

rig
T

.I.
of D rig

1ig(V). Conversely, suppose that D}; (V') has a triangulation

0— R.(6;) — D!

rig

(V) — Rpr(62) — 0.

Let n: Gg, — L™ be the character defined by 7(g) = d1(x(g)), ¢ = d1(p), and let r be a non-zero
element of (Rp (8177 1))L. We get a refinement R = (1, ¢, ) of V.

DEFINITION 5.5. Let Ref(V') denote the set of equivalence classes of refinements of V. For any
o € Homeent (W&i, T(L)), set Ref? (V) ={[R] | o(R) =0}.

If we fix o, then it is not difficult to see that Ref? (V) is either empty or a point, except in the
case V=n@®n and o =n ®n, where Ref?(V) =2 P(L). Thus, we regard Ref?(V) as projective
space over L and denote its dimension by dim Ref? (V).

DEFINITION 5.6. Let W be a compact-type locally analytic GL2(Q,)-representation over L.

(i) Define Exp(W) to be the set of one-dimensional T(Qp)-invariant subspaces of Jg(q,)(W).
(ii) For any line [ € Exp(W), write §(1) € Homeont (T(Qp), L™) to denote the character via
which T(Q,) acts on .

(iif) For any ¢ € Homeont (T(Qp), L*), write Exp® (W) := {I € Exp(W) | §(I) = 5}

If we fix a character y, then Exp5(W) has the structure of a projective space; namely, it
is the projectivization of the y-eigenspace Jg(Qp)(W). We then define dim Exp‘S(W) to be the
dimension of this projective space.

We identify Homeon (T(Q)), L) with Homcont(W(az, T(L)) via the isomorphism Q, = W&
provided by the local Artin map. The following corollary verifies [Eme06a, Conjecture 3.3.1(8)],
which relates the space of refinements of V' and Jacquet modules of B(V )., in the case
when V €.79% is not exceptional. Let us remind the reader that our normalization of
the p-adic local Langlands correspondence for GL2(Q,) differs by a twist of (z]z])~! o det
from the normalization chosen by Emerton, as explained in §3.1. So, the right-hand side
of (5.3) is dim Exp®®*¥(B(V ), @ (z|2] o det)) instead of dim Exp™#®*¥ (B(V),,) in Emerton’s
formulation.

COROLLARY 5.7. Keep notation as above. If V € .7 is not exceptional, then
dim Ref"¥ (V) = dim Exp®®*(B(V )y ® (z|2] o det)) (5.3)
for any n ® ¢ € Homeont (T(Qyp), L*).

Proof. Since V € .79 we get that V = Va,3(0) for some pair (o, 3) and § € Homeont (G, L™).
Furthermore, the condition that V' is not exceptional implies that V, g is not exceptional,
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yielding ae # 3. It suffices to prove the corollary for V, 3. By Proposition 5.1, we first have

0 if (n,9) = (&*18, a);
dim Exp”*%% (B(Vo,5)an @ (wfz| o det)) = 0 if (n,¥) = (2" 1a, B);

—1 otherwise.
On the other hand, by the construction of D(a, (3), it is clear to see that

D s (Vo g(1 = k))P=2@P" ™ = L ey,

Therefore, Ry = (X*71, a(p)p*~1, es) is a refinement of V. Similarly, Rg = (x*~1, B(p)p*~1, e5)

is also a refinement of V, 3. A straightforward computation shows that
o(Ry) = xk_lﬁ ®@a and o(Rg)= " la® B.

By [Eme06a, Proposition 4.2.4], we know that V, 3 has only two inequivalent refinements. Since
0(Ra) # 0(Rg), we conclude that R, and Rg are exactly all the inequivalent refinements of V.
It follows that

0 if (n,9) = (=16, a);
dim Ref™®®2¥ (v, )=S0 if (n, ¥) = (2" Lo, B);
—1 otherwise,

yielding the desired result. O

Remark 5.8. The result of Corollary 5.7 also follows from [Eme0O6a, Proposition 6.6.5]. In fact,
the assumption on locally algebraic vectors in [Eme06a, Proposition 6.6.5(2)] has now been
proved by Colmez [Col10d]. The dimension of the left-hand side of the inequality in [Eme06a,
Proposition 6.6.5(3)] is always —1 for our V, and so that inequality becomes an equality.

ACKNOWLEDGEMENTS

It is a pleasure to thank Christophe Breuil, Pierre Colmez, Matthew Emerton and Benjamin
Schraen for very helpful discussions and correspondence during the preparation of this paper.
Thanks are due to Christophe Breuil, Florian Herzig and Liang Xiao for useful comments on
early drafts of the paper. Thanks are also due to my friend Chenyang Xu for his constant
encouragement. The author is grateful to Matthew Emerton for teaching him the content of § 5.
The author would like to express his great gratitude to Marie-France Vigneras for arranging his
visit to Institut de Mathématiques de Jussieu during spring 2008 and for being his tutor for the
postdoctoral research program of Foundation Sciences Mathématiques de Paris. This paper could
not exist without her help. The author wrote this paper as a post-doc of Foundation Sciences
Mathématiques de Paris at the Institut de Mathématiques de Jussieu. Part of this work were
done while the author was a visitor at Beijing International Center for Mathematical Research.
The author is grateful to these institutions for their hospitality. Finally, the author would like
to acknowledge his overwhelming debt to the works of Berger—Breuil and Colmez.

REFERENCES
Ber02 L. Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002),
219-284.

BB10 L. Berger and C. Breuil, Sur quelques représentations potentiellement cristallines de GL2(Qp),
Astérisque 330 (2010), 155-211.

63

https://doi.org/10.1112/50010437X11005525 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X11005525

Bre04

Bum98

CCo8

Col05

Col08
Coll0a

Col10b
Col10c
Col10d
Del71

EmeO6a

Eme06b

Fon90

Fon94

Ked08
Pas09

Per01

ST01

ST02a

ST02b

ST03

R. Liu

C. Breuil, Invariant £ et série spéciale p-adique, Ann. Sci. Ec. Norm. Supér. (4) 37 (2004),
559-610.

D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced
Mathematics, vol. 55 (Cambridge University Press, Cambridge, 1998).

F. Cherbonnier and P. Colmez, Représentations p-adiques surconvergentes, Invent. Math. 133
(1998), 581-611.

P. Colmez, Série principale unitaire pour GL2(Q)) et représentations triangulines de dimension

2, Preprint (2005), unpublished.
P. Colmez, Représentations triangulines de dimension 2, Astérisque 319 (2008), 213-258.

P. Colmez, (¢, I')-modules et représentation du mirabolique de GL2(Q)), Astérisque 330 (2010),
61-153.

P. Colmez, La série principale unitaire de GL2(Q,), Astérisque 330 (2010), 213-262.
P. Colmez, Fonctions d’une variable p-adic, Astérisque 330 (2010), 13-59.
P. Colmez, Représentations de GL2(Q,) et (¢, I')-modules, Astérisque 330 (2010), 281-509.

P. Deligne, Formes modulaires et représentations l-adiques, in Sém. Bourbaki 1968/1969, exp.
343, Springer Lecture Notes, vol. 179 (Springer, 1971), 139-172.

M. Emerton, A local-global compatibility conjecture in the p-adic Langlands programme for
GLy/q, Pure Appl. Math. Q. 2 (2006), 279-393.

M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups I.
Construction and first properties, Ann. Sci. Ec. Norm. Supér. 39 (2006), 353-392.

J.-M. Fontaine, Représentations p-adiques des corps locaux I, in The Grothendieck Festschrift
IT, Progress in Mathematics, vol. 87 (Birkhéuser, Basel, 1990), 249-309.

J.-M. Fontaine, Représentation l-adiques potentiellement semi-stables. Périodes p-adiques,
Astérisque 223 (1994), 321-347.

K. Kedlaya, Slope filtrations for relative Frobenius, Astérisque 319 (2008), 259-301.

V. Paskunas, On some crystalline representations of GL2(Q,), Algebra Number Theory 3 (2009),
411-421.

B. Perrin-Riou, Théorie d’[wasawa des représentations p-adiques semi-stables, Mém. Soc. Math.
Fr. (N.S.) 84 (2001).

P. Schneider and J. Teitelbaum, U(g)-finite locally analytic representations, Represent. Theory
5 (2001), 111-128.

P. Schneider and J. Teitelbaum, Locally analytic distributions and p-adic representation theory,
with applications to GLy, J. Amer. Math. Soc. 15 (2002), 443-468.

P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J.
Math. 127 (2002), 359-380.

P. Schneider and J. Teitelbaum, Algebras of p-adic distributions and admissible representations,
Invent. Math. 153 (2003), 145-196.

Ruochuan Liu ruochuan@umich.edu
University of Michigan, Ann Arbor, Michigan, USA

64

https://doi.org/10.1112/50010437X11005525 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X11005525

	Introduction
	1 Irreducible crystabelian representations of GL2(Qp)
	1.1 Some locally algebraic representations of GL2(Qp)
	1.2 Unitary completions
	1.3 Intertwining operators
	1.4 Locally analytic representations

	2 Crystabelian representations of GQp
	2.1 Classification of two-dimensional irreducible crystabelian representations of GQp
	2.2 (varphi,Γ)-modules
	2.3 Wach modules of crystabelian representations of GQp

	3 p-adic local Langlands correspondence for GL2(Qp)
	3.1 Breuil's p-adic local Langlands program of GL2(Qp)
	3.2 Colmez's construction of the p-adic local Langlands correspondence for GL2(Qp)
	3.3 Amice transformation
	3.4 B(V alpha,beta) cong Pi(V alpha,beta)

	4 Determination of locally analytic vectors
	4.1 Extension of F
	4.2 Proof of Theorem 4.1

	5 Computation of Jacquet modules
	Acknowledgements
	References



