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Abstract

For V a two-dimensional p-adic representation ofGQp , we denote by B(V ) the admissible
unitary representation of GL2(Qp) attached to V under the p-adic local Langlands
correspondence of GL2(Qp) initiated by Breuil. In this paper, building on the works
of Berger–Breuil and Colmez, we determine the locally analytic vectors B(V )an of
B(V ) when V is irreducible, crystabelian and Frobenius semisimple with distinct
Hodge–Tate weights; this proves a conjecture of Breuil. Using this result, we verify
Emerton’s conjecture that dim Refη⊗ψ(V ) = dim Expη|·|⊗xψ(B(V )an ⊗ (x| · | ◦ det)) for
those V which are irreducible, crystabelian and Frobenius semisimple.
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Introduction

Fix a prime p > 2 as well as a finite extension L of Qp to be the coefficient field. Recall that for any
integer k > 2, the set of two-dimensional semistable and non-crystalline L-linear representations
of GQp with Hodge–Tate weights (0, k − 1) is parameterized by L via the L -invariant. For any
L ∈ L, we denote by V (k,L ) the L-linear representation of GQp corresponding to L . In [Bre04],
Breuil constructed a family of locally analytic representations (Σ(k,L )) of GL2(Qp) associated
to the family of L-linear representations (V (k,L )) of GQp for all L ∈ L. Breuil’s work suggested
the possible existence of a p-adic version of the local Langlands correspondence for GL2(Qp).
In fact, Breuil conjectured that there should be a p-adic local Langlands correspondence for
GL2(Qp) which attaches to any two-dimensional potentially semistable L-linear representation
of GQp a p-adic admissible unitary representation of GL2(Qp). Thanks to much recent work,
especially that of Colmez, one can now extend this conjecture to all two-dimensional L-linear
representations of GQp ; we denote this correspondence by V 7→ B(V ). Although the present
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version of the p-adic local Langlands correspondence for GL2(Qp) is formulated at the level of
Banach space representations, it is very useful, as in Breuil’s work (and many other examples),
to have the information of the space of locally analytic vectors B(V )an of B(V ). This is the theme
of this paper.

In the rest of the introduction, we will sketch some relevant background which is useful for
the reader to understand the main results of this paper. We refer the reader to [Col08, Col10d,
Eme06a] and the body of the paper for more details.

Trianguline representations and p-adic local Langlands correspondence for GL2(Qp)
As usual, let RL denote the Robba ring over L. The ϕ- and Γ-actions on RL are defined by
ϕ(T ) = (1 + T )p − 1 and γ(T ) = (1 + T )χ(γ) − 1 for any γ ∈ Γ. For any δ ∈Homcont(Q×p , L×), we
associate to δ a rank one (ϕ, Γ)-module RL(δ) over RL as follows: the (ϕ, Γ)-module RL(δ) has
an RL-basis e such that the ϕ, Γ-actions on RL(δ) are defined by the formulas

ϕ(xe) = δ(p)ϕ(x)e, γ(xe) = δ(χ(γ))γ(x)e

for any x ∈RL and γ ∈ Γ, where χ is the cyclotomic character, as usual. Conversely, if M
is a rank one (ϕ, Γ)-module over RL, then there exists a unique δ ∈Homcont(Q×p , L×) such
that M ∼=RL(δ) [Col08, Proposition 3.1]. We define the weight w(δ) of δ by the formula
w(δ) = log δ(u)/log u, where u ∈ Z×p is not a root of unity. The local reciprocity map allows
us to view δ as a continuous character of WQp . If val(δ(p)) = 0, then one can uniquely extend δ
to a continuous character of GQp . In this case, w(δ) is just the generalized Hodge–Tate weight
of δ and RL(δ) = D†rig(δ).

Recall that a (ϕ, Γ)-module over RL is called triangulable if it can be expressed as successive
extensions of rank one (ϕ, Γ)-modules over RL, and an L-linear representation V of GQp is called
trianguline if D†rig(V ) is triangulable in the category of (ϕ, Γ)-modules over RL. In the rest of
the introduction, let V be a two-dimensional L-linear representation of GQp . If V is trianguline,
then D†rig(V ) fits into a short exact sequence

0−→RL(δ1)−→D†rig(V )−→RL(δ2)−→ 0

for some δ1, δ2 ∈Homcont(Q×p , L×). We denote by h ∈H1(RL(δ1δ
−1
2 )) = Ext1(RL(δ2),RL(δ1))

the extension corresponding to D†rig(V ); then V is determined by the triple (δ1, δ2, h). It
follows that val(δ1(p)) + val(δ2(p)) = 0, and w(δ1), w(δ2) are the generalized Hodge–Tate weights
of V . Conversely, for any triple s= (δ1, δ2, h) such that δ1, δ2 ∈Homcont(Q×p , L×) and h ∈
H1(RL(δ1δ

−1
2 )), we denote by D(s) the extension of RL(δ2) by RL(δ1) defined by h. If α ∈ L×

and if s′ = (δ1, δ2, αh), then D(s) and D(s′) are isomorphic. Thus, if h 6= 0, then the isomorphism
class of D(s) only depends on the image h̄ of h in P1(H1(RL(δ1δ

−1
2 ))). Following the notation

of Colmez, we denote by S+(L) the set of triples s= (δ1, δ2, h̄), where δ1, δ2 ∈Homcont(Q×p , L×)
are such that val(δ1(p)) + val(δ2(p)) = 0 and val(δ1(p))> 0, and h̄ ∈P1(H1(RL(δ1δ

−1
2 ))); then

D(s) is well defined for any s ∈S+(L). In the case when D(s) is étale, we denote by V (s) the
L-linear representation of GQp such that D†rig(V (s)) =D(s).

For any s ∈S+(L), we set

u(s) = val(δ1(p)) =−val(δ2(p)), w(s) = w(δ1)− w(δ2).

In [Col08], Colmez defined three subsets S ng
∗ , S cris

∗ and S st
∗ of S+(L) as follows:

(1) S ng
∗ is the set of s such that w(s) is not an integer >1 and u(s)> 0;
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(2) S cris
∗ is the set of s such that w(s) is an integer >1, 0< u(s)<w(s) and h̄=∞;

(3) S st
∗ is the set of s such that w(s) is an integer >1, 0< u(s)<w(s) and h̄ 6=∞.

Here the exponents ‘ng’,‘cris’ and ‘st’ refer to ‘non-geometric’, ‘crystalline’ and ‘semistable’,
respectively. Let

Sirr = S ng
∗
∐

S cris
∗

∐
S st
∗ .

It was proved by Colmez that if s ∈Sirr, then D(s) is étale and V (s) is irreducible (and of
course trianguline); conversely, if V is irreducible and trianguline, then V ∼= V (s) for some
s ∈Sirr [Col08, Théorème 0.5(i)(ii)]. For any ? ∈ {ng, cris, st}, we say that V ∈S ?

∗ if V ∼= V (s)
for some s ∈S ?

∗ . (By [Col08, Théorème 0.5(iii)], we know that V ∈S ?
∗ for at most one ?.) More

precisely, we have that V ∈S cris
∗ if and only if V is a twist of an irreducible and crystabelian

representation, and V ∈S st
∗ if and only if V is a twist of an irreducible and semistable, but

non-crystalline, representation [Col08, Théorème 0.8].
In [Col05], Colmez found a direct link between B(V ) and the (ϕ, Γ)-module associated to V

in the semistable case. More precisely, Colmez showed that if V ∈S st
∗ , then the following is true:

the dual of B(V ) is naturally isomorphic to (lim←−ψ D(V̌ ))b

as Banach space representations of B(Qp). (0.1)

Subsequently, Berger and Breuil proved (0.1) for those V ∈S cris
∗ which are not

exceptional [BB10] and Paskunas proved (0.1) for V exceptional and p > 2 [Pas09]; for V ∈S cris
∗ ,

we call V exceptional if the associated Weil–Deligne representation of V is not Frobenius
semisimple, and Colmez proved (0.1) for V ∈S ng

∗ [Col10b]. The isomorphism (0.1) suggests
a functorial construction of the p-adic local Langlands correspondence for GL2(Qp) by using the
theory of (ϕ, Γ)-modules. On this track, Colmez recently established the p-adic local Langlands
correspondence for GL2(Qp) for all two-dimensional irreducible L-linear representations of
GQp [Col10d]. To state Colmez’s construction, let D be a rank-two, irreducible and étale (ϕ, Γ)-
module over RL. In [Col10d], Colmez first equipped D �P1 with a continuous GL2(Qp)-action.
Then he showed that D\ �P1 is stable under the given GL2(Qp)-action; to prove this assertion,
Colmez improved (0.1) to the following form:

the dual of B(V ) is naturally isomorphic to D(V̌ )\ �P1

as Banach space representations of GL2(Qp) (0.2)

when V ∈S cris
∗ is not exceptional. Let Π(D) = (D �P1)/(D\ �P1); Colmez showed that the

right-hand side is an admissible unitary representation of GL2(Qp). Colmez set the p-adic local
Langlands correspondence for GL2(Qp) as V 7→Π(V ) := Π(D(V )).

Locally analytic vectors of unitary principal series of GL2(Qp)
In [Eme06a], Emerton made the following conjecture (see [Eme06a, Conjecture 3.3.1(8)]).

Conjecture 0.1. For any η, ψ ∈Homcont(Q×p , L×), we have

dim Refη⊗ψ(V ) = dim Expη|x|⊗xψ(B(V )an ⊗ (x|x| ◦ det)).

(Note that the right-hand side of Conjecture 0.1 is dim Expη|x|⊗xψ(B(V )an ⊗ (x|x| ◦ det))
instead of dim Expη|x|⊗xψ(B(V )an) in Emerton’s formulation. This is because our normalization
of the p-adic local Langlands correspondence for GL2(Qp) differs by a twist of (x|x|)−1 ◦ det
from Emerton’s normalization. See § 3.1 for more details.) Here Refη⊗ψ(V ) denotes the space of
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equivalence classes of refinements [R] of V such that σ(R) = (η, ψ); for a locally analytic GL2(Qp)-
representation W of compact type, we denote by Expη⊗ψ(W ) the space of one-dimensional
T(Qp)-invariant subspaces of the Jacquet modules JB(Qp)(W ) on which T(Qp) acts via the
character η ⊗ ψ. Granting Emerton’s conjecture, we see that JB(Qp)(B(V )an) 6= 0 if and only if V
has at least one refinement; this is equivalent to the fact that V is trianguline. Thus, inspired by
the classical theory of smooth representations of GL2, it is reasonable to think of B(V ), when V
is trianguline, as a ‘unitary principal series representation of GL2(Qp)’. So far as we know, this
point of view has not yet been accepted as a formal definition, but it has been adopted in some
literature (e.g. [Col10b]). We follow this point of view in this paper.

The motivation of this paper is to have an explicit description of B(V )an for V ∈S cris
∗ .

By the classification of the representations V ∈S cris
∗ mentioned in 0.1, it suffices to figure

out B(V )an when V is an irreducible and crystabelian representation of Hodge–Tate weights
(0, k − 1) for some integer k > 2. By a result of Colmez [Col08, Proposition 4.14], such a V is
uniquely determined by a pair of smooth characters (α, β) of Q×p . Furthermore, Berger and

Breuil showed that B(V )∼=B(α)/L(α), where B(α) = (IndGL2(Qp)
B(Qp) α⊗ xk−2β|x|−1)C

−val(α(p))

and L(α) is a certain closed subspace of B(α) [BB10]. We denote by π(α) the locally algebraic
representation (IndGL2(Qp)

B(Qp) α⊗ xk−2β|x|−1)lalg and A(α) the locally analytic principal series

(IndGL2(Qp)
B(Qp) α⊗ xk−2β|x|−1)an; we set π(β) and A(β) by replacing α with β. Breuil constructed

a natural continuous GL2(Qp)-equivariant map from A(α)⊕π(β) A(β) to B(V )an, and made the
following conjecture.

Conjecture 0.2 [BB10, Conjectures 5.3.7 and 4.4.1]. If α 6= β, then the natural map
A(α)⊕π(β) A(β)→ B(V )an is a topological isomorphism.

The main result of this paper is the following theorem.

Theorem 0.3 (Theorem 4.1). Conjecture 0.2 is true.

Our proof of Theorem 0.3 largely relies on Colmez’s identification of the locally analytic
vectors of Π(V ). In fact, Colmez showed that if D is a rank-two, irreducible and étale (ϕ, Γ)-
module over RL, then (Π̌(D)an)∗ =D\

rig �P1 [Col10d]. To apply his result, we will construct a
GL2(Qp)-equivariant commutative diagram,

(B(α)/L(α))∗

��

// D\(V̌α,β)�P1

��
(A(α)⊕π(β) A(β))∗ // D\

rig(V̌α,β)�P1

(0.3)

where the upper horizontal line is the natural isomorphism of Conjecture 0.2. Then Theorem 0.3
follows easily from (0.3). As an application of Theorem 0.3, we finally prove Conjecture 0.1 for
those V ∈S cris

∗ which are not exceptional.

Corollary 0.4 (Corollary 5.7). Conjecture 0.1 is true when V ∈S cris
∗ is not exceptional.

Notation and conventions

Throughout this paper, we fix a finite extension L over Qp to be the coefficient field. Let
val denote the p-adic valuation on Qp, normalized by val(p) = 1; the corresponding norm
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is denoted by |x|. Let α, β denote a pair of smooth characters α, β : Q×p → L× such that
−(k − 1)< val(α(p))6 val(β(p))< 0 and val(α(p)) + val(β(p)) = k − 1 for an integer k > 2. Let
αp, βp denote α(p)−1, β(p)−1, respectively. For any smooth character τ : Z×p →O×L , we let n(τ)
denote the conductor of τ . If n(τ) = 0, then we say that τ is unramified. Otherwise, we say that
τ is ramified.

As usual, let χ denote the cyclotomic character. For any m> 0, let µpm denote the set of pmth
roots of unity in Qp; we use ηpm to denote a primitive pmth root of unity. Following Fontaine’s
notation of p-adic Hodge theory, we suppose that ε= [(ε(m))m>0] ∈W (R), where (ε(m))m>0 is a
compatible sequence of primitive pmth roots of unity such that (ε(m+1))p = ε(m). For any y ∈Qp,
if y ∈ p−mZp for some m ∈ Z, then we set e2πiy = (ε(m))p

my, which is independent of the choice
of m. Put Fm = Qp(µpm) and Lm = L⊗Qp Fm. Let F∞ =

⋃
m>0 Fm and Γ = Gal(F∞/Qp). The

Galois group Γ is isomorphic to Z×p via the p-adic cyclotomic character χ. For any m> 1 and
p > 2 (respectively p= 2), we set Γm = χ−1(1 + pmZp) (respectively Γm = χ−1(1 + pm+1Zp)). If
τ : Γ→O×L is a smooth character and if n(τ) =m, then, for any ηpm , we define

G(τ, ηpm) =
∑

γ∈Γ/Γm

τ−1(γ)γ(ηpm) ∈ Lm.

We set G(τ) =G(τ, ε(m)).

Let WQp denote the Weil group of Qp. The local Artin map induces a topological isomorphism
Q×p ∼= Wab

Qp , which we normalize by identifying p with a lift of Frob−1
p (i.e. geometric Frobenius).

This allows us to identify the set of characters of Q×p with the set of characters of Wab
Qp .

For any integer n, we write xn to denote the character defined by x 7→ xn. If c ∈ L×, we let
ur(c) : Q×p → L× denote the character that maps p to c and is trivial on Z×p . If we regard χ as a
character of Q×p via the local Artin map, then it is equal to x|x|.

Let B denote the subgroup of upper triangular matrices of GL2 and let T denote the subgroup
of diagonal matrices of GL2.

1. Irreducible crystabelian representations of GL2(Qp)

In this section, we will study some locally algebraic representations π(α) (respectively π(β)) of
GL2(Qp) and their universal unitary completions B(α)/L(α) (respectively B(β)/L(β)). These
representations were first introduced by Breuil in the context of his p-adic local Langlands
program of GL2(Qp). The terminology ‘irreducible crystabelian representations of GL2(Qp)’
refers to the unitary admissible representations of GL2(Qp) which correspond to two-dimensional
irreducible crystabelian representations of GQp via the p-adic local Langlands correspondence
for GL2(Qp). In fact, as will be explained in § 3.1, B(α)/L(α) are the unitary admissible
representations assigned to certain two-dimensional irreducible crystabelian representations
Vα,β of GQp by the p-adic local Langlands correspondence for GL2(Qp). Hence, B(α)/L(α)
are examples of the irreducible crystabelian representations of GL2(Qp). Furthermore, we
will see in § 2.1 that the set of two-dimensional irreducible crystabelian representations of
GQp consists of the representations Vα,β(n) for all the pairs (α, β) and n ∈ Z. It follows that
the set of irreducible crystabelian representations of GL2(Qp) consists of the representations
B(α)/L(α)⊗ (x|x| ◦ det)n for all α and n ∈ Z. This fact explains the title of this section.
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1.1 Some locally algebraic representations of GL2(Qp)
Following the notation of [BB10], we define the locally algebraic representations π(α) and π(β) as

π(α) = (IndGL2(Qp)
B(Qp) α⊗ xk−2β|x|−1)lalg ∼= Symk−2 L2 ⊗L (IndGL2(Qp)

B(Qp) α⊗ β|x|−1)sm,

π(β) = (IndGL2(Qp)
B(Qp) β ⊗ xk−2α|x|−1)lalg ∼= Symk−2 L2 ⊗L (IndGL2(Qp)

B(Qp) β ⊗ α|x|−1)sm.

We equip π(α) (respectively π(β)) with the unique locally convex topology such that the open
sets are the lattices (a lattice of an L-vector space V is an OL-submodule which generates V
over L) of π(α) (respectively π(β)).

For any F ∈ π(α), we put f(z) = F
((

0 1
−1 z

))
. The map F 7→ f identifies π(α) with the set

of functions f : Qp→ L which are locally polynomials with coefficients in L and degree 6k − 2
such that βα−1(z)|z|−1f(1/z)|Zp−{0} extend to elements of Polk−2(Zp, L) (the set of functions
f : Zp→ L which are locally polynomials with coefficients in L and degree 6k − 2). Under this
identification, the action of GL2(Qp) is given by the formula(

a b
c d

)
· f(z) = α(ad− bc)βα−1(−cz + a)|−cz + a|−1(−cz + a)k−2f

(
dz − b
−cz + a

)
. (1.1)

Exchanging α and β, we get the similar description of π(β).

1.2 Unitary completions

To introduce a few general definitions concerning L-Banach space representations, let K be an
intermediate field of L/Qp and let G be a locally K-analytic group such as the K-points of
an algebraic group (in this paper, K = Qp and G= GL2(Qp)).

Definition 1.1. An L-Banach space representation U of G is an L-Banach space U together
with an action of G such that G× U → U is continuous. An L-Banach space representation U
is called unitary if the topology of U may be defined by a G-invariant norm.

Definition 1.2. Let V be a locally convex topological L-vector space equipped with a contin-
uous G-action and let U be a unitary L-Banach space representation of G. We say that a given
continuous L-linear G-equivariant map V → U realizes U as a universal unitary completion of
V if any continuous L-linear G-equivariant map V →W , where W is a unitary L-Banach space
representation of G, factors uniquely through the given map V → U .

The following is devoted to the constructions of the universal unitary completions of π(α)
and π(β), which are due to Berger and Breuil. See [BB10] for more details. Let

B(α) = (IndGL2(Qp)
B(Qp) α⊗ xk−2β|x|−1)C

val(αp)

and

B(β) = (IndGL2(Qp)
B(Qp) β ⊗ xk−2α|x|−1)C

val(βp)

.

For any F ∈B(α), set f(z) = F
((

0 1
−1 z

))
. In this way, we identify B(α) with the L-vector space

of functions f : Qp→ L satisfying the following two conditions:

(1) f |Zp is a Cval(αp)-function;

(2) (βα−1)(z)−1|z|zk−2f(1/z)|Zp−{0} can be extended to a Cval(αp) function on Zp.
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The action of GL2(Qp) is given by the same formula as in (1.1). By this identification, we can
write

B(α)∼= Cval(αp)(Zp, L)⊕ Cval(αp)(Zp, L), f 7→ f1 ⊕ f2,

where f1(z) = f(pz)|Zp and f2(z) is the extension of (βα−1)(z)−1zk−2f(1/z)|Zp−{0} to Zp. The
resulting L-Banach space structure of B(α) is defined by the norm

‖f‖= max(‖f1‖val(αp), ‖f2‖val(αp)).

It is not difficult to show that GL2(Qp) acts on B(α) by continuous automorphisms with respect
to this norm [BB10, Lemme 4.2.1], and the natural GL2(Qp)-equivariant inclusion πα ↪→B(α)
is continuous. Let L(α)⊂B(α) denote the closure of the L-subspace generated by zj and
(βα−1)(z − a)|z − a|−1(z − a)k−2−j for all a ∈Qp and integers j such that 06 j < val(αp) (the
fact that zj and (βα−1)(z − a)|z − a|−1(z − a)k−2−j are contained in B(α) is proved in [BB10,
Lemme 4.2.2]). It is stable under the action of GL2(Qp) by [BB10, Lemme 4.2.3].

Exchanging α and β, we get the similar description of B(β), and we set L(β) as the closure
of the L-subspace generated by zj and (αβ−1)(z − a)|z − a|−1(z − a)k−2−j for all a ∈Qp and
integers j such that 06 j < val(βp).

Proposition 1.3 [BB10, Théorème 4.3.1]. The continuous GL2(Qp)-equivariant map π(α)→
B(α)/L(α) realizes B(α)/L(α) as the universal unitary completion of π(α). The same result
holds if we replace α by β.

1.3 Intertwining operators

Recall that there exists, up to multiplication by a non-zero scalar, a unique non-zero GL2(Qp)-
equivariant morphism

Ism : (IndGL2(Qp)
B(Qp) β ⊗ α|x|−1)sm→ (IndGL2(Qp)

B(Qp) α⊗ β|x|−1)sm

defined by (in terms of locally constant functions on Qp)

Ism(h)(z) =
∫

Qp
(βα−1)(x− z)|x− z|−1h(x) dx, (1.2)

where dx is the Haar measure on Qp. Tensoring with the identity map on Symk−2 L2, we get
a non-zero GL2(Qp)-equivariant morphism I : π(β)→ π(α). It is well known that Ism is a non-
trivial isomorphism if α 6= β, β|x|, and is the identity if α= β (see [Bum98]).

Proposition 1.4. We have the following commutative GL2(Qp)-equivariant diagram,

π(β)

��

I // π(α)

��
B(β)/L(β) Î // B(α)/L(α)

where Î is the continuous GL2(Qp)-morphism induced from I. In the case α 6= β|x|, I and Î are
isomorphisms.

Proof. This follows from the functoriality of universal unitary completions and the fact that I is
an isomorphism in the case α 6= β|x|. 2
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Now suppose that α= β|x|; in particular, val(αp) = (k − 2)/2. The operator Ism induces the
following two exact sequences of GL2(Qp)-representations:

0−→ β ◦ det−→ (IndGL2(Qp)
B(Qp) β ⊗ α|x|−1)sm Ism−−−→ (β ◦ det)⊗L St−→ 0 (1.3)

and

0−→ (β ◦ det)⊗L St−→ (IndGL2(Qp)
B(Qp) α⊗ β|x|−1)sm −→ β ◦ det−→ 0, (1.4)

where St = (IndGL2(Qp)
B(Qp) 1)sm/1 is the Steinberg representation of GL2(Qp). Thus, I induces the

following two exact sequences of GL2(Qp)-representations:

0−→ (β ◦ det)⊗L Symk−2 L2 −→ π(β) I−−→ ((β ◦ det)⊗L Symk−2 L2)⊗L St−→ 0 (1.5)

and

0−→ ((β ◦ det)⊗L Symk−2 L2)⊗L St−→ π(α)−→ (β ◦ det)⊗L Symk−2 L2 −→ 0. (1.6)

For Î, let K(β)⊂B(β) be the closure of the L-subspace generated by L(β) and the functions
f : Qp→ L of the form

f(z) =
∑
j∈J

λj(z − zj)nj val(z − zj), (1.7)

where J is a finite set, λj ∈ L, zi ∈Qp, nj ∈ {b(k − 2)/2c+ 1, . . . , k − 2} and deg(
∑

j∈J λj(z −
zj)nj )< (k − 2)/2 (by [BB10, Lemma 5.4.1], the functions of the form (1.7) are contained in
B(β), so K(β) is well defined).

Proposition 1.5 [BB10, Proposition 5.4.2]. We have the GL2(Qp)-equivariant short exact
sequence of Banach spaces

0−→K(β)/L(β)−→B(β)/L(β) Î−−→B(α)/L(α)−→ 0.

Thus, Î induces an isomorphism from B(β)/K(β) to B(α)/L(α).

In the rest of this section, we will compute Ism(1pnZp · e2πixy) for any n ∈ Z and y ∈Q×p ,
which will be used later. To do the computation, we set m(α, β) = sup(n(βα−1), 1) and

C(αp, βp) =


(
βp
pαp

)m(α,β)

if βα−1 is ramified;

1− βp/pαp
1− αp/βp

if βα−1 is unramified.

For the main results of this paper, we need the computation in the cases n= 0, 1 and val(y)6
−m(α, β)− 1 only.

Lemma 1.6. For n ∈ Z, we have

Ism(1pnZp · e2πixy) = C(αp, βp)
(
βp
αp

)val(y)

G(β−1α, e2πiy/pm(α,β)+val(y)
)1pnZp · e2πizy

if n+ val(y)6−m(α, β).
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Proof. For z ∈ pnZp, we have

Ism(1pnZp · e2πixy)(z) =
∫
pnZp

βα−1(x− z)|x− z|−1e2πixy dx

= e2πizy

∫
pnZp

βα−1(x)|x|−1e2πixy dx

= e2πizy
∞∑
l=n

pl
∫
plZ×p

(βα−1)(x)e2πixy dx. (1.8)

If we let Sm ⊂ Z×p be a system of representatives of (Z/pmZ)× for any m> 1, then we get∫
plZ×p

(βα−1)(x)e2πixy dx

=
∑

a∈Sm(α,β)

∫
pla+pl+m(α,β)Zp

(βα−1)(pla)e2πixy dx

=
(
αp
βp

)l ∑
a∈Sm(α,β)

(βα−1)(a)
∫
pla+pl+m(α,β)Zp

e2πixy dx

=


p−l−m(α,β)

(
αp
βp

)l ∑
a∈Sm(α,β)

(βα−1)(a)e2πiplay if l +m(α, β)>−val(y);

0 if l +m(α, β)<−val(y). (1.9)

Since n+ val(y)6−m(α, β), it follows from (1.8) that

Ism(1pnZp · e2πixy)(z) = e2πizy
∞∑

l=−m(α,β)−val(y)

p−m(α,β)

(
αp
βp

)l ∑
a∈Sm(α,β)

(βα−1)(a)e2πiplay. (1.10)

We treat the case when βα−1 is ramified firstly. If l +m(α, β)>−val(y), then we set m=
max{−l − val(y), 0}<m(α, β), and we have∑

a∈Sm(α,β)

(βα−1)(a)e2πiplay

=
∑
b∈Sm

e2πiplby

( ∑
a∈Sm(α,β),a≡b(mod pmZp)

(βα−1)(a)
)

=

{
G(β−1α, e2πiy/pm(α,β)+val(y)

) if l +m(α, β) =−val(y);
0 if l +m(α, β)>−val(y). (1.11)

Hence, by (1.10), Ism(1pnZp · e2πixy)(z) is equal to

p−m(α,β)

(
βp
αp

)m(α,β)+val(y)

G(β−1α, e2πiy/pm(V )+val(y)
)e2πizy

= C(αp, βp)G(β−1α, e2πiy/pm(V )+val(y)
)e2πizy

when βα−1 is ramified. If βα−1 is unramified, then we have∑
a∈Sm(α,β)

(βα−1)(a)e2πiplay = p− 1
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if l + 1>−val(y), and ∑
a∈Sm(α,β)

(βα−1)(a)e2πiplay =−1

if l + 1 =−val(y). So, in this case, Ism(1pnZp · e2πixy)(z) is equal to(
−1
p

(
αp
βp

)−val(y)−1

+
p− 1
p

∞∑
l=−val(y)

(
αp
βp

)l)
e2πizy

=
1− βp/pαp
1− αp/βp

(
βp
αp

)val(y)

e2πizy

= C(αp, βp)G(β−1α, e2πiy/pm(V )+val(y)
)e2πizy, (1.12)

since G(β−1α, e2πiy/pm(V )+val(y)
) = 1 when βα−1 is unramified. 2

Remark 1.7. The above lemma is singled out from the proof of [BB10, Lemme 5.1.2].

1.4 Locally analytic representations
In this subsection, we collect some of the basic notions and facts concerning the theory of locally
analytic representations of p-adic analytic groups, which will be used in the rest of this paper. In
most of the cases, we follow the notation used by Schneider and Teitelbaum. For more details,
we refer the reader to their fundamental papers [ST02a, ST02b, ST03].

Throughout this subsection, we let U denote an L-Banach space representation of G.

Definition 1.8. In the case when G is compact, an L-Banach space representation U is called
admissible if there is a G-invariant bounded open OL-submodule M of U such that, for any open
normal subgroup H of G, the OL-module (U/M)H is of cofinite type. If G is not compact, we
call U admissible if it is admissible as a representation for one (or equivalently any) compact
open subgroup of G.

For compact G, the dual of the L-valued continuous functions on G is isomorphic to
Λ[[G]] := L⊗Zp Zp[[G]], the Iwasawa algebra of measures. The G-action on U extends naturally
to an action of the algebra Λ[[G]] by continuous linear endomorphisms on U . By functoriality,
Λ[[G]] also acts on the continuous dual U∗ of U . Then U is admissible if and only if U∗ is finitely
generated as a Λ[[G]]-module [ST02b, Lemma 3.4].

Definition 1.9. A locally analytic G-representation W over L is a barrelled locally convex
Hausdorff L-vector space W equipped with a G-action by continuous linear endomorphisms
such that, for each v ∈ V , the orbit map g 7→ g · v is a W -valued locally analytic function on G.

Let A be an L-Fréchet algebra. For a continuous seminorm q on A, it induces a norm on
the quotient space A/{a ∈A : q(a) = 0}. Let Aq denote the completion of the latter with respect
to q. For any two continuous seminorms q′ 6 q, the identity on A extends to a continuous linear
map φq

′
q :Aq→Aq′ .

Definition 1.10. The L-Fréchet algebra A is called an L-Fréchet–Stein algebra if there is a
sequence q1 6 · · ·6 qn 6 · · · of continuous seminorms on A which define the Fréchet topology
such that for any n ∈ N, we have:

(1) Aqn is left noetherian;
(2) Aqn is flat as a right Aqn+1-module via φqnqn+1 .

We fix an L-Fréchet–Stein algebra A and a sequence (qn)n∈N as in the above definition.
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Definition 1.11. A coherent sheaf for (A, (qn)) is a family (Mn)n∈N, where each Mn is a finitely
generated Aqn-module together with isomorphisms Aqn ⊗Aqn+1

Mn+1
∼=Mn as Aqn-modules for

any n ∈ N. The global sections of (Mn)n are defined by

Γ((Mn)n) := lim←−
n

Mn.

Definition 1.12. A left A-module M is called coadmissible if it is isomorphic to the module
of global sections of some coherent sheaf (Mn)n for (A, (qn)). Each Mn carries its canonical
Banach space topology as a finitely generated Aqn-module. We equip M with the projective
limit topology which makes M into an L-Fréchet space. We call this topology the canonical
topology of M .

Remark 1.13. A simple cofinality argument shows that the canonical topology of a coadmissible
module is independent of the choice of the sequence (qn)n.

For compact G, let D(G, L) denote the algebra of locally analytic distributions on G. This
algebra is the continuous dual of the locally analytic K-valued functions on G, with multiplication
given by convolution. For a locally analytic representation W over L, the G-action extends
naturally to an action of D(G, L), yielding an action of D(G, L) on W ∗. The crucial property of
D(G, L) is that of the following proposition.

Proposition 1.14 [ST03, Theorem 5.1]. D(G, L) is a Fréchet–Stein algebra.

Definition 1.15. In the case when G is compact, an admissible locally analytic
G-representation over L is a locally analytic G-representation on an L-vector space of compact
type W such that the strong dual W ′b is a coadmissible D(G, L)-module equipped with its
canonical topology. For general G, a locally analytic G-representation over L is called admissible
if it is admissible as an H-representation for one (or equivalently any) open compact subgroup
H of G.

Definition 1.16. A vector u ∈ U is called locally analytic if the continuous orbit map g 7→ g · u
is a U -valued locally analytic function on G. We denote by Uan the L-vector subspace of locally
analytic vectors of U , and we equip Uan with the subspace topology.

Since the locally analytic functions are a subspace of the continuous functions, there is a
natural morphism Λ[[G]]→D(G, L).

Proposition 1.17. If U is an admissible L-Banach space representation, then Uan is an
admissible locally analytic G-representation and (Uan)∗b ∼=D(H, L)⊗Λ[[H]] U

∗ for any open
compact subgroup H of G.

Proof. See [ST03, Theorem 7.1]. 2

Example 1.18. The locally analytic principal series A(α) = (IndGL2(Qp)
B(Qp) α⊗ xk−2β|x|−1)an and

A(β) = (IndGL2(Qp)
B(Qp) β ⊗ xk−2α|x|−1)an are admissible locally analytic representations. As for

B(α), for any F ∈A(α), we associate F with f(z) = F
((

0 1
−1 z

))
. The map F 7→ f identifies A(α)

with the L-vector space of functions f : Qp→ L satisfying the following two conditions:

(1) f |Zp is a locally analytic function;
(2) (βα−1)(z)−1|z|zk−2f(1/z)|Zp−{0} extends to a locally analytic function on Zp.

We make the similar identification of A(β).
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2. Crystabelian representations of GQp

This section is devoted to the study of (two-dimensional) crystabelian representations of GQp .
To fix notation, recall that an L-linear (respectively OL-) representation of GQp is a finite-
dimensional L-vector space V (respectively finite-type OL-modules M) equipped with a
continuous linear action of GQp . Throughout this section, let V be an L-linear representation of
GQp and let M be a free OL-representation.

2.1 Classification of two-dimensional irreducible crystabelian representations of GQp
Definition 2.1. We call an L-linear representation V of GQp crystabelian (crystalline abelian) if
there exists n> 0 such that the restriction of V toGFn is crystalline or, in other words, V becomes
crystalline over an abelian extension of Qp. We then define n(V ) as the minimal integer n> 1
such that the restriction of V on GFn is crystalline. We define m(V ) = minτ n(V (τ)), where τ
goes through all the finite-order characters of Γ. We call m(V ) the essential conductor of V .

For V crystabelian, we define Dcris(V ) =
⋃∞
n=0(Bcris ⊗Qp V )GFn = (Bcris ⊗Qp V )GFn for any

n> n(V ), which is a weakly admissible filtered (ϕ, GQp)-module over L. If Fn(V ) ⊂K ⊂ F∞, then
we have K ⊗Qp Dcris(V ) =K ⊗Qp DdR(V ). Note that GFn(V )

acts trivially on Dcris(V ).
In the following, we will classify the set of two-dimensional irreducible crystabelian

representations of GQp with Hodge–Tate weights (0, k − 1) in terms of the weakly admissible
(ϕ, GQp)-modules Dcris(V ).

Definition 2.2. Let D(α, β) denote the filtered (ϕ, GQp)-module over L defined by D(α, β) =
Leα ⊕ Leβ and:

(i) if α 6= β, then ϕ(eα) = α(p)eα, ϕ(eβ) = β(p)eβ and γ(eα) = α(χ(γ))eα, γ(eβ) = β(χ(γ))eβ
for γ ∈ Γ and for, n>max{n(α), n(β)},

Fili(Ln ⊗L D(α, β)) =


Ln ⊗L D(α, β) if i6−(k − 1);
Ln · (eα +G(αβ−1)eβ) if −(k − 2)6 i6 0;
0 if i> 1;

(ii) if α= β, then ϕ(eα) = α(p)eα, ϕ(eβ) = β(p)(eβ − eα) and γ(eα) = α(χ(γ))eα, γ(eβ) =
β(χ(γ))eβ for γ ∈ Γ and, for n> n(α),

Fili(Ln ⊗L D(α, β)) =


Ln ⊗L D(α, β) if i6−(k − 1);
Ln · eβ if −(k − 2)6 i6 0;
0 if i> 1.

Proposition 2.3 [Col08, Proposition 4.14]. If V is a two-dimensional irreducible crystabelian
representation of GQp with Hodge–Tate weights (0, k − 1), then there exists a unique pair
(α, β) such that D(α, β) = Dcris(V ). Conversely, for any pair (α, β), there exists a unique two-
dimensional irreducible crystabelian representation V of GQp with Hodge–Tate weights (0, k − 1)
such that Dcris(V ) =D(α, β).

Henceforth, we denote by Vα,β the crystabelian representation V such that Dcris(V ) =
D(α, β). We have n(Vα,β) = max(n(α), n(β)) and m(Vα,β) = max(n(αβ−1), 1) =m(α, β).

Corollary 2.4. If V is a two-dimensional irreducible crystabelian representation of GQp , then
there exists a unique pair (α, β) and n ∈ Z such that V is isomorphic to Vα,β(n).
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2.2 (ϕ, Γ)-modules

In this subsection, we recall some of the basic theory of (ϕ, Γ)-modules of p-adic representations.
The theory of (ϕ, Γ)-modules is the main ingredient of Colmez’s construction of the p-adic local
Langlands correspondence for GL2(Qp), as will be explained in the next section. The notion
of (ϕ, Γ)-modules will also be used in § 2.3. For our purpose, we restrict to the case of GQp-
representations. We refer the reader to the papers [Ber02, BB10, CC98, Col10a, Fon90] for more
details.

We begin by recalling some of the rings used in the theory of (ϕ, Γ)-modules.

(i) Let E+
L denote the ring L⊗OL OL[[T ]].

(ii) Let OEL be the ring consisting of series
∑

i∈Z aiT
i such that ai ∈ OL and ai→ 0

as i→−∞. We equip OEL with a valuation w by setting w(g(T )) = mini∈Z val(ai) if g(T ) =∑
i∈Z aiT

i. One can show that OEL is a complete discrete valuation ring with respect to w. The
fraction field of OEL is EL =OEL [1/p]; this is a local field of dimension two.

(iii) Let E ]0,r]
L be the ring of formal series g(T ) =

∑
i∈Z aiT

i such that g(T ) is convergent on
the annulus r > val(T )> 0. We define a norm ‖ · ‖r on E ]0,r]

L by the formula

‖g(T )‖r = sup
i∈Z
|ai|p−ri.

Let RL =
⋃
r>0 E

]0,r]
L . In other words, RL is the set of p-adic holomorphic functions on the

boundary of the open unit disk. Let R+
L =RL ∩ L[[T ]].

(iv) Let E(0,r]
L = EL ∩ E ]0,r]

L . Then E(0,r]
L can be regarded as the subring of E ]0,r]

L consisting of
series with bounded coefficients. Let E†L =

⋃
r>0 E

(0,r]
L =RL ∩ EL and OE†L =RL ∩ OEL . One can

show that OE†L is a discrete valuation ring with respect to w, and E†L is the fraction field of OE†L .
The ring OEL is the completion of OE†L with respect to w.

We equip OEL with the weak topology by taking {πiLOEL + T jOL[[T ]]}i,j>0 as a basis of
open neighborhoods of 0. The weak topology on EL =

⋃
k>0 π

−k
L OEL is the inductive limit

topology. This topology induces the (πL, T )-adic topology on E+
L . We equip R+

L with the
Fréchet topology defined by the set of norms {‖ · ‖r}r>0.

Let R denote any of the rings E+
L ,OEL , EL, E

†
L,R

+
L and RL. We equip the ring R with

commuting actions of ϕ and Γ by setting ϕ(g(T )) = g((1 + T )p − 1) and γ(g(T )) = g((1 +
T )χ(γ) − 1) for any g(T ) ∈R and γ ∈ Γ. It is not difficult to see that Γ acts on R by
isometries, and ϕ is continuous. The ring R is a finite free ϕ(R)-module of rank p with a
basis {(1 + T )i}06i6p−1. Thus, for any g ∈R, we can write g in the form g =

∑p−1
i=0 (1 + T )iϕ(gi)

uniquely. We define the operator ψ :R→R by the formula ψ(g) = g0. Then it follows that
gi = ψ((1 + T )−ig), ψ(φ(g)h) = gψ(h) for any g, h ∈R, and ψ commutes with Γ.

A ϕ-module over OEL is a finite-type OEL-module D equipped with a ϕ-semilinear OEL-
morphism ϕ :D→D. We call D étale if the natural OEL-linear map ϕ∗D =OEL ⊗ϕ,OEL D→D,
sending g ⊗ x to gϕ(x) for g ∈ OEL and x ∈D, is an isomorphism. A ϕ-module over EL is a
finite-dimensional EL-vector space D equipped with a ϕ-semilinear EL-morphism ϕ :D→D.
A ϕ-module D over EL is called étale if D has an OEL-lattice which is ϕ-stable and étale.
We define the notion of ϕ-modules over E†L and RL similarly. If D† is a ϕ-module over E†L,
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then D = EL ⊗E†L D
† is a ϕ-module over E†L, and we call D† étale if D is. A ϕ-module Drig over

RL is called étale if Drig is pure of slope 0 in the sense of Kedlaya [Ked08]. We have the following
result [Ked08, Proposition 1.5.5].

Theorem 2.5. The functor D† 7→ RL ⊗E†L D
†, from the category of étale ϕ-modules over E†L to

the category of étale ϕ-modules over RL, is an equivalence of categories.

For any R of the rings OEL , EL, E
†
L and RL, a (ϕ, Γ)-module over R is a ϕ-module D over R

equipped with a continuous semilinear Γ-action which commutes with ϕ. We call D étale if D
is étale as a ϕ-module over R. If D is an étale ϕ-module over R and if x ∈D, then we can write
x=

∑p−1
i=0 (1 + T )iϕ(xi), where xi ∈D is uniquely determined for 06 i6 p− 1. We define the

operator ψ :D→D by the formula ψ(x) = x0. It follows that xi = ψ((1 + T )−ix), ψ(φ(g)x) =
gψ(x), ψ(g(ϕ(x))) = ψ(g)x for any g ∈R and x ∈D. If D is further an étale (ϕ, Γ)-module, then
ψ commutes with Γ.

If D is an étale (ϕ, Γ)-module over EL (respectively OEL), then V(D) = (Êur
L ⊗EL D)ϕ=1

(respectively V(D) = (OÊur
L
⊗OEL D)ϕ=1) is an L-linear (respectively free OL-) representation

of GQp . One can show that dimL(V(D)) = dimELD (respectively rankOL(V(D)) = rankOELD).
We have the following result [Fon90, A3.4].

Theorem 2.6. The functor D 7→V(D), from the category of étale (ϕ, Γ)-modules over EL
(respectively OEL) to the category of L-linear (respectively free OL-) representations of GQp ,

is an equivalence of categories. The inverse functor is given by D(V ) = (Êur
L ⊗L V )Gal(Qp/F∞)

(respectively D(M) = (OÊur
L
⊗OL M)(Qp/F∞)).

Let B†,r,B† and A† be the rings constructed in [Ber02, 1.3]. Here B† =
⋃
r>0 B†,r is a subfield

of Êur
L and A† is contained in B†. Both A† and B† are stable under the ϕ, Γ-actions. For any

r > 0, Let D†,r(V ) = (B†,r ⊗L V )Gal(Qp/F∞). Let D†(V ) =
⋃
r>0 D†,r(V ) = (B† ⊗L V )Gal(Qp/F∞)

and D†(M) = (A† ⊗OL M)Gal(Qp/F∞). We have the following result [CC98].

Theorem 2.7. There exists an r(V ) such that D(V ) = EL ⊗E(0,r]L

D†,r(V ) if r > r(V ). Equi-

valently, D†(V ) is an étale (ϕ, Γ)-module over E†L with dimE†L
(D†(V )) = dimL V . As a

consequence, the functor D†, from the category of L-linear (free OL-) representations of

GQp to the category of étale (ϕ, Γ)-modules over E†L (respectively OE†L), is an equivalence of

categories. The inverse functor is given by V(D†) = (Êur
L ⊗E†L D

†)ϕ=1 (respectively V(D†) =

(OÊur
L
⊗O

E†
L

D†)ϕ=1).

Let D†,rrig(V ) = E ]0,r]
L ⊗E(0,r]L

D†,r(V ) and D†rig(V ) =
⋃
r>0 D†,rrig(V ) =RL ⊗EL D†(V ). Combining

Theorems 2.7 and 2.5, we get the following result.

Theorem 2.8. We have that D†,rrig(V ) is a free E ]0,r]
L -module with rankE ]0,r]L

(D†,rrig(V )) = dimL V

for r sufficiently large. As a consequence, the functor D†rig, from the category of L-linear
representations of GQp to the category of (ϕ, Γ)-modules over RL, is an equivalence of categories.

If D is a finite-type OEL-module of rank d, then we equip D with the weak topology induced
from the weak topology of OEL .
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Definition 2.9. A trellis of a finite-type OEL-module D is a compact OL[[T ]]-submodule N
of D such that the image of N in D/πLD is a kL[[T ]]-lattice. A trellis of a finite-dimensional
EL-vector space D is a trellis of an OEL-lattice of D.

Proposition 2.10 [Col10a, Proposition 2.17]. If D is an étale ϕ-module over OEL , then there
exists a unique trellis D] of D satisfying the following properties:

(i) for every x ∈D and i ∈ N, there exists n(x, i) ∈ N such that ψn(x) ∈D] + mi
LD if n>

n(x, i);

(ii) ψ(D]) =D].

Moreover:

(iii) if N is a trellis of D and i ∈ N, then there exists n(N, i) such that ψn(N)⊆D] + mi
LD if

and only if n> n(N, i);

(iv) if N is a trellis of D stable under ψ such that ψ(N) =N , then TD] ⊆N ⊆D].

Proposition 2.11 [Col10a, Corollaire 2.31]. If D is an étale ϕ-module over OEL , then the set
of ψ-stable trellises of D admits a unique minimal element D\, and ψ(D\) =D\.

We let D](M) denote the trellis associated to D(M) by Proposition 2.10. If V is an
L-linear representation of GQp , we choose M to be a GQp-invariant lattice of V , and put
D](V ) = D](M)⊗OL L; it is independent of the choice of M . We define D\(M), D\(V ) similarly.

2.3 Wach modules of crystabelian representations of GQp
In this subsection, we recall some of the basic theory of Wach modules of crystabelian
representations of GQp developed in [BB10]. The notation of Wach modules is used to relate
Berger–Breuil’s and Colmez’s constructions in the case of crystabelian representations, as we
will see in § 3.

Let B+ =A+
S [1/p] be the ring constructed in [Fon90, B1.8]. The ring B+ is contained in Êur

L

and stable under the ϕ, Γ-actions. We define D+(V ) = (B+ ⊗Qp V )Gal(Qp/F∞), which is a finite-
type E+

L -submodule of D(V ). Recall that a Hodge–Tate representation is called positive if its
Hodge–Tate weights are all 60. We have the following result [BB10, Théoréme 3.1.1].

Theorem 2.12. If V is a positive crystabelian representation, then there exists a unique E+
L -

submodule N(V ) of D+(V ) satisfying the following conditions:

(i) we have D(V ) = EL ⊗E+L N(V );

(ii) the Γ-action preserves N(V ) and is finite on N(V )/TN(V );

(iii) there exists h> 0 such that T hD+(V )⊂N(V ).

The module N(V ) is also stable under the ϕ-action.

For any m> 1, the map ιm = ϕ−m : B+→B+
dR induces a map ιm : D+(V )→B+

dR ⊗Qp V .
We extend it to a map ιm :R+

L [1/t]⊗E+L D+(V )→BdR ⊗Qp V by setting ιm(T ) = ε(m)et/p
m − 1.

Here ιm is a special case of the localization map. For the construction and general properties of
the localization map, we refer the reader to [Ber02] for more details.

For a general crystabelian representation V , we may choose an integer h> 0 such that V (−h)
is positive, and we define N(V ) = T−hN(V (−h)); it is independent of the choice of h. We call
N(V ) the Wach module of V .
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Proposition 2.13 [BB10, Théoréme 3.2.1]. If V is a positive crystabelian representation, then
Dcris(V ) = (R+

L ⊗E+L N(V ))Γn for n sufficiently large.

Thus, for a positive crystabelian representation V , we have R+
L ⊗L Dcris(V )⊆R+

L ⊗E+L N(V ).
Moreover, if the Hodge–Tate weights of V are in the interval [−h, 0] for some h> 0, then we
have R+

L ⊗E+L N(V )⊆ t−hR+
L ⊗L Dcris(V ) [BB10, Corollaire 3.2.7].

Using the map ιm, we get

Lm[[t]]⊗L Dcris(V )⊆ Lm[[t]]⊗ιmE+L
N(V )⊆ t−hLm[[t]]⊗L Dcris(V ).

We further have the following result [BB10, Lemme 3.3.1].

Proposition 2.14. If m> 0, then the image Lm[[t]]⊗ιmE+L
N(V ) in Lm((t))⊗L Dcris(V ) is

contained in Fil0(t−hLm[[t]]⊗L Dcris(V )) and, if m>m(V ), then the map

Lm[[t]]⊗ιmE+L
N(V )→ Fil0(t−hLm[[t]]⊗L Dcris(V ))

is an isomorphism.

3. p-adic local Langlands correspondence for GL2(Qp)

3.1 Breuil’s p-adic local Langlands program of GL2(Qp)
In this subsection, we give a sketch of the motivation of Breuil’s p-adic local Langlands program
of GL2(Qp), and we show that B(α)/L(α) is the admissible unitary representation corresponding
to Vα,β, as announced in § 1. The main source of our exposition is Emerton’s paper [Eme06a].

Let l be a prime and let V be a two-dimensional continuous representation of GQl over Qp.
Applying either the recipe of Deligne [Del71] if l 6= p, or the recipe of Fontaine [Fon94]
if l = p and V is potentially semistable, we may attach to V a Frobenius semisimple
Weil–Deligne representation σss(V ) : WDQl →GL2(Qp), which corresponds to an admissible
smooth representation πl(V ) := πl(σss(V )) of GL2(Ql) via the classical local Langlands
correspondence πl.

In the case l 6= p, Deligne’s procedure to construct σ(V ) from V is convertible. So, if V is
Frobenius semisimple (as is conjectured to be the case when V is the restriction to GQl of a
global p-adic Galois representation attached to a cuspidal newform), then it is determined up to
isomorphism by the associated GL2(Ql)-representation πl(V ).

On the other hand, if l = p and V is potentially semistable, then the construction of
σ(V ) involves passing to the potentially semistable Dieudonné module Dpst(V ) of V , and then
forgetting the Hodge filtration. In general, for a given (ϕ, N, GQp)-module, one can equip it with
an admissible filtration (a filtration so that it becomes an admissible filtered (ϕ, N, GQp)-module)
in many different ways. Therefore, V is usually not uniquely determined by πp(V ).

Breuil conjectured that there should be a p-adic local Langlands correspondence which
attaches to V a p-adic Banach space representation B(V ). This representation B(V ) should
determine V up to isomorphism. (Breuil’s original conjecture was limited to the case that V is
potentially semistable; Colmez constructed this correspondence for all irreducible V later on,
as will be explained in § 3.2.) For our purpose, we restrict to the case when V has distinct
Hodge–Tate weights k1 < k2. Consider the following locally algebraic representation:

π̃p(V ) := πm
p (V )⊗ Symk2−k1−1 L2 ⊗ detk1+1 ⊗ ((x|x|)−1 ◦ det),
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which encodes the Hodge–Tate weights of V , where πm
p is a modified version of the classical local

Langlands correspondence for GL2 introduced by Breuil (for more details about πm
p , see [Eme06a,

2.1.1]). Breuil’s idea is that the representation B(V ) should be regarded as a completion of π̃p(V )
with respect to a certain GL2(Qp)-invariant norm, and that this extra data should determine the
Hodge filtration uniquely. Note that our definition of π̃p(V ) differs by a twist of (x|x|)−1 ◦ det
from the definition of π̃p(V ) given in [Eme06a, 3.3.1(7)]. This is because Emerton normalized
the p-adic local Langlands correspondence for GL2(Qp) by requiring that the central character
of B(V ) is equal to det V (x|x|) [Eme06a, 3.3.1(2)]. But, the normalization chosen by Breuil and
Colmez, which is the one we use in this paper, satisfies the requirement that the central character
of B(V ) is equal to det V (x|x|)−1.

Going back to the case Vα,β, if we view α, β as characters of Wab
Qp via the isomorphism

Q×p ∼=W ab
Qp provided by the local Artin map, then we have σss(Vα,β) = σ(Vα,β) = L · eα ⊕ L · eβ

(with trivial monodromy action) by Fontaine’s recipe. Recall that if αβ−1 6= |x|±1, then we
have πm

p (L · eα ⊕ L · eβ) = (IndGL2(Qp)
B(Qp) β|x| ⊗ α)sm; while, if αβ−1 = |x| (respectively |x|−1), then

πm
p (Vα,β) = (IndGL2(Qp)

B(Qp) α|x| ⊗ β)sm (respectively (IndGL2(Qp)
B(Qp) β|x| ⊗ α)sm). It follows that

π̃p(Vα,β) = πm
p (Vα,β)⊗ Symk−2 L2 ⊗ det⊗((x|x|)−1 ◦ det)

=

{
π(β) if α 6= β|x|;
π(α) if α= β|x|

= π(α)

by intertwining operators. It is not difficult to see that the Hodge filtration of Dcris(Vα,β) is
the only admissible filtration (up to isomorphism) of the (ϕ, GQp)-module σ(Vα,β) (in fact, for a
two-dimensional potentially semistable representation V of GQp , the (ϕ, N, GQp)-module Dpst(V )
has a unique admissible filtration if and only if V is irreducible and potentially crystalline and
σ(V ) is abelian). Hence, we should have B(Vα,β) to be the universal unitary completion of
π(α), i.e. B(α)/L(α) by Proposition 1.3, according to Breuil’s idea. However, a priori it is
not clear whether B(α)/L(α) is non-zero. Inspired by the work of Colmez [Col05], Berger and
Breuil showed that B(α)/L(α) is non-zero by means of (ϕ, Γ)-modules, as will be explained
in § 3.4.

3.2 Colmez’s construction of the p-adic local Langlands correspondence for GL2(Qp)
We recall Colmez’s construction of the p-adic local Langlands correspondence for GL2(Qp) and
his identification of locally analytic vectors in this subsection. We refer the reader to [Col10d] for
a complete treatment. We start with the notion of products of (ϕ, Γ)-modules with open subsets
of Qp. For this, see [Col10b, III.1] for more details.

Let D be a finite free étale (ϕ, Γ)-module over OEL and let D†, Drig be the corresponding étale
(ϕ, Γ)-modules over E†L,RL, respectively. For any a ∈ Z×p , let σa denote the element of Γ such

that χ(σa) = a. We equip D with a P (Zp) =
(

Z×p Zp
0 1

)
-action by setting

(
a b
0 1

)
z = (1 + T )bσa(z)

for any z ∈D. For any subset i+ pnZp of Zp, we set Resi+pnZp(z) = (1 + T )iϕnψn((1 + T )−iz).
This is independent of the choice of the representative i. In general, if U is an open compact
subgroup of Zp, and if k is sufficiently large such that U is a union of some translations of
pkZp, then the OL-linear map

∑
a∈U modpkZp Resa+pkZp is independent of the choice of k, and we

denote it by ResU . For any OL-submodule M of D stable under P (Zp)- and ψ-actions, we define
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the OL-submodule M � U of D as the image ResU M , which is stable under the P (Zp)-action.
For example, it is clear that D � Zp =D and D � Z×p =Dψ=0.

If M is further stable under ϕ, we define M �Qp as the set of sequences (z(n))n∈N of elements
of M , such that ψ(z(n+1)) = z(n) for any n ∈ N, and we identify M as a submodule of M �Qp

by sending z ∈M to (ϕn(z))n∈N. We extend the P (Zp)-, ψ- and ϕ-actions to M �Qp by the
formulas (

a b
0 1

)
((z(n))n∈N) =

((
a b
0 1

)
z(n)

)
n∈N

,

ψ((z(n))n∈N) = (z(n−1))n∈N, ϕ((z(n))n∈N) = (z(n+1))n∈N,

where we put z(−1) = 0. For U open compact in Zp, we define the map ResU :M �Qp→M �Qp

by the formula

ResU ((z(n))n∈N) = (ϕn(ResU (z(0))))n∈N ∈M �Qp,

where ResU (z(0)) ∈M � U ⊂M . Thus, ResU (M �Qp)⊂M � U ⊂M , where M is identified as
a submodule of M �Qp, as above. If U is an open compact subset of Qp, and if k ∈ N such that
pkU ⊂ Zp, then we define M � U ⊂M �Qp and ResU :M �Qp→M � U as

M � U = ψk(M � pkU) and ResU = ψk ◦ RespkU ◦ϕk;

they are independent of the choice of k. Moreover, when U is contained in Zp, this definition
coincides with the definition above, regarding U as a compact open subset of Zp. Note that all
the constructions above apply to D[1/p], D†, Drig.

From now on, we further suppose that rankOE D = 2. Then ∧2D is of the form OE ⊗ δ′D
for some continuous character δ′D : Q×p →O×L . Let δD be the character defined by δD(z) =
(z|z|)−1δ′D(z). If g =

(
a b
c d

)
∈GL2(Qp) and U is open compact in Qp such that −d/c is not

in U , then we set g(i) = (ai+ b)/(ci+ d) for any i ∈ U . For any z ∈D � U , the operator
Hg :D � U →D � U is defined as

Hg(z) = lim
n→∞

∑
i∈U mod pnZp

δD(ci+ d)
(
g′(i) g(i)

0 1

)
RespnZp

((
1 −i
0 1

)
z

)
.

Here g′(i) = (ad− bc)/(ci+ d)2 is the derivative of g(i). Put w = (0 1
1 0). Let wD be the restriction

of Hw on D � Z×p ; hence,

wD(z) = lim
n→∞

∑
i∈Z×p mod pnZp

δD(i)
(
−i−2 i−1

0 1

)
RespnZp

((
1 −i
0 1

)
z

)
.

We define

D �P1 = {z = (z1, z2) ∈D ×D, ResZ×p (z2) = wD(ResZ×p (z1))}.

For any U open compact in Qp and z = (z1, z2) ∈D �P1, we define ResU (z) ∈D � U by

ResU (z) = ResU∩Zp(z1) +Hw(ReswU∩pZp(z2)) = ResU∩pZp(z1) +Hw(ReswU∩Zp(z2)).

The last equality holds, as ResZ×p (z2) = wD(ResZ×p (z1)).

Theorem 3.1 [Col10d, Théorème II.1.4]. There exists a unique G-action on D �P1 such that

ResU (g · z) =Hg(Resg−1U∩Zp(z1)) +Hgw(Res(gw)−1U∩pZp(z2))

for any g ∈GL2(Qp) and U open compact in Qp.
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The following proposition describes the G-action more precisely.

Proposition 3.2 [Col10d, Proposition II.1.8]. The GL2(Qp)-action on D �P1 satisfies the
conditions that if z = (z1, z2), then:

(i) (0 1
1 0)z = (z2, z1);

(ii) if a ∈Q×p , then (a 0
0 a)z = (δD(a)z1, δD(a)z2);

(iii) if a ∈ Z×p , then (a 0
0 1)z = ((a 0

0 1)z1, δD(a)
(
a−1 0

0 1

)
z2);

(iv) if z′ =
(
p 0
0 1

)
z, then RespZp z

′ =
(
p 0
0 1

)
z1 and ResZp(0 1

1 0)z
′ = δD(p)ψ(z2);

(v) if b ∈ pZp and if z′ =
(

1 b
0 1

)
z, then ResZp z

′ =
(

1 b
0 1

)
z1 and RespZp(0 1

1 0)z
′ = ub(RespZp(z2)),

where ub = ub = δ−1(1 + b)
[
1 −1
0 1

]
◦ wδ ◦

[
(1+b)2 b(1+b)

0 1

]
◦ wδ ◦

[
1 1/(1+b)
0 1

]
on D � pZp.

For any z ∈D �P1, by [Col10d, Proposition II.1.14(i)], (ResZp
(
pn 0
0 1

)
)n∈N is an element

of D �Qp; we denote this element by ResQp z. We define D\ �P1 = {z ∈D �P1, ResQp z ∈
D\ �Qp}.

Let Reptors GL2(Qp) be the category of smooth OL[GL2(Qp)]-modules which are of finite
length and admit central characters. Let RepOL GL2(Qp) be the category of OL[GL2(Qp)]-
modules Π which are separated and complete for the p-adic topology, p-torsion free and satisfy
Π/pnΠ ∈ Reptors GL2(Qp) for any n ∈ N.

Theorem 3.3 [Col10d, Théorème II.3.1]. Keep notation as above. The following are true.

(i) The submodule D\ �P1 of D �P1 is stable under GL2(Qp).

(ii) The representation Π(D) = (D �P1)/(D\ �P1) is an object of RepOL GL2(Qp) with
central character δD, and D\ �P1 is naturally isomorphic to Π(D)∗ ⊗ (δD ◦ det). Thus, we have
the following exact sequence:

0−→Π(D)∗ ⊗ (δD ◦ det)−→D �P1 −→Π(D)−→ 0.

We denote Π(Ď) by Π̌(D). Here Ď = HomRL(D, EL(dT/(1 + T ))) is the Tate dual of D, where
the ϕ, Γ-actions on dT/(1 + T ) are defined as ϕ(dT/(1 + T )) = dT/(1 + T ), γ(dT/(1 + T )) =
χ(γ)dT/(1 + T ). It is clear that if D = D(V ), then Ď = D(V̌ ); here we denote by V̌ the Tate
dual of V . Note that Ď ∼=D ⊗ δ−1

D . It follows that Π̌(D)∼= Π(D)⊗ (δ−1
D ◦ det), so D\ �P1 is

naturally isomorphic to (Π̌(D))∗. The wD-action induces an involution on D[1/p]� Z×p , and the
GL2(Qp)-action naturally extends to

D[1/p]�P1 = {(z1, z2) ∈D[1/p]×D[1/p], wD(ResZ×p z1) = ResZ×p z2}.

We set Π(D[1/p]) = Π(D)[1/p] and Π̌(D[1/p]) = Π̌(D)[1/p]; they are admissible unitary
representations of GL2(Qp).

If C is a pro-p cyclic group and if c is a topological generator of C, the set of g(c− 1) for
g(T ) ∈ OL[[T ]] is independent of the choice of c; the resulting ring is denoted by ΛL(C). For any
ring R of E(0,r]

L , E†L, R+
L , E ]0,r]

L and RL, we define R(C) similarly. Let ∆ be the torsion subgroup
of Γ; then Γ = ∆× Γ1. We define ΛL(Γ) =OL[∆]⊗ ΛL(Γ1) and we define R(Γ) = L[∆]⊗R(Γ1).
For any h> 1, it is clear that ΛL(Γ) (respectively R(Γ)) is finite free over ΛL(Γh) (respectively
R(Γh)), and ΛL(Γ) (respectively R(Γ)) has a ΛL(Γh)-basis (respectively R(Γh)-basis) consisting
of elements in Γ. For a finite free module M over ΛL(Γ) (respectively R(Γ)) equipped with a
continuous semilinear Γ-action, we define a continuous action of ΛL(Γ1) (respectively R(Γ1))
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on M by setting (∑
ai(γ1 − 1)i

)
(m) =

∑
ai((γ1 − 1)i(m)),

where γ1 is a topological generator of Γ1. We further extend this action to a continuous action
of ΛL(Γ) (respectively R(Γ)) on M by setting (f ⊗ g)(m) = f(g(m)).

Suppose that V(D†) = V and dimL V = d. Let D†,r = D†,r(V ) and D†,rrig = D†,rrig(V ). We have
the following result [Col10d, Théorème V.1.12].

Theorem 3.4. For r sufficiently large, the following are true.

(i) If s> r, then D†,s � Z×p is a free E(0,s]
L -module of rank d generated by D†,r � Z×p .

(ii) If s> r, then D†,srig � Z×p is a free E ]0,s]
L -module of rank d generated by D†,r � Z×p .

As a consequence, D† � Z×p is a free E†L(Γ)-module of rank d, and

Drig � Z×p =RL(Γ)⊗E†L(Γ)
D† � Z×p

is a free RL(Γ)-module of rank d.

The following proposition follows from [Col10d, Lemme V.2.4].

Proposition 3.5. D† � Z×p is stable under the action of wD.

For any character τ : Z×p →O×L and n ∈ Z, suppose that |τ(1 + phZp)− 1|< 1 for some h> 1.
Then λ(γ − 1)→ λ(τ(χ(γ))γn − 1) for any λ(γ − 1) ∈RL(Γh) defines an L-linear automorphism
on RL(Γh). We can extend this automorphism uniquely to RL(Γ) by sending γ to τ(χ(γ))γn

for any γ ∈ Γ. The resulting automorphism on RL(Γ) is independent of the choice of h, and we
denote it by Tτ,n. It is obvious that Tτ1,n1 ◦ Tτ2,n2 = Tτ1τ2,n1+n2 . We use Tτ to denote Tτ,0 for
simplicity. Both R+

L (Γ) and E†L(Γ) are stable under the action of Tτ,n.
Applying the proposition above, we extend the action of wD to Drig � Z×p =RL(Γ)⊗E†L(Γ)

D† � Z×p by the formula wD(λ⊗ z) = TδD,−1(λ)⊗ wD(z) for λ ∈RL(Γ) and z ∈D† � Z×p . Then
we define

Drig �P1 = {(z1, z2) ∈Drig ×Drig, ResZ×p z2 = wD(ResZ×p z1)}.

Proposition 3.6 [Col10d, Propositions V.2.8, V.2.9].

(i) D† �P1 = {(z1, z2) ∈D �P1, z1, z2 ∈D†} is stable under the action of GL2(Qp).

(ii) The GL2(Qp)-action on D† �P1 extends to a continuous GL2(Qp)-action on Drig �P1

satisfying the formulas listed in Proposition 3.2.

By [Col10d, Théorème I.5.2], we know that (1− ϕ)Dψ=1 is a free ΛL(Γ)-module of rank d.
The following proposition will be used in § 4.1.

Proposition 3.7 [Col10d, Corollaire V.1.6(iii)]. The inclusion (1− ϕ)Dψ=1 ⊂Drig � Z×p
induces an isomorphism from RL(Γ)⊗ΛL(Γ) (1− ϕ)Dψ=1 to Drig � Z×p .

For ω = g dT a differential 1-form with g =
∑

k∈Z akT
k ∈ EL, we define the residue res0(w) =

a−1. We define the pairing { , } : Ď ×D→ L by the formula

{x, y}= res0((σ−1 · x)(y)).
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We further extend { , } to a pairing { , }P1 : Ď �P1 ×D �P1→ L by the formula

{(z1, z2), (z′1, z
′
2)}P1 = {z1, z

′
1}+ {RespZp z2, RespZp z

′
2}.

Theorem 3.8 [Col10d, Théorème II.1.13]. The pairing { , } is perfect and GL2(Qp)-equivariant.

Theorem 3.9 [Col10d, Théorème II.2.11]. D\ �P1 and Ď\ �P1 are orthogonal complements
of each other.

We define the pairing { , }P1 : Ďrig �P1 ×Drig �P1→ L similarly; it is also perfect and
GL2(Qp)-equivariant. Let D\

rig �P1 denote the orthogonal complement of Ď\ �P1 in Drig �P1

with respect to { , }P1 .

Theorem 3.10 [Col10d, Théorème V.2.12]. (i) Π(D)an = (D†[1/p]�P1)/(D\[1/p]�P1) and

D\
rig �P1 = (Π̌(D)an)∗.

(ii) The natural map (D†[1/p]�P1)/(D\[1/p]�P1)→ (Drig �P1)/(D\
rig �P1) is an

isomorphism.

For V a two-dimensional L-linear representation of GQp , we set Π(V ) = Π(D(V )) and Π̌(V ) =
Π(D(V̌ )).

3.3 Amice transformation

For any h ∈ N, let LAh denote the space of functions f : Zp→ L such that f is analytic on
a+ phZp for any a ∈ Zp. If f ∈ LAh, then, for any z0 ∈ Zp, we expand f on z0 + phZp in
the form

f(z)|z0+phZp =
∞∑
i=0

ah,i(z0)
(
z − z0

ph

)i
,

where ah,i(z0) is a sequence of elements in L such that |ah,i| → 0 as i→∞. We set ‖f‖h,z0 =
maxi{|ah,i|} and ‖f‖LAh = supz0∈Zp ‖f‖z0,h. Let LA =

⋃
h LAh denote the space of L-valued

locally analytic functions on Zp. A continuous distribution on Zp is an L-linear homomorphism
from LA to L such that the restriction to each LAh is continuous. Let Dcont(Zp, L) denote the
set of continuous distributions on Zp. We set, for any h ∈ N, a norm ‖ · ‖LAh on Dcont(Zp, L) by
the formula

‖µ‖LAh = sup
f∈LAh−0

|
∫

Zp f dµ(z)|
‖f‖LAh

.

We equip Dcont(Zp, L) with the Fréchet topology defined by the norms ‖ · ‖LAh for h ∈ N.

Let µ ∈ Dcont(Zp, L). For any γ ∈ Γ, we define γ(µ) ∈ Dcont(Zp, L) by the formula∫
Zp
f(z) dγ(µ)(z) =

∫
Zp
f(χ(γ)z) dµ(z).

We define ϕ(µ), ψ(µ) ∈ Dcont(Zp, L) by the formulas∫
Zp
f(z) dϕ(µ)(z) =

∫
Zp
f(pz) dµ(z),

∫
Zp
f(z) dψ(µ)(z) =

∫
pZp

f

(
z

p

)
dµ(z),

respectively. It is clear that ψ(ϕ(µ)) = µ and ϕ(ψ(µ)) is the restriction of µ on pZp.
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For any µ ∈ Dcont(Zp, L), we associate it with the Amice transformation A(µ), which is an
element of R+

L defined as

A(µ) =
∞∑
n=0

Tn
∫

Zp

(
z

n

)
dµ(z) =

∫
Zp

(1 + T )z dµ(z).

If h ∈ N, put ρh = p−1/(p−1)ph . Note that ρh = |η − 1| for any η ∈ µph+1 .

Proposition 3.11 (Amice transformation). The map µ→A(µ) is a topological isomorphism

from Dcont(Zp, L) to R+
L respecting the ϕ-, Γ- and ψ-actions. Moreover, we have

‖A(µ)‖ρh 6 ‖µ‖LAh 6 p‖A(µ)‖ρh+1
.

Proof. It is straightforward to verify that the Amice transformation commutes with ϕ-, Γ- and ψ-
actions. We leave it as an exercise for the reader. The rest is exactly [Col10c, Théorème II.2.2]. 2

Thus, for any µ ∈ Dcont(Zp, L), we have

A(µ) ∈ (R+
L )ψ=0⇐⇒ 0 = ϕ(ψ(A(µ))) =A(ϕ(ψ(µ)))⇐⇒ ϕ(ψ(µ)) = 0⇐⇒ Supp(µ)⊆ Z×p .

We will need this equivalence later.

3.4 B(Vα,β)∼= Π(Vα,β)

In this subsection, we will explain the compatibility of Colmez and Berger–Breuil’s constructions
in the case when V ∈S cris

∗ is not exceptional (for Vα,β, this is equivalent to α 6= β). Since
every element of S cris

∗ is a twist of Vα,β for some (α, β), it reduces to show that B(Vα,β)
is naturally isomorphic to Π(Vα,β) for any (α, β) such that α 6= β. This is the main result
of [BB10]. First note that the central character of B(α)/L(α) is δ(z) = (αβ)(z)|z|−1zk−2, which
coincides with the central character δD (here D = D(Vα,β)) of Π(Vα,β). From now on, we suppose
that α 6= β.

Definition 3.12. For any crystabelian representation V , we define M(V ) as the set of elements
g ∈R+

L [1/t]⊗L Dcris(V ) such that ιm(g) ∈ Fil0(Lm((t))⊗L Dcris(V )) for every m>m(V ).

Proposition 3.13 [BB10, Proposition 3.3.3]. If V is a crystabelian representation with Hodge–

Tate weights in [−h, 0] for some h> 0, then the R+
L -module M(V ) is free of rank dimL V , and

it satisfies

T−hR+
L ⊗E+L N(V )⊆M(V )⊆ ϕm(V )−1(T )−hR+

L ⊗E+L N(V ).

Corollary 3.14. The R+
L -module M(Vα,β) is contained in D†rig(Vα,β).

Proof. Applying the above proposition to the positive crystabelian representation Vα,β(1− k),
we get M(Vα, β(1 − k)) ⊆ ϕm(Vα, β) − 1(T )1−kR+

L ⊗E+ N(Vα, β(1− k)) ⊆ D†rig(Vα, β(1 − k)).
Since R+

L ⊗L Dcris(Vα,β) = t1−kR+
L ⊗L Dcris(Vα,β(1− k)) and Fil0(Lm[[t]]⊗L Dcris(Vα,β)) =

Fil0(Lm[[t]]⊗L Dcris(Vα,β(1− k))), we conclude that M(Vα,β)⊆D†rig(Vα,β). 2

Lemma 3.15 [BB10, Lemme 5.1.2]. Let m>m(Vα,β) and cα, cβ ∈R+
L . Let µα =A−1(cα), µβ =

A−1(cβ) denote the corresponding locally analytic distributions over Zp. Then the condition

ιm(cαeα + cβeβ) ∈ Fil0(Lm[[t]]⊗L Dcris(Vα,β))
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is equivalent to

G(β−1α, ηp
m−m(V )

pm )αmp

∫
Zp
zjηzpm dµα(z) = βmp

∫
Zp
zjηzpm dµβ(z)

for every j ∈ {0, . . . , k − 2} and every primitive pmth roots of unity ηpm in Qp.

Corollary 3.16. Let µα ∈A(α)∗ and µβ ∈A(β)∗. We regard µα|Zp , µβ|Zp as elements of
D(Zp, L), and let cα =A(µα|Zp), cβ =A(µβ|Zp). If µα and µβ are related by the condition∫

Qp
f dµβ(z) =

1
C(αp, βp)

∫
Qp
I(f) dµα(z) (3.1)

for any f ∈ π(β), then we have cαeα + cβeβ ∈M(Vα,β). Here C(αp, βp) is the constant we defined
in § 1.3.

Proof. For any 06 j 6 k − 2, y ∈Q×p such that val(y)6−m(V ), by (3.1) and Lemma 1.6, we
have ∫

Zp
zje2πizy dµβ(z) =

∫
Qp

1
C(αp, βp)

I(1pnZp · zje2πizy) dµα(z)

= G(β−1α, e2πiy/pval(y)+m(V )
)
(
βp
αp

)val(y) ∫
Zp
zje2πizy dµα(z). (3.2)

Now, for any m>m(Vα,β) and a primitive pmth root of unity ηpm , we choose y0 such that
e2πiy0 = ηpm ; so val(y0) =−m6−m(Vα,β). Setting y = y0 in (3.2), we obtain

βmp

∫
Zp
zjηzpm dµβ(z) =G(β−1α, ηp

m−m(V )

pm )αmp

∫
Zp
zjηzpm dµα(z). (3.3)

We conclude that cαeα + cβeβ ∈M(Vα,β) by Lemma 3.15. 2

For any g ∈ (R+
L )ψ=0, we set (0 1

1 0)α g =A((0 1
1 0)(A−1(g))) (respectively (0 1

1 0)β g =A((0 1
1 0)(A−1

(g)))) ∈ (R+
L )ψ=0, where we regardA−1(g) as an element of A(α)∗ (respectively A(β)∗) supported

in Z×p .

Suppose that z = cαeα + cβeβ ∈D†rig(Vα,β)� Z×p ∩ (R+
Leα ⊕R

+
Leβ). We would have 0 =

ψ(z) = αpψ(cα)eα + βpψ(cβ)eβ, yielding cα, cβ ∈ (R+
L )ψ=0. We define(

0 1
1 0

)
z =

(
0 1
1 0

)
α

(cα)eα +
(

0 1
1 0

)
β

(cβ)eβ.

We now construct a map F from (B(α)/L(α))∗ to

Π(Vα,β)∗ ∼= (D\(Vα,β)�P1)⊗ (δ−1 ◦ det).

Let iα denote the natural morphism A(α)→B(α)/L(α); the dual map is denoted by i∗α. We set
iβ and i∗β similarly. For any µα ∈ (B(α)/L(α))∗, we associate µα with µβ = (1/C(αp, βp))µα ◦ Î ∈
(B(β)/L(β))∗. We regard µα and µβ as elements of A(α)∗ and A(β)∗ via i∗α and i∗β, respectively.
Suppose that cα =A(µα|Zp), cβ =A(µβ|Zp) and c′α =A(((0 1

1 0)µα)|Zp), c′β =A(((0 1
1 0)µβ)|Zp). Let

zα = cαeα + cβeβ and z′α = c′αeα + c′βeβ. By Corollary 3.14, we first have zα ∈M(Vα,β). From
[BB10, Lemme 5.2.6], the fact that µα and µβ are of orders val(αp) and val(βp) respectively
further ensures that zα ∈D](Vα,β). From [Col10a, Corollaire II.5.21], we get D](Vα,β) = D\(Vα,β)
because Vα,β is irreducible; hence, zα ∈D\(Vα,β). Similarly, we have z′α ∈D\(Vα,β) because Î is
GL2(Qp)-equivariant.
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Lemma 3.17 [Col10d, Lemme II.3.13]. For any z ∈D\(Vα,β)� Z×p , we have wD(z) = (0 1
1 0)(z).

Note that D\(Vα,β)⊆M(Vα,β)⊆R+
Leα ⊕R

+
Leβ following [BB10, Corollaire 3.3.10]. So,

(0 1
1 0)(z) is defined for any z ∈D\(Vα,β)� Z×p . By the definition of zα and z′α, we see that

ResZ×p z
′
α = (0 1

1 0)ResZ×p zα = wD(ResZ×p zα). Hence, (zα, z′α) is an element of D\(Vα,β)�P1. We
pick a basis e of the one-dimensional representation δ−1 ◦ det. We define F by setting F(µα) =
(zα, z′α)⊗ e. The following result is the combination of [BB10, Proposition 3.4.6] and [Col10d,
Proposition II.3.8].

Theorem 3.18. The dual of F is a topological isomorphism from Π(Vα,β) to (B(α)/L(α)) as
L-Banach space representations of GL2(Qp). Furthermore, the B(Qp)-action on B(α)/L(α) is
topologically irreducible.

Corollary 3.19. B(α)/L(α) is non-zero.

Proof. For any rank-two étale (ϕ, Γ)-module D over EL, D\ �P1 is non-zero because D\ �P1

contains D\ � Zp =D\. Therefore, (B(α)/L(α))∗ is non-zero, yielding that B(α)/L(α) is non-
zero. 2

4. Determination of locally analytic vectors

We keep assuming that α 6= β in this section. Let iα, iβ denote the natural maps
A(α)→B(α)/L(α), A(β)→B(β)/L(β), respectively. Since A(α), A(β) are locally analytic
representations of GL2(Qp), both maps iα and Î ◦ iβ factor through (B(α)/L(α))an =
B(Vα,β)an. It is clear that the map iα ⊕ Î ◦ iβ :A(α)⊕A(β)→ B(Vα,β)an reduces to a map
iα ⊕ Î ◦ iβ :A(α)⊕π(β) A(β)→ B(Vα,β)an, where we map π(β) to A(α) via the intertwining
operator I. Note that if α= β|x|, since ker I = (β ◦ det)⊗L Symk−2 L2 and π(β)/(β ◦ det)⊗L
Symk−2 L2 = ((β ◦ det)⊗L Symk−2 L2)⊗L St by (1.5), we further have A(α)⊕π(β) A(β) =
A(α)⊕((β◦det)⊗LSymk−2 L2)⊗LSt (A(β)/((β ◦ det)⊗L Symk−2 L2)). The main result of this paper
is the following theorem.

Theorem 4.1. If α 6= β, then the map iα,β = iα ⊕ Î ◦ iβ :A(α)⊕π(β) A(β)→ B(Vα,β)an is a
topological isomorphism.

This section is devoted to the proof of Theorem 4.1.

4.1 Extension of F
Let i denote the inclusion B(Vα,β)an→ B(V̌α,β). In this subsection, we will construct a continuous
GL2(Qp)-equivariant morphism Fan : (A(α)⊕π(β) A(β))∗→D†rig(Vα,β)�P1 satisfying the
following commutative diagram.

(B(α)/L(α))∗

(i◦iα,β)∗

��

F // D\(V̌α,β)�P1

��
(A(α)⊕π(β) A(β))∗ Fan // D†rig(V̌α,β)�P1

(4.1)

Let δα, δβ : Q×p → L× be the characters defined as δα(z) = (βα−1)(z)|z|−1zk−2, δβ(z) =
(αβ−1)(z)|z|−1zk−2.
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Lemma 4.2. For h ∈ N and h> n(βα−1), we have ‖(0 1
1 0)α(g)‖ρh 6 p‖g‖ρh+1

and ‖(0 1
1 0)β (g)‖ρh 6

p‖g‖ρh+1
for any g ∈ (R+

L )ψ=0. As a consequence, both (0 1
1 0)α and (0 1

1 0)β are continuous with

respect to the Fréchet topology of R+
L .

Proof. Let µα =A−1(g). We regard µα as an element of A(α)∗. For any f ∈A(α), we have∫
Qp
f(z) d

((
0 1
1 0

)
µα

)
(z) =

∫
Qp

((
0 1
1 0

)
(1Z×p · f)

)
(z) dµα(z)

=
∫

Z×p
β(−1)(−1)kδα(z)f(1/z) dµα(z). (4.2)

Thus, for any a ∈ Z×p , h> n(βα−1) and m> 0, it follows that∫
a+phZp

(
z − a
ph

)m
d

((
0 1
1 0

)
µα

)
(z)

=
∫
a−1+phZp

β(−1)(−1)kδα(z)
(

1/z − a
ph

)m
dµα(z)

= β(−1)(−1)kβα−1(a−1)
∫
a−1+phZp

zk−2

(
1/z − a
ph

)m
dµα(z). (4.3)

From

1a−1+phZp ·
(

1/z − a
ph

)m
= 1a−1+phZp ·

(
a/(1 + a(z − a−1))− a

ph

)m
= 1a−1+phZp ·

( ∞∑
i=1

ph(i−1)ai+1

(
z − a−1

ph

)i)m
,

we get ‖1a−1+phZp · ((1/z − a)/ph)m‖LAh 6 1, yielding∥∥∥∥1a−1+phZp · z
k−2

(
1/z − a
ph

)m∥∥∥∥
LAh

6

∥∥∥∥1a−1+phZp ·
(

1/z − a
ph

)m∥∥∥∥
LAh

· ‖zk−2‖LAh 6 1.

This implies that |
∫
a+phZp((z − a)/ph)m d((0 1

1 0) µα)(z)|6 ‖µα‖LAh . Hence, ‖(0 1
1 0)µα‖LAh 6

‖µα‖LAh (in fact, we have ‖(0 1
1 0)µα‖LAh = ‖µα‖LAh since (0 1

1 0) is an involution). So, by
Proposition 3.11, we get∥∥∥∥A((0 1

1 0

)
µα

)∥∥∥∥
ρh

6

∥∥∥∥(0 1
1 0

)
µα

∥∥∥∥
LAh

6 ‖µα‖LAh 6 p‖A(µα)‖ρh+1
,

i.e. ‖(0 1
1 0)α (g)‖ρh 6 p‖g‖ρh+1

. We get ‖(0 1
1 0)β (g)‖ρh 6 p‖g‖ρh+1

similarly. 2

Lemma 4.3. For any λ ∈R+
L (Γ) and g ∈ (R+

L )ψ=0, we have λ((0 1
1 0)α g) = (0 1

1 0)α (Tδα,−1(λ)(g)) and
λ((0 1

1 0)β g) = (0 1
1 0)β (Tδβ ,−1(λ)(g)).

Proof. Let µα =A−1(g), regarded as an element of A(α)∗. For any γ ∈ Γ, we have

γ

((
0 1
1 0

)
α

g

)
= γ

(∫
Zp

(1 + T )z d
((

0 1
1 0

)
µα

)
(z)
)

= γ

(∫
Z×p

β(−1)(−1)kδ(z)(1 + T )1/z dµ(z)
)

(by (4.2))
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=
∫

Z×p
β(−1)(−1)kδ(z)(1 + T )χ(γ)/z dµ(z)

=
∫

Z×p
δα(χ(γ))β(−1)(−1)kδ(z)(1 + T )1/z d(γ−1µ)(z)

=
∫

Zp
δα(χ(γ))(1 + T )z d

((
0 1
1 0

)
α

(γ−1µα)
)

=
(

0 1
1 0

)
α

(Tδα,−1(γ)(g)). (4.4)

So, the lemma holds for λ= γ. Let h= n(βα−1). It reduces to prove the lemma for any λ ∈
R+
L (Γh). Let γ be a topological generator of Γh. In general, for any λ=

∑∞
i=0 ai(γ − 1)i ∈R+

L (Γh),
we first have

λ

((
0 1
1 0

)
α

g

)
= lim

j→∞

j∑
i=0

ai(γ − 1)i
((

0 1
1 0

)
α

g

)

= lim
j→∞

(
0 1
1 0

)
α

(
Tδα,−1

( j∑
i=0

ai(γ − 1)i
)

(g)
)
.

Since limj→∞
∑j

i=0 Tδα,−1(ai(γ − 1)i)(g) = Tδα,−1(λ)(g), applying Lemma 4.2, we get

lim
j→∞

(
0 1
1 0

)
α

(
Tδα,−1

( j∑
i=0

ai(γ − 1)i
)

(g)
)

=
(

0 1
1 0

)
α

(
lim
j→∞

j∑
i=0

Tδα,−1(ai(γ − 1)i)(g)
)

=
(

0 1
1 0

)
α

(Tδα,−1(λ)(g)).

So, λ((0 1
1 0)α g) = (0 1

1 0)α (Tδα,−1(λ)(g)). We get λ((0 1
1 0)β g) = (0 1

1 0)β (Tδβ ,−1(λ)(g)) similarly. 2

Proposition 4.4. The map R+
L (Γ)→ (R+

L )ψ=0 sending λ to λ(1 + T ) is a bijection.

Proof. See [Per01, B.2.8] for a reference, where Perrin-Riou established a bijection from E†L(Γ)
to (E†L)ψ=0 sending λ to λ(1 + T ). Her proof also works in our situation. 2

The inverse of this map is the Mellin transformation; we denote it by Mel. So, if g(T ) ∈
(R+

L )ψ=0, then g(T ) = Mel(g)(1 + T ).

Lemma 4.5. If z = cαeα + cβeβ ∈D†rig(Vα,β)� Z×p ∩ (R+
Leα ⊕R

+
Leβ), then

wD(z) =
(

0 1
1 0

)
(z).

Hence, (0 1
1 0) = wD is an involution on D†rig(Vα,β)� Z×p ∩ (R+

Leα ⊕R
+
Leβ).

Proof. By Proposition 3.7, there exist λ1, λ2, . . . , λn ∈RL(Γ) and z1, z2, . . . , zn ∈ (1− ϕ)
D(Vα,β)ψ=1 for some n> 1 such that z =

∑n
i=1 λizi. Since D(V )ψ=1 ⊂D(V )] for any p-adic

representation V , we have zi ∈D(Vα,β)] � Z×p . Suppose that zi = cα,ieα + cβ,ieβ for 16 i6 n.
It follows that

n∑
i=1

λizi =
n∑
i=1

λi(cα,ieα + cβ,ieβ) =
n∑
i=1

(Tα(λi)cα,ieα + Tβ(λi)cβ,ieβ),
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yielding cα =
∑n

i=1 Tα(λi)cα,i and cβ =
∑n

i=1 Tβ(λi)cβ,i. Taking a Mellin transformation for the
latter equalities, we get

Mel(cα)(1 + T ) =
n∑
i=1

Tα(λi) Mel(cα,i)(1 + T ), Mel(cβ)(1 + T ) =
n∑
i=1

Tβ(λi) Mel(cβ,i)(1 + T ).

We conclude that

Mel(cα) =
n∑
i=1

Tα(λi) Mel(cα,i) and Mel(cβ) =
n∑
i=1

Tβ(λi) Mel(cβ,i). (4.5)

Following the definition of wD and Lemma 4.3, we have

wD(z) = wD

( n∑
i=1

λizi

)
=

n∑
i=1

Tδ,−1(λi)wD(zi) =
n∑
i=1

Tδ,−1(λi)
((

0 1
1 0

)
(zi)
)

=
( n∑
i=1

Tα−1δ,−1(λi)
((

0 1
1 0

)
α

(cα,i)
))

eα +
( n∑
i=1

Tβ−1δ,−1(λi)
((

0 1
1 0

)
β

(cβ,i)
))

eβ

=
( n∑
i=1

Tα−1δ,−1(λi)Tδα,−1(Mel(cα,i))
((

0 1
1 0

)
α

(1 + T )
))

eα

+
( n∑
i=1

Tβ−1δ,−1(λi)Tδβ ,−1(Mel(cβ,i))
((

0 1
1 0

)
β

(1 + T )
))

eβ. (4.6)

On the other hand, we have(
0 1
1 0

)
(z) =

(
0 1
1 0

)
α

(Mel(cα)(1 + T ))eα +
(

0 1
1 0

)
β

(Mel(cβ)(1 + T ))eβ

= Tδα,−1(Mel(cα))
((

0 1
1 0

)
α

(1 + T )
)
eα

+ Tδβ ,−1(Mel(cβ))
((

0 1
1 0

)
β

(1 + T )
)
eβ. (4.7)

Now, by (4.5), we get

Tδα,−1(Mel(cα)) = Tδα,−1

( n∑
i=1

Tα(λi) Mel(cα,i)
)

=
n∑
i=1

Tα−1δ(λi)Tδα,−1(Mel(cα,i))

because αδα = α−1δ. Similarly, we have Tδβ ,−1(Mel(cβ)) =
∑n

i=1 Tβ−1δ(λi)Tδβ ,−1(Mel(cβ,i)). We
obtain the desired result by comparing (4.6) and (4.7). 2

We define Fan as follows. First note that

(A(α)⊕π(β) A(β))∗

= ker(A(α)∗ ⊕A(β)∗→ π(β)∗)

=
{

(µα, µβ) ∈A(α)∗ ⊕A(β)∗
∣∣∣∣ ∫

Qp
f dµβ(z) =

∫
Qp
I(f) dµα(z) for any f ∈ π(β)

}
.

For any (µα, µβ) ∈ (A(α)⊕π(β) A(β))∗, let cα =A(µα|Zp), cβ = (1/C(αp, βp))A(µβ|Zp) and c′α =
A((0 1

1 0)µα|Zp), c′β = (1/C(αp, βp))A((0 1
1 0)µβ|Zp). Put zα = cαeα + cβeβ and z′α = c′αeα + c′βeβ.

By Corollaries 3.14 and 3.16, we have zα, z
′
α ∈D†rig(Vα,β). Since ResZ×p zα = (0 1

1 0)ResZ×p z
′
α,
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we get ResZ×p zα = wD(ResZ×p z
′
α) by Lemma 4.5. So, (zα, z′α) is a well-defined element of

D†rig(Vα,β)�P1. We define Fan by setting Fan(µα, µβ) = (zα, z′α)⊗ e ∈D†rig(V̌α,β)�P1. It is clear
that Fan is an extension of F . Using Proposition 3.6, it is straightforward to verify that Fan is
GL2(Qp)-equivariant. The continuity of Fan is obvious.

4.2 Proof of Theorem 4.1
Lemma 4.6. V ∗α,β = Hom(Vα,β,Qp) is isomorphic to Vβ−1|x|k−1,α−1|x|k−1(1− k).

Proof. Note that

Dcris(V ∗α,β) = HomL(Dcris(Vα,β), L) = HomL(D(α, β), L)

as filtered (ϕ, GQp)-modules over L. Let e′α, e
′
β ∈HomL(D(α, β), L) be defined by e′α(eα) =

e′β(eβ) = 1 and e′α(eβ) = e′β(eα) = 0. It follows that Dcris(V ∗α,β) = L · e′α ⊕ L · e′β; the ϕ- and
GQp-actions are given by ϕ(e′α) = α(p)−1e′α, ϕ(e′β) = β(p)−1e′β and γ(e′α) = α(χ(γ))−1e′α, γ(e′β) =
β(χ(γ))−1e′β for any γ ∈ Γ. The filtration is given by the formula

Fili(Ln ⊗L HomL(D(α, β), L)) = Fil1−i(Ln ⊗L D(α, β))⊥.

Thus, a short computation shows that for n> n(Vα,β), if α 6= β, then

Fili(Ln ⊗L Dcris(V ∗α,β)) =


Ln · e′α ⊕ Ln · e′β if i6 0;

Ln · (−e′β +G(αβ−1)e′α) if 16 i6 k − 1;

0 if i> k.

If α= β, then

Fili(Ln ⊗L Dcris(V ∗α,β)) =


Ln · e′α ⊕ Ln · e′β if i6 0;

Ln · e′α if 16 i6 k − 1;

0 if i> k.

Since βα−1 = α−1|x|k−1(β−1|x|k−1)−1, we immediately see that Dcris(V ∗α,β(k − 1)) is isomorphic
to D(β−1|x|k−1, α−1|x|k−1) as filtered (ϕ, GQp)-modules over L by mapping −e′β, e′α (with
twisted actions) to eβ−1|x|k−1 , eα−1|x|k−1 , respectively. Thus, V ∗α,β(k − 1) is isomorphic to
Vβ−1|x|k−1,α−1|x|k−1 , yielding the desired result. 2

Lemma 4.7. Suppose that g ∈R+
L and ai ∈ L for 16 i6 l such that |ai|< 1 for every i and

ai 6= aj for any i 6= j. Then, for any k1, . . . , kl > 1, we have

res0

(
g∏l

i=1(T − ai)ki
dT

)
=

l∑
i=1

1
(ki − 1)!

∏
j 6=i(ai − aj)kj

((
d

dT

)ki−1

g

)
(ai).

Proof. For 16 i6 l and 06 k 6 ki − 1, we set

bi,k =
1

k!
∏
j 6=i(ai − aj)kj

((
d

dT

)k−1

g

)
(ai).

Then a short computation shows that(
d

dT

)j(
g −

k∑
i=1

ki−1∑
k=0

bi,k(T − ai)k
∏
j 6=i

(T − aj)kj
)

(ai) = 0
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for every 16 i6 l and 06 j 6 ki − 1. This implies that there exists an h ∈R+
L such that

g −
∑k

i=1

∑ki−1
k=0 bi,k(T − ai)k

∏
j 6=i(T − aj)kj =

∏l
i=1(T − ai)kih. Hence,

g∏l
i=1(T − ai)ki

=
k∑
i=1

ki−1∑
k=0

bi,k
(T − ai)ki−k

+ h. (4.8)

Note that for |a|< 1, we have

1
T − a

=
1
T
· 1

1− a/T
=

1
T

(
1 +

a

T
+
(
a

T

)2

+ · · ·
)
.

So,

res0

(
dT

(T − a)k

)
=

{
1 if k = 1;
0 if k > 2.

(4.9)

Following (4.8) and (4.9), we conclude that

res0

(
g∏l

i=1(T − ai)ki
dT

)
= res0

( k∑
i=1

ki−1∑
k=0

bi,k
(T − ai)ki−k

dT

)

=
l∑

i=1

1
(ki − 1)!

∏
j 6=i(ai − aj)kj

((
d

dT

)ki−1

g

)
(ai), (4.10)

yielding the desired result. 2

Lemma 4.8. The natural map π(α)→B(α)/L(α) is injective.

Proof. In the case α 6= β|x|, as π(α) is irreducible and the image is dense in a non-zero
space B(α)/L(α), we conclude that π(α)→B(α)/L(α) is injective. In the case α= β|x|, since
val(αp) + val(βp) = k − 1, we get val(βp) = (k − 2)/2, yielding k > 2. If π(α)→B(α)/L(α) is not
injective, then the image must be (β ◦ det)⊗L Symk−2 L2 because this is the only non-trivial
quotient of π(α), as shown in (1.6). Hence, we must have (β ◦ det)⊗L Symk−2 L2 =B(α)/L(α)
since (β ◦ det)⊗L Symk−2 L2 is finite dimensional and dense in B(α)/L(α). This leads to a
contradiction because (β ◦ det)⊗L Symk−2 L2 does not possess a GL2(Qp)-invariant norm when
k > 2 [Eme06a, Corollary 5.1.3]. 2

Proposition 4.9. {D\(Vα,β)�P1, Fan((A(α)⊕π(β) A(β))∗)}P1 = 0.

Proof. Let e′ be the basis of δ ◦ det dual to e. Note that each element of D\(V̌α,β) is of the form
z ⊗ dT/(1 + T ) for some z ∈D\(V ∗α,β). Since D\(Vα,β)�P1 = (D\(V̌α,β)�P1)⊗ δ, it reduces to
show that {(

z ⊗ dT

1 + T
, z′ ⊗ dT

1 + T

)
⊗ e′, Fan(λα, λβ)

}
P1

= 0 (4.11)

for any (λα, λβ) ∈ (A(α)⊕π(β) A(β))∗ and (z, z′) ∈D\(V ∗α,β)�P1. By Lemma 4.6, V ∗α,β is
isomorphic to Vβ−1|x|k−1,α−1|x|k−1(1− k). Moreover, the explicit description of this isomorphism
shows that there exist cα, cβ and c′α, c

′
β ∈R

+
L such that

(cαeβ−1|x|k−1 + cβeα−1|x|k−1 , c′αeβ−1|x|k−1 + c′βeα−1|x|k−1) ∈D\(Vβ−1|x|k−1,α−1|x|k−1)�P1,

and
z = t1−kcβe

′
α − t1−kcαe′β, z′ = t1−kc′βe

′
α − t1−kc′αe′β.
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Suppose that Fan(λα, λβ) = (dαeα + dβeβ, d
′
αeα + d′βeβ)⊗ e. By Theorem 3.18, we may suppose

that

(cαeβ−1|x|k−1 + cβeα−1|x|k−1 , c′αeβ−1|x|k−1 + c′βeα−1|x|k−1)⊗ e′ = F(µα)

for some µα ∈ (B(β−1|x|k−1)/L(β−1|x|k−1))∗. Put µβ = (1/C(αp, βp))µα ◦ I. By the definition of
{·, ·}P1 , we have {(

z ⊗ dT

1 + T
, z′ ⊗ dT

1 + T

)
⊗ e′, Fan(λα, λβ)

}
P1

= res0

(
t1−k(α(−1)cβ(σ−1 · dα)

− β(−1)cα(σ−1 · dβ) + α(−1)ϕψ(c′β)ϕψ(σ−1 · d′α)

− β(−1)ϕψ(c′α)ϕψ(σ−1 · d′β))
dT

1 + T

)
. (4.12)

Put

S = t1−k(α(−1)cβ(σ−1 · dα)− β(−1)cα(σ−1 · dβ) + α(−1)ϕψ(c′β)ϕψ(σ−1 · d′α)
− β(−1)ϕψ(c′α)ϕψ(σ−1 · d′β)).

For any j > 0, we have(
d

dT

)j
(cβ(σ−1 · dα))

=
j∑
i=0

(
j

i

)((
d

dT

)i ∫
Zp

(1 + T )z dµβ(z)
)((

d

dT

)j−i ∫
Zp

(1 + T )−z dλα(z)
)

=
j∑
i=0

j!
∫

Zp

(
z

i

)
(1 + T )z−i dµβ(z)

∫
Zp

(
−z
j − i

)
(1 + T )i−j−z dλα(z)

=
j!

(1 + T )j

j∑
i=0

∫
Zp

(
z

i

)
(1 + T )z dµβ(z)

∫
Zp

(
−z
j − i

)
(1 + T )−z dλα(z).

Thus, for 06 j 6 k − 2 and T = η − 1 such that |η − 1|< 1, we get((
d

dT

)j
(cβ(σ−1 · dα))

)
(η − 1)

=
j!
ηj

j∑
i=0

∫
Zp

(
z

i

)
ηz dµβ(z)

∫
Zp

(
−z
j − i

)
η−z dλα(z)

=
j!

C(αp, βp)ηj

j∑
i=0

∫
Qp

(
z

i

)
Ism(1Zp · ηz) dµα(z)

∫
Zp

(
−z
j − i

)
η−z dλα(z).

We compute other terms similarly. Finally, we obtain((
d

dT

)j
S

)
(η − 1)

=
j!

C(αp, βp)ηj

j∑
i=0

(
α(−1)

∫
Qp

(
z

i

)
Ism(1Zp · ηz) dµα(z)

∫
Zp

(
−z
j − i

)
η−z dλα(z)
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− β(−1)
∫

Zp

(
z

i

)
ηz dµα(z)

∫
Zp

(
−z
j − i

)
Ism(1Zp · η−z) dλα(z)

+ α(−1)
∫

Qp

(
0 1
1 0

)((
z

i

)
Ism(1pZp · ηz)

)
dµα(z)

×
∫

Qp

(
0 1
1 0

)((
−z
j − i

)
1pZp · η−z

)
dλα(z)

− β(−1)
∫

Qp

(
0 1
1 0

)((
z

i

)
1pZp · ηz

)
dµα(z)

×
∫

Qp

(
0 1
1 0

)((
−z
j − i

)
Ism(1pZp · η−z)

)
dλα(z)

)
. (4.13)

For m>m(Vα,β) + 1 and n= 0, 1, applying Lemma 1.6, we get that

Ism(1pnZp · η±zpm) = C(αp, βp)
(
βp
pαp

)m
G(β−1α, η±1

pm)(1pnZp · η±zpm)

= C(αp, βp)
(
βp
pαp

)m
βα−1(±1)G(β−1α, ηpm)(1pnZp · η±zpm).

Let η = ηpm ; by (4.13), we get that (d/dT )jS(ηpm − 1) = 0 for 06 j 6 k − 2 andm>m(Vα,β) + 1.

Let q = ϕ(T )/T . Recall that t= T · (q/p) · (ϕ(q)/p) · (ϕ2(q)/p) · · · . The roots of

ϕn(q)/p= ((1 + T )p
n+1 − 1)/(p((1 + T )p

n − 1))

are µpn+1\µpn . Let t′ =
∏
n>m(Vα,β)(ϕ

n(q)/p). Since ((d/dT )jS)(ηpm − 1) = 0 for 06 j 6 k − 2
and m>m(Vα,β)+1, we conclude that (t′)k−1 divides S in R+

L ; we denote by S′ the quotient.

The right-hand side of (4.12) is equal to

res0

(
S

tk−1(1 + T )

)
= res0

(
p(k−1)(m(Vα,β)−1)S′∏

ηp
m(Vα,β)

=1
(T + 1− η)k−1

)
.

Applying Lemma 4.7, we get that

res0

(
p(k−1)(m(Vα,β)−1)S′∏

ηp
m(Vα,β)

=1
(T + 1− η)k−1

)

=
∑

ηp
m(Vα,β)

=1

p(k−1)(m(Vα,β)−1)((d/dT )k−2S′/(1 + T ))(η − 1)
(k − 2)!

∏
η′p

m(Vα,β)
=1,η′ 6=η

(η − η′)k−1

=
∑

ηp
m(Vα,β)

=1

ηk−1((d/dT )k−2S′/(1 + T ))(η − 1)
pk−1(k − 2)!

, (4.14)

where we used
∏
η′p

m(Vα,β)
=1,η′ 6=η

(η − η′) = ((d/dT )T p
m(Vα,β)

)(η) = pm(Vα,β)/η.
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The last line of (4.14) is equal to∑
ηp
m(Vα,β)

=1

ηk−1

pk−1(k − 2)!

(k−2∑
j=0

(
k − 2
j

)((
d

dT

)j
S′
)

(−1)k−2−j

(1 + T )k−1−j

)
(η − 1)

=
∑

ηp
m(Vα,β)

=1

k−2∑
j=0

(−1)k−jηj

pk−1j!(k − 2− j)!

((
d

dT

)j
S′
)

(η − 1)

=
∑

ηp
m(Vα,β)

=1

(k−2∑
j=0

j∑
i=0

(−1)k−jηj

pk−1i!(j − i)!(k − 2− j)!

×
((

d

dT

)j−i
S

)(
d

dT

)i
(t′)1−k

)
(η − 1). (4.15)

A short computation shows that for any i> 0, there exists a c(i) ∈ Zp such that
((d/dT )i(t′)1−k)(η − 1) = c(i)η−i for any η ∈ µ

p
m(Vα,β) . Thus, the last line of (4.15) is equal to

∑
ηp
m(Vα,β)

=1

k−2∑
j=0

j∑
i=0

(−1)k−jηic(j − i)
pk−1i!(j − i)!(k − 2− j)!

((
d

dT

)i
S

)
(η − 1). (4.16)

Put C(i, j) = (−1)k−jc(j − i)/C(α, β)pk−1(j − i)!(k − 2− j)!. Then (4.16) is equal to∑
ηp
m(Vα,β)

=1

k−2∑
j=0

j∑
i=0

C(i, j)
i∑

h=0

(
α(−1)

∫
Qp

(
z

h

)
Ism(1Zp · ηz) dµα(z)

∫
Zp

(
−z
i− h

)
η−z dλα(z)

− β(−1)
∫

Zp

(
z

h

)
ηz dµα(z)

∫
Zp

(
−z
i− h

)
Ism(1Zp · η−z) dλα(z)

+ α(−1)
∫

Qp

(
0 1
1 0

)((
z

h

)
Ism(1pZp · ηz)

)
dµα(z)

×
∫

Qp

(
0 1
1 0

)((
−z
i− h

)
1pZp · η−z

)
dλα(z)

− β(−1)
∫

Qp

(
0 1
1 0

)((
z

h

)
1pZp · ηz

)
dµα(z)

×
∫

Qp

(
0 1
1 0

)((
−z
j − i

)
Ism(1pZp · η−z)

)
dλα(z)

)
. (4.17)

We now prove that (4.17) is equal to 0. Let Y be the L-vector space generated by all the(−z
i−h
)
η−z,

(−z
i−h
)
Ism(1Zp · η−z), (0 1

1 0)
((−z
i−h
)
1pZp · η−z

)
and (0 1

1 0)
((−z
i−h
)
Ism(1pZp · η−z)

)
for all 06

h6 i6 k − 2 and η ∈ µ
p
m(Vα,β) . Let e= {f1(z), . . . , fn(z)} be an L-basis of Y . We expand (4.17)

in the form
n∑

m=1

∫
Qp
gm(z) dµα(z)

∫
Qp
fm(z) dλα(z) (4.18)

for some gm(z) ∈ π(β−1|x|k−1). We claim that all the terms
∫

Qp gm(z) dµα(z) are zero. In fact,
for any 16m0 6 n, since Y ⊆ π(α)⊆B(α)/L(α), applying the Hahn–Banach theorem to the
Banach space B(α)/L(α), we pick λ′α ∈ (B(α)/L(α))∗ such that

∫
Qp fm(z) dλ′α(z) 6= 0 if and

59

https://doi.org/10.1112/S0010437X11005525 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005525


R. Liu

only if m=m0. Let λ′β = λ′α ◦ Î. By Theorem 3.18, we know that F(λ′α, λ
′
β) ∈D\(V̌α,β)�P1.

Hence, {(z ⊗ dT/(1 + T ), z′ ⊗ dT/(1 + T ))⊗ e′, F(λ′α, λ
′
β)}P1 = 0 by Theorem 3.9. This implies

that

0 =
n∑

m=1

∫
Qp
gm(z) dµα(z)

∫
Qp
fm(z) dλ′α(z) =

∫
Qp
gm0(z) dµα(z)

∫
Qp
fm0(z) dλ′α(z),

yielding
∫

Qp gm0(z) dµβ(z) = 0. We conclude that (4.17) is zero. 2

Remark 4.10. Although it is not difficult to compute each integral appearing in (4.17), it looks
very difficult to show that (4.17) is equal to zero by a direct computation. Here we show
that (4.17) is zero by Theorem 3.18, which is actually proved by some topological argument
(see [Col10d] for more details).

Proof of Theorem 4.1. By Proposition 4.9, we have Fan((A(α)⊕π(β) A(β))∗)⊆D\
rig(V̌α,β)�P1

because D\
rig(V̌α,β)�P1 is the orthogonal complement of D\(V̌α,β)�P1. By Theorem 3.10(i),

we have D\
rig(V̌α,β)�P1 = (Π(Vα,β)an)∗. So, (4.1) implies the following commutative diagram.

(B(α)/L(α))∗

(i◦iα,β)∗

��

F // Π(Vα,β)∗

��
(A(α)⊕π(β) A(β))∗ Fan // (Π(Vα,β)an)∗

From Proposition 1.17, we get that Fan ◦ i∗α,β is an isomorphism because F is an isomorphism. By
the construction of Fan, it is clear that Fan is injective. We conclude that both i∗α,β and Fan are
isomorphisms. Therefore, i∗α,β is a topological isomorphism because the topology of coadmissible
modules is canonical, yielding that iα,β is a topological isomorphism. 2

Remark 4.11. Note that the mere existence of (4.1) already implies that i∗α,β is injective. In
fact, by (4.1), we see that Fan ◦ i∗α,β maps ((B(α)/L(α))an)∗ one-to-one onto D\

rig(V̌α,β)�P1.
This yields that i∗α,β is injective. One can also prove the surjectivity of i∗α,β by results from
representation theory [BB10, Corollaires 5.3.6, 5.4.3]. Our treatment here is completely different.
We actually prove the surjectivity of i∗α,β by Proposition 4.9. The advantage of our method is
that the way of proving Proposition 4.9 is quite general. One can adapt it to prove similar results
in other cases.

5. Computation of Jacquet modules

In [Eme06b], Emerton introduced the notion of locally analytic Jacquet modules. Recall that
if W is a locally analytic GL2(Qp)-representation of compact type, then the Jacquet module
JB(Qp)(W ) is a certain locally analytic representation of T(Qp) over L functorially associated
to W . We do not recall the definition here (see [Eme06b] for more details). But, we do recall that
JB(Qp)(U) is additive and left exact. In this section, we will prove [Eme06a, Conjecture 3.3.1(8)]
for those V ∈S cris

∗ which are not exceptional. We learned this proof from Emerton. We are
grateful to him for allowing us to put it in this paper.

Proposition 5.1. If α 6= β, then

JB(Qp)(B(Vα,β)an) = L · (xk−2β ⊗ α|x|−1)⊕ L · (xk−2α⊗ β|x|−1).
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Proof. Note that there is a short exact sequence

0−→ π(β)−→A(β)−→ (IndGL2(Qp)
B(Qp) xk−1β ⊗ α(x|x|)−1)an −→ 0.

(This follows from the short exact sequence (∗) on page 123 of [ST01].) It follows from
Theorem 4.1 that B(Vα,β)an fits into the following short exact sequence:

0−→ (IndGL2(Qp)
B(Qp) α⊗ xk−2β|x|−1)an −→ B(Vα,β)an −→ (IndGL2(Qp)

B(Qp) xk−1β ⊗ α(x|x|)−1)an −→ 0.
(5.1)

Applying the functor JB(Qp) to (5.1), we obtain a short exact sequence

0 −→ JB(Qp)((IndGL2(Qp)
B(Qp) α⊗ xk−2β|x|−1)an)

−→ JB(Qp)(B(Vα,β)an)−→ JB(Qp)((IndGL2(Qp)
B(Qp) xk−1β ⊗ α(x|x|)−1)an) (5.2)

because Jacquet functor is left exact. By [Eme06b, Proposition 5.2.1(1), (3), (4)], we get

JB(Qp)((IndGL2(Qp)
B(Qp) α⊗ xk−2β|x|−1)an) = L · (xk−2β ⊗ α|x|−1)⊕ L · (xk−2α⊗ β|x|−1)

and
JB(Qp)((IndGL2(Qp)

B(Qp) xk−1β ⊗ α(x|x|)−1)an) = L · (x−1α⊗ xk−1β|x|−1).

We claim that the map from the middle term to the last term in (5.2) vanishes. It is obvious that
this claim yields the desired result. We will prove this claim in the rest of the section. If the claim
is not true, then the map from the middle term to the last term in (5.2) must be surjective since
JB(Qp)((IndGL2(Qp)

B(Qp) xk−1β ⊗ α(x|x|)−1)an) is only one dimensional. So, there must be an inclusion
L · (x−1α⊗ xk−1β|x|−1) ↪→ JB(Qp)(B(Vα,β)an) because the character x−1α⊗ xk−1β|x|−1 does not

appear in JB(Qp)((IndGL2(Qp)
B(Qp) α⊗ xk−2β|x|−1)an). It follows from [Eme06a, Theorem 5.2.5] that

this inclusion leads to a map

(IndGL2(Qp)
B(Qp) xk−1β ⊗ α(x|x|)−1)an→ B(Vα,β)an

which would split the exact sequence (5.1). However, by [Eme06a, Lemma 6.7.4], we know
that (5.1) is non-split, yielding a contradiction. 2

We next recall some notation introduced in [Eme06a]. In the following, let V be a two-
dimensional L-linear representation of GQp .

Definition 5.2. A refinement of V is a triple R= (η, c, r), where:

(i) η is a continuous character GQp → L× such that V (η−1) has at least one Hodge–Tate weight
equal to zero;

(ii) c ∈ L×;
(iii) r is a non-zero GQp-equivariant L-linear map V ∗(η)→ (L⊗Qp Bcris)ϕ=c.

Note that we may regard r as a non-zero element of D+
cris(V (η−1))ϕ=c. We say that a pair

of refinements R1 = (η1, c1, r1) and R2 = (η2, c2, r2) are equivalent if there exist c′ ∈ O×L and
0 6= x ∈ (L⊗Qp Qur

p )ϕ=c′ such that r2 = xr1 (and hence such that η2 = η1ur(c′−1) and c2 = c′c1).
Let [R] denote the equivalence class of refinements which R belongs to.

Definition 5.3. If R= (η, c, r) is a refinement of V , then we define the associated abelian
Weil group representation to be the map σ(R) : Wab

Qp
∼= Q×p → T(L) defined via the characters

(η ur(c), (det V )η−1ur(c−1)). If R′ is equivalent to R, then it is clear to see that σ(R′) = σ(R).

61

https://doi.org/10.1112/S0010437X11005525 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005525


R. Liu

Remark 5.4. One can show that V has at least one refinement if and only if V is a trianguline
representation. In fact, suppose that R= (η, c, r) is a refinement of V . We regard r as an element
of D+

cris(V (η−1))⊆ (D†rig(V (η−1)))Γ. Let M be the saturation of the rank-one (ϕ, Γ)-submodule

RLr in D†rig(V (η−1)). Twisting the short exact sequence

0−→M −→D†rig(V (η−1))−→D†rig(V (η−1))/M −→ 0

of (ϕ, Γ)-modules with RL(η), we obtain a triangulation

0−→M(η)−→D†rig(V )−→D†rig(V )/(M(η))−→ 0

of D†rig(V ). Conversely, suppose that D†rig(V ) has a triangulation

0−→RL(δ1)−→D†rig(V )−→RL(δ2)−→ 0.

Let η :GQp → L× be the character defined by η(g) = δ1(χ(g)), c= δ1(p), and let r be a non-zero
element of (RL(δ1η

−1))Γ. We get a refinement R= (η, c, r) of V .

Definition 5.5. Let Ref(V ) denote the set of equivalence classes of refinements of V . For any
σ ∈Homcont(Wab

Qp , T(L)), set Refσ(V ) = {[R] | σ(R) = σ}.

If we fix σ, then it is not difficult to see that Refσ(V ) is either empty or a point, except in the
case V = η ⊕ η and σ = η ⊗ η, where Refσ(V )∼= P1(L). Thus, we regard Refσ(V ) as projective
space over L and denote its dimension by dim Refσ(V ).

Definition 5.6. Let W be a compact-type locally analytic GL2(Qp)-representation over L.

(i) Define Exp(W ) to be the set of one-dimensional T(Qp)-invariant subspaces of JB(Qp)(W ).

(ii) For any line l ∈ Exp(W ), write δ(l) ∈Homcont(T(Qp), L×) to denote the character via
which T(Qp) acts on l.

(iii) For any δ ∈Homcont(T(Qp), L×), write Expδ(W ) := {l ∈ Exp(W ) | δ(l) = δ}.

If we fix a character χ, then Expδ(W ) has the structure of a projective space; namely, it
is the projectivization of the χ-eigenspace JχB(Qp)(W ). We then define dim Expδ(W ) to be the
dimension of this projective space.

We identify Homcont(T(Qp), L×) with Homcont(Wab
Qp , T(L)) via the isomorphism Q×p ∼= Wab

Qp
provided by the local Artin map. The following corollary verifies [Eme06a, Conjecture 3.3.1(8)],
which relates the space of refinements of V and Jacquet modules of B(V )an, in the case
when V ∈S cris

∗ is not exceptional. Let us remind the reader that our normalization of
the p-adic local Langlands correspondence for GL2(Qp) differs by a twist of (x|x|)−1 ◦ det
from the normalization chosen by Emerton, as explained in § 3.1. So, the right-hand side
of (5.3) is dim Expη|x|⊗xψ(B(V )an ⊗ (x|x| ◦ det)) instead of dim Expη|x|⊗xψ(B(V )an) in Emerton’s
formulation.

Corollary 5.7. Keep notation as above. If V ∈S cris
∗ is not exceptional, then

dim Refη⊗ψ(V ) = dim Expη|x|⊗xψ(B(V )an ⊗ (x|x| ◦ det)) (5.3)

for any η ⊗ ψ ∈Homcont(T(Qp), L×).

Proof. Since V ∈S cris
∗ , we get that V = Vα,β(δ) for some pair (α, β) and δ ∈Homcont(GQp , L

×).
Furthermore, the condition that V is not exceptional implies that Vα,β is not exceptional,
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yielding α 6= β. It suffices to prove the corollary for Vα,β. By Proposition 5.1, we first have

dim Expη|x|⊗xψ(B(Vα,β)an ⊗ (x|x| ◦ det)) =


0 if (η, ψ) = (xk−1β, α);
0 if (η, ψ) = (xk−1α, β);
−1 otherwise.

On the other hand, by the construction of D(α, β), it is clear to see that

D+
cris(Vα,β(1− k))ϕ=α(p)pk−1

= L · eα.

Therefore, Rα = (χk−1, α(p)pk−1, eα) is a refinement of V . Similarly, Rβ = (χk−1, β(p)pk−1, eβ)
is also a refinement of Vα,β. A straightforward computation shows that

σ(Rα) = xk−1β ⊗ α and σ(Rβ) = xk−1α⊗ β.

By [Eme06a, Proposition 4.2.4], we know that Vα,β has only two inequivalent refinements. Since
σ(Rα) 6= σ(Rβ), we conclude that Rα and Rβ are exactly all the inequivalent refinements of V .
It follows that

dim Refη|x|⊗xψ(Vα,β) =


0 if (η, ψ) = (xk−1β, α);
0 if (η, ψ) = (xk−1α, β);
−1 otherwise,

yielding the desired result. 2

Remark 5.8. The result of Corollary 5.7 also follows from [Eme06a, Proposition 6.6.5]. In fact,
the assumption on locally algebraic vectors in [Eme06a, Proposition 6.6.5(2)] has now been
proved by Colmez [Col10d]. The dimension of the left-hand side of the inequality in [Eme06a,
Proposition 6.6.5(3)] is always −1 for our V , and so that inequality becomes an equality.
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Del71 P. Deligne, Formes modulaires et représentations l-adiques, in Sém. Bourbaki 1968/1969, exp.

343, Springer Lecture Notes, vol. 179 (Springer, 1971), 139–172.
Eme06a M. Emerton, A local–global compatibility conjecture in the p-adic Langlands programme for

GL2/Q, Pure Appl. Math. Q. 2 (2006), 279–393.
Eme06b M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups I.

Construction and first properties, Ann. Sci. Éc. Norm. Supér. 39 (2006), 353–392.
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