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Abstract

In this work we introduce a stochastic model for the spread of a virus in a cell population
where the virus has two ways of spreading: either by allowing its host cell to live and
duplicate, or by multiplying in large numbers within the host cell, causing the host cell
to burst and thereby let the virus enter new uninfected cells. The model is a kind of
interacting Markov branching process. We focus in particular on the probability that the
virus population survives and how this depends on a certain parameter λwhich quantifies
the ‘aggressiveness’ of the virus. Our main goal is to determine the optimal balance
between aggressive growth and long-term success. Our analysis shows that the optimal
strategy of the virus (in terms of survival) is obtained when the virus has no effect on the
host cell’s life cycle, corresponding to λ = 0. This is in agreement with experimental
data about real viruses.
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1. Introduction

A virus is a simple parasitic organism consisting of compacted genetic material in a protein
or lipid vessel. Viruses prey on living cells, such as bacterial or human cells, by penetrating
the membrane of the cell and transferring their genetic material into the host. In order to
multiply, the virus has two basic possibilities. The first option is for the virus to temporarily
incorporate its genetic material in the host genome, and thereby be passively replicated along
with the latter. The other option is to seize the host’s replication machinery and aggressively
replicate, thereafter releasing its progeny in the surrounding medium. The ‘free virions’ must
then attach to new host cells within a short time in order to survive. For many viruses, this
process necessarily involves bursting the host cell, thereby killing it.

The technical term for the event that a virus bursts its host cell is lysis, and one says that
the virus lyses the host cell. A virus which is incorporated into, and passively replicated along
with, the host genome is said to be in the lysogenic state, or to employ the lysogenic strategy.
Sometimes one speaks loosely of ‘the lytic strategy’ to denote that a virus ‘becomes lytic’, that

Received 13 September 2012; revision received 11 September 2013.
∗ Postal address: Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden.
∗∗ Postal address: Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden.
∗∗∗ Email address: erik.broman@math.uu.se
∗∗∗∗ Postal address: MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue,
Cambridge CB2 0QH, UK.

599

https://doi.org/10.1239/jap/1409932661 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932661


600 J. E. BJÖRNBERG ET AL.

is, actively lyses the host cell. A lysogenic virus will eventually become lytic; in fact, it is
well-established experimentally [13, Section V] that viruses in the lysogenic state will revert
to the lytic strategy if the host cell is under stress and in danger of dying, enabling the virus to
find a ‘safer’ host.

We introduce a stochastic model to investigate this behavior. The model is a two-dimensional
Markov process (X(t), Y (t))t≥0, whereX(t) is the number of ‘healthy cells’ at time t , and Y (t)
is the number of ‘infected cells’ (i.e. cells containing a virus). Both components (X(t))t≥0
and (Y (t))t≥0 behave in many ways like branching processes, although there are dependencies
between them. A healthy cell is replaced by a random number of new healthy cells at rate 1.
This random number is independent of other events and drawn from a distribution (pk)k≥0.
Infected cells behave similarly, although they are replaced by k new cells at rate pk if k ≥ 1,
while they are replaced by 0 new cells (die) at the higher rate p0 +λ. Here λ ≥ 0 is a parameter
that reflects the negative impact of the virus on the hosts life length. When an infected cell
dies (i.e. is replaced by 0 new cells), it bursts (lyses) and releases ‘free virions’. These free
virions immediately enter a random number of healthy cells, thus converting them into infected
cells. The number of new infections is independent of all other events, and is drawn from a
distribution (γk)k≥0. The model is defined in detail in Section 2.1.

We are concerned with a fundamental question about the virus’reproductive strategy, namely,
what is the optimal level of ‘aggressiveness’(balance of lysis to lysogeny) from the point of view
of the virus? Here we interpret ‘optimality’ as maximizing the chance of the virus establishing
itself in the cell population and, ultimately, surviving in the long term. We therefore study the
extinction probability η of the infected process (Y (t))t≥0 (see Definition 1). We are interested
in η, or rather 1 − η, as an indicator of the ‘fitness’ of the virus, and are mainly concerned with
how it depends on λ. This is because λ governs the relative rate of lysis events, and is thus a
measure of the ‘level of aggressiveness’ of the virus.

For the experimentally well-studied virus Lambda, the lysogenic state appears overwhelm-
ingly stable. Once in the lysogenic (dormant) state, it has been found very unlikely to spon-
taneously switch to the lytic state [4], [12]: a spontaneous transition to the lytic state occurs
about once in 107 generations [4]. This is lower than the mutation rate of the incorporated
viral genome, which is once in 106 to 107 generations [12]. It is natural to ask if this lysogenic
stability is an advantage for the success of the virus infection. For the virus Lambda, a choice
between lytic and lysogenic also occurs at the moment of infection. We focus mainly on the
virus’ decision after it has been incorporated in the host genome, but in Section 5.3 we briefly
also deal with the decision at the moment of infection.

Our model is of course a simplification of real virus populations. For example, we make
the following basic simplifications: life lengths of cells are assumed to be independent and
exponentially distributed, and spatial separation and locations of cells are not taken into account.
The advantage of making such simplifications is that a detailed and rigorous analysis can be
performed, hopefully highlighting general principles that can then form the basis for more
realistic modeling.

It is well known [3], [6] that a branching process either dies out, or grows exponentially fast
for all time. Thus, a branching process is not a realistic long-term model for population size,
in light of the limited resources in the real world. Instead, we see the survival probability 1 − η
as an indicator of the probability that a virus population establishes itself in a population of
healthy cells in the first place. In this sense our model is primarily relevant for the early stages
of a virus infection and the competition between two growing populations. Since our model is
concerned with qualitative properties of reproductive strategies, not with numerical estimates
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of population size, we do not see the use of branching processes as a limitation. In what follows
we will refer to 1 − η as the ‘survival probability’ as this is the appropriate term in the context
of branching process theory, bearing in mind that when interpreting our results in terms of real
viruses, one should rather think of 1 − η as an indicator of the relative success in establishment
and proliferation.

Recall the concept of stochastic ordering of probability vectors: if π = (πk)k≥0 and π ′ =
(π ′
k)k≥0 are probability vectors then we say that π ′ is stochastically larger than π if

∑
j≥k

π ′
j ≥

∑
j≥k

πj

for all k ≥ 0. We denote this by π � π ′. The following is the main result of this paper.

Theorem 1. For λ ≥ 0, γ0 = 0, and any starting conditions X(0) ≥ 1 and Y (0) ≥ 1,
η = η(λ, (γk)k≥0) is monotonically increasing in λ and (γk)k≥0.

Thus, loosely speaking, the virus maximizes its survival probability by being as passive as
possible (i.e. when λ = 0). This is in agreement with the observed stability of the lysogenic
state for real viruses; see Section 5. However, the full details of how the ‘fitness’ 1−η depends
on λ are complex, and depend on the other parameters of the process. Furthermore, simulations
and heuristic arguments suggest that monotonicity in λ may hold under weaker assumptions
(Example 1 and Section 5.2) than in Theorem 1, but interestingly η is not monotone in λ for all
choices of the other parameters (Proposition 3). We have not been able to find a counterexample
to the optimality of λ = 0.

In this paper we highlight the principle that in order to achieve long-term survival it may be
better to ‘be kind’ to your host environment, even if this hampers your short-term expansion.
We do not aim to give a complete and final picture, however, and there are many interesting
questions and research directions that fall outside the scope of the current paper. For instance,
the rigorous mathematical treatment of the model will be continued in [5], as will be explained
in more detail in later sections. Other possible directions include studying real-life data, and
in the cases when a rigorous mathematical treatment is unfeasible, use simulation studies to
connect the proposed model to these data.

Most previous models for the spread of viruses are nonstochastic and formulated in terms
of differential equations. This is the approach taken, for example, in [15]. We prefer to
formulate our model in microscopic terms, deducing macroscopic properties explicitly from
our assumptions about the interactions of the particles involved. To the best of our knowledge,
the current model has not been studied before, but stochastic models of similar ‘nature’appear for
example in predator–prey models [18] and epidemic models, in particular models for competing
epidemics [10].

2. The model

2.1. Definition

Let (pk)k≥0 and (γk)k≥0 be probability distributions on the nonnegative integers, and let
λ ≥ 0. We assume throughout that the means

∑
k≥0 kpk and

∑
k≥0 kγk are finite. We exclude

the (degenerate) case whenp1 = 1; in fact, the reader may for convenience assume thatp1 = 0,
since this only amounts to a time change.

The continuous-time Markov chain (X(t), Y (t))t≥0, taking values in Z
2+, was informally

described in Section 1. To recapitulate the main points, each healthy cell is replaced by k ≥ 0
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Table 1: Transition rates for the process (X(t), Y (t))t≥0, valid for x, y ≥ 0.

Transition Rate

(i) For k ≥ 0, (x, y) → (x + k − 1, y) xpk
(ii) For k ≥ 1, (x, y) → (x, y + k − 1) ypk
(iii) For k ≥ 0, (x, y) → (x − (x ∧ k)), y − 1 + (x ∧ k)) y(p0 + λ)γk

new healthy cells at rate pk . Being replaced by k = 0 new cells corresponds to dying. Each
infected cell is replaced by k ≥ 1 new infected cells at rate pk . When an infected cell dies,
which occurs at rate p0 +λ, a random number of healthy cells are converted into infected cells.
If t is the time of such an event, we draw a random variable �t from the distribution (γk)k≥0
independently of other events. If �t ≤ X(t), we simply declare �t previously healthy cells
to be infected, while if �t > X(t), we declare all previously healthy cells to be infected. To
define this process formally, we list the different possible jumps in Table 1.

Note that, for certain combinations of x, y, and k, the same transition occurs multiple times
in Table 1. The correct interpretation is to add the corresponding rates. For example, the
transition (0, y) 	→ (0, y − 1) occurs at rate y(p0 + λ) = ∑

k≥0 y(p0 + λ)γk .
To avoid trivial cases, we assume throughout that X(0), Y (0) ≥ 1. Biologically, it might be

most relevant to consider the case when pk = 0 for k ≥ 3, but none of our results depend on
any special assumptions about (pk)k≥0 so we will consider general distributions.

We now state some immediate properties of the model. If it were the case that Y (t) = 0
then healthy cells would evolve as a Markov branching process, with intensity 1 and offspring
distribution (pk)k≥0. Similarly, if X(t) = 0 for some t then (Y (t + s))s≥0 would behave like a
Markov branching process with the higher intensity 1+λ and an offspring distribution (p′

k)k≥0
derived from (pk)k≥0 by placing more mass on k = 0 (see (1) below). When both components
are positive, as transition rate (iii) tells us, then healthy cells may turn into infected cells. This
scenario hence ‘helps’ the process (Y (t))t≥0 and ‘hurts’ the process (X(t))t≥0.

Note that the virus is assumed not to change the offspring distribution of surviving cells.
This, together with the increased mortality rate of infected cells, determines the form of the
transition rates above; see (2) below. Also, note that the random number drawn from the
distribution (γk)k≥0 is the number of new infections due to a lysis event, rather than the number
of ‘free virions’. In the present work we consider only this simplified formulation, leaving
more realistic modifications for future work.

2.2. The extinction probability

As explained in Section 1, we view the extinction probability of the process (Y (t))t≥0 as an
indicator of the fitness of the virus.

Definition 1. Let η = limt→∞ P(Y (t) = 0) = P(Y (t) → 0) denote the extinction probability
of the process (Y (t))t≥0.

Thus, ‘small’ η corresponds to ‘high fitness’. Note that η is a function of the parameters
(pk)k≥0, (γk)k≥0, λ, X(0), and Y (0). For the reasons given in Section 1, we are mainly
interested in how η depends on λ and the distribution (γk)k≥0.

Remark 1. From a purely mathematical point of view, the allowed range of values of λ is
λ ≥ −p0. It is not hard to see that η(−p0) = 0 and η(λ) → 1 as λ → ∞. However, viruses
being parasites, from a biological point of view, it seems unlikely that infected cells should
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have longer life lengths than healthy cells. Throughout the rest of the paper, we will therefore
assume that λ ≥ 0.

3. Preliminary results, an example, and discussions

Let ξ be a random variable with distribution (pk)k≥0. As mentioned above, if X(t) = 0 for
some t then, from that time onwards, the process (Y (t+ s))s≥0 is a standard branching process.
Its intensity is then 1 + λ and its offspring distribution (p′

k)k≥0 is given by

p′
0 = p0 + λ

1 + λ
and p′

k = pk

1 + λ
for k ≥ 1. (1)

Let ξ ′ be a random variable with distribution (p′
k)k≥0, and note that, for λ > 0, p′

0 = P(ξ ′ =
0) > P(ξ = 0) = p0, whereas

P(ξ ′ = k | ξ ′ �= 0) = P(ξ = k | ξ �= 0) for all k ≥ 1. (2)

This choice of (p′
k)k≥0 is the only one, given λ, such that the intensity at which a cell gives

birth to k ≥ 1 new cells is the same for both (X(t))t≥0 and (Y (t))t≥0.

Let � be a random variable independent of ξ ′, with distribution (γk)k≥0. Write

ψ = ξ ′ + � 1{ξ ′ = 0}. (3)

Then ψ has distribution (qk)k≥0, where

q0 = γ0(p0 + λ)

1 + λ
and qk = pk + γk(p0 + λ)

1 + λ
for k ≥ 1. (4)

Write
TX := inf{t ≥ 0 : X(t) = 0} (5)

for the (possibly infinite) time when the healthy population becomes extinct. The following
summarizes some of the previous discussion.

Proposition 1. (a) If Y (t) = 0 for some t ≥ 0 then (X(t + s))s≥0 is a Markov branching
process with intensity 1 and offspring distribution (pk)k≥0.

(b) IfX(t) = 0 for some t ≥ 0 then (Y (t+ s))s≥0 is a Markov branching process with intensity
1 + λ and offspring distribution (p′

k)k≥0.

(c) The process (Y (t))0≤t<TX is a (stopped) Markov branching process with intensity 1+λ and
offspring distribution (qk)k≥0.

For proofs of the following basic facts about branching processes, see [3], [6], and [7].
Consider an arbitrary Markov branching process (W(t))t≥0 with life-length intensity a, and
offspring distribution (zk)k≥0 such that the mean

∑
k≥0 kzk is finite. LetZ be a random variable

with distribution (zk)k≥0. The number μ = a(E(Z) − 1) is called the Malthusian parameter
of the process (W(t))t≥0. Let A = {

W(t) = 0 for some t ≥ 0
}

be the event of extinction. It
is well known that P(A) = 1 if μ ≤ 0. If μ > 0 then

lim
t→∞

logW(t)

t
= μ almost surely on the complement Ac.

Write α and β for the Malthusian parameters of branching processes with respective inten-
sities 1 and 1 + λ, and offspring distributions (pk)k≥0 and (qk)k≥0, as in parts (a) and (c) of
Proposition 1. Thus, α is the parameter for the uninfected population in the absence of infected
cells, and β for the infected population in the presence of a very large uninfected population.
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Figure 1: Illustration of Example 1.

We have
α = E(ξ)− 1, β = (1 + λ)(E(ψ)− 1), (6)

where ξ and ψ are as above. Using (3), we find that

β = α + p0E(�)+ λ(E(�)− 1). (7)

Proposition 2. Suppose that p0 > 0 or λ > 0. Then P(TX < ∞) = 1 if and only if either
α ≤ 0 or γ0 = 0.

We do not prove this result in detail here, but note that the sufficiency of the condition
α ≤ 0 is immediate from the properties of branching processes described above. If α > 0,
the necessity of the condition γ0 = 0 is immediate, since if γ0 > 0, there is positive chance
that Y (t) = 0 at the time of the first transition, while the healthy process survives. Intuitively,
the sufficiency of the condition γ0 = 0 follows from the fact that Y (t) is ‘immortal’ as long as
X(t) �= 0 and (from (7), since E(�) > 1) grows much faster than (X(t))t≥0, meaning that there
will be very many infection events for large t . It is not difficult to make this intuition rigorous;
in fact, this will be proved in the upcoming paper [5].

Recall the main result of Theorem 1. In words, the assumption that γ0 = 0 says that a lysis
event always leads to new infections; thus, the failure rate of infections is 0. The following
proposition shows that we cannot remove the condition γ0 = 0 from Theorem 1, and still come
to the same conclusion. We will address this further in Section 5.

Proposition 3. (a) There exist (pk)k≥0, λ, and probability vectors γ (1) � γ (2) such that
η(λ, γ (1)) > η(λ, γ (2)).

(b) Furthermore, there exist (pk)k≥0, (γk)k≥0, and λ1 < λ2 such that η(λ1) > η(λ2).

Proposition 3 is proved in Section 4. Our proof of the second part requires taking E(�) < 1.
It is natural to guess that the condition γ0 = 0 in Theorem 1 can be replaced by the condition
E(�) ≥ 1: infections are successful ‘on average’. This is still an open problem, but the
following simulation supports this guess.

Example 1. In Figure 1 we show estimated values for η(λ) when p0 = 1
4 , p2 = 3

4 , γ0 = 9
20 ,

and γ2 = 11
20 . Note that E(�) > 1; the simulation suggests that η is increasing in λ. The
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estimates were obtained by running, for each value of λ, the process 105 times, for 2 × 104

transitions each. The estimate for η is the fraction of runs where Y did not die out. (Usually,
Y was either 0 or very large at the end of a run.) It is not hard to prove that η(λ) = 1 for
λ ≥ 0.5. Indeed this can be done in a way similar to the proof of part (b) of Proposition 3, and
we therefore leave the details to the reader. However, for λ = 0.5, the process (Y (TX + s))s≥0
is a critical branching process so the time until extinction is large, accounting for the small
deviation from 1 in the graph.

3.1. Initial conditions and connection to the ordinary differential equation

Here is a brief informal discussion about howη depends on the starting condition (X(0),Y (0))
when λ and (γk)k≥0 are fixed. We focus on two starting conditions of potential interest, namely,
(X(0), Y (0)) = (n, 1) and (X(0), Y (0)) = (n,m), where we think of n and m as large, but
n � m. The first situation is where one cell, surrounded by healthy cells, is infected. The second
situation would correspond to the case where a large number of healthy cells are encountered by
a large number of infected cells. Formal results would be stated asymptotically asm, n → ∞.

The ‘take-home message’ of Proposition 1 is that (Y (t))t≥0 essentially behaves like a
branching process, with a Malthusian parameter that depends on whetherX(t) = 0 orX(t) > 0.
If X(t) > 0, the Malthusian parameter is β = α + p0E(�) + λ(E(�) − 1) as already stated
in (7); if X(t) = 0, the Malthusian parameter is β ′ = α − λ, as is easily deduced from the
second part of Proposition 1. Here α = E(ξ)− 1 is as given in (6). Note that β ′ < β.

The most interesting behavior occurs if α, β > 0, which we assume henceforth. We also
assume that γ0 > 0, since the case γ0 = 0 is easily analyzed using Proposition 2 and Theorem 1.
The main qualitative differences in behavior occur according to whether β > α or β < α; in
the former case there are two interesting subcases, namely, β ′ ≤ 0 and β ′ > 0.

Let us start by considering the initial condition X(0) = n, Y (0) = m. Since Y (0) = m

is large and β > 0, most likely the infected population starts growing. Roughly speaking,
Y (t) ≈ meβt . Suppose first that β > α. The healthy population X(t) will then at most be of
order neαt � meβt , and eventually Y (t)will so far exceedX(t) that infections will overwhelm
the healthy population, so that we obtain X(t0) = 0 for some time t0. From then on, the
infected population will have Malthusian parameter β ′. If β ′ ≤ 0, this means that η will equal
1, whereas if β ′ > 0 then η will be close to 0, since Y (t0) is large. On the other hand, if α > β

then typically X(t) will be so much larger than Y (t) that the healthy population does not ‘feel’
the presence of the infection. Since β > 0 and Y (0) = m is large, it follows that η is close to 0.

Now consider the case (X(0), Y (0)) = (n, 1). This is similar to the case (X(0), Y (0)) =
(n,m), except that there is a considerable chance (probability at least γ0(p0 + λ)/(1 + λ), this
being the probability of a lysis leading to no infections) that the infected process dies out in a
short time. However, if Y (t) does start growing then its size will eventually be in the order of
eβt . From then on, the same intuition as for the starting condition (n,m) is valid.

Another way to understand the behavior described above, in particular the starting condition
(n,m), is to look at the ordinary differential equation (ODE) model corresponding to our model.
Letting δ = (p0 + λ)E(�), this is given by

ẋ(t) = αx(t)− δy(t), ẏ(t) = βy(t),

as long as x(t) > 0. If α �= β, the solution is

y(t) = y(0)eβt , x(t) =
(
x(0)+ y(0)

δ

β − α

)
eαt − y(0)

δ

β − α
eβt .
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It is not hard to see that x(t) eventually reaches the absorbing state 0 if β > α, whereas
x(t) → +∞ if α > β and x(0)/y(0) = n/m is sufficiently large, corresponding to whether
the infection takes over or not. We will not study the ODE model further since it cannot give
information about survival probabilities.

4. Proofs

In this section we prove Theorem 1 and Proposition 3. In what follows we will work with two
processes (Zi(t))t≥0 = (Xi(t), Yi(t))t≥0, with parameters (pk)k≥0, λi and (γ (i))k≥0, i = 1, 2,
respectively. We write Ti = inf{t ≥ 0 : Xi(t) = 0}.
Theorem 2. Let 0 ≤ λ1 ≤ λ2, γ (1) � γ (2), and γ (1)0 = γ

(2)
0 = 0. Then there is a coupling of

the processes (Zi(t))t≥0, i = 1, 2, such that the following assertions hold almost surely:

(a) T2 ≤ T1,

(b) Y2(t) ≥ Y1(t) for all t < T2,

(c) X2(t) ≤ X1(t) for all t ≤ T2, and

(d) X1(t)+ Y1(t) ≥ X2(t)+ Y2(t) for all t ≥ 0.

Before we prove Theorem 2, we show how Theorem 1 follows, almost immediately, from
Theorem 2 and Proposition 2.

Proof of Theorem 1. By Proposition 2 we have T1 < ∞ almost surely. For t > T1, it follows
from parts (a) and (d) of Theorem 2 that Y1(t) ≥ Y2(t), so P(Y1(t) → 0) ≤ P(Y2(t) → 0).

Proof of Theorem 2. The basic strategy is to ‘twin’ cells in the process (Z1(t))t≥0 with cells
in the process (Z2(t))t≥0 so that ‘events’ in one process correspond with ‘events’ in the other
process. Intuitively, the reason we can achieve the claimed coupling is that only ‘lysis events’
occur at a higher rate in the second process: these events always increase the infected population,
but decrease both the healthy and total populations. Here are the details.

It will be convenient to think of Zi(t), Xi(t), and Yi(t), i = 1, 2, as sets of individual cells.
Formally, we could label the elements in the set Zi(t) by

(x1, i), . . . , (x|Xi(t)|, i), (y1, i), . . . , (y|Yi(t)|, i).

However, this notation would quickly become cumbersome, and so we will use a somewhat
less formal, although still rigorous, approach. We will describe the transitions of the coupled
process (Z1(t), Z2(t))t≥0 at the level of pairs (a, b) of individual cells, where a ∈ Z1(t) and
b ∈ Z2(t). For each t ≥ 0, each element ofZ1(t)∪Z2(t) is required to belong to a unique such
pair, and we say that a and b are twinned if they belong to the same pair. We allow the possibility
b = ∅, in which case we say that a is untwinned (the possibility a = ∅ will not occur). We
will say that a cell is of type 1 (respectively, type 2) if it belongs to Z1(t) (respectively, Z2(t)).

It is a standard consequence of the ordering γ (1) � γ (2) that we may couple two random vari-
ables �(1) and �(2) such that �(1) has law γ (1) and �(2) has law γ (2), and P(�(1) ≤ �(2)) = 1.
We assume henceforth that {(�1,i , �2,i )}i≥1 is an independent and identically distributed
sequence such that �1,i ≤ �2,i for every i, and that �1,i has law γ (1) and �2,i has law γ (2).

In the construction that follows below, if there is a lysis event at some time τ, we let I (τ ) be
the smallest i such that (�1,i , �2,i ) has not previously been used in the construction.
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We start by describing the coupling (Z1(t), Z2(t))t≥0 up to time T1 ∧ T2 (it will transpire
that T1 ∧ T2 = T2). It will be convenient to think of healthy cells as colored blue and infected
cells as colored red. The allowed color combinations before time T1 ∧T2 are the following (the
right column introduces notation for the number of pairs of each color combination):

Color Number

(B, B) b2
(R,R) r

(B,R) b1
(B,∅) b0

Now we turn to describing the transitions.

(i) Any pair (a, b) is replaced by k ≥ 1 new pairs at rate pk; all the new pairs have the same
color combination as the original pair (a, b) (also in the case b = ∅).

(ii) A pair of color (B, B) or (B,∅) is deleted at rate p0.

(iii) A pair (a, b) = (R,R) can give rise to the following additional transitions.
Firstly, at rate p0 + λ1 it has a type-1 lysis. If τ is the time of such an event, we first

delete (a, b), and then one of the following cases occurs.

Case 1: �2,I (τ ) ≤ b2. Then we take �1,I (τ ) pairs of color (B, B) and change their color
to (R,R), and we take �2,I (τ ) − �1,I (τ ) of the remaining (B, B) pairs and change
their color to (B,R).

Case 2: �1,I (τ ) > b2. Then we start by changing all the b2 pairs of color (B, B) to
(R,R). Let �′

1,I (τ ) := �1,I (τ ) − b2 > 0, and proceed by changing �′
1,I (τ ) ∧ b1

pairs of color (B,R) to color (R,R). Proceed by letting�
′′
1,I (τ ) := (�′

1,I (τ )−b1)∨0
and changing �

′′
1,I (τ ) ∧ b0 pairs of color (B,∅) to (R,∅). Note that in this case

we arrive at time T2 ≤ T1, and that this inequality is strict if and only if there
remain pairs of color (B,R) or (B,∅) after the changes are made. In particular,
we only create (R,∅) pairs if we arrive at time T2.

Case 3: �2,I (τ ) > b2 ≥ �1,I (τ ) Then we first take �1,I (τ ) pairs of color (B, B) and
change their color to (R,R), and then take the remaining b2 − �1,I (τ ) pairs of
color (B, B) and change them to (B,R). In this case we arrive at time T2 < T1.

Secondly, at rate λ2 − λ1 the pair (a, b) has a type-2 lysis. If τ is the time of such an
event:

the original pair (a, b) stays unaltered, (8a)

one pair of color (B, B) gets replaced by (B,∅), (8b)

(�2,I (τ ) − 1) ∧ (b2 − 1) of the remaining (b2 − 1) pairs of color (B, B)

have their color changed to (B,R). (8c)

Note that we arrive at time T2 < T1 if �2,I (τ ) ≥ b2.

(iv) Finally, a pair (a, b) of color (B,R) can give rise to the following additional transitions.
Firstly, at rate p0 a type-1 death occurs. If τ is the time of such an event then (a, b)

is deleted and �2,I (τ ) ∧ b2 pairs of color (B, B) are changed to (B,R). Note that if
�2,I (τ ) ≥ b2 then we arrive at time T2 < T1.
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Secondly, at rate λ2 it has a type-2 lysis. This yields the exact same transition as
described in (8). Again, if �2,I (τ ) ≥ b2 then we arrive at time T2 < T1.

It is straightforward to check that the described coupling produces the right marginal dyna-
mics. It might be helpful however to explain why we replace a pair (B, B) by (B,∅) in (8b).
Here, the cell that lyses is destroyed and one might expect a transition from (R,R) to (R,∅).
However, since the type-2 cell that lyses infects cells ofX2(t),we pick one of the newly infected
type-2 cells (belonging to a (B, B) pair), and twin it with the previous type-1 twin that did not
undergo a lysis. The effect is the same as replacing a pair (B, B) by (B,∅) and leaving (R,R)
unchanged.

The description above applies until time T2; the construction implies that T2 ≤ T1, proving
the first part of the theorem. Since a type-1 cell is of color R only if it is twinned with a type-2
cell of color R (for t < T2), the second part of the theorem also follows. Similarly, a type-2
cell is colored B only if it is paired with a type-1 cell of color B (for t ≤ T2), proving the third
part of the theorem.

The construction so far also implies the final part of the theorem for the range 0 ≤ t ≤ T2
since every type-2 cell has a twin; the construction for t > T2, which we will describe now,
will preserve this property.

For t ≥ T2, the process (Z2(t))t≥T2 consists only of infected cells. It will be convenient
now to think of the cells of type 2 as green. The reason is that in the absence of healthy cells,
the process (Y2(t))t≥T2 evolves differently compared to when t < T2, as described above and
in Proposition 1. Therefore, we keep the colors blue and red for healthy and infected cells of
type 1, respectively. At a time t ≥ T2 we then have the following possible color combinations
(the right column introduces notation for the number of pairs of each color combination; note
that we are redefining b0 and b1):

Color Number

(B,∅) b0
(B,G) b1
(R,G) r1
(R,∅) r0

The following transitions may occur.

(i) As before, any pair (a, b) is replaced by k ≥ 2 identical pairs at rate pk .

(ii) A pair of color (B,∅) or (B,G) is deleted at rate p0.

(iii) A pair of color (B,G) is, additionally, changed to (B,∅) at rate λ2.

(iv) A pair (a, b) of color (R,∅) or (R,G) lyses at rate p0 + λ1. If τ is the time of such
an event then we delete (a, b), change the color of �′

1,I (τ ) = �1,I (τ ) ∧ b0 pairs of color
(B,∅) to (R,∅), and finally change the color of (�1,I (τ ) − �′

1,I (τ )) ∧ b1 pairs of color
(B,G) to (R,G).

(v) Additionally, a pair of color (R,G) is replaced by a pair (R,∅) at rate λ2 − λ1.

Since a green cell is always twinned with a type-1 cell, this establishes the result.
As before, it is elementary to check that the described coupling produces the right marginal

dynamics.
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Proof of Proposition 3. For the first part, consider the models where p2 = 1 and 0 < λ < 1
is arbitrary, and where γ (1)0 = 1 and γ (2)1 = 1. Clearly, γ (1) � γ (2). Write (X1(t), Y1(t))t≥0
and (X2(t), Y2(t))t≥0 for the processes with parameters (pk)k≥0, λ, γ

(1) and (pk)k≥0, λ, γ
(2),

respectively. Let X1(0) = X2(0) and Y1(0) = Y2(0). There is no interaction between
(X1(t))t≥0 and (Y1(t))t≥0, and (Y1(t))t≥0 simply forms a supercritical branching process (this
uses λ < 1).

It is straightforward to couple (Y1(t))t≥0 with (X2(t), Y2(t))t≥0 so that the following state-
ments hold. Firstly, each transition Y1(t) → Y1(t) + 1 is accompanied by (X2(t), Y2(t)) →
(X2(t), Y2(t)+1). This simply corresponds to the event that an infected cell is replaced by two
identical cells; recall thatp2 = 1. Secondly, ifX2(t) �= 0 then each transitionY1(t) → Y1(t)−1
is accompanied by (X2(t), Y2(t)) → (X2(t) − 1, Y2(t)). This corresponds to the death of an
infected cell: since γ (1)0 = 1, such an event simply reduces Y1(t) by 1, and since γ (2)1 = 1, one
healthy cell becomes infected in the second process. Thirdly, if X2(t) = 0 then each transition
Y1(t) → Y1(t)− 1 is accompanied by (X2(t), Y2(t)) → (X2(t), Y2(t)− 1). This corresponds
to the death of an infected cell in the absence of healthy cells to infect. In such a coupling,
Y1(t) ≤ Y2(t) for all t ≥ 0 almost surely, so η(γ (2)) ≤ η(γ (1)). It is easy to see that the
inequality is in fact strict.

For the second part, we use the result in [5] that the coexistence probability

ζ(λ) = P(X(t)Y (t) �= 0 for all t ≥ 0)

satisfies ζ = 0 if β ≥ α > 0, and ζ > 0 if α > β > 0. Note that η < 1 if ζ > 0. If ζ(λ) = 0
and, in addition, λ ≥ α, then it follows from part (b) of Proposition 1 that η(λ) = 1: either
(Y (t))t≥0 becomes extinct before (X(t))t≥0, or (X(t))t≥0 becomes extinct before (Y (t))t≥0,
and in the latter case (Y (t))t≥0 subsequently forms a branching process which has Malthusian
parameter β ′ = α−λ ≤ 0 and, therefore, becomes extinct almost surely. It is easy to check that
if p0 = 3

8 , p2 = 5
8 , E(�) = 4

5 , λ1 = 7
8 , and λ2 = 17

8 , then β(λ1) = 3
8 >

2
8 = α and λ1 > α,

whereas β(λ2) = 1
8 < α. Thus, ζ(λ1) = 0 and η(λ1) = 1, but ζ(λ2) > 0 so η(λ2) < 1.

5. Discussion

5.1. Bacteriophage Lambda

The virus Lambda, which preys on the bacterium Escherichia coli, has been the subject of
intensive research, mainly to understand the fascinating lysis-lysogeny behavior [9], [16]. For
this virus, a decision between lysis and lysogeny occurs both at the time of infecting a new
host, as well as after having been incorporated into the host’s DNA [11]. The switch to lytic
behavior in response to stress to the host seems inevitable [16]. In recent years, some exciting
single-cell studies have investigated the factors determining the decision at the time of infection.
The results showed strong dependence on environmental signals as well as the volume of the
infecting cell and the number of infecting virions per cell (or multiplicity of infection [8], [21],
[22]).

A number of mathematical models have been proposed to study the balance between the
lytic and lysogenic states [1], [2], [14], [17], [19], [20]. With time, the models simulated more
and more accurately by including newly discovered genetic components, describing a strict
bias towards the lysogenic state as exhibited by ‘wet’ experiments. Both the experimental
and theoretical works revealed the molecular mechanism of the decision, but did not study the
motivation behind such a strict bias in the decision system, as we do here.

https://doi.org/10.1239/jap/1409932661 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932661


610 J. E. BJÖRNBERG ET AL.

5.2. General conclusion

In this work we have tried to reveal the reason for the observed stability of the lysogenic
state. Our results suggest that, regardless of the details of the molecular mechanism behind the
decision, the stability of the dormant state is a fundamental part of a long-term survival strategy.

To be specific, in Theorem 1 we showed, in the context of our model, not only that λ = 0
maximizes the survival chance 1 − η(λ) of the virus, but that η(λ) is in fact monotonically in-
creasing in λ ≥ 0; this was done under the assumption that γ0 = 0. Heuristically, monotonicity
in λ holds for the following reason. As long as X(t) �= 0, the infected process (Y (t))t≥0
behaves as a branching process with a higher exponential growth rate than (X(t))t≥0; this
follows from Proposition 1, (7), and the fact that γ0 = 0 implies that E(�) ≥ 1. Typically,
therefore,X(t) = 0 for some t , after which point (Y (t + s))s≥0 by Proposition 1 is a branching
process with Malthusian parameter β ′ = α − λ which is decreasing in λ. The smaller λ is, the
larger should be the chance that (Y (t + s))s≥0 survives.

The intuition above is valid whenever E(�) ≥ 1, supporting the guess that the conclusion
of Theorem 1 should hold whenever E(�) ≥ 1. We have only been able to make the intuition
rigorous when γ0 = 0, essentially because then X(t) → 0 almost surely (by Proposition 2),
which does not hold if γ0 > 0. Interestingly, η(λ) need not be monotone in λ if E(�) < 1, as
shown in Proposition 3; this does not, however, rule out the possibility that η(λ) still always
attains its minimum at λ = 0.

5.3. Decision at the time of infection

The results above concern only the decision between lysis and lysogeny after the virus has
been incorporated into the host’s DNA, and not decisions at the time of infection. A simple
version of a decision at the time of infection can easily be incorporated into our model as
follows.

We modify transition rate (iii) in Section 2.1 so that, with a fixed probability κ > 0, each
newly infected cell is immediately replaced by a random (independent) number � of infected
cells, taken from the healthy population X(t). This proceeds recursively for all thereby newly
infected cells, until there are either no healthy cells left, or the recursion terminates by itself.
Note that the life length of an infected cell is now a convex combination of an exponential
distribution and a Dirac mass at 0, but that the process (X(t), Y (t))t≥0 is still Markovian. As
mentioned, the recursion terminates at the latest when the healthy populationX(t) is exhausted.
Therefore, there are no transitions of ‘infinite size’.

The total number of new infections due to the original lysis event may be described using
a random variable �′, whose distribution is easily described in terms of κ, �, and X(t). The
process thus described is not simply the same as our main model with � replaced by �′ (one
easy way to see this is to note that the new process can have transitions decreasingX(t)+Y (t)
by more than one at a time). However, it is possible to modify the proofs of Theorems 2 and 1
to obtain the following result.

Theorem 3. In the process with decision at the time of infection described above, with γ0 = 0,
the extinction probability of (Y (t))t≥0 is monotonically increasing in λ, (γk)k≥0, and κ .

Briefly, the required modifications to Theorem 2 are the following; for notation and ter-
minology, see Section 4. In addition to the parameters λ1 ≤ λ2 and γ (1) � γ (2), we also
have 0 ≤ κ1 ≤ κ2 ≤ 1. In the proof of Theorem 2 there were several points where pairs
of color (R,R), (B,R), (R,∅), or (R,G) were created. These transitions are still valid, but
now, in addition, each newly created (R,R) will itself immediately undergo a type-1 lysis
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with probability κ1, or a type-2 lysis with probability κ2 − κ1. Similarly, each new (B,R)

immediately undergoes a type-2 lysis with probability κ2, and each new (R,∅) or (R,G)
immediately undergoes a lysis with probability κ1. The same is then done recursively for
all thereby newly created pairs (R,R), (B,R), (R,∅), or (R,G). The order in which these
‘immediate’ transitions are carried out is not important. It is easy to see that the conclusions of
Theorem 2 still hold under these modifications.

Theorem 3 says that, when γ0 = 0, the optimal ‘choice’of λ and κ for the virus is λ = κ = 0.
Returning to the bacteriophage Lambda, which frequently lyses its host cell immediately after
infection, we conclude that the model just described is inadequate as a description of this virus.
The main confounding assumptions are presumably: first that γ0 = 0; second that there is
absolutely no delay between the lytic phase and new infections; and third that factors such
as multiplicity of infection, which experiments have shown to be important, are not included.
Furthermore, it is not hard to imagine other factors which could make a more rapid increase
in numbers beneficial to the virus in the early stages of an epidemic, such as competition from
other viruses or an immune response. It is hoped that relevant modifications of the model can
be studied in future work.

5.4. Future directions

The main questions left open by this work are: is Theorem 1 true whenever E(�) ≥ 1 and
what choices of λ and (γk)k≥0 minimize η when E(�) < 1?

There are many natural ways to modify the model to make it more realistic as a model for
viruses. One direction would be to let � depend on X(t) and Y (t). Another direction would
be to study the model with decision at the moment of infection also when γ0 > 0; this requires
some new arguments.

It is natural to consider the possibility of two competing viruses, alternatively a virus
competing with an immune system. Finally, it would be natural to look at a version of the process
which is based not on branching process dynamics, but on the dynamics of population models
having some type of equilibrium, such as the logistic process [18]. Indeed, it is reasonable to
expect that the cell population will be in equilibrium at the time of infection, possibly making
such a formulation closer to reality.
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