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Abstract

The free surface flow of a finite depth fluid past a semi-infinite body is considered. The fluid
is assumed to have constant vorticity throughout and the free surface is assumed to attach
smoothly to the front face of the body. Numerical solutions are found using a boundary
integral method in the physical plane and it is shown that solutions exist for all supercritical
Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a
comer is also considered. Vorticity is included in the flow and it is shown that the behaviour
of the solutions is qualitatively the same as that found in the problem described above.

1. Introduction

Two-dimensional bow flows have been given much consideration over the years with
the hope of reaching a greater understanding of the nature of flows about wide bodies,
such as barges. These bow flows can be divided into two groups, depending on the
behaviour of the free surface when it intersects the body. The first is when the free
surface meets the body at a stagnation point, while the second is when the free surface
attaches to the body smoothly. This paper is concerned with the latter configuration
where we consider the flow of a rotational fluid past a semi-infinite body in a fluid of
finite depth.

In the stagnant attachment case, irrotational bow flows with no waves upstream
have been found by Vanden-Broeck [14] for a finite depth fluid. These results have
been extended by McCue and Forbes [12] to allow the fluid to have constant vorticity.
All these solutions have been found for supercritical Froude numbers. For subcritical
Froude numbers, McCue and Forbes have also found flows with waves. As these
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[2] Smoothly attaching bow flows 355

solutions do not satisfy the radiation condition upstream, they must represent some
sort of stern flow.

Stagnant attachment flows in infinite depth have been found by various authors,
see for example [1, 10, 18, 19]. Only Madurasinghe [10], however, has claimed
to have found waveless bow flows which approach a uniform stream. The results
by Madurasinghe have been disputed by Farrow and Tuck [1], who show that these
solutions did exhibit waves, although admittedly with very small amplitude.

In the case of smoothly attaching flows, Farrow and Tuck [1] did find solutions
whose free surface was flat upstream. Similar results were first found by Madurasinghe
and Tuck [11]. For a finite depth fluid, Hocking [7] has found waveless solutions for
all values of the Froude number F > 1. Here the front face of the bow was inclined
at some arbitrary angle.

The present study continues the work by McCue and Forbes [12] and investigates
the flow of a rotational fluid past a semi-infinite two-dimensional body. The free
surface is assumed to attach to the front face of the body smoothly so that this work
is an extension of that done by Hocking [7], for the case of a vertical face. The
problem is solved numerically using a boundary integral method in the physical plane
and waveless solutions are found to exist for all supercritical Froude numbers. No
solutions with waves could be found.

In the limit as the height of the body above the horizontal bottom approaches zero,
the problem is the same as that for the flow due to a line sink in a corner beneath a
cusp-like free surface. These flows have been calculated in the past by Hocking [4,5]
and Vanden-Broeck and Keller [17] for the case when the flow is irrotational. This
problem involving a cusped free surface due to a line sink is also considered here
as a special limiting flow, but it is assumed that the fluid has a constant vorticity
throughout and that there is uniform shear flow upstream. It is found that the results
are qualitatively similar to those obtained for the bow flow case considered earlier in
this paper.

2. Bow flows with smooth attachment

2.1. Mathematical formulation We consider the steady flow of a rotational fluid
past a semi-infinite rectangular body, as shown in Figure 1. It is assumed that the fluid
is inviscid and incompressible and that the vorticity a> is constant throughout the flow.
Upstream, the flow approaches a uniform shear flow with speed c on the horizontal
bottom and speed c + coH on the free surface, which is at the constant height H
above the bottom. The comer of the body is rounded, with radius R, and the height of
the body above the bottom is D. Finally, it is assumed that the free surface attaches
smoothly to the front face of the body.
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FIGURE 1. A definition sketch in non-dimensional variables of the free surface flow of a rotational fluid
past a semi-infinite body.

A Cartesian coordinate system is introduced so that the x -axis lies on the horizontal
bottom and the y-axis overlaps the front face of the body. The problem is now non-
dimensionalised so that all lengths are scaled with respect to the upstream fluid depth
H and all velocities are scaled with respect to the upstream bottom speed c. Given this
choice of non-dimensionalisation, the problem depends on four parameters. These
are the Froude number F = c/y/gH which is a measure of the fluid speed upstream
when there is no vorticity, the dimensionless vorticity parameter Q = o)H/c, the
dimensionless gap height k = D/H and the dimensionless circle radius a = R/H.
Here g is the acceleration due to gravity.

It can be shown from the linear dispersion relation (see McCue and Forbes [12])
that the critical Froude number using these parameters is F = 1/VT+~J2. For Froude
numbers less than this critical value, linear theory predicts that periodic, steady waves
may exist on the free surface. However, for Froude numbers greater than the critical
value, these waves are not possible. When the vorticity J2 = 0, the flow is irrotational,
and the critical Froude number reduces to F = 1, which is as expected.

The flow considered here is rotational and hence can be described by the non-
dimensional stream function ir{x,y) that satisfies

= n, (i)

throughout the flow region. The problem is simplified by noting that if we write

= y + - (2)

then the function * satisfies Laplace's equation V2* = 0. This act of subtracting a
particular solution of (1) has been used by other authors in the study of surface waves
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with constant vorticity (see for example Teles da Silva and Peregrine [13], Vanden-
Broeck [15] and Forbes and Belward [3]). It follows from (2) that the complex
quantity

U-iV = % + Mx (3)

is an analytic function of z = x+iy in the flow domain and that the x and y components
of the velocity vector can be expressed as

1

dxfr
v(x, y) = —— = V(x, y).

ox

Also, there exists a harmonic conjugate function 4>(x, y) such that both <J> and *
satisfy the Cauchy-Riemann equations, since * is a solution to Laplace's equation.

We solve the problem in the physical plane by using the integral equation method
employed by McCue and Forbes [12] in the similar problem of stagnant attachment
bow flows. This integral equation method is similar to that used by many other authors,
such as Forbes [2] and Vanden-Broeck [15] and is therefore only described briefly
here.

The free surface and body are parameterised by means of an arclength s. We set
s = 0 at the attachment point so that s -*• —oo far upstream on the free surface and
s -> oo far downstream on the body. Each point on the free surface and body can
now be written as (x(s), y(s)), where the functions x(s) and y(s) are related by the
arclength condition

x'(s)2 + y'(s)2 = l. (5)

Cauchy's integral formula can now be applied to the function x (defined by (3)) to
give

Jr z(t) - z(s)

Here the path T consists of the free surface and body, except for the fixed point
(x (s) ,y(s)) which is by-passed by a semicircle of vanishingly small radius, the image
free surface and body obtained by reflecting the flow region about the A:-axis, and
two connecting lines at x = ±oo. After making use of the reflection conditions, the
imaginary part of the integral equation (6) can be simplified to give

/ 4(*)(y(0 - y(s)) - »'(r)(jc(r) -x(s))
71 Z {x(t)x{s)Y + {y{t)y(s)y

d
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where <I>'(0 = U(t)x'(t) + V(t)y'(t) and *'(r) = -V(t)x'(t) + U(t)y'(t). The bar
through the first integral indicates that the integral is to be interpreted in the Cauchy
Principal Value sense.

This integral equation is to be solved subject to the boundary conditions on the tree
surface and body. The first of these is the condition of constant pressure on the free
surface. This is given by Bernoulli's equation

1(1 ± (8)

for s < 0.
The next condition is the kinematic condition that states that the fluid cannot pass

through its own boundary. This implies the stream function ifr is constant on the free
surface and body and hence df/ds = 0 there. It follows from (2) that

= -(1 (9)

for all s.
Finally, a parametric description of the body is needed. We denote the height of the

attachment point by ya so that the arclength at the top of the quarter-circle at the body's
nose is s = sb = ya — (A. + a) and the arclength at the bottom of the quarter-circle is
given by s = sc = sb 4- ;ra/2. The body can now be described by

and

y(s) =

0, 0 < s < sb,

a[l — COS((J - sb)/a)], sb<s < sc,

s — sc + a, s > sc

ya-s, 0 < s < sb,

k + a[l - sin((s - sb)/a)], sb < s < sc,

k, s > sc.

(10)

(11)

The problem is now reduced to solving the integral equation (7) subject to the
conditions (5) and (8)—<11) for the unknown functions x(s), y(s), U(s) and V(s).
This has to be done numerically and the method for accomplishing this is described
in the next section.

22. Numerical method The fluid flow is evidently dominated by the behaviour
of the variables near the attachment point where s = 0. It is therefore convenient to
make use of an uneven distribution of numerical mesh points, with points clustered
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near s = 0. A new coordinate f is introduced along the free surface and body and
points are now spaced evenly in £, rather than in the original arclength variable s. In
this section, £ and s are chosen to be related by the transformation

_v_ .), s < 0,

' s > 0 .

A mesh of N evenly-spaced grid points £i , & , . . . , £na. • • • , £w is placed over the new
variable £, which encompasses both the free surface and the body. Here f i and %N are
chosen to represent — oo and oo respectively. The attachment point is fixed at fM = 0
and we choose na = (N + l)/2. The grid points are equally spaced in the £ variable
so that they are physically closer together near the attachment point and further apart
as* -»> ±oo.

An initial guess is made for the vector of (3N + l)/2 unknowns

All other flow quantities can now be computed. That is, the x\ can be found from the
arclength condition (5) which, in the new variable £, takes the form

and the ^ can be found from the kinematic condition (9). The coordinate x is found
by integrating backwards using the trapezoidal rule and the fact that xna — 0 at the
attachment point. The coordinate y is obtained by integrating forwards from the first
point upstream where yx = 1, again using the trapezoidal rule. The xt, y,, x\ and y\
on the body are found from (10)—<H)- Finally, the velocities Ut and VJ can be found
from

This initial guess for u is updated iteratively using Newton's method by forcing an
error vector E(u) to zero. The first na components of this error vector are obtained
by evaluating the Bernoulli equation (8) at the points £i, £2> • • • . Ina-

The next N — 1 components of E come from evaluating the integral equation (7)
at the JV — 1 half-mesh points £/+i/2, j = 1,... ,N — 1. The integrals in (7) are
evaluated using trapezoidal rule integration and the singularity can be ignored since
the points If,+1/2 have been taken to lie exactly half-way between consecutive mesh
points.

It is important to estimate the portions of the integrals in (7) which lie outside our
numerical domain of integration. As £ —*• — 00, the velocities U and V in (4) vanish,
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so there is no contribution for f < | j . However, as £ -*• oo, the velocity U has some
finite value, V = [(1 + n /2) - (A. + Slk2/2)]/k, which is determined by considering
conservation of mass. We therefore approximate U in (7) by U for large f, and find
that the contribution to the integrals in (7) from the region £ > t-N is

Finally, the last component of the error vector enforces the condition of smooth
attachment. That is, y'na = — 1.

A variation of this numerical method is used when the Froude number F = oo.
Here the velocity on the free surface is constant and Bernoulli's equation (8) is simply

i ( l + Sly + t/(£))2 + i V(|)2 = 1(1 + SI)2, (12)

for | < 0 .

2 3 . Results The numerical method described in the last section was used to
calculate many solutions for various values of the parameters F and SI, for A. = 0.15
and a = 0.15. We chose to fix the gap height A. = 0.15 and circle radius a = 0.15,
as it was found that varying these parameters did not change the qualitative behaviour
of the solutions. In most cases it was found that if we used N = 501 numerical grid
points and chose sx = —10 and sN = 10, then the results were independent of the grid
within graphical accuracy. This was not the case only in parameter regions where the
numerical scheme was near failure. We therefore use this grid spacing and number of
points in all the results presented in this section.

Typical free surface profiles for SI = 0 are shown in Figure 2. Here, four different
solutions are shown, for the four Froude numbers F = 1, 1.25, 2 and oo (bottom to
top profiles, respectively). As x -»• —oo, the surfaces become flat at y = 1. It can
be seen from this figure that for smaller Froude numbers, the free surface rises from
the attachment point and approaches this asymptotic level more slowly than for larger
Froude numbers. We also see that the surface profile for F = 2 is very similar to the
profile for F = oo. In fact, the free surfaces for Froude numbers greater than about
F = 5 were found to be almost identical to those for an infinite Froude number. This
behaviour was discussed by Hocking [7] in the similar problem where the front face
of the body was allowed to be inclined at an arbitrary angle.

In the case where the flow is irrotational (Si = 0), it was found that solutions with
reliable accuracy could be found for all Froude numbers F > 1. Using the solutions
for F = 1 as a starting guess, a small range of numerical solutions for Froude numbers
F < 1 could also be found, however these solutions were disregarded as they were
numerically unreliable. The iteration scheme converged very slowly in this region
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[8] Smoothly attaching bow flows 361

FIGURE 2. Typical free surface profiles for f2 = 0, X = 0.13 and a — 0.1S. From bottom to top, the
surfaces represent solutions found for Froude numbers F = 1,1.25,2 and oo.

and the resulting free surface profiles were dependent on the grid size and number
of numerical grid points. Furthermore, these solutions were characterised by a free
surface which appeared to approach asymptotically a level well below y = 1 in the
far field. Thus we conclude that, for irrotational flow, these solutions only exist for
F> 1.

The behaviour of the solutions for any fixed vorticity SI > — 1 was found to be
qualitatively the same as that found for £2 = 0. Reliable solutions could be found for
all Froude numbers greater than some limiting value, F = FL say. Again, as before
with the irrotational case, the free surface profiles corresponding to lower Froude
numbers approached the asymptotic level y = 1 more slowly than those for higher
Froude numbers. We conclude later in this section that the limiting value of the Froude
number FL is in fact the critical Froude number F = l/y/T+H.

An interesting quantity found as part of the solution process is the height at which
the free surface attaches to the front face of the body, denoted by ya. Figure 3 shows the
relationship between the attachment height ya and the Froude number F for different
values of the vorticity £2, given that X = 0.15 and a = 0.1S. It can be seen from
this figure that for any fixed £2, the attachment height increases monotonically with
the Froude number. In fact, the height of any point on the free surface was found to
increase with the Froude number in this way, given that the vorticity was fixed at some
value.
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FIGURE 3. The dependence of the attachment height ya on the Froude number F for four different voracity
values ft = — 0.5,0,1, and 5. All solutions are found for A. = 0.15 and a = 0.15.
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FIGURE 4. The dependence of the attachment height ya on the voiticity Q for five different Froude
numbers F = 0.75,1,1.25,2andoo. All solutions are found for A. = 0.15 anda = 0.15.
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We now consider the effect that varying the vorticity has on the flow when the
Froude number is fixed. Five plots of the attachment height ya versus the vorticity
ft for different Froude numbers F are shown in Figure 4. In each case, except for
F = co, the attachment height rises to a maximum and then monotonically decreases
as ft increases. For example, when the Froude number is fixed at F = 2, the solution
with the lowest vorticity is when ft = —0.74. Here the free surface attaches to the
body at ya = 0.363. After reaching a maximum of ya = 0.382 at ft = -0.38, the
attachment height decreases as the voiticity ft increases.

Three free surface profiles for F = 2 are shown in Figure 5 for the three values
of vorticity ft = 0, —0.74 and 5. The top profile is the solution for ft = 0 (the
irrotational case), the middle profile corresponds to ft = —0.74 and the bottom one
represents the positive vorticity value ft = 5. Note that while the free surface for
ft = 5 is lower than that for ft = —0.74 near the body, it rises to the asymptotic level
of v = 1 faster than the profile for ft = —0.74.

As can be seen from Figures 3 and 4, the height at which the free surface attaches
to the body has little dependence on the Froude number when the vorticity parameter
is large. This is to be expected, since at the upstream fluid depth y = 1, the fluid
speed is u = 1 + ft, and so when ft -v oo, the shear velocity caused by vorticity is
the dominant effect.

Another feature of Figure 4 is the plot for F = <x>. Here solutions exist for
all vorticity values down to and including ft = — 1. At this value, Bernoulli's
equation (12) implies that the whole free surface becomes stagnant. This situation is
physically unlikely to happen, although it is nevertheless very interesting.

We end this section by showing in Figure 6 the parameter space where accurate
solutions have been computed for the gap height A = 0.15 and circle radius a = 0.15.
These solutions could be found for all values of F and ft in the shaded area, above the
solid line. Included in this figure is a dashed curve, which shows a plot of the critical
Froude number (found from linear theory) versus vorticity. It can be seen that the solid
curve, representing the computed limiting Froude number, matches this dashed curve
very closely, and hence we conclude that in fact this limiting Froude number is the
critical Froude number. Furthermore, since this parameter space plot is essentially the
same for all values of the gap height X and circle radius a, we conclude that solutions
for this problem exist for all supercritical Froude numbers F > l/vT+~ft, regardless
of the values of X and a.

3. Cusp-like flows due to a sink in a corner

3.1. Mathematical formulation In this section we consider the special case of the
previous problem where both k -*• 0 and a -> 0. The resulting flow is that due to a

https://doi.org/10.1017/S1446181100011998 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011998


364 S. W. McCue and L. K. Forbes [11]

FIGURE 5. Three free surface profiles for F = 2, A = 0.15 and a = 0.15. From top to bottom near the
body, the surfaces represent solutions found for vorticity values £2 = 0, —0.74 and 5.

FIGURE 6. A sketch of the parameter space in which accurate solutions have been computed is shown
here in the shaded area, for the case where the gap height X = 0.15 and the circle radius a = 0.15. The
dashed curve represents a plot of the critical Froude number F = l/vT+~fl versus the vorticity Cl.
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l+Qy

FIGURE 7. A definition sketch in non-dimensional variables of the free surface flow of a rotational fluid
due to a submerged sink situated in a 90 degree corner.

line sink situated in a corner, as shown in Figure 7. These flows are often referred to
as cusp-like flows, since the free surface forms a cusp directly above the withdrawal
point. It should be noted, however, that the free surface cannot enter the sink directly,
as the air above the free surface is assumed to be stagnant The fluid is again rotational
with constant vorticity Q. Upstream the fluid approaches a uniform shear flow in the
same way as before, when flow past a semi-infinite body was considered.

A conservation of mass argument is used to show that the strength of the sink must
be 1 + &/2 and hence by (4)

(13)
n

As we will later integrate through the sink, the x function needs to be redefined so
that it is no longer singular there. We therefore let

(14)

and note that x(0) = fi/2. The function x(z) 1S analytic everywhere in the flow
domain and vanishes as x —*• —oo.

The free surface and wall together are parameterised with respect to arclength in a
similar way to that done in Section 2.1. Again we set s = 0 at the attachment point
(the cusp) so that s = ya at the sink.

Cauchy's integral formula is applied to the new x function in (14) to give the
relation (6) as before, where this time the contour r consists of the free surface and
vertical wall, except for the fixed point (x (s), y (s)) which is by-passed by a semicircle
of small radius, the image free surface and wall obtained by reflecting the flow region
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about the horizontal bottom, and a vertical line at x = —oo connecting the free
surface and its image. The imaginary part of the resulting integral equation is, after
simplification,

, . [ [afflgC) ~ Ht)y'(t)](y(t) - y(j)) ^fy° [a(t)x'(t) - b(t)y'

•/—00 V \ ' / ~~ " v* Js i~

-£ dt

, Cy° ia(tyx\t) - b(t)y'(t)](y(t) + y(s))
-r I :; r— at

J-oo \x (0 ~ x (s))2 + (y(t) 4- y (s))2

- [b(t)x'(t) + a(t)y'(t))(x(t)-x(s)) ^

-oo

(15)

where the a(s) and 6(5) are the real and imaginary parts of the function x(z(s)). Here,
these functions are given as

( J ) ( + ! ) and » — K-

where

_ . , nx nx rT . rcy ny . „ . , ny . . , nx
G — sinh — cosh — , H = sin — cos — and K = sin — + sinh — .

As usual, Bernoulli's equation (8) holds on the free surface and the kinematic
condition (9) holds on the free surface and the vertical wall.

3.2. Numerical method and results As with the numerical method for the bow
flows, it is desirable to place a mesh over the free surface such that there are more
points near the cusp and fewer points far upstream. This is done by first making the
transformation

"

- ln(l -s), s < 0,

s, s>0.

We now place a mesh of M grid points $1, &, • • • . %M o v e r m e free surface and a
separate mesh of N — M grid points %M,... ,%N over the vertical wall. Each interval
is equally spaced in the £ variable.

An initial guess is made for the new vector of N + M — 1 unknowns

and as before, given this initial guess, all other Sow quantities can be computed
using the methods described in Section 2.2. Newton's method is used to solve for
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u by forcing an error vector E(u) to zero. The first N — 2 components of this error
vector can be found by evaluating the integral equation (15) at the half-mesh points
fy+i/2, j = 1,... ,N — 2. The integrals are evaluated in the same manner as in
Section 2.2, however now there are no correction terms that need to be considered.
The next M components come from evaluating Bernoulli's equation (8) at the points
Hu I2. • • • ,%M- Finally, the last component of E(u) comes from enforcing the cusp
condition y'M = — 1.

As before with the bow flows, it was sufficient to use M = 250 numerical mesh
points on the free surface for the results to be independent of the grid within graphical
accuracy, given that s\ = —10. The number of points used on the vertical wall was
chosen so that the step size ya/(N — M) was approximately equal to the step size
| ,+ i —%j,j =1,... , M — 1, on the free surface.

For fixed vorticity values, solutions exist for all Froude numbers greater than
some lower limit FL, in the same manner as those found in the earlier bow flow
problem. Again, it was found that this lower limit was the critical Froude number
F = l / \ / l + S2, which can be determined from linear theory. Also, as with the
bow flow problem, the height of each point on the free surface was found to increase
monotonically as the Froude number increases.

The behaviour of the solutions when the Froude number is fixed at some value is,
however, slightly different to that found in the bow flow problem, although in general
the qualitative behaviour is the same. Solutions could be found for vorticity values up
to some limiting value, above which the present numerical scheme failed to converge.
This upper limit on the vorticity was found to be about £2 = 2.35, regardless of
the Froude number. It is not clear why this numerical method fails here, since an
alternate scheme was able to find solutions for arbitrarily large vorticity values. This
alternate numerical scheme was identical to the present one, except that the mesh of
grid points on the free surface was evenly-spaced in the physical variable s, instead of
evenly-spaced in the transformed variable £.

Another difference in behaviour is in the existence of solutions at infinite Froude
number. In the present problem, numerical solutions could not be found for vorticity
values near Q = — 1. This is in contrast to the bow flow problem, where solutions
could be found for all vorticity values down to fi = —1 for all gap heights k.

Three free surface profiles are shown in Figure 8 for Froude number F = 2 and
vorticity values Q = -0.75, 0 and 2.35. The top profile is the solution for Q = 0,
the middle profile near the wall represents the solution for £2 = —0.75 and the bottom
one corresponds to £2 = 2.35. This figure exhibits the same behaviour as that shown
in Figure 5 for the bow flow case where the gap height k and circle radius a at the
nose of the bow are nonzero. That is, the free surface corresponding to the positive
vorticity is lower than the profile for the negative vorticity near the body, but rises
to the asymptotic level of v = 1 faster than the profile for the negative vorticity. A
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FIGURE 8. Three profiles for F = 2 when there is a line sink located at the origin beneath a cusped free
surface. From top to bottom near the body, the surfaces represent solutions found for vorticity values
fi= 0,-0.75 and 2.35.
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FIGURE 9. A comparison of a numerically found solution and an exact one. The solid free surface
represents the solution found using the numerical method in Section 3.2 when F = oo and £2 = 0. The
dotted free surface represents an exact solution found by King and Bloor [9].
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variety of other solutions have been computed for many different values of F and Q
and, as stated previously, the behaviour of the profiles is qualitatively similar to the
behaviour found when studying the bow flow problem in Section 2.

Finally, to check the accuracy of our numerical method, we compare a solution
found with an exact solution derived by King and Bloor [9]. These authors used a
generalised Schwarz-Christoffel mapping to show that when F = oo and Q = 0, the
free surface is given exactly by

z = i-\—

where £ is the real coordinate of a conformally mapped plane. The free surface can
be obtained parametrically from this expression in the form *(£), y(£) for f > 0.
This exact solution and the corresponding one found using our numerical method are
shown in Figure 9. We see that both profiles are in excellent agreement with each
other, as expected; this agreement represents strong confirmation of the reliability of
our numerical scheme.

4. Conclusions

In this paper, the free surface flow of a rotational fluid past a semi-infinite body
is solved numerically using a boundary integral method. Solutions are found where
the surface meets the front face of the body smoothly. These sorts of flows have been
calculated before by Hocking [7] for the special situation where the voracity fi = 0.
It is found that for any fixed vorticity value £2 > — 1, the behaviour of the solutions
is qualitatively the same as that found by Hocking in the irrotational case. That is,
solutions can be found for all Froude numbers above and including the critical value
F = 1/Vl + &• When Q = — 1, the only solution is the limiting case, where F = oo.

The non-existence of solutions below this lower Froude number limit is consistent
with other withdrawal flows with similar geometry. In most cases when the flow is
irrotational (Q = 0), this lower limit is F = 1. For example, when studying the
problem of fluid flowing into a vertical slot, Hocking [6] found a lower bound of
F = 1 for sufficiently small slot widths. Here the free surface was assumed to attach
smoothly to the vertical wall above the slot. Similar behaviour is found with other
withdrawal flows where a cusp lies on the free surface directly above a source (see for
example [4,5,17]).

The question arises as to why no steady solutions could be found below this lower
Froude number limit. Possibly the answer lies in the formation of waves on the free
surface. In the related problem of the irrotational flow due to a submerged source
in a fluid of finite depth, waves have recently been found by Vanden-Broeck [16]
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and Hocking and Vanden-Broeck [8], for F < 1, by placing a rigid lid on the free
surface downstream. They could also reproduce a special family of waveless solutions
found by Vanden-Broeck and Keller [17], where the Froude number is found as part
of the solution process. If waves do exist in the present problem, then it would be
natural to assume they exist in the same way, and that the present numerical method
should at least detect a subcritical waveless branch of solutions at a unique Froude
number F < 1/Vl + Q, for a fixed vorticity £2. Unfortunately, as was the case with
Hocking [7], no such subcritical family of solutions could be found and the question
of whether waves exist for this flow geometry remains unanswered.
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