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Propulsion due to thermal streaming
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We demonstrate that the relative motion of horizontal parallel plates can be generated
using patterned heating. This movement is driven by nonlinear thermal streaming
associated with a pitchfork bifurcation. The propulsive effect is strongest when all the
heating energy is concentrated in a single Fourier mode of the spatial heating pattern;
it increases with a decrease in the Prandtl number and increases with the addition of a
uniform heating component.
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1. Introduction

Propulsion is the action required to move a fluid through a conduit or to move a body
through an expanse of a fluid. A propulsion system must have a source of mechanical
power, and converting this power into a propulsive force represents a classical problem
in fluid mechanics. One can divide propulsive systems into concentrated propulsion,
e.g. pumps, fans, jets and propellers, and distributed propulsion, where the driving
force is distributed along the surface of a solid body. Most technical applications rely
on concentrated propulsion. Many biological systems involving ‘large’ objects involve
concentrated propulsion, e.g. flapping foils for birds and fishes (Mannam & Krishnankutty
2019), but small-scale systems rely on distributed propulsion, e.g. cilia and flagella (Taylor
1951; Blake & Sleigh 1974; Katz 1974; Brennen & Winet 1977; Lauga 2016), and snail
locomotion (Chan, Balmforth & Hosoi 2005; Lee et al. 2008). Bowel movement represents
a ‘large’ biological system relying on distributed propulsion. In general, distributed
propulsion can be found in systems with slow movement, with scaling up to faster
motions presenting a challenge. The use of distributed propulsion in technical applications
has been limited mainly to the peristaltic effect (Fung & Yih 1968; Shapiro, Jaffrin &
Weinberg 1969; Jaffrin & Shapiro 1971; Ali, Ullah & Rasool 2020), with recent results
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showing that fast, short peristaltic waves can provide novel applications (Floryan, Faisal
& Panday 2021; Haq & Floryan 2022).

Distributed propulsion can be used in parallel with concentrated propulsion to achieve a
combined performance level not attainable otherwise. Active flow control fits into this
category, but the vast literature on this topic is focused on expending energy on the
reduction of shear resistance (Cattafesta & Sheplak 2011) with the somewhat futile goal
of achieving net energy savings, i.e. energy savings which are larger than the energy cost
required to achieve this saving. It is more appropriate to look at this area of research as
the development of propulsion augmentation techniques. Net energy savings cannot be
achieved using wall transpiration applied to a smooth conduit (Bewley 2009), but it might
be possible with other distributed forcing forms and non-smooth conduits. It is known
that modifications of surface topography can result in a resistance reduction (Walsh 1983;
Fukagata, Sugiyama & Kasagi 2009; Moradi & Floryan 2013; Mohammadi & Floryan
2013a,b) and can go as far as producing chaotic stirring at an energy cost less than that
required by the unmodified flow (Gepner & Floryan 2020).

The distributed propelling force can be created using externally imposed forcing
(actuation) patterns applied along the fluid–solid boundaries to increase the relative
velocity of the fluid and the solid wall. Older concepts involve plasma-based (Inasawa,
Ninomiya & Asai 2013) and piezo-driven (Fukunishi & Ebina 2001) actuators. The
recently identified effects, beyond the peristaltic waves, include thermal drift created by
the interaction of groove and heating patterns (Abtahi & Floryan 2017; Inasawa, Hara
& Floryan 2021) through the pattern interaction effect (Floryan & Inasawa 2021), and
nonlinear streaming created by distributed wall transpiration (Jiao & Floryan 2021). The
propulsive force can also be created by modulating body forces, e.g. using heating patterns
that modify the flow topology and reduce friction drag (Hossain, Floryan & Floryan 2012;
Floryan & Floryan 2015; Hossain & Floryan 2016). A judicious combination of heating
and groove patterns can significantly increase the magnitude of this effect (Hossain &
Floryan 2020). The use of sound represents another form of volume actuation (Kato,
Fukunishi & Kobayashi 1997) whose potential remains to be explored.

This paper describes another effect capable of creating propulsion. It relies on patterned
heating, which activates nonlinear thermal streaming. The description of the model
problem used to demonstrate this streaming is given in § 2. Its basic properties are
discussed in § 3. Section 4 demonstrates that the streaming can be generated by heating
from above or below. Section 5 provides a summary of the main conclusions.

2. Problem formulation

Consider two parallel plates separated by a gap of thickness 2h∗ filled with fluid, as shown
in figure 1. The gap extends to ±∞ in the x∗-direction, the gravitational acceleration
g∗ acts in the negative y∗-direction, the fluid has thermal conductivity k∗, specific heat
c∗, thermal diffusivity κ∗ = k∗/ρ∗c∗, kinematic viscosity ν∗, dynamic viscosity μ∗,
thermal expansion coefficient Γ ∗, variations of its density ρ∗ follow the Boussinesq
approximation, and stars denote dimensional quantities. Please assume that the upper plate
can move within its plane while the lower plate is stationary.

This analysis determines if introducing external patterned heating can result in plate
movement. We assume that the heating applied to the lower plate results in a simple
sinusoidal temperature distribution while the upper plate is kept isothermal, i.e.

T∗
L(x

∗) = T∗
mean,L + 0.5 T∗

per cos(α∗x∗), T∗
U(x

∗) = T∗
U, (2.1a,b)
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Figure 1. Schematic diagram of the flow system. The upper plate is isothermal and free to move. The fixed
lower plate is exposed to periodic and uniform heatings.

where α∗ is the wavenumber characterizing spatial temperature distribution, subscripts
‘mean’ and ‘per’ refer to the mean and periodic parts, respectively, T∗

per is the peak-to-peak
amplitude of the periodic component, and subscripts L and U refer to the lower and
upper plates, respectively. We use T∗

U for reference with all material properties evaluated
at this temperature and define the relative temperature θ∗ = T∗ − T∗

U to get the relative
temperatures of both plates in the form

θ∗
L (x) = θ∗

uni + 0.5 θ∗
per cos(α∗x∗), θ∗

U(x
∗) = 0, (2.2a,b)

where θ∗
uni = T∗

uni = T∗
mean,L − T∗

U , θ∗
per = T∗

per. Finally, we use half of the mean gap
height h∗ as the length scale and κ∗ν∗/(g∗Γ ∗h∗3) as the temperature scale to find the
dimensionless expressions for the relative temperatures of the form

y = −1: θL(x) = Rauni + 0.5 Raper cos(αx), y = 1: θU(x) = 0, (2.3a,b)

where Rauni = g∗Γ ∗h∗3T∗
uni/(κ

∗ν∗) is the uniform Rayleigh number measuring the
intensity of the uniform heating and Raper = g∗Γ ∗h∗3T∗

per/(κ
∗ν∗) is the periodic Rayleigh

number measuring the intensity of the periodic heating.
Heating produces convection within the gap. If the upper plate does not experience any

external resistance, the shear force produced by this convection may accelerate this plate
until it reaches a constant velocity Utop which eliminates the mean shear. The question if
the upper plate moves or not is determined by solving the following system of the field
equations:

∂u
∂x

+ ∂v

∂y
= 0, u

∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ ∇2u, (2.4a,b)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∇2v + Pr−1θ, u

∂θ

∂x
+ v

∂θ

∂y
= Pr−1∇2θ, (2.4c,d)

where (u, v) are the velocity components in the (x, y) directions, respectively, scaled
with U∗

v = ν∗/h∗ as the velocity scale, p stands for the pressure scaled withρ∗U∗2
ν as the

pressure scale and Pr = ν∗/κ∗ is the Prandtl number. The relevant boundary conditions
are

y = −1: u = v = 0, θ = Rauni + 0.5 Raper cos(αx),

y = 1:
∂u
∂y

∣∣∣∣
mean

= 0, uper = 0, v = 0, θ = 0.

⎫⎬
⎭ (2.5a–g)
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A constraint in the form
∂p
∂x

∣∣∣∣
mean

= 0, (2.6)

has to be added to eliminate any external pressure gradient contributing to the fluid
movement.

Equations (2.4)–(2.6) were solved numerically. Velocities were expressed in terms of a
stream function defined in the usual manner, i.e. u = ∂ψ/∂y, v = −∂ψ/∂x, and pressure
was eliminated, resulting in the following system:

∇4ψ − Pr−1 ∂θ

∂x
= Nvv,

∂2θ

∂x2 + ∂2θ

∂y2 = PrNvθ , (2.7a,b)

where Nvv = ∂

∂y

(
∂

∂x
ûu + ∂

∂y
ûv

)
− ∂

∂x

(
∂

∂x
ûv + ∂

∂y
v̂v

)
, Nvθ = ∂

∂x
ûθ + ∂

∂y
v̂θ,

(2.7c,d)

with hats denoting products of quantities under the hat. The relevant boundary conditions
were written as

y = −1: ψ = ∂ψ

∂y
= 0, θ = Rauni + 0.5 Raper cos(αx), (2.8a–c)

y = 1:
∂ψ

∂y

∣∣∣∣
per

= ψ |per = 0,
∂2ψ

∂y2

∣∣∣∣
mean

= 0, θ = 0, (2.9a–d)

and were supplemented with the proper form of the pressure gradient constraint (2.6). The
x-dependencies of all unknowns, as well as other required quantities, were captured by
expressing them as Fourier expansions based on the heating wave number α, i.e.

[u, v, p, θ, ψ, v̂v, ûu, ûv, ûθ, v̂θ](x, y)

=
n=+Nm∑
n=−Nm

[u(n), v(n), p(n), θ (n), ψ(n), v̂v(n), ûu(n), ûv(n), ûθ(n), v̂θ (n)]( y) einαx, (2.10)

where all modal functions u(n), v(n), p(n), θ (n), ψ(n), v̂v(n), ûu(n), ûv(n), ûθ(n), v̂θ (n) satisfy
the reality conditions, e.g. u(n) is the complex conjugate of u(−n). The expansions were
truncated at NM whose acceptable value was determined through numerical convergence
studies. Substitution of (2.10) into (2.7) and separation of Fourier modes led to a system
of ordinary coupled differential equations for the modal functions θ(n), ψ(n) of the form

[D4 − 2n2α2D2 + n4α4]ψ(n)( y)− inαPr−1θ(n)( y)

= inαDûu(n)( y)+ [D2 + n2α2]ûv(n)( y)− inαDv̂v(n)( y), (2.11a)

D2θ(n)( y)− n2α2θ(n)( y) = Pr[inαûθ(n)( y)+ Dv̂θ (n)( y)], (2.11b)

where D = d/dy, −NM ≤ n ≤ NM and terms on the right-hand side originate from the
nonlinearities. The above system was solved using a fixed point iterative technique with

967 A13-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

48
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.485


Propulsion due to thermal streaming

1

(a) (b)

(c) (d)

0y

–1

1

0y

–1

1

0

–1

1

0

–1

0.5

0

–0.5

0 0.5 1.0 1.5 2.0

x/λ
0 0.5 1.0 1.5 2.0

x/λ
0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0

Figure 2. Flow and temperature fields for Rauni = 0, Pr = 0.71, α = 2 and Raper =
(a) 790, (b) 855, (c) 900, (d) 1100. Dashed lines mark stream tubes carrying fluid in the horizontal
direction. The background colour illustrates the temperature field scaled with its maximum.

the right-hand side taken from the previous iteration. The boundary conditions expressed
in terms of modal functions were

y = −1: ψ(n) = dψ(n)

dy
= 0 for 0 ≤ |n| < +∞,

θ(0) = Rauni, θ(1) = θ(−1) = 1
4 Raper, θ(n) = 0 for 2 ≤ |n| < +∞,

⎫⎬
⎭ (2.12a–f )

y = 1: ψ(n) = dψ(n)

dy
= θ(n) = 0 for 0 < |n| < +∞,

d2ψ((0))

dy2 = 0, θ(0) = 0,

(2.12h–k)

D2ψ(0)(1)− D2ψ(0)(−1) = [ûv(0)(1)− ûv(0)(−1)], (2.12l)

with (2.12l) expressing the pressure gradient constraint and Utop = dψ(0)/dy|y=1 being
the unknown quantity of interest. The modal functions were represented as Chebyshev
expansions, and the Galerkin projection method was used to construct algebraic equations
for the expansion coefficients. The boundary conditions were accommodated using the
tau method. The discretization process provided spectral accuracy with the absolute
error controlled by the number of Chebyshev polynomials and Fourier modes used in
the computations. Using 10 Fourier modes and 45 Chebyshev polynomials provided a
minimum of five digits accuracy for all quantities of interest (Panday & Floryan 2021).

3. Discussion of results

Lighter fluid above hot spots moves upward, forming heated plumes and drawing
fluid along the lower plate from its left and right sides, resulting in the formation of
counter-rotating rolls whose size is dictated by the heating wavelength (see figures 2a and
2b). The rolls have the left/right symmetry producing zero mean shear stress at the upper
plate, which results in no movement of this plate for small enough heating intensities.

An increase in heating intensity produces stronger plumes which may either remain
vertical or tilt to the right or left. Plume tilting results in a loss of the flow symmetry
leading to the formation of a stream tube carrying the fluid either to the left or to the
right (figures 2c and 2d). This movement produces mean shear pulling the upper plate
in the direction of fluid moving in the stream tube. The change in the character of fluid
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Figure 3. Variation of the upper plate velocity Utop as a function of Raper for Rauni = 0 and Pr = 0.71. Points
A, B, C and D identify flow conditions used in figure 2, and points D, E and F identify flow conditions used in
figure 4. Bifurcation points are Raper,cr = 884.5, 1151.22, 1120 for α = 2, 2.8, 1.2, respectively.

motion is best represented by plotting variations of Utop as a function of Raper. This plot
demonstrates that the system response is a pitchfork bifurcation (see figure 3). We shall
refer to the flow corresponding to the bifurcation branches as nonlinear thermal streaming.
This streaming produces a propulsive force causing the plate’s movement.

Figure 2(a) illustrates flow and temperature patterns for Raper = 790 < Raper,cr, which
is far below the bifurcation point Raper,cr = 884.5, figure 2(b) for Raper = 855 < Raper,cr,
which is just below the bifurcation point, figure 2(c) for Raper = 900 > Raper,cr, which is
just above the bifurcation point, and figure 2(d) for Raper = 1100 > Raper,cr, which is far
above the bifurcation point. The gradual increase of the plume’s height with Raper and
its eventual tilting are well visible. The increase of the width of the stream tube weaving
between the rolls as Raper increases is also well visible (figures 2c and 2d). The onset
conditions (bifurcation point) were determined using linear stability theory explained later
in this presentation.

Replacing the zero mean shear with the no-slip condition at the upper plate eliminates
flow asymmetries – the upper plate ‘holds’ the plume in a vertical position preventing its
tilting in agreement with Hossain & Floryan (2013).

Points D, E and F in figure 3 identify three types of flows that may occur for the same
flow conditions with their topologies illustrated in figure 4. Existence of multiple flows
under nominally identical conditions leads to the question of their stability as only stable
flow can be observed in nature. Stability of flows was tested using linear stability theory,
where disturbances in the form

[uD, vD, pD, θD, ψD](x, y, t) = ei(δx−σ t)
n=+∞∑
n=−∞

[u(n)D , v
(n)
D , p(n)D , θ

(n)
D , ψ

(n)
D ]( y) einαx + c.c.,

(3.1)

were superimposed on the stationary state (Floryan 1997; Hossain & Floryan 2013,
2015). In the above, subscript D denotes the disturbance quantities, δ is the disturbance
wavenumber, σ = σr + iσi is the complex frequency with σi describing the rate of
growth of disturbances and σr describing their frequency, summation accounts for the
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Figure 4. Flow and temperature fields that may exist for Rauni = 0, α = 2, Pr = 0.71 and Raper = 1100.
Dashed lines mark stream tubes carrying fluid in the horizontal direction. The background colour illustrates
the temperature field scaled with its maximum. Panels (a)–(c) correspond to flow conditions marked as points
D, E and F in figure 3, respectively.

heating-induced spatial modulations and u(n)D , v
(n)
D , p(n)D , θ

(n)
D , ψ

(n)
D are modal functions

corresponding to mode n. The relevant boundary conditions have the form

y = 1: uD,per = ∂uD

∂y

∣∣∣∣
mean

= vD = θD = 0, (3.2a–d)

y = −1: uD = vD = θD = 0. (3.2e–g)

Substitutions of (3.1) into the field equations, linearization and separation of Fourier modes
lead to a system of modal equations of the following form

A(n)ψ(n)D − itnPr−1θ
(n)
D = i

+∞∑
m=−∞

[tmDψ(n−m)H(m)ψ
(m)
D + (n − m)αI(n−m)ψ(n−m)Dψ(m)D

− (n − m)αψ(n−m)H(m)Dψ(m)D − tmI(n−m)ψ(n−m)ψ
(m)
D ],

(3.3a)
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Middle branch (subcritical) Middle branch (supercritical) Upper branch
Rap = 500, α = 2 Rap = 900, α = 2 Rap = 900, α = 2

0 − 0.34614i 0 + 0.013054i 0 − 0.027088i
0 − 3.81465i 0 − 4.069478i 0 − 4.06012i
0 − 11.15036i 0 − 10.40960i 0 − 11.46477i
0 − 15.842614i 0 − 16.74183i 0 − 16.22023i
0 − 20.17566i 0 − 20.16715i 0 − 19.94334i

Table 1. Complex amplification rates for the top five eigenvalues.

C(n)Θ(n)
D = i Pr

+∞∑
m=−∞

[tmDψ(n−m)θ
(m)
D + (n − m)αθ(n−m)Dψ(m)D

− (n − m)αψ(n−m)Dθ(m)D − tmDθ(n−m)ψ
(m)
D ]. (3.3b)

In the above, ψD stands for the disturbance stream functions defined in the usual manner,
A(n) = (D2 − t2n)

2 + iσ(D2 − t2n), C(n) = D2 − t2n + i Prσ , I(n−m) = D2 − (n − m)2α2,
H(n) = D2 − t2n, tn = δ + nα,D = d/dy. It can be shown that movement of the upper plate
is allowed only when δ = 0. The eigenvalue problem for the modal equations was solved
by representing modal functions in terms of Chebyshev expansions and using the Galerkin
projection method to develop a matrix eigenvalue problem which was then solved using
standard techniques. The middle branch was found to be stable below the bifurcation point
and unstable above this point. The side branches were found to be stable. Table 1 gives
the top five eigenvalues for the middle branch under subcritical conditions, and the top
and middle branches under supercritical conditions. The numerical values suggest a weak
instability.

The critical conditions leading to bifurcation depend on the heating pattern quantified
by the heating wavenumber, as illustrated in figure 5. This problem can be viewed as
an interaction of thermal plumes forming a spatial pattern. The most effective pattern
producing bifurcation at the lowest Raper,cr occurs for α ≈ 2, as demonstrated in figure 5.
Plumes, which are either too far from each other or too close, do not produce bifurcation
in the range of Raper used in this analysis.

Here, Raper,cr strongly depends on the Prandtl number, whose reduction decreases
the minimum heating intensity required to effect bifurcation, as shown in figure 6. This
demonstrates the relevance of the horizontal temperature gradients, which decrease with
an increase of Pr everywhere except in the thermal boundary layer in the vicinity of the
lower plate. These gradients, displayed in figure 7, directly measure the horizontal gradient
of buoyancy force that drives the fluid movement. They must increase significantly with
an increase of Pr to produce the same Utop, as illustrated in figure 7.

Data in figure 8 illustrate the effects of uniform heating added to the lower plate.
A modest increase in such heating results in a significant reduction of Raper,cr, i.e. the
use of Rauni = 100 reduces Raper,cr from 882 to 605. Uniform cooling has the opposite
effect by increasing Raper,cr from 882 at Rauni = 0 to 1170 at Rauni = −100.

The above predictions require experimental verification. We recommend using a
small Prandtl number liquid, such as Galinstan, placing a light sheet on the upper
surface and measuring its movement. A suitable combination of periodic and uniform
heating can generate a sufficient floating sheet velocity to permit accurate measurements.
An estimate based on periodic heating with amplitude A∗ = 10◦C, Raper = 500,
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Figure 5. Variations of the critical periodic Rayleigh number Raper,cr resulting in the movement of the upper
plate as a function of the wavenumber α for Pr = 0.71 and Rauni = 0.

5
A B C

1.510.71

Pr = 0.15

0U
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Utop = 5

Utop = 5
–5

0 1000

Raper
2000

Figure 6. Variation of the upper plate velocity Utop as a function of Raper for α = 2, Rauni = 0 and
Pr = 0.15, 0.71, 1. Circles identify flow conditions used in figure 7. Bifurcation points are Raper,cr =
224, 884.5, 1204, 1755 for Pr = 0.15, 0.71, 1, 1.5, respectively.
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Figure 7. Flow fields and horizontal temperature gradients for Rauni = 0, α = 2 and (a) Pr = 0.15, Raper =
261, (b) Pr = 0.71, Raper = 1140 and (c) Pr = 1, Raper = 1685. Dashed lines mark stream tubes carrying
fluid in the horizontal direction. Background colours illustrate the horizontal gradients of the buoyancy force
scaled with Raper.
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Figure 8. Variation of the upper plate velocity Utop as a function of Raper for α = 2, Pr = 0.71 and
Rauni = 100, 50, 0,−50,−100. Bifurcation points are Raper,cr = 605, 745, 884.5, 1027, 1170 for Rauni =
100, 50, 0,−50,−100, respectively.

g∗ = 9.81 m s−2, k∗ = 16.5 W m−1 ◦C, ρ∗ = 6.44 × 103 kg m−3, c∗ = 296 J kg−1 ◦C,
κ∗ = 8.66 × 10−6 m2 s−1, v∗ = 3.73 × 10−7 m s−2, μ∗ = 0.0024 Pa s and Γ ∗ = 18.3 ×
10−6 ◦C−1 gives the expected plate velocity of order mm s−1. The above represents an
estimate, as Galinstan is a mixture of different materials, and its properties may change
with the details of the composition.

We shall now consider more complex temperature distributions, which require using
several Fourier modes for their characterization. All temperature distributions can be
presented as

θL(x) = RaperH(x), (3.4a)

where H is the known shape function describing their spatial distributions satisfying
condition

max[H(x)] − min[H(x)] = 1, (3.4b)

which maintains Raper as a measure of the intensity of the heating. We shall focus on
shapes involving just two wavenumbers, i.e. β and γ , to illustrate the complexity and
unpredictability of possible flow responses. The shape function has the form

H(x) = K(x)/{max K(x)− min K(x)}, K(x) = Bβ cos(βx)+ Bγ cos(γ x +Ω),
(3.5a,b)

where Bβ and Bγ denote the amplitudes of each component, andΩ is the phase difference
between them. We shall classify possible shapes using the commensurate index defined as

CI = γ /β, (3.6)

where CI = n and CI = 1/n, with n being an integer, describe distributions formed by
subharmonic/superharmonic components and represent particular forms of commensurate
systems. More complex rational values lead to complicated distributions – the resulting
flow systems are periodic, with wavelengths varying by several orders of magnitude.
The irrational values describe aperiodic distributions (the non-commensurate systems).
Truncation inherent to computer architecture prevents accessing the latter systems as the
resulting CI terms become rational. If one assumes that the system wavelength is λs,
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Figure 9. Variations of the upper plate velocity Utop as a function of the phase differenceΩ for Raper = 1200,
Rauni = 0, Pr = 0.71 and (β, γ ) = (2, 6), (2, 4). The dotted lines show the reference case of Utop achieved
using heating with a single wavenumber α = 2.
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Figure 10. Flow and horizontal temperature gradients for Raper = 1200, Rauni = 0, Pr = 0.71,Ω = 3π/2
for (β, γ ) = (a) (2, 0), (b) (2, 4), (c) (2, 6). Dashed lines mark stream tubes carrying fluid in the horizontal
direction. Background colour illustrates the horizontal temperature gradient scaled with Raper .

then such a system must contain an integer number of wavelengths of each component,
i.e. λs = mλβ = nλγ . Once β and γ have been selected and assuming for simplicity that
Bβ = Bγ = 1, the temperature distribution H(x) depends only on Ω which varies in the
range 0 ≤ Ω ≤ 2π.

Responses of flow system to heatings involving two wavenumbers are illustrated
in figure 9 for two cases, i.e. (β, γ ) = (2, 6), (2, 4), which lead to the same system
wavelengths λs = π. The magnitude of Utop is significantly smaller when compared with
the one-mode heating, and its direction changes as a function of Ω in an antisymmetric
manner with respect to Ω = π. The phase difference between the modes plays a control
parameter changing both the magnitude and the direction of Utop.

Horizontal temperature gradients determine the horizontal gradients of buoyancy force
driving convection. When heating involves one Fourier mode, these gradients change
direction only once per wavelength (see figure 10a). Using two Fourier modes doubles
the number of direction changes producing weaker convection (see figure 10b,c). The
use of still more complex temperature distributions requiring multiple Fourier modes
further increases the frequency of direction changes of the driving force, thus reducing the
effectiveness of convection. One may conclude that the best propulsion is achieved when
all heating energy is placed in one Fourier mode or, at the least, temperature distributions
leading to multiple changes of direction of the horizontal temperature gradient are avoided.
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These limited results demonstrate that a wide range of possible behaviors of the
flow system arises when it is subject to heating governed by multiple wavenumbers.
We intended to highlight the wealth of possible phenomena rather than prosecuting an
exhaustive analysis. It is not straightforward to infer the likely properties of the flow under
such conditions without the use of a combination of analysis and computations.

4. Heating of the upper plate

Consider moving periodic heating from the lower to the upper plate, making the upper
plate stationary and allowing the lower plate to move. Boundary conditions (2.5) need to
be replaced with

y = −1:
∂u
∂y

∣∣∣∣
mean

= 0, uper = 0, v = 0, θ = 0,

y = 1: u = v = 0, θ = 0.5 Raper cos(αx). (4.1a,b)

It is relatively simple to show that the governing systems for the two problems are closely
related. If we move the heating to the upper plate and then make transformation u → −U,
v → −V , p → P, θ → −θ , x → −X + π, y → −Y , we find that the underlying equations
are unchanged, but the thermal boundary conditions are reversed in sign. Given this
relationship between the two cases, there is no need to dwell further on the stationary
heated upper plate and moving lower plate, as all the interesting properties can be inferred
directly from the results when the lower plate is stationary and heated. The same relative
movement of the plates can be created by heating the lower or the upper plate.

5. Summary

It has been demonstrated that patterned heating can be used to generate a propulsive effect.
The model problem consisted of two parallel horizontal plates, with the upper plate being
free to move and not exposed to any external resistance. The lower plate was subject to
simple sinusoidal heating, and the resulting convection created shear at the upper plate,
which accelerated this plate until the mean shear was eliminated. This effect is referred to
as thermal streaming. The plate motion was possible only for sufficiently intense heating
with the proper spatial distribution. The diagram showing variations of the upper plate
velocity as a function of the heating intensity is a pitchfork bifurcation. The effectiveness
of thermal streaming decreases when either too long or too short heating wavelengths
are used. Reducing the Prandtl number increases its effectiveness, similar to adding a
uniform heating component. It was further shown that the best effect is achieved by
concentrating the heating energy in a single Fourier mode. Finally, it was shown that the
thermal streaming effect occurs regardless of the heated plate.
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