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Minimum non-chromatic-choosable graphs
with given chromatic number
Jialu Zhu and Xuding Zhu
Abstract. A graph G is called chromatic-choosable if χ(G) = ch(G). A natural problem is to
determine the minimum number of vertices in a non-chromatic-choosable graph with given
chromatic number. It was conjectured by Ohba, and proved by Noel, Reed, and Wu that k-chromatic
graphs G with ∣V(G)∣ ≤ 2k + 1 are chromatic-choosable. This upper bound on ∣V(G)∣ is tight. It
is known that if k is even, then G = K3⋆(k/2+1),1⋆(k/2−1) and G = K4,2⋆(k−1) are non-chromatic-
choosable k-chromatic graphs with ∣V(G)∣ = 2k + 2. Some subgraphs of these two graphs are also
non-chromatic-choosable. The main result of this paper is that all other k-chromatic graphs G with
∣V(G)∣ = 2k + 2 are chromatic-choosable. In particular, if χ(G) is odd and ∣V(G)∣ ≤ 2χ(G) + 2,
then G is chromatic-choosable, which was conjectured by Noel.

1 Introduction

A proper coloring of a graph G is a mapping ϕ ∶ V(G) → N such that ϕ(u) ≠ ϕ(v) for
every edge uv of E(G). A k-coloring of G is a proper coloring of G using colors from
[k] = {1, 2, . . . , k}. We say G is k-colorable if there is a k-coloring of G. The chromatic
number χ(G) of G is the minimum k such that G is k-colorable.

List coloring is a natural generalization of classical graph coloring, introduced
independently by Erdős–Rubin–Taylor [4] and Vizing [24] in 1970s. A list assignment
of G is a mapping L which assigns to each vertex v a set L(v) of permissible colors.
An L-coloring of G is a proper coloring ϕ of G with ϕ(v) ∈ L(v) for each vertex v. We
say that G is L-colorable if there exists an L-coloring of G, and G is k-choosable if G
is L-colorable for any list assignment L of G with ∣L(v)∣ ≥ k for each vertex v. More
generally, for a function g ∶ V(G) → N, we say G is g-choosable if G is L-colorable for
every list assignment L with ∣L(v)∣ ≥ g(v) for all v ∈ V(G). The choice number ch(G)
of G is the minimum k for which G is k-choosable.

A k-coloring of a graph G is a special case of list coloring, where each vertex
v has the same list L(v) = {1, 2, . . . , k}. So k-choosable implies k-colorable. At first
glance, one might expect the reverse inequality to hold as well. The smaller intersection
between lists would make it easier to assign distinct colors to adjacent vertices.
However, the reverse inequality is far from true. It was observed in [4] and [24] that
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for any integer k, there are bipartite graphs that are not k-choosable. So the difference
ch(G) − χ(G) can be arbitrarily large.

A graph G is called chromatic-choosable if χ(G) = ch(G). Chromatic-choosable
graphs have been studied a lot in the literature, and are related to some other difficult
problems. For example, the famous Dinitz problem (see e.g., [25]) asks the following
question:

Given an n × n array of n-sets, is it always possible to choose one from each
set, keeping the chosen elements distinct in every row, and distinct in every
column?

This problem can be equivalently stated as whether the line graph of Kn ,n is
chromatic-choosable? This problem was solved by Galvin [5], who proved a more
general result: the line graph of any bipartite multigraph is chromatic-choosable.
On the other hand, Galvin’s result is a special case of a more general conjecture—
the list coloring conjecture: line graphs of all multigraphs are chromatic-choosable.
The list coloring conjecture was posed independently by many different researchers:
Albertson and Collins, Bollobás and Harris, Gupta, and Vizing (see [1, 7, 10]). It has
attracted a lot of attention and remains open in general.

Ohba conjecture is another well-known conjecture about chromatic-choosable
graphs. It was proved in [18] that for any graph G, ch(G ∨ Kn) = χ(G ∨ Kn) for
sufficiently large n, where G ∨H is the join of G and H, i.e., the graph obtained from
the disjoint union of G and H by adding edges connecting every vertex of G to every
vertex of H. This means that graphs G with ∣V(G)∣ “close” to χ(G) are chromatic-
choosable. A natural problem is how close should be ∣V(G)∣ and χ(G) to ensure that
G be chromatic-choosable. Equivalently, what is the minimum number of vertices in
a non-k-choosable k-chromatic graph?

We denote by Kk1⋆n1 ,k2⋆n2 , . . . ,kq⋆nq the complete multi-partite graph with n i parts
of size k i , for i = 1, 2, . . . , q. If n j = 1, then the number n j is omitted from the notation.
It was proved in [3] that if k is an even integer, then K4,2⋆(k−1) and K3⋆(k/2+1),1⋆(k/2−1)
are not k-choosable. These two graphs are k-chromatic graphs with 2k + 2 vertices.
Ohba [18] conjectured that for any positive integer k, k-chromatic graphs with at most
2k + 1 vertices are k-choosable. This conjecture has attracted considerable attention,
and many partial results were proved before it was finally confirmed by Noel, Reed
and Wu [17].

One approach has been to prove variants of Ohba’s conjecture in which ∣V(G)∣ ≤
2k + 1 is replaced by ∣V(G)∣ ≤ Φ(χ(G)) for some function Φ with Φ(k) < 2k + 1.
Ohba [18] proved such a variant with Φ(k) = k +

√
k, and Reed and Sudakov [21]

improved the result to Φ(k) = 5
3 k − 4

3 . By using a sophisticated probabilistic method,
Reed and Sudakov [20] proved that Ohba’s conjecture is asymptotically true: if
∣V(G)∣ ≤ (2 − o(1))χ(G), then G is chromatic-choosable.

Another approach has been to show the conjecture holds for special families of
graphs. He, Li, Shen, and Zheng [22] proved Ohba’s conjecture for graphs G with
independence number α(G) ≤ 3, by extending a result of Ohba [19] who proved that
if ∣V(G)∣ ≤ 2χ(G) and α(G) ≤ 3, then G is chromatic-choosable. Kostochka, Stiebitz,
and Woodall [13] improved this result and showed that Ohba conjecture holds for
graphs G with α(G) ≤ 5. Also Ohba’s conjecture were verified for some particular
complete multipartite graphs in [9, 22, 23].
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In 2015, Ohba’s conjecture was finally confirmed by Noel, Reed, and Wu [17].

Theorem 1.1 (Noel–Reed–Wu Theorem) Every k-colorable graph with at most 2k + 1
vertices is k-choosable.

Nevertheless, this is not the end of the story. More problems related to Ohba’s
conjecture are posed and studied. One problem is what would be the choice number
of k-chromatic graphs G with ∣V(G)∣ slightly bigger than 2k + 1. This question was
addressed in [16]. Another related problem is the online version of Ohba’s conjecture,
which was posed in [8], and has been studied in a few papers [2, 12, 14]. Some partial
cases are verified and the conjecture remains open in general.

This paper explores the tightness of Ohba’s conjecture. Although Ohba’s conjecture
is tight, K4,2⋆(k−1) and K3⋆(k/2+1),1⋆(k/2−1) for even k are the only known k-chormatic
graphs with 2k + 2 vertices that are not k-choosable. In particular, Ohba’s conjecture
was not known to be tight for odd integer k.

Noel [15] conjectured if k is odd, then all k-chromatic graphs with 2k + 2 vertices
are k-choosable.

Observe that for a k-chromatic graph G, by adding edges between vertices of
distinct color classes, the resulting graph has the same chromatic number, and whose
choice number is not decreased. Therefore in the study of minimum non-chromatic
choosable graphs, it suffices to consider complete multipartite graphs.

The main result of this paper is that K4,2⋆(k−1) and K3⋆(k/2+1),1⋆(k/2−1) for even k
are the only non-k-choosable complete k-partite graphs with 2k + 2 vertices.

Theorem 1.2 Assume G = (V , E) is a complete k-partite graph with ∣V ∣ ≤ 2k + 2, and
G ≠ K4,2⋆(k−1) , K3⋆(k/2+1),1⋆(k/2−1) when k is even, and L is a k-list assignment of G.
Then G is L-colorable.

As a consequence, Noel’s conjecture is confirmed.

Corollary 1.3 If k is odd, then every k-chromatic graph with at most 2k + 2 vertices is
chromatic-choosable.

For a positive integer k, let

β(k) =min{∣V(G)∣ ∶ χ(G) = k < ch(G)}.
For an odd integer k, it can be checked that K5,2⋆(k−1) is not k-choosable. Thus we

have the following corollary.

Corollary 1.4 For the function β defined above,

β(k) =
⎧⎪⎪⎨⎪⎪⎩

2k + 2, if k is even,
2k + 3, if k is odd.

Here is a brief outline of the proof of Theorem 1.2.
Assume G is a complete k-partite graph with 2k + 2 vertices, G ≠

K4,2⋆(k−1) , K3⋆(k+1)/2,1⋆(k−1)/2 when k is even, and L is a k-list assignment of G.
Let CL = ⋃v∈V L(v). The first step is to construct a family S of independent sets that
form a partition of V(G). Let G/S be the graph obtained from G by identifying each
independent set S ∈ S into a single vertex vS . Let LS be the list assignment of G/S
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defined as LS(vS) = ⋂u∈S L(u). Build a bipartite graph BS with partite sets V(G/S)
and CL , with {vS , c} be an edge if c ∈ LS(vS). If BS has a matching M that covers
V(G/S), then M defines an L-coloring of G, with each S ∈ S be colored with the color
matched to vS in M.

Assume that there is no such a matching M, and hence by Hall’s theorem, there
exists a subset XS of V(G/S) such that ∣YS∣ < ∣XS∣, where YS = NBS

(XS). By analysing
the lists L(v) and independent sets S inS, the inequality ∣YS∣ < ∣XS∣may lead to a series
of inequalities and eventually lead to a contradiction (which means that no such XS

exists and hence the desired matching M exists).
Assume no contradiction is derived, and XS and YS do exist. We choose XS so that

∣XS∣ − ∣YS∣ is maximum. By Hall’s theorem, this implies that there is a matching M′ in
BS − (XS ∪ YS) that covers V(G/S) − XS.

Definition 1.1 A partial L-coloring of G is an L-coloring of an induced subgraph G[X]
of G. Given an L-coloring ϕ of G[X], Lϕ is the list assignment of G − X defined as
Lϕ(v) = L(v) − ϕ(NG(v) ∩ X) for v ∈ V(G − X). An L-coloring ϕ of G[X] is a good
partial L-coloring of G if the pair (G − X , Lϕ) satisfies the condition of Theorem 1.2.

The matching M′ constructed above defines a partial L-coloring ψ of G that colors
vertices in⋃S∈V(G/S)−XS

S. One nice property of this partial coloring ψ is that if {v} ∈
XS is a singleton part of S, then Lψ(v) = L(v) (as L(v) ⊆ YS). In other words some
neighbours of v may have been colored, and yet v still has the same set of permissible
colors.

By using this property, we want to extend ψ to a good partial L-coloring ϕ of G,
that colors a subset X of G. If this can be done, then G − X has an Lϕ-coloring θ, and
the union ϕ ∪ θ would be an L-coloring of G.

For the plan above to work, the choice of the partition S of V(G) in the first
step is crucial. Indeed, Theorem 1.2 is equivalent to saying that there is a choice of
S such that BS has a matching M that covers V(G/S). We usually start with a proper
coloring f of G, which is not necessarily an L-coloring, but “close” to an L-coloring,
and let S be the color classes of f. In particular, the coloring f uses colors from CL , and
if f (v) = c ∉ L(v), then f −1(c) = {v} and c is contained in many lists. The concept
of “near acceptable” L-coloring is defined to capture the required properties needed
for the plan above to work. Near acceptable L-coloring was first used in [17]. The
definitions of near acceptable L-colorings for the proofs of Noel–Reed–Wu theorem
and Theorem 1.2 are slightly different. The slight difference makes it more difficult
to construct a near acceptable L-coloring of G for the proof of Theorem 1.2, while the
proof of Noel–Reed–Wu theorem is already complicated. For the proof of Theorem 1.2,
before constructing a near acceptable L-coloring of G, a pseudo-L-coloring of G is
constructed as an intermediate step. In many cases, we need to repeatedly modify a
pseudo L-coloring until we obtain a near acceptable L-coloring.

In Section 2, we prove a sufficient condition for a complete multipartite graph G
with all parts of size at most 3 to be g-choosable for a given function g ∶ V(G) → N.
This will be used in later proofs. In Section 3, we fix some notation and present some
basic properties of a minimum counterexample. In Section 4, we prove Theorem 1.2
for complete k-partite graphs with most parts of size at most 3. These graphs are special
as there is little difference between these graphs and the critical graphs K4,2⋆(k−1) and
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K3⋆(k/2+1),1(k/2−1) (for even k). In Section 5, we introduce the concept of pseudo-L-
coloring of G and prove some properties of such colorings. In Section 6, we define the
concept of near-acceptable L-coloring and show that the existence of a near-acceptable
L-coloring of G implies the existence of a proper L-coloring of G. Some sufficient
conditions for the existence of near-acceptable L-colorings of G are presented in
Sections 7 and 8. A final contradiction is derived in Section 9.

2 Graphs with all parts of sizes at most 3

This section proves the following lemma, which gives a sufficient condition for g ∶
V(G) → N, so that G is g-choosable when all parts of G have size at most 3. This
lemma is analog to [14, Lemma 4], where a sufficient condition for G to be on-line
g-choosable was given. The sufficient condition below is almost the same as that in
[14, Lemma 5], except that for two vertices u, v in a 3-part of G, the upper bounds for
the sum g(u) + g(v) in the two lemmas are different, and which is needed in later
applications.
Lemma 2.1 Let G be a complete multipartite graph with parts of size at most 3. Let
A,B, C, D be a partition of the parts of G into classes such that A and D contain
only parts of size 1, B contains all parts of size 2 and C contains all parts of size 3. Let
k1 , k2 , k3 , d denote the cardinalities of classesA,B,C,D respectively. Suppose that classes
A and D are ordered, i.e., A = (A1 , . . . , Ak1) and D = (D1 , . . . , Dd). If g ∶ V(G) → N

is a function for which the following hold:

g(v) ≥ k2 + k3 + i , for all 1 ≤ i ≤ k1 and v ∈ A i(a-1)

g(v) ≥ k2 + k3 , for all v ∈ B ∈ B(b-1)

g(u) + g(v) ≥ 3k3 + 2k2 + k1 + d , for all u, v ∈ B ∈ B(b-2)

g(v) ≥ k2 + k3 , for all v ∈ C ∈ C(c-1)

g(u) + g(v) ≥ 2k3 + 2k2 + k1 , for all u, v ∈ C ∈ C(c-2)

∑
v∈C

g(v) ≥ 4k3 + 3k2 + 2k1 + d − 1, for all C ∈ C(c-3)

g(v) ≥ 2k3 + k2 + k1 + i , for all 1 ≤ i ≤ d and v ∈ D i(d-1)

then G is g-choosable.
Proof Assume the parts of G are partitioned into A, B, C, D and g is a function
satisfying the inequalities (a-1)–(d-1), and L is a list assignment with ∣L(v)∣ = g(v).
We shall color an independent set S of G with a color c ∈ ⋂v∈S L(v). Let G′ = G − S
and L′ be the list assignment of G′ defined as L′(x) = L(x) − {c} for x ∈ V(G′) and
g′(v) = ∣L′(v)∣. We shall verify that the pair (G′ , f ′) satisfies the condition of Lemma
2.1, and hence G′ is L′-colorable by induction hypothesis (if ∣V(G)∣ = 1, then the result
is trivial). Together with the coloring of S with color c, we obtain an L-coloring of G.

In the following, we describe the choice of the independent set S. The color c is
always an arbitrary color in⋂v∈S L(v). We describe briefly how to verify the fact that
(G′ , g′) satisfies the condition of Lemma 2.1 (the proof of Lemma 5 of [14] is similar,
and contains more detailed explanations). The partition A′, B′, C′, D′ of the parts of
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G′ and the ordering of parts in A′ and D′ are inherited from the partition and the
ordering of the parts of G, except that one part may have some vertices colored and
remaining vertices form a part in another class. When a part from B or C has some
vertices colored and the remaining vertex form a part in A′ or D′, we also need to
put it in a correct order. Denote by k′1 , k′2 , k′3 , d′ the cardinalities of A′, B′, C′, D′,
respectively. To verify the inequalities, it suffices to show that with g replaced by g′, k i
replaced by k′i and d replaced by d′, the amount reduced on the left hand side is no
more than the amount reduced on the right hand side.

The choice of S is determined in 8 cases. For 2 ≤ i ≤ 8, Case i is considered only if
all cases j with j ≤ i − 1 do not apply.
(1) If there exists C ∈ B ∪ C for which⋂v∈C L(v) ≠ ∅, then S = C.

Verification: For (a-1),(b-1),(c-1), (d-1), the left hand side is reduced by at most 1 (i.e.,
g′(v) ≥ g(v) − 1), and the right hand side is reduced by at least 1. (For example,
consider (a-1): k′2 + k′3 + i = k2 + k3 + i − 1). For (b-2), (c-2), the left hand side is
reduced by at most 2 (i.e., g′(u) + g′(v) ≥ g(u) + g(v) − 2), and the right hand
side is reduced by at least 2. For (c-3), the left hand side is reduced by at most 3 (i.e.,
∑v∈C g′(v) ≥ ∑v∈C g(v) − 3), and the right hand side is reduced by at least 3.

(2) If there exist C = {u, v , w} ∈ C with g(u) + g(v) = 2k3 + 2k2 + k1, and L(u) ∩
L(v) ≠ ∅, then S = {u, v}.
Verification: The part {w} of G′ is the last member of D′. Thus k′3 = k3 − 1 and
d′ = d + 1. Note that g′(w) = g(w) ≥ 4k3 + 3k2 + 2k1 + d − 1 − (2k3 + 2k2 + k1) =
2k3 + k2 + k1 + d − 1 = 2k′3 + k′2 + k′1 + d′. The other inequalities are verified as in
Case 1.

(3) If there exists C = {v , u, w} ∈ C, g(v) = k2 + k3, L(v) ∩ L(u) ≠ ∅, then S =
{u, v}.
Verification: The part {w} of G′ is the last member of A′. Thus k′3 = k3 − 1 and
k′1 = k1 + 1. Note that g′(w) = g(w) ≥ 2k3 + 2k2 + k1 − (k3 + k2) = k3 + k2 + k1 =
k′3 + k′2 + k′1. For u, v ∈ C ∈ C, either g(u) + g(v) ≥ 2k3 + 2k2 + k1 + 1 or g′(u) +
g′(v) ≥ g(u) + g(v) − 1 (as Case 2 does not apply). Hence (c-2) holds for (G′ , g′).
As Case 1 does not apply, the left hand side of (c-3) reduces by at most 2, and the
right hand side is reduced by 2. Hence (c-3) holds for (G′ , g′) as Case 1 does not
apply. The other inequalities are verified as in Case 1.

(4) If there exists C = {v , u, w} ∈ C, g(v) = k2 + k3, L(v) ∩ (L(u) ∪ L(w)) = ∅, then
S = {v}.
Verification: In the remaining graph G′ = G − v, the two vertices u, w are identified
into a single vertex u∗ with L′(u∗) = L(u) ∩ L(w). The set {u∗}is the last member
of A′. So k′3 = k3 − 1, k′1 = k1 + 1. Note that

g(u) + g(w) ≥ (4k3 + 3k2 + 2k1 + d − 1) − (k3 + k2) = 3k3 + 2k2 + 2k1 + d − 1.

On the other hand the total number of colors is at most ∣V ∣ − 1 = 3k3 + 2k2 +
k1 + d − 1. As L(v) is disjoint with L(u) ∪ L(w), we have ∣L(u) ∪ L(w)∣ ≤ 2k3 +
k2 + k1 + d − 1. Hence

∣L′(u∗)∣ = ∣L(u) ∩ L(w)∣ ≥ k3 + k2 + k1 = k′3 + k′2 + k′1 .

Note that for C ∈ C,∑v∈C g′(v) ≥ ∑v∈C g(v) − 2, as Case 1 does not apply. Hence
(c-3) holds for (G′ , g′). The other inequalities are verified as in Case 3.
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(5) If there exists B = {u, v} ∈ B, g(v) = k2 + k3, then S = {v}.
Verification: The part {u} of G′is the last member of D′. Thus k′2 = k2 − 1 and d′ =
d + 1. Note that g′(u) = g(u) ≥ 3k3 + 2k2 + k1 + d − (k3 + k2) = 2k3 + k2 + k1 +
d = 2k′3 + k′2 + k′1 + d′. For B′ = {x , y} ∈ B, since Case 1 does not apply, g′(x) +
g′(y) ≥ g(x) + g(y) − 1. So (b-2) holds for (G′ , g′). The other inequalities are
verified as in Case 4.

(6) If k1 ≠ 0 and A1 = {v}, then S = {v}.
Verification: In this case, k′1 = k1 − 1. As Cases 2,3,4 do not apply, (b-1), (c-1), and
(c-2) were not tight for g, and hence they hold for (G′ , g′). Also for (a-1), the index
of each member reduces by 1, and hence the right hand side reduces by 1, so it holds
for (G′ , g′). The other inequalities are verified as in Case 5.

(7) Assume k3 ≠ 0 and C = {u, v , w} ∈ C. As ∣CL ∣ ≤ ∣V ∣ − 1 = 3k3 + 2k2 + k1 + d − 1,
So g(u) + g(v) + g(w) ≥ 4k3 + 3k2 + 2k1 + d − 1 > ∣CL ∣ and there is a color c
which appears in two of the three color sets L(u), L(v), L(w), say c ∈ L(u) ∩
L(v). Let S = {u, v}.
Verification: Let {w}be the only member of A′. Then k′3 = k3 − 1 and k′1 = k1 +
1, g′(w) = g(w) ≥ k2 + k3 = k′2 + k′3 + 1 = k′2 + k′3 + k′1. The other inequalities are
verified as in Case 6.

(8) If d > 0 and D1 = {v}, then S = {v}.
Verification: In this case, k3 = k1 = 0 and d′ = d − 1. (b-1) is not tight for g (as Case 5
does not apply), and hence holds for (G′ , g′). (b-2) holds for (G′ , g′) as the left-hand
size reduces by at most 1, and the right hand side reduces by 1. For other member of
D′, its index is recued by 1, and hence (d-1) holds for (G′ , g′). Note that k1 , k3 = 0,
so the other inequalities are vacant.

Assume all the cases above do not apply. Then G = K2⋆k2 , i.e., G consists of k2 parts
of size 2, and g(v) ≥ k2 for each vertex v. It is well-known [4] that in this case, G is
g-choosable. ∎

3 Some notation and basic properties for a minimum
counterexample

By a counterexample of Theorem 1.2, we mean a pair (G , L) such that G is a complete
multipartite graph and L is a list assignment of G that satisfy the condition of
Theorem 1.2, and G is not L-colorable. We say (G , L) is a minimal counterexample
to Theorem 1.2 if (G , L) is a counterexample to Theorem 1.2 with
(1) ∣V(G)∣minimum,
(2) subject to (1), with ∣CL ∣minimum (recall that CL = ⋃v∈V L(v)),
It is well-known [11] that ∣CL ∣ < ∣V(G)∣. Let

λ = ∣V ∣ − ∣CL ∣ > 0.(3.1)

In the remainder of this paper, we assume that (G , L) is a minimum counterex-
ample to Theorem 1.2. Assume G is a complete k-partite graph. By Noel–Reed–
Wu theorem, we know that k-chromatic graphs with at most 2k + 1 vertices are k-
choosable and hence G has exactly 2k + 2 vertices, and

∣CL ∣ ≤ 2k + 1.(3.2)
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A part of G of size i (respectively, at least i or at most i) is called a i-part (respectively,
i+-part, or i−-part). Let

T = {v ∶ {v} is a singleton part of G}.

Let p i , p+i and p−i be the number of i-parts, i+-parts and i−-parts, respectively.
For a subset X of V(G), let

L(X) = ⋃
v∈X

L(v).

For three vertices x , y, z of G, let

L(x ∨ y) = L(x) ∪ L(y), L(x ∧ y) = L(x) ∩ L(y),

L((x ∧ y) ∨ z) = (L(x) ∩ L(y)) ∪ L(z).

For c ∈ CL and C′ ⊆ CL , let

L−1(c) = {v ∶ c ∈ L(v)}, L−1(C′) = ⋃
c∈C′

L−1(c).

For a part P of G and integer i, let

CP , i = {c ∈ C ∶ ∣L−1(c) ∩ P∣ = i},
ΛP , i =max{∣ ⋂

v∈S
L(v)∣ ∶ S ⊆ P, ∣S∣ = i}.

.
Assume S is a partition of V(G) into a family of independent sets. Each S ∈ S is

called an S part. Recall that G/S is the graph obtained from G by identifying each part
S ∈ S into a single vertex vS , and LS is the list assignment of G/S defined as LS(vS) =
⋂v∈S L(v). If S = {v} ∈ S consists of a single vertex of G, then we denote vS by v. In
this case, LS(v) = L(v). For the partitions S constructed in this paper, most parts of
S are singletons. To define S, it suffices to list its non-singleton parts.

Recall that BS is the bipartite graph with partite sets V(G/S) and CL , in which
{vS , c} is an edge if and only if c ∈ LS(vS). A matching M in BS covering V(G/S)
induces an LS-coloring of G/S, which in turn induces an L-coloring of G. Since G is
not L-colorable, no such matching M exists. By Hall’s theorem, there is a subset XS of
V(G/S) such that ∣XS∣ > ∣NBS

(XS)∣.
We denote by XS a subset of V(G/S) for which ∣XS∣ − ∣NBS

(XS)∣ is maximum. Let

YS = NBS
(XS) = ⋃

vS∈XS

LS(vS).

The choice of XS implies that there is a matching MS in BS − (XS ∪ YS) that covers
all vertices in V(G/S) − XS. The matching MS defines a partial coloring ψS of
G[⋃S∈S−XS

S] with colors from CL − YS.
These notation will be used throughout the whole paper.

Observation 3.1 The following easy facts will be used often in the argument.
(1) There is an injective mapping ϕ ∶ CL → V such that c ∈ L(ϕ(c)).
(2) If f is a proper coloring of G, then there is a surjective proper coloring g ∶ V → CL

such that for every vertex v, g(v) ∈ L(v) or g(v) = f (v).
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(3) No two vertices in the same part of G have the same list, and no color is contained
only in the lists of vertices in a same part.

(4) G ≠ K4,2⋆(k−1) for any k and ∣T ∣ ≥ 1.

Proof (1) is well-known ([17, Corollary 1.8]) and also easy to verify (use the mini-
mality of ∣CL ∣).

(2) was proved in [17, Proposition 1.13].
(3) If u, v are in the same part and L(u) = L(v), then By Noel–Reed–Wu theorem,

there is a proper L-coloring f of G − u, which extends to a proper L-coloring of G by
letting f (u) = f (v).

If there is a color c such that L−1(c) ⊆ Pi for some part Pi of G, then by Noel–
ReedWu theorem, G − L−1(c) has an L-coloring f, which extends to an L-coloring of
G by coloring vertices in L−1(c) with color c.

(4) It was proved in [3] that K4,2⋆(k−1) is not k-choosable if and only if k is even.
By our assumption, G ≠ K4,2⋆(k−1) for even k. Thus G ≠ K4,2⋆(k−1) for any k. It was
proved in [6] that G = K3⋆2,2⋆(k−2) is k-choosable. Using the fact that ∣V(G)∣ = 2k + 2,
it is easy to see that ∣T ∣ ≥ 1. ∎

Lemma 3.2 If P is a 2+-part of G, then ⋂v∈P L(v) = ∅. Consequently for each color
c ∈ CL , ∣L−1(c)∣ ≤ k + p1 + 2.

Proof Assume the lemma is not true. We choose such a part P of maximum size, and
color vertices in P by a common color c. Let L′(v) = L(v) − {c} for v ∈ V(G) − P. If
∣P∣ ≥ 3, then L′ and G − P satisfies the condition of Noel–Reed–Wu theorem and hence
G − P has an L′-coloring.

Assume ∣P∣ = 2. By (4) of Observation 3.1, G − P ≠ K4,2⋆(k−2). If G − P ≠
K3⋆(q+1),1⋆(q−1), then by the minimality of G, G − P has an L′-coloring. If G − P =
K3⋆(q+1),1⋆(q−1), then since each 3-part P has at most two vertices v for which c ∈ L(v),
it is straightforward to verify that G − P and L′ satisfy the condition of Lemma 2.1.
Hence G − P has an L′-coloring.

For any color c ∈ C, each 2+-part contains a vertex v ∉ L−1(c). So

∣L−1(c)∣ ≤ ∣V(G)∣ − p+2 = 2k + 2 − (k − p1) = k + p1 + 2.

This completes the proof of Lemma 3.2. ∎

4 Graphs with most parts of size at most 3

In this section, we consider complete k-partite graphs whose most parts are 3−-parts.
Let

G1 = {K5,3⋆(q−1),2⋆(k−2q),1⋆q ∶ k ≥ 2q ≥ 2},
G2 = {K4⋆a ,3⋆(q−a),2⋆b ,1⋆(k−q−b) ∶ a ≤ 2, a ≤ q, b ≥ 0, q + b ≤ k, a + 2q + b = k + 2.}

Theorem 4.1 G ∉ G1 ∪ G2.

We may assume that k ≥ 8, as for k ≤ 7, we can check directly the graphs in G1 ,G2
are k-choosable.
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Assume G ∈ G1 ∪ G2. We order the parts of G as P1 , P2 , . . . , Pk so that
• if G ∈ G1, then P1 is the 5-part and P2 , P3 , . . . , Pq are 3-parts with ΛP2 ,2 ≥ ΛP3 ,2 ≥

. . . ≥ ΛPq ,2;
• if G ∈ G2, then the first a parts are the 4-parts of G, and Pa+1 , Pa+2 , . . . , Pq are 3-parts

with ΛP2 ,2 ≥ ΛP3 ,2 ≥ . . . ≥ ΛPq ,2. If a = 2, then order P1 , P2 so that ΛP1 ,3 ≥ ΛP2 ,3.
Let

i0 =max{ j ∶ ΛP j ,2 ≥ j}.
For a 3-part P of G, we have 3k ≤ ∑v∈P ∣L(v)∣ ≤ ∣CL ∣ + ∣CP ,2∣ ≤ 2k + 1 + ∣CP ,2∣. So
∣CP ,2∣ ≥ k − 1. As P has three 2-subsets, we have ΛP ,2 ≥ (k − 1)/3 ≥ 2.

Claim 4.2 If G ∈ G1, then CP1 ,4 = ∅ and CP1 ,3 ≠ ∅.

Proof If c ∈ CP1 ,4, then we color vertices in L−1(c) ∩ P1 with color c, and let L′(v) =
L(v) − {c} for v ∈ G − (L−1(c) ∩ P1). It is easy to verify that G′ = G − (L−1(c) ∩ P1)
and L′ satisfy the condition of Lemma 2.1 (with P1 − L−1(c) being the last part in A,
and with D = ∅), and hence G′ is L′-colorable, and G is L-colorable, a contradiction.

If CP1 ,3 = ∅, then each color c ∈ CL is contained in L(v) for at most two vertices
v ∈ P1. Hence 2(2k + 1) ≥ 2∣CL ∣ ≥ ∑v∈P1 ∣L(v)∣ = 5k, which implies that k ≤ 2, a con-
tradiction. ∎
Claim 4.3 G ≠ K5,2⋆(k−2),1.

Proof If G = K5,2⋆(k−2),1, then fix a 3-subset S1 of P1 with ⋂v∈S1 L(v) ≠ ∅. Let S be
the partition of 0V(G)with one non-singleton part S1. Then ∣V(G/S)∣ = 2k and hence
∣XS∣ ≤ 2k and ∣YS∣ ≤ 2k − 1. By Lemma 3.2, ∣XS ∩ P∣ ≤ 1 for any 2-part P. So ∣XS∣ ≤ k +
2 and ∣YS∣ ≤ k + 1. On the other hand, ∣XS∣ ≥ 2 and hence v ∈ XS for some vertex v with
∣LS(v)∣ ≥ k and hence ∣YS∣ ≥ k and ∣XS∣ ≥ k + 1, and hence ∣XS ∩ P′1 ∣ ≥ 2. This in turn
implies that ∣YS∣ = k + 1 and hence ∣XS∣ = k + 2. Then P′1 ⊆ XS and ∣YS∣ ≥ ∣LS(P′1)∣ ≥
k + 2 = ∣XS∣ (by Claim 4.2), a contradiction. ∎

It follows from Observation 3.1 that G ≠ K4,2⋆(k−1) for any k. As G ≠ K5,2⋆(k−2),1,
G has at least two 3+-parts. Therefore

i0 ≥ 2.

For i = 1, 2, . . . , i0, we shall choose a subset S i of Pi of size 2 or 3, and let S be the
partition of V(G) with non-singleton parts {S1 , S2 , . . . , S i0}. The rules for choosing
the sets S i will be given later.

For simplicity, in the graph G/S, for i = 1, 2, . . . , i0, we denote vS i by z i , and let

Z = {z1 , z2 , . . . , z i0}.
We denote by P′i the part of G/S, where for 1 ≤ i ≤ i0, P′i is obtained from the part Pi
by identifying S i into a new vertex z i , and for i0 + 1 ≤ i ≤ k, P′i = Pi .

As i0 ≥ 2, we have ∣V(G/S)∣ ≤ 2k, and hence

∣XS∣ ≤ 2k, ∣YS∣ ≤ 2k − 1.(4.1)

We shall prove further upper and lower bounds for ∣XS∣ and ∣YS∣ that eventually lead
to a contradiction.
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The details are delicate and a little complicated, which is perhaps unavoidable, as
K4,2⋆(k−1) and K3⋆(k/2+1),1⋆(k/2−1) (for even integer k) are very close to graphs in G1 ∪
G2, and they are not k-choosable. We divide the proofs for G ∉ G1 and G ∉ G2 into two
subsections.

4.1 G ∉ G1

Assume to the contrary that G ∈ G1.
The subsets S i for i = 1, 2, . . . , i0 are chosen as follows:

(1) S1 is a 3-subset of P1 with ∣ ⋂v∈S1 L(v)∣ = ΛP1 ,3.
(2) For 2 ≤ i ≤ i0, S i is a 2-subset of Pi with ∣ ⋂v∈S i L(v)∣ = ΛPi ,2.

Assume for i = 2, 3, . . . , i0, Pi = {u i , v i , w i} and S i = {u i , v i}.
Since ∣P1 − S1∣ = 2, by (3) of Observation 3.1, ∣L(P1 − S1)∣ ≥ k + 1. As (⋂v∈S1 L(v)) ∩

L(P1 − S1) = ∅, we know that

∣LS(P′1)∣ ≥ k + 2.(4.2)

It follows from the definition of S that for i = 1, 2, . . . , i0, ∣LS(z i)∣ ≥ i0.
If XS ⊆ Z and z i ∈ XS for some i ≤ i0, then we have ∣YS∣ ≥ ∣LS(z i)∣ ≥ i0 ≥ ∣XS∣, a

contradiction. Thus XS − Z ≠ ∅. Let v ∈ XS − Z. Then

∣YS∣ ≥ ∣LS(v)∣ = ∣L(v)∣ ≥ k, ∣XS∣ ≥ k + 1.

This implies that ∣XS ∩ P′i ∣ ≥ 2 for some i. As ∣LS(A)∣ ≥ k + 1 for any 2-subset A of
P′i (for any i), we have

∣YS∣ ≥ k + 1, ∣XS∣ ≥ k + 2.(4.3)

Claim 4.4 ∣YS∣ ≥ k + i0 and hence ∣XS∣ ≥ k + i0 + 1.
Proof If there is an index i0 + 1 ≤ i ≤ q such that u, v ∈ XS ∩ P′i , then ∣YS∣ ≥ ∣L(u ∨
v)∣ ≥ 2k − ∣L(u ∧ v)∣ ≥ 2k − i0 > k + i0 (as i0 ≤ q − 1 < k/2) and we are done.

Assume ∣XS ∩ P′i ∣ ≤ 1 for any i0 + 1 ≤ i ≤ q. If {z i , w i} ⊆ XS for some i ≥ 2, then
∣YS∣ ≥ ∣L(w i)∣ + ∣LS(z i)∣+ ≥ k + i0, and we are done. Otherwise, ∣XS∣ ≥ k + 2 (by (4.3))
implies that P′1 ⊆ XS and ∣XS∣ = k + 2. By (4.2), ∣YS∣ ≥ ∣LS(P′1)∣ ≥ k + 2, a contradic-
tion. ∎
Claim 4.5 If ∣YS∣ = k + i0, then ΛPi ,2 = i0 for i = 2, 3, . . . , i0 and there is an index
2 ≤ i ≤ i0 such that Pi has a 2-subset S with ∣ ⋂v∈S L(v)∣ ≥ 2 and ⋂v∈S L(v) ∪ L(Pi −
S) /⊆ YS.
Proof Assume ∣YS∣ = k + i0. Then ∣XS∣ ≥ k + i0 + 1.

By the argument in the proof of Claim 4.4, for any index i > i0, ∣XS ∩ Pi ∣ ≤ 1.
This implies that ∣XS∣ ≤ k + i0 + 1, and hence ∣XS∣ = k + i0 + 1 and P′i ⊆ XS for i =
1, 2, . . . , i0. As ∣LS(P′i )∣ ≥ k + i0 for 2 ≤ i ≤ i0, we conclude that for 2 ≤ i ≤ i0, YS =
LS(P′i ) and ΛPi ,2 = i0.

We shall find an index 2 ≤ i ≤ i0, a 2-subset S of Pi with ∣ ⋂v∈S L(v)∣ ≥ 2 and
⋂v∈S L(v) ∪ L(Pi − S) /⊆ YS.

Assume first that there is an index 2 ≤ i ≤ i0 such that L(Pi) /⊆ YS.
As L(w i) ⊆ YS, we may assume that there is a color c ∈ L(u i) − YS. If ∣L(v i ∧w i)∣ ≥

2, then let S = {v i , w i}, we are done.
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Assume ∣L(v i ∧w i)∣ ≤ 1. This implies that ∣L(v i ∨w i)∣ ≥ 2k − 1 > k + i0. So there is
a color c′ ∈ L(v i) − YS. If ∣L(u i ∧w i)∣ ≥ 2, then let S = {u i , w i}, we are done. Assume
∣L(u i ∧w i)∣ ≤ 1. Hence

2 + i0 ≥ ∣L(u i ∧w i)∣ + ∣L(v i ∧w i)∣ + ∣L(u i ∧ v i)∣
= ∣CPi ,2∣ ≥ 3k − ∣L(Pi)∣ ≥ 3k − (2k + 1).

This implies that k − 3 ≤ i0 ≤ q ≤ k/2, contrary to our assumption that k ≥ 8.
Assume next that L(Pi) = YS for 2 ≤ i ≤ i0. As each color in L(Pi) is contained in at

most two lists of vertices of Pi , we have 2(k + i0) ≥ 3k, i.e., i0 ≥ k/2. Hence i0 = k/2 =
q and G = K5,3⋆(q−1),1⋆q .

For each singleton part {v} of G, we have v ∈ XS and hence L(v) ⊆ YS for each
singleton part {v}. Thus L(⋃k

i=2 Pi) = YS.
Since CP1 ,4 = ∅, we have ∣L(P1)∣ ≥ 5k/3 > k + i0 = ∣YS∣. Let c ∈ L(P1) − YS. Then c

is contained in the lists of vertices in P1 only, in contradiction to Observation 3.1. ∎

If ∣YS∣ = k + i0, then as ΛPi ,2 = i0 for 2 ≤ i ≤ i0, we may assume that S′2 = {u2 , w2}
is a 2-subset of P2 for which ∣ ⋂v∈S′2 L(v)∣ ≥ 2 and ⋂v∈S′2 L(v) ∪ L(P2 − S′2) /⊆ YS.

We let S′ be the partition of V(G) whose non-singleton parts are obtained from
that of S by replacing S2 with S′2, i.e., S′ = {S1 , S′2 , S3 , . . . , S i0}.

Instead of G/S, we consider the graph G/S′. We still have (4.3), i.e.,

∣YS′ ∣ ≥ k + 1, ∣XS′ ∣ ≥ k + 2.

Then analog to the proof of Claim 4.4, we can show that

∣YS′ ∣ ≥ k + i0 + 1, ∣XS′ ∣ ≥ k + i0 + 2.

Let S′′ = S if ∣YS∣ ≥ k + i0 + 1, and S′′ = S′ if ∣YS∣ = k + i0. Then

∣YS′′ ∣ ≥ k + i0 + 1, ∣XS′′ ∣ ≥ k + i0 + 2.

For simplicity, we assume that S′′ = S. Then ∣XS∣ ≥ k + i0 + 2 implies that ∣XS ∩
Pi ∣ ≥ 2 for some i ≥ i0 + 1. Assume {u, v} ⊆ X ∩ Pi for some i ≥ i0 + 1. Then

∣YS∣ ≥ ∣L(u ∨ v)∣ = 2k − ∣L(u ∧ v)∣ ≥ 2k − i0 .(4.4)

Since XS contains at most one vertex of any 2-part, we have

∣XS∣ ≤ k + 2q + 1 − i0 .

If for some i ≥ i0 + 1, Pi = {u i , v i , w i} ⊆ XS, then

∣YS∣ ≥ ∣L(Pi)∣ = ∣L(u i)∣ + ∣L(v i)∣ + ∣L(w i)∣
− (∣L(u i ∧ v i)∣ + ∣L(u i) ∩ L(w i)∣ + ∣L(v i) ∩ L(w i)∣)
≥ 3k − 3i0 .

Hence k + 2q + 1 − i0 ≥ ∣XS∣ ≥ 3k − 3i0 + 1, which implies that k ≤ q + i0 ≤ 2q − 1, in
contrary
to k ≥ 2q.

Thus ∣XS ∩ P′i ∣ ≤ 2 for i ≥ i0 + 1. This implies that ∣XS∣ ≤ k + q + 1.

https://doi.org/10.4153/S0008414X24001184 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001184


Minimum non-chromatic-choosable graphs with given chromatic number 13

On the other hand, ∣YS∣ ≥ 2k − i0 (by (4.4)) implies that ∣XS∣ ≥ 2k − i0 + 1. Hence
k+q+1≥ ∣XS∣ ≥ 2k− i0 + 1, which implies that k ≤ i0+q ≤ 2q−1, in contrary to k ≥ 2q.

This completes the proof that G ∉ G1.

4.2 G ∉ G2

Assume to the contrary that G ∈ G2.

Claim 4.6 Assume P is a 4-part of G and ΛP ,3 ≤ 1. Then ΛP ,2 ≥ 2. If ∣ΛP ,2∣ ≥ 3, then
for any 2-subset S of P with ∣ ⋂v∈S L(v)∣ = ΛP ,2, for any x ∈ P − S,

∣ ⋂
v∈S

L(v) ∪ L(x)∣ ≥ k + 2.

If ΛP ,2 = 2, then there exists a 2-subset S of P such that ∣ ⋂v∈S L(v) ∩ CP ,2∣ = 2, and hence
for any x ∈ P − S, ∣ ⋂v∈S L(v) ∪ L(x)∣ ≥ k + 2.

Proof Assume P is a 4-part of G and ΛP ,3 ≤ 1. Assume ΛP ,2 ≥ 3 and S is a 2-subset of
P with ∣ ⋂v∈S L(v)∣ = ΛP ,2. Then for any x ∈ P − S, since ∣ ⋂v∈S L(v) ∩ L(x)∣ ≤ ΛP ,3 ≤
1, we have

∣ ⋂
v∈S

L(v) ∪ L(x)∣ = ∣ ⋂
v∈S

L(v)∣ + ∣L(x)∣ − ∣ ⋂
v∈S

L(v) ∩ L(x)∣ ≥ ΛP ,2 + k − 1 ≥ k + 2.

Assume ΛP ,2 ≤ 2. As P has four 3-subsets, we have ∣CP ,3∣ ≤ 4. As ∑3
i=1 i∣CP , i ∣ =

∑v∈P ∣L(v)∣ ≥ 4k and ∑3
i=1 ∣CP , i ∣ ≤ ∣CL ∣ ≤ 2k + 1, it follows that ∣CP ,2∣ ≥ 2k − 9 ≥ 7 (as

k ≥ 8). Since P has six 2-subsets, there exists a 2-subset S of P such that ∣ ⋂v∈S L(v) ∩
CP ,2∣ ≥ 2. Hence ΛP ,2 ≥ 2 and therefore ΛP ,2 = 2. Moreover, there exists a 2-subset S
of P such that ∣ ⋂v∈S L(v) ∩ CP ,2∣ = 2. For any x ∈ P − S,

∣ ⋂
v∈S

L(v) ∪ L(x)∣ ≥ ∣ ⋂
v∈S

L(v) ∩ CP ,2∣ + ∣L(x)∣ ≥ 2 + k. ∎

Definition 4.1 For i = 1, 2, . . . , i0, we choose a subset S i of Pi of size 2 or 3 as follows:
(1) For a + 1 ≤ i ≤ i0, S i is a 2-subset of Pi with ∣ ⋂v∈S i L(v)∣ = ΛPi ,2.
(2) If a = 1 and ΛP1 ,3 > 0, then let S1 be a 3-subset of P1 with ∣ ⋂v∈S1 L(v)∣ = ΛP1 ,3.

Otherwise, let S1 be a 2-subset of P1 with ∣ ⋂v∈S1 L(v)∣ = ΛP1 ,2.
(3) Assume a = 2.

(i) If ΛP2 ,3 ≥ 2, then for i = 1, 2, let S i be a 3-subset of Pi with ∣ ⋂v∈S i L(v)∣ =
ΛPi ,3.

(ii) If ΛP1 ,3 > 0 and ΛP2 ,3 ≤ 1, then let S1 be a 3-subset of P1 with ∣ ⋂v∈S1 L(v)∣ =
ΛP1 ,3, and let S2 be a 2-subset of P2 such that
(A) ∣ ⋂v∈S2 L(v)∣ = ΛP ,2,
(B) ∣ ⋂v∈S2 L(v) ∪ L(x)∣ ≥ k + 2 for any x ∈ P2 − S2,
(C) Subject to (A) and (B), ∣LS(P′1)⋃ L(P2 − S2)∣ is maximum.

(iii) If ΛP1 ,3 = 0, then for i = 1, 2, let S i be a 2-subset of Pi with ∣ ⋂v∈S i L(v)∣ =
ΛPi ,2, such that ∣ ⋂v∈S i L(v) ∪ L(x)∣ ≥ k + 2 for any x ∈ Pi − S i and subject
to this condition, ∣LS(P′1)⋃ LS(P′2)∣ is maximum.

The existence of the 2-subset S in (ii) and (iii) has been proved in Claim 4.6.
It follows from the definition of S that for i = 1, 2, . . . , i0, ∣LS(z i)∣ ≥ i.
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The same argument as in the previous subsection shows that

∣YS∣ ≥ k + 1, ∣XS∣ ≥ k + 2.(4.5)

Claim 4.7 If ∣Pi ∣ = 4, then ∣XS ∩ P′i ∣ ≤ 2.

Proof Assume Pi = {u i , v i , x i , y i}. Then 2 ≤ ∣P′i ∣ ≤ 3. If ∣P′i ∣ = 2, then the conclusion
is trivial.

Assume ∣P′i ∣ = 3 and assume to the contrary of the claim that P′i = {z i , x i , y i} ⊆
XS, where z i is the identification of u i and v i . In this case, LS(z i) = L(u i ∧ v i) and
LS(x i) = L(x i), LS(y i) = L(y i).

If ΛPi ,3 = 0, then LS(z i) ∩ L(x i ∨ y i) = ∅. By the choice of S i , ∣L(x i ∧ y i)∣ ≤
∣LS(z i)∣ and hence ∣L(x i ∨ y i)∣ ≥ 2k − ∣LS(z i)∣. Therefore ∣YS∣ ≥ ∣LS(z i)∣ + ∣L(x i ∨
y i)∣ ≥ 2k, in contrary to (4.1).

If ΛPi ,3 > 0, then by the choice of S i , we know that i = a = 2, ΛP2 ,3 = 1 and ∣S1∣ = 3,
∣P′1 ∣ = 2. Therefore ∣XS∣ ≤ ∣V(G/S)∣ ≤ 2k − 1, and ∣YS∣ ≤ 2k − 2.

Assume S2 = {u2 , v2}. By the choice of S2 (see Claim 4.6), ∣LS(z2)∣ ≥ ∣L(x i ∧ y i)∣
and ∣LS(z i) ∩ L(x i ∨ y i)∣ ≤ ∣LS(z i) ∩ L(x i)∣ + ∣LS(z i) ∩ L(y i)∣ ≤ 2ΛPi ,3 = 2. Hence
∣YS∣ ≥ ∣LS(z i)∣ + ∣L(x i ∨ y i)∣ − 2 ≥ 2k − 2. So ∣XS∣ = 2k − 1 and ∣YS∣ = 2k − 2, and
hence XS = V(G/S). This implies that i0 = 2.

By Lemma 3.2, G has no 2-part. Assume P3 = {u3 , v3 , w3}. Then since ΛP3 ,2 ≤ 2,
and P3 has three 2-subsets, we know that ∣CP3 ,2∣ ≤ 6. Therefore

3k ≤ ∣L(u3)∣ + ∣L(v3)∣ + ∣L(w3)∣ = 2∣CP3 ,2∣ + ∣CP3 ,1∣ ≤ ∣CL ∣ + ∣CP3 ,2∣ ≤ 2k + 6,

a contradiction (as k ≥ 8). ∎

Since 3p+3 + 2p2 + p1 ≤ 2k + 2 = 2(p1 + p2 + p+3 ) + 2 and G ≠ K3⋆(k/2+1),1⋆(k/2−1)
(i.e., k ≠ 2q − 2), we have

G ∈ {K4,3⋆(q−1),1⋆(q−1) , K3⋆q ,2,1⋆(q−2)} or k ≥ 2q.

Note that XS contains at most one vertex of any 2-part. Combining with Claim 4.7,
we have

∣XS∣ ≤ k + 2q − i0 .

Claim 4.8 For any i ≥ i0 + 1, ∣XS ∩ Pi ∣ ≤ 1.

Proof If i ≥ q + 1, then Pi is 2−-part and hence ∣Pi ∩ XS∣ ≤ 1 (by Lemma 3.2 and (4.1).
Assume i0 + 1 ≤ i ≤ q.
First we prove that ∣XS ∩ Pi ∣ ≤ 2. Assume to the contrary that ∣XS ∩ Pi ∣ = 3 for some

i ≥ i0 + 1. Assume Pi = {u i , v i , w i}. Then

∣YS∣ ≥ ∣L(Pi)∣ = ∣L(u i)∣ + ∣L(v i)∣ + ∣L(w i)∣
− (∣L(u i ∧ v i)∣ + ∣L(u i) ∩ L(w i)∣ + ∣L(v i) ∩ L(w i)∣)
≥ 3k − 3i0 .

Hence k + 2q − i0 ≥ ∣XS∣ ≥ 3k − 3i0 + 1, which implies that 2k + 1 ≤ 2q + 2i0 ≤ 4q. As
k ≥ 2q − 1, we have k = 2q − 1. Hence q = i0, in contrary to i0 + 1 ≤ i ≤ q.

Since ∣XS ∩ Pi ∣ ≤ 2 for all i ≥ i0 + 1, we know that ∣XS∣ ≤ k + q (by Claim 4.7).
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If ∣XS ∩ Pi ∣ = 2 for some q ≥ i ≥ i0 + 1, then ∣YS∣ ≥ 2k − i0. Hence k + q ≥
∣XS∣ ≥ 2k − i0 + 1, which implies that k = 2q − 1 and i0 = q, again in contrary to
i0 + 1 ≤ i ≤ q. ∎

It follows from Claims 4.7 and 4.8 that ∣XS∣ ≤ k + i0 and hence ∣YS∣ ≤ k + i0 − 1.
Thus ∣XS ∩ P′i ∣ ≤ 1 for any a + 1 ≤ i ≤ i0. Combining with Claim 4.8, we know that

∣XS ∩ P′i ∣ ≤ 1 for any i ≥ a + 1. Since ∣XS∣ ≥ k + 2 (by (4.5)), it follows from Claim 4.7
that a = 2 and ∣XS ∩ P′i ∣ = 2 for i = 1, 2, and

∣XS∣ = k + 2, ∣YS∣ = k + 1 and YS = LS(XS ∩ P′1) = LS(XS ∩ P′2).(4.6)

For i = 1, 2, assume Pi = {u i , v i , x i , y i}.
If ΛP2 ,3 ≥ 2, then ∣S2∣ = 3, say S2 = {u2 , v2 , x2}. Then ∣YS∣ ≥ ∣LS(z2)∣ + ∣L(P2 −

S2)∣ ≥ k + 2, a contradiction.
Assume ΛP2 ,3 ≤ 1. Then (ii) or (iii) holds, and ∣S2∣ = 2, say S2 = {u2 , v2}. If z2 ∈ XS,

say P′2 ∩ XS = {z2 , x2}, then ∣YS∣ ≥ ∣LS(z2) ∪ L(x2)∣ ≥ k + 2 (by Claim 4.6), contrary
to (4.6).

Assume z2 ∉ XS. Then x2 , y2 ∈ XS. Now ∣L(x2 ∨ y2)∣ ≤ ∣YS∣ = k + 1 implies that
∣L(x2 ∨ y2)∣ = k + 1 and ∣L(x2 ∧ y2)∣ = k − 1. This implies that ΛP2 ,2 = k − 1 and hence
∣L(u2 ∧ v2)∣ = k − 1. As k ≥ 8, i.e., ΛP2 ,2 = k − 1 ≥ 7, it follows from Claim 4.6 that
∣L(x2 ∧ y2)∣ = ΛP ,2 ≥ 2 and ∣L(x2 ∧ y2) ∪ L(v)∣ ≥ k + 2 for any v ∈ P2 − {x2 , y2}.

If (ii) holds, say S1 = {u1 , v1 , x1}, then L(u2 ∨ v2) = LS(z1) ∪ L(y1). This implies
that L(x2 ∨ y2) = LS(z1) ∪ L(y1), for otherwise, by see (ii), we should have chosen
S2 = {x2 , y2}. So ∣L(P2)∣ = k + 1. Hence

2k − 2 = ∣L(x2 ∧ y2)∣ + ∣L(u2 ∧ v2)∣
= ∣L(x2 ∧ y2) ∩ L(u2 ∧ v2)∣ + ∣L(x2 ∧ y2) ∪ L(u2 ∧ v2)∣
≤ ∣L(x2 ∧ y2) ∩ L(u2 ∧ v2)∣ + k + 1.

This implies that L(x2 ∧ y2) ∩ L(u2 ∧ v2) ≠ ∅, in contrary to Lemma 3.2.
Assume (iii) holds, and for i = 1, 2, Pi = {u i , v i , x i , y i} and S i = {u i , v i}. If z i ∈ XS

for some i = 1, 2, then by Claim 4.6, ∣LS(z i)∣ ≥ 2 and hence ∣YS∣ ≥ ∣LS(P′i )∣ ≥ k + 2,
contrary to (4.6).

Assume z1 , z2 ∉ XS. Then again by the choice of S2, we have L(u2 ∨ v2) = L(x1 ∨
y1) = L(x2 ∨ y2), ∣L(x2 ∧ y2)∣ = ∣L(u2 ∧ v2)∣ = k − 1, and ∣L(P2)∣ = k + 1. This leads to
the same contradiction. This completes the proof of Theorem 4.1.

It was proved in [23] that K6,2⋆(k−3),1⋆2 is k-choosable. Combining with Theo-
rem 4.1, we conclude that

p1 ≥ 3, p+3 ≤ p1 − 1, 3p+3 + 2p2 + p1 ≤ ∣V ∣ − 3.(4.7)

5 Pseudo-L-coloring

As described in Section 1, our strategy for proving Theorem 1.2 is to partition V(G)
into a family S of independent sets, so that either there is a matching MS in the
bipartite graph BS that covers V(G/S) and hence produce an L-coloring of G, or using
Hall’s theorem to produce a good partial L-coloring of G that leads to an L-coloring
of G by using induction. The partition S is obtained by constructing a proper coloring
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Figure 1: The bipartite graph B f with partite sets G f and CL . Vertices in G f are f -classes, some
of them are singleton classes represented by solid circles, and other are 2+-classes, represented
by solid squares. The broken arrowed line indicate the coloring f. The edges of B f are not
drawn, and YS = NBS

(XS). Vertex v∗ is contained in XS but f (v∗) = c∗ ∉ YS. So v⋆ is a badly
f -coloured vertex.

f of G, and the parts in S are the color classes of f. For this strategy to succeed, the
coloring f needs to have some nice property. In this section, we define the concept of
pseudo-L-coloring of G, and study properties of the partition S of V(G) induced by
such colorings.

Definition 5.1 A pseudo L-coloring of G is a proper coloring f of G such that f (v) ∈
CL for every vertex v, and if f (v) = c ∉ L(v), then f −1(c) = {v} is a singleton f -class.

In a pseudo L-coloring f of G, if f (v) /∈ L(v), then we say v is badly f-colored (or
badly colored if f is clear from the context).

By Observation 3.1, if f is a pseudo-L-coloring of G, then there is a pseudo-L-
coloring g of G such that g(G) = CL and for every badly g-colored vertex v of G,
g(v) = f (v). In the following, we may assume that all the pseudo-L-colorings f satisfy
f (G) = CL . However, when we construct a pseudo-L-coloring f of G, we do not need
to verify that f (G) = CL (because if f (G) ≠ CL , then we change it to the pseudo-L-
coloring g described above).

Definition 5.2 Assume f is a pseudo L-coloring of G. Let S f be the family of f -classes,
which is a partition of V(G), i.e., S f = { f −1(c) ∶ c ∈ CL} where f −1(c) is the set of all
vertices colored by c under f. We denote G/S f , LS f , BS f , XS f and YS f by G f , L f , B f ,
X f , and by Yf , respectively.

In the remainder of this section, assume f is a pseudo L-coloring of G. In the graph
G f , f −1(c) is identified into a single vertex. For simplicity, we denote this vertex by
f −1(c). So f −1(c) is both a subset of V(G) and a vertex of G f . It will be clear from the
context which one it is.

Since ∣X f ∣ > ∣Yf ∣, there is a color class f −1(c) ∈ X f such that c ∉ Yf . Hence f −1(c)
is a singleton f -class {v} and v is badly colored by f.

For a subset Q of V(G f ), let V(Q) be the subset of V(G) defined as

V(Q) = ⋃
f −1(c)∈Q

f −1(c).
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Let � be the number of f -classes f −1(c) of size ∣ f −1(c)∣ ≥ 2. As ∣V ∣ > ∣CL ∣, � ≥ 1. On
the other hand, λ = ∣V ∣ − ∣CL ∣ ≥ � and equality holds if and only if f (G) = CL and each
f -class has size at most 2.

Recall that there is a matching MS f in B f − (X f ∪ Yf ) that covers all vertices in
V(G f ) − X f . The matching MS f defines a partial L-coloring of G[⋃ f −1(c)∉X f f −1(c)]
that colors vertices in f −1(c)with c′, where {c′ , f −1(c)} is an edge in MS f . We denote
this partial L-coloring of G by ψ f . The matching MS f maybe not unique. In this case,
we let MS f be an arbitrary matching that covers V(G f ) − X f .

We extend ψ f to a partial L-coloring ϕ f of G by coloring each f -classes f −1(c) ∈ X f
of size at least 2 by color c. By definition of pseudo-L-coloring, for such an f -class
f −1(c), c ∈ LS( f −1(c)). So ϕ f is a proper L-coloring of G. Denote by X the set of
vertices of G colored by ϕ f . Note that only those f -classes f −1(c) of size at least 2
contained in X f are colored by colors from Yf . So

∣ϕ f (X) ∩ Yf ∣ ≤ �.

If G − X has an Lϕ f -coloring θ, then ϕ f ∪ θ would be an L-coloring of G. Thus
G − X is not Lϕ f -colorable.

Lemma 5.1 Vf − X f contains at most λ − 1 singletons of G. Moreover, if Vf − X f
contains λ − 1 ≥ 1 singletons of G, then � = λ and the following hold:
(1) All f-classes have size 2 or 1, and there are exactly � f -classes of size 2.
(2) All the � f -classes of size 2 are contained in X f .
(3) For each non-singleton part P of G, there is a singleton f-class {v} ∈ X f such that

v ∈ P.
(4) If f has exactly one badly colored vertex, then ∣Yf ∣ ≥ k + 1.

Proof It follows from the definition of ϕ f that for each vertex v of G − X, {v} ∈ X f
is a singleton f -class, and L(v) ⊆ Yf . As ∣Lϕ f (X) ∩ Yf ∣ ≤ �,

∣Lϕ f (v)∣ ≥ k − �,∀v ∈ V(G − X).

If G f − X f contains � singletons of G, then

χ(G − X) ≤ k − � and ∣V(G − X)∣ ≤ 2k + 2 − 2� − λ ≤ 2(k − �) + 1.

By Noel–Reed–Wu theorem, G − X is Lϕ f -colorable, a contradiction.
So G f − X f contains at most � − 1 singletons of G.
Assume G f − X f contains λ − 1 singletons of G. Since � ≤ λ, we have � = λ and

hence each f -class has size at most 2, and there are exactly � f -classes of size 2, i.e.,
(1) holds. We shall prove that (2)–(4) hold.

(2): Assume to the contrary that there is an f -class of size 2 not in X f . Then at most
� − 1 f -classes are colored by colors from YS. Hence

∣Lϕ f (v)∣ ≥ k − (� − 1),∀v ∈ V(G − X).

As

∣V(G − X)∣ ≤ 2k + 2 − 2� = 2(k − �) + 2 = 2(k − � + 1) and χ(G − X) ≤ k − � + 1,
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G − X with list assignment Lϕ f satisfy the condition of Noel–Reed–Wu theorem, and
hence G − X has an Lϕ-coloring, a contradiction.

(3): If (3) does not hold, then there is a non-singleton part P of G such that
all vertices of P are colord, i.e., P is a non-singleton part of G contained in X,
and hence χ(G − X) ≤ k − λ = k − �. We still have ∣V(G − X)∣ ≤ 2k + 2 − 2� − (λ −
1) ≤ 2(k − �) + 1. Hence by Noel–Reed–Wu theorem, G − X has an Lϕ f -coloring, a
contradiction.

(4): Assume v∗ is the only badly colored vertex. Then {v∗} is an f -class of size 1
in X f . This implies that ∣Yf ∣ ≥ ∣L(v∗)∣ ≥ k. Assume to the contrary that ∣Yf ∣ = k. This
implies that for all singleton f -classes {v} ∈ X f , L(v) = Yf .

Assume f −1(c) ∈ X f is an f -class of size at least 2, and Pi is the part of G containing
f −1(c). As the size of f −1(c) is at least 2, Pi is not singleton-part and hence it follows
from (3) that there is an f -class {v} ∈ X f such that v ∈ Pi . Thus, L(v) = Yf , c ∈ L(v)
and we can color v with color c, and color v∗ with f (v). The resulting coloring is
a pseudo L-coloring of G with no badly colored vertices, i.e., an L-coloring of G, a
contradiction.

This completes the proof of Lemma 5.1. ∎

Lemma 5.2 Assume λ ≥ 2 and G has at most λ − 1 singletons. Then G f − X f contains
at most λ − 2 singletons of G.

Proof If G has at most λ − 2 singletons, then the conclusion is trivial. Assume G
has exactly λ − 1 singletons (i.e., p1 = λ − 1), and assume to the contrary that all the
λ − 1 singletons of G are contained in G f − X f . By (3) of Lemma 5.1, for each of the
k − λ + 12+-parts P of G, X f has a singleton f -class {v} with v ∈ P. By Lemma 5.1, we
have � = λ. By (2) of Lemma 5.1, all the � f -classes of size 2 are contained in X f . Thus

∣V(X f )∣ ≥ 2� + k − λ + 1 = λ + k + 1.(5.1)

If a 2-part P of G is contained in V(X f ), then L(P) ⊆ Yf . By Lemma 3.2,

2k ≤ ∣L(P)∣ ≤ ∣Yf ∣.

This contradicts to the fact that ∣Yf ∣ < ∣CL ∣ = ∣V ∣ − λ ≤ 2k.
Thus for each 2-part P of G, ∣P ∩ V(G f − X f )∣ ≥ 1. (Note that a 2-part has no

common color in the lists of its vertices, so P is not an f -class.) Hence

∣V(G f − X f )∣ ≥ λ − 1 + p2 .(5.2)

As p1 = λ − 1, it follows from (5.1) and (5.2) that

2k + 2 = ∣V ∣ = ∣V(X f )∣ + ∣V(G f − X f )∣ ≥ (λ + k + 1) + (λ − 1 + p2)
= 2λ + k + p2 = 2p1 + 2 + k + p2 .

So

p+3 + p2 + p1 = k ≥ 2p1 + p2 ,

which implies that p+3 ≥ p1, in contrary to (4.7).
This completes the proof of Lemma 5.2. ∎
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6 Near acceptable colorings

We have shown in the previous section that the partition S of V(G) induced by a
pseudo-L-coloring of G has some nice properties. However, for the proof of Theo-
rem 1.2, one more restriction need to be added to a pseudo-L-coloring. In this section,
we define the concept of near acceptable L-coloring of G, and prove that the partition
S of G induced by a near acceptable L-coloring of G enables us to construct a proper
L-coloring.

Definition 6.1 A color c is called frequent if one of the following holds:

(1) ∣L−1(c)∣ ≥ k + 2.
(2) ∣L−1(c) ∩ T ∣ ≥ λ.
(3) ∣T ∣ = λ − 1 ≥ 1 and T ⊆ L−1(c).

Definition 6.2 A pseudo L-coloring f of G is near acceptable if each badly colored
vertex is colored by a frequent color.

The concept of near acceptable L-coloring was first used in [17] for the proof of
Noel–Reed–Wu theorem. For the proof of Theorem 1.2, as G has one more vertex, the
definition of frequent colors is different from that in [17]. Thus the near acceptable
L-coloring in this paper is different from the one in [17]. The difference makes it more
difficult to find a near acceptable L-coloring of G. Nevertheless, we shall show that
analog to [17], the existence of a near acceptable L-coloring of G implies the existence
of an L-coloring of G.

Lemma 6.1 G has no near acceptable L-coloring.

Proof Assume to the contrary that f is a near acceptable L-coloring of G. Since ∣X f ∣ >
∣Yf ∣, there is a color class f −1(c∗) ∈ X f with c∗ ∉ Yf . Hence f −1(c∗) = {v∗} is a badly
colored singleton f -class.

Since f −1(c∗) = {v∗} ∈ X f , we have L(v∗) ⊆ Yf , and hence

k ≤ ∣L(v∗)∣ ≤ ∣Yf ∣ < ∣X f ∣.

On the other hand, c∗ ∉ Yf implies that for each f −1(c) ∈ X f , there exists v ∈ f −1(c),
such that c∗ ∉ L(v). Thus

∣L−1(c∗)∣ ≤ 2k + 2 − ∣X f ∣ ≤ k + 1.

So c∗ is not a frequent color of Type (1).
By Lemma 5.1, Vf − X f contains at most λ − 1 singletons of G. Hence

∣L−1(c∗) ∩ T ∣ ≤ λ − 1.

So c∗ is not a frequent color of Type (2).
If ∣T ∣ = λ − 1 ≥ 1, then by Lemma 5.2, ∣L−1(c∗) ∩ T ∣ ≤ ∣V(Vf − X f ) ∩ T ∣ ≤ λ − 2.

Hence T /⊆ L−1(c∗). So c∗ is not a frequent color of Type (3).
Therefore, c∗ is not frequent, a contradiction. ∎
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7 Upper bound on the number frequent colors

This section proves that there are at most k − 1 frequent colors. Assume to the contrary
that there is a set F of k frequent colors. We will construct a near acceptable coloring
f of G in the following three steps:
(1) Construct a partial L-coloring f1 of G using colors from CL − F, that colors as

many vertices as possible, and subject to this, the colored vertices are distributed
among the parts of G as evenly as possible. Let V1 be the set of vertices colored
by f1.

(2) Order the parts of G as P1 , P2 , . . . , Pk so that ∣Pi − V1∣ ≥ ∣Pi+1 − V1∣ for i =
1, 2, . . . , k − 1. Color greedily in this order the vertices of Pi − V1 by a common
permissible color from F, until this process cannot be carried out any more. This
partial L-coloring will be denoted by f2. Let V2 be the set of vertices colored
by f2.

(3) Extend f1 ∪ f2 to a near acceptable L-coloring (for example, if for each remaining
part Pi , Pi − V1 contains at most one vertex, then we arbitrarily color that vertex
by a remaining color from F to obtain a near acceptable L-coloring of G).

The difficult part is to prove that f1 ∪ f2 can be extended to a near acceptable L-
coloring. What we really proved is that if this cannot be done, then every part of G
is a 3−-part, which is in contrary to Theorem 4.1.

In the proof, we often need to modify a partial L-coloring.

Definition 7.1 Assume f is a partial L-colorings of G. For distinct colors
c1 , c2 , . . . , ct ∈ CL , and distinct indices i1 , i2 , . . . , it ∈ {1, 2, . . . , k}, we denote by

f (c1 → Pi1 , c2 → Pi2 , . . . , ct → Pi t)

the partial L coloring of G obtained from f by the following operation:
• First, for j = 1, 2, . . . , t, uncolor vertices in f −1(c j) (it is allowed that f −1(c j) = ∅,

i.e., c j is not used by f ).
• Second, for j = 1, 2, . . . , t, color vertices in L−1(c j) ∩ Pi j by color c j .

Now we are ready to prove the following lemma.

Lemma 7.1 There are at most k − 1 frequent colors.

Proof Assume to the contrary that there is a set F of k frequent colors. A valid partial
L-coloring f of G is a partial L-coloring of G using colors from CL − F.

For a valid partial L-coloring f of G, for i = 1, 2, . . . , k, let

S f , i = Pi ∩ f −1(CL − F)

be the set of colored vertices in Pi . Let

τ1( f ) =
k
∑
i=1
∣S f , i ∣,

τ2( f ) =
k
∑
i=1
∣S f1 , i ∣2 .
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We choose a valid partial L-coloring f1 of G such that

τ( f1) = (τ1( f1),−τ2( f1))

is lexicographically maximum, i.e., the number of colored vertices τ( f1) is maximum,
and subject to this, τ2( f ) = ∑k

i=1 ∣S f1 , i ∣2 is minimum, which means that the colored
vertices are distributed among the parts of G as evenly as possible.

Let V1 = f −1
1 (CL − F) = ⋃k

i=1 S f , i be the set of vertices colored by f1. By the maxi-
mality of τ1( f1), V1 must have used all the colors in CL − F, and hence ∣CL − F∣ ≤ ∣V1∣.

If ∣V − V1∣ ≤ k, then let g ∶ V − V1 → F be an arbitrary injective mapping. The union
f1 ∪ g is a near acceptable L-coloring of G, and we are done. Thus we may assume that

∣V − V1∣ ≥ k + 1, and hence ∣V1∣ ≤ k + 1.(7.1)

For i = 1, 2, . . . , k, let

R f1 , i = Pi − S f , i .

For a color c ∈ CL , let

R i(c) = ∣L−1(c) ∩ R f1 , i ∣

be the number of vertices in R f1 , i that can be colored by c, and

R i(CL − F) = ∑
c∈CL−F

R i(c)

be the total number of vertices in R f1 , i that can be colored by colors from CL − F.
If c ∈ CL − F, then

R i(c) ≤ ∣ f −1
1 (c)∣,

for otherwise, f1(c → Pi) is a valid partial L-coloring of G which colors more vertices
than f1, in contrary to the choice of f1.

Definition 7.2 A color c ∈ CL − F is said to be movable to Pi if R i(c) = ∣ f −1
1 (c)∣. ∎

Observation 7.2 The following facts will be used frequently in the argument below.
(1) If c ∈ CL − F is movable to Pi , then f1(c → Pi) is a valid partial L-coloring of G with

τ1( f1(c → Pi)) = τ1( f1).
(2) R i(CL − F) ≤ ∣V1 − Pi ∣, and if R i(CL − F) = ∣V1 − Pi ∣, then

every color c ∈ CL − F with f −1
1 (c) ∩ Pi = ∅ is movable to Pi .(P1)

(3) If f −1
1 (c) is a singleton f1-class, then c is movable to Pi if and only if c ∈ L(R f , i).

(4) For any choices of distinct colors c1 , c2 , . . . , ct ∈ CL and indices i1 , i2 , . . . , it , f1(c1 →
Pi1 , c2 → Pi2 , . . . , ct → Pi t) is a partial L-coloring of G.

Proof (1),(3), (4) are trivial.
(2): If c ∈ CL − F and f −1(c) ∩ Pi ≠ ∅, then R i(c) = 0, for otherwise, we can color

vertices in {v ∈ R f1 , i ∶ c ∈ L(v)}with color c. By the fact that R i(c) ≤ ∣ f −1
1 (c)∣, we have

R i(c) ≤ ∣ f −1
1 (c) − Pi ∣ for any color c ∈ CL − F. Hence R i(CL − F) = ∑c∈CL−F R i(c) ≤

∣V1 − Pi ∣, and equality holds only if R i(c) = ∣ f −1
1 (c)∣ for all c ∈ CL − F with f −1

1 (c) ∩
Pi = ∅. ∎
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Claim 7.3 If ∣Pi ∣ = 2, then S f1 , i ≠ ∅.

Proof Assume to the contrary that Pi = {u, v} and S f1 , i = ∅. By Lemma 3.2, L(u ∧
v) = ∅. Hence ∣CL ∣ ≥ 2k and ∣V1∣ ≥ ∣CL − F∣ ≥ k. So there are at least k f1-classes.
As ∣V1∣ ≤ k + 1 (see (7.1)), each f1-class is a singleton, except at most one f1-class
is of size 2.

Since S f1 , i = ∅, there is an index j0 such that ∣ f1(S f1 , j0))∣ ≥ 2. Assume c1 , c2 ∈
f1(S f1 , j0). At least one of f −1

1 (c1), f −1
1 (c2) is a singleton f1-class.

If ∣CL ∣ = 2k, then L(u ∨ v) = CL and by (3) of Observation 7.2, one of c1 , c2, say c1, is
movable to Pi and f −1

1 (c1) is a singleton f1-class. If ∣CL ∣ = 2k + 1, then there are k + 1 f1-
classes, and hence each f1-class is a singleton. So both f −1

1 (c1), f −1
1 (c2) are singleton

f1-classes, and at least one of c1 , c2 belongs to L(R f1 , i) and hence is movable to Pi .
Assume f −1

1 (c1) is a singleton f1-class and c1 is movable to Pi .
Then τ1( f1(c1 → Pi)) = τ1( f1), τ2( f1(c1 → Pi)) < τ2( f1). This is in contrary to our

choice of f1. ∎

By a re-ordering, if needed, we assume that

∣R f1 ,1∣ ≥ ∣R f1 ,2∣ ≥ . . . ≥ ∣R f1 ,k ∣.(R1)

In the second step, starting from i = 1 to k, we do the following: If there is a color
c ∈ F such that c ∈ ⋂v∈R f1 , i L(v) and c is not used by R f1 , j for j < i, then we color R f1 , i
with c. The step terminates when such a color does not exist.

Assume the second step stopped at i0 + 1, and hence R f1 ,1 , . . . , R f1 , i0 are colored in
the second step.

Note that in the ordering of R f1 ,1 , R f1 ,2 , . . . , R f1 ,k , if some of the R f1 , j ’s has the same
cardinality, then we can choose different ordering so that (R1) still holds. Also with
a given ordering of R f1 ,1 , R f1 ,2 , . . . , R f1 ,k , when we color all the vertices of R f1 , i , there
may be more than one choice of the colors. We assume that

Subject to (R1), the ordering of R f1 ,1 , R f1 ,2 , . . . , R f1 ,kand
the coloring of the R′f1 , i s are chosen so that i0 is maximum.(R2)

We denote by f2 the coloring constructed in the second step, and by V2 the set of
vertices colored in this step, and let V3 = V − V1 − V2 be the set of uncolored vertices
after the second step. Let F1 be the frequent colors used in second step, and let F2 =
F − F1. So ∣F1∣ = i0 and ∣F2∣ = k − i0. Note that it is possible that i0 = 0 and V2 = ∅.

If ∣R f1 , i0+1∣ ≤ 1, then ∣V3∣ ≤ k − i0 = ∣F2∣, and f1 ∪ f2 can be extended to a near
acceptable L-coloring of G by coloring V3 injectively by F2, and we are done.

Therefore the following hold:

∣R f1 , i0+1∣ ≥ 2,
∣V2∣ ≥ 2i0 ,
∣V3∣ ≥ k − i0 + 1,
∣V1∣ = ∣V ∣ − ∣V2∣ − ∣V3∣ ≤ k − i0 + 1.

(7.2)

Observe that for each color c ∈ F2,

R i0+1(c) ≤ ∣R f1 , i0+1∣ − 1,
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and for each color c ∈ F1,

R i0+1(c) ≤ ∣R f1 , i0+1∣.

Hence
R i0+1(CL − F) = ∑

c∈CL−F
R i0+1(c)

= ∑
c∈CL

R i0+1(c) − ∑
c∈F1∪F2

R i0+1(c)

≥ k∣R f1 , i0+1∣ − (∣R f1 , i0+1∣ − 1)(k − i0) − ∣R f1 , i0+1∣i0 = k − i0 ,

(7.3)

and if the equality holds, then

∀c ∈ F2 , R i0+1(c) = ∣R f1 , i0+1∣ − 1,(7.4)

∀c ∈ F1 , R i0+1(c) = ∣R f1 , i0+1∣.(7.5)

Combining (7.2) with (7.3) and by (2) of Observation 7.2, we have

k − i0 + 1 ≥ ∣V1∣ ≥ ∣V1 − Pi0+1∣ ≥ R i0+1(CL − F) ≥ k − i0 .(7.6)

So ∣V1∣ = k − i0 or ∣V1∣ = k − i0 + 1.

Case 1: ∣V1∣ = k − i0.
In this case,

∣V1∣ = ∣V1 − Pi0+1∣ = R i0+1(CL − F) = k − i0 ,
S f1 , i0+1 = V1 ∩ Pi0+1 = ∅, and Pi0+1 = R f1 , i0+1 .(7.7)

So (P1) and (P2) holds for i0 + 1. By Claim 7.3, ∣Pi0+1∣ = ∣R f1 , i0+1∣ ≥ 3. Hence ∣V2∣ ≥ 3i0.
This implies that

k − i0 = ∣V1∣ ≤ k − 2i0 + 1,

and hence i0 ≤ 1.

Case 1.1: i0 = 1.
In this case, ∣V1∣ = k − 1, ∣V2∣ ≥ 3 and ∣V3∣ ≥ k (by (7.2), i.e., ∣V3∣ ≥ k − i0 + 1 = k).

Since ∣V ∣ = 2k + 2, we conclude that ∣V2∣ = ∣R f1 ,1∣ = 3 and ∣V3∣ = k.
By (7.7), R2(CL − F) = ∣V1∣ = k − 1. This implies that

∑
c∈F

R2(c) = ∑
c∈C

R2(c) − ∑
c∈C−F

R2(c) = 3k − R2(CL − F) = 2k + 1.

Hence there is a color c1 ∈ F such that R2(CL − F)(c1) = ∣L−1(c1) ∩ R f1 ,2∣ ≥ 3 =
∣R f1 ,1∣ ≥ ∣R f1 ,2∣. So c1 ∈ ⋂v∈R f1 ,2 L(v). On the other hand, by (7.7), P2 = R f1 ,2, and by
Lemma 3.2, ⋂v∈P2 L(v) = ∅, a contradiction.

Case 1.2: i0 = 0.
In this case,

∣V1∣ = R1(CL − F) = k, ∣V2∣ = 0, ∣V3∣ = k + 2.(7.8)

Combining with i0 = 0 and (P2), for each color c ∈ F, R1(c) = ∣R f1 ,1∣ − 1.
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Claim 7.4 ∣P1∣ = ∣R f1 ,1∣ = 3 and R1(c) = 2 for any color c ∈ F.

Proof If ∣R f1 ,1∣ ≥ 4, then for any color c ∈ F, f1(c → P1) can be extended to a near
acceptable L-coloring of G by coloring the remaining k − 1 vertices of V3 injectively
with the remaining k − 1 colors of F (note that ∣L−1(c) ∩ P1∣ = ∣R f1 ,1∣ − 1 ≥ 3).

Thus ∣P1∣ = ∣R f1 ,1∣ = 3 (cf. (7.7)). This implies that R1(c) = 2 for any color c ∈ F. ∎

If there is a color c ∈ F such that R2(c) ≥ 2, then f1 can be extended to a near
acceptable L-coloring of G by coloring a 2-subset U1 of of R f1 ,2 with a color c ∈
⋂v∈U1 L(v) ∩ F, coloring a 2-subset U2 of R f1 ,1 by a color from c′ ∈ ⋂v∈U2 L(v) ∩ (F −
{c}), and coloring the remaining k − 2 vertices of V3 injectively with the remaining
k − 2 colors of F.

Thus

R2(c) ≤ 1,∀c ∈ F and ∑
c∈F

R2(c) ≤ k.(7.9)

This implies that ∣R f1 ,2∣ ≤ 2, for otherwise interchanging the roles of R f1 ,1 and R f1 ,2, we
would have R2(c) = ∣R f1 ,2∣ − 1 ≥ 2 for all c ∈ F, in contrary to (7.9).

Claim 7.5 ∣R f1 , i ∣ = 1 for i = 2, 3, . . . , k.

Proof Assume to the contrary that ∣R f1 ,2∣ = 2 (as ∣R f1 ,2∣ ≤ 2), then by Observation
7.2, R2(CL − F) ≤ ∣V1 − P2∣ = ∣V1∣ − ∣S f1 ,2∣ = k − ∣S f1 ,2∣ and

∑
c∈F

R2(c) = ∑
c∈CL

R2(c) − ∑
c∈CL−F

R2(c) = 2k − R2(CL − F) ≥ k + ∣S f1 ,2∣.(7.10)

Combining with (7.9), we have ∣S f1 ,2∣ = 0 and hence R f1 ,2 = P2, in contrary to Claim
7.3. By Claim 7.3, ∣S f1 ,2∣ ≥ 1, in contrary to (7.9).

Therefore ∣R f1 ,2∣ = 1 and hence ∣R f1 , i ∣ = 1 for i = 2, 3, . . . , k (note that ∣V3∣ = k + 2).
∎

Claim 7.6 ∣S f1 , j ∣ ≤ 2 for j = 2, 3, . . . , k.

Proof If ∣ f1(S f1 , j)∣ ≥ 2 for some j, say c1 , c2 ∈ f1(S f1 , j), then τ1( f1(c1 → P1)) = τ1( f1)
(as (P1) holds) and τ2( f1(c → P1)) < τ2( f1), because

∣S f1 ,1∣ = 0 ( by 7.7), ∣S f1(c1→P1),1∣ = R1(CL − F)(c1),

and

∣S f1(c1→P1), j ∣ = ∣S f1 , j ∣ − R1(CL − F)(c1) > 0,

since ∣ f1(S f1 , j)∣ ≥ 2. This is in contrary to our choice of f1.
Hence for each j ∈ {2, 3, . . . , k}, ∣ f1(S f1 , j)∣ ≤ 1, and ∣S f1 , j ∣ ≤ ∣ f −1

1 (c j)∣ for some c j ∈
CL − F. As (P1) holds, ∣ f −1

1 (c j)∣ = R1(CL − F)(c j) ≤ 2. So ∣S f1 , j ∣ ≤ 2. ∎

Combining with Claims 7.4, 7.5, and 7.6, we have

∣R f1 ,1∣ = 3, ∣S f1 ,1∣ = 0, and for 2 ≤ j ≤ k, ∣R f1 , j ∣ = 1, ∣S f1 , j ∣ ≤ 2.

So each part of G is 3−-part, in contrary to Theorem 4.1.
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Case 2: ∣V1∣ = k − i0 + 1.
If Pi0+1 = R f1 , i0+1, then by Claim 7.3, ∣R f1 , i0+1∣ ≥ 3 and ∣V2∣ ≥ 3i0. By (7.2), ∣V1∣ = ∣V ∣ −

∣V2∣ − ∣V3∣ ≤ 2k + 2 − 3i0 − (k − i0 + 1) = k − 2i0 + 1, and hence i0 = 0. This implies
that

∣V1∣ = k + 1, ∣V2∣ = 0, ∣V3∣ = k + 1.

By Observation 7.2, R1(CL − F) ≤ ∣V1∣ = k + 1, we conclude that

∑
c∈F

R1(c) ≥ ∑
c∈CL

R1(c) − ∑
c∈CL−F

R1(c) ≥ 3k − R1(CL − F) ≥ 2k − 1 ≥ k + 1.

So there is a color c ∈ F such that R1(c) ≥ 2. We can extend f1 to a near acceptable L-
coloring of G by coloring two vertices of R f1 ,1 with c, and the remaining k − 1 vertices
of V3 injectively with the remaining k − 1 colors of F.

Thus Pi0+1 ≠ R f1 , i0+1, i.e., S f1 , i0+1 ≠ ∅.
As S f1 , i0+1 ≠ ∅, ∣V1 − Pi0+1∣ = ∣V1∣ − ∣S f1 , i0+1∣ < ∣V1∣ and by (7.6), we have

∣V1 − Pi0+1∣ = k − i0 = R i0+1(CL − F), ∣S f1 , i0+1∣ = 1.(7.11)

So (P1) and (P2) holds for i0 + 1.

Claim 7.7 For each 1 ≤ i ≤ i0 + 1, ∣R f1 , i ∣ = 2 and for j ≥ i0 + 2, ∣R f1 , i ∣ ≤ 2.

Proof By (7.2), we have ∣V2∣ ≥ 2i0, ∣V3∣ ≥ k − i0 + 1. Since ∣V1∣ + ∣V2∣ + ∣V3∣ = 2k + 2,
we conclude that

∣V1∣ = k − i0 + 1, ∣V2∣ = 2i0 , ∣V3∣ = k − i0 + 1.

So ∀ j ≤ i0 + 1, ∣R f1 , j ∣ = 2, and ∀ j ≥ i0 + 2, ∣R f1 , j ∣ ≤ 2. ∎

Claim 7.8 For 1 ≤ i ≤ k, if ∣R f1 , i ∣ = 2, then ∣S f1 , i ∣ = 1.

Proof By Claim 7.7, ∣R f1 ,1∣ = . . . = ∣R f1 , i0+1∣. As (P2) holds, there are i0 colors c ∈ F1 ⊆
F such that R i0+1(c) = ∣R f1 , i0+1∣. Therefore, for any index j with ∣R f1 , j ∣ = 2, if we re-
order the parts so that R f1 , j and R f1 , i0+1 interchange positions (while the other parts
stay at their position), (R1) and (R2) are satisfied. So the conclusions we have obtained
for Pi0+1 hold for Pj . In particular, for any j with ∣R f1 , j ∣ = 2, we have ∣S f1 , j ∣ = 1. ∎

Claim 7.9 ∣S f1 , j ∣ ≤ 2 for all j.

Proof As (P1) holds for i0 + 1, ∣ f −1
1 (c)∣ = R i0+1(c) ≤ ∣R f1 , i0+1∣ = 2 for any c ∈ CL − F.

If ∣S f1 , j ∣ ≥ 3 for some j, then there is a color c ∈ CL − F for which the following holds:
• ∣ f −1

1 (c) ∩ Pj ∣ = 1, or
• ∣S f1 , j ∣ ≥ 4, and ∣ f −1

1 (c) ∩ Pj ∣ = 2.
Let

f ′1 = f1(c → Pi0+1).

Then f ′1 is a valid partial L-coloring of G with τ1( f ′1 ) = τ1( f1) (as (P1) holds). By (7.11),
∣S f1 , i0 ∣ = 1. Thus either ∣S f ′1 , j ∣ = ∣S f1 , j ∣ − 1 ≥ 2 and ∣S f ′1 , i0+1∣ = 2, or ∣S f ′1 , j ∣ = ∣S f1 , j ∣ − 2 ≥ 2
and ∣S f ′1 , i0+1∣ = 3. Hence τ2( f ′1 )) < τ2( f1), in contrary to our choice of f1. ∎
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It follows from Claims 7.8 and 7.9 that each part of G is 3−-part, in contrary to
Theorem 4.1.

This completes the proof of Lemma 7.1.

8 Tighter upper bound for the number of frequent colors

In this section and the next section, we assume that (G , L) is a minimum counterex-
ample to Theorem 1.2 with∑v∈V(G) ∣L(v)∣maximum.

This section proves that there are at most k − p1 − 1 frequent colors. Assume to the
contrary that there are k − p1 frequent colors. We shall construct another k-list assign-
ment L′ of G that has k frequent colors. By Lemma 7.1, (G , L′) is not a counterexample
to Theorem 1.2. Hence there is an L′-coloring f of G. Using this coloring f, we construct
a near-acceptable L-coloring of G, which contradicts Lemma 6.1.

Let F be the set of frequent colors, and F′ ⊆ F be the set of frequent colors of
Type (1).

By Lemma 7.1, we may assume that ∣F∣ ≤ k − 1. If λ = 1, then for any v ∈ T , all colors
in L(v) are frequent of Type (2), a contradiction (note that p1 ≥ 3, so T ≠ ∅). Thus
λ ≥ 2.

Lemma 8.1 λ ≤ p1 + 1.

Proof For c ∈ CL − F′, by definition, ∣L−1(c)∣ ≤ k + 1. By Lemma 3.2, for each c ∈ F′,
∣L−1(c)∣ ≤ k + p1 + 2. Therefore

k∣V ∣ ≤ ∑
v∈V
∣L(v)∣ = ∑

c∈CL

∣L−1(c)∣ ≤ ∣F′∣(k + p1 + 2) + ∣CL − F′∣(k + 1).

Hence

∣F′∣ ≥ k∣V ∣ − (k + 1)∣CL ∣
p1 + 1

= kλ − ∣CL ∣
p1 + 1

.(8.1)

As ∣F′∣ < k, we have

∣CL ∣ > k(λ − p1 − 1).(8.2)

Since λ ≥ 2, we have ∣CL ∣ ≤ 2k. Plug this into (8.2), we have λ ≤ p1 + 2.
If λ = p1 + 2, then ∣CL ∣ = ∣V ∣ − λ = 2k + 2 − (p1 + 2) = 2k − p1 ≤ 2k − 3 (as p1 ≥ 3).

This implies that G has no 2-part (if {u, v} is a 2-part of G, then L(u) ∩ L(v) = ∅ and
hence ∣CL ∣ ≥ 2k). By (4.7), 2k − 1 = ∣V ∣ − 3 ≥ 3(k − p1) + p1. Hence

p1 ≥
k + 1

2
.(8.3)

By (8.1),

∣F′∣ ≥ kλ − ∣CL ∣
p1 + 1

= k(p1 + 2) − (2k − p1)
p1 + 1

= (k + 1)p1

p1 + 1
= k − k − p1

p1 + 1
> k − 1.

Hence ∣F′∣ ≥ k, a contradiction. Thus λ ≤ p1 + 1. ∎

Lemma 8.2 F = ⋂v∈T L(v).
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Proof If p1 = λ − 1, then each color in ⋂v∈T L(v) is contained in at least λ − 1
singleton lists, and hence is a frequent color of Type (3).

If p1 ≥ λ, then each color in⋂v∈T L(v) is contained in at least λ singleton lists, and
hence is a frequent color of Type (2).

In any case,

⋂
v∈T

L(v) ⊆ F .

On the other hand, assume there is a frequent color c ∉ ⋂v∈T L(v), say c ∉ L(v) for
some v ∈ T , then let L′ be the list assignment of G defined as L′(x) = L(x) for x ≠ v
and L′(v) = L(v) ∪ {c}. By our assumption that (G , L) is a minimum counterexample
with∑v∈V(G) ∣L(v)∣maximum, G and L′ is not a counterexample to Theorem 1.2. So
G has an L′-coloring f. But then f is a near acceptable L-coloring of G, in contrary to
Lemma 6.1. Therefore F ⊆ ⋂v∈T L(v). ∎

Lemma 8.3 There are at most k − p1 − 1 frequent colors.

Proof Assume to the contrary that {cp1+1 , cp1+2 , . . . , ck} is a set of k − p1 frequent
colors.

Assume T = {v1 , v2 , . . . , vp1}. We choose p1 colors c1 , c2 , . . . , cp1 so that for i =
1, 2, . . . , p1,

c i ∈ L(v i) − {cp1+1 , . . . , ck} − {c1 , . . . , c i−1}.

As ∣L(v i)∣ ≥ k, the color c i exists.
Let C′ = {c1 , c2 , . . . , ck} and define L′ as follows:

L′(v) =
⎧⎪⎪⎨⎪⎪⎩

C′ if v ∈ T ,
L(v) otherwise.

By Lemma 8.1, p1 ≥ λ − 1. If p1 ≥ λ, then each color in C′ is Type-2 frequent with
respect to L′. If p1 = λ − 1, then each color in C′ is Type-3 frequent with respect to
L′. By Lemma 7.1, (G , L′) is not a minimum counterexample to Theorem 1.2. Since
CL′ ⊆ CL , we know that (G , L′) is not a counterexample to Theorem 1.2. Hence G has
an L′-coloring f.

Note that if v ∉ T , then f (v) ∈ L(v). We shall modify f to obtain a near acceptable
L-coloring of G.

Let T ′ = {v i ∶ 1 ≤ i ≤ p1 , c i ∈ f (T)}. As ∣T − T ′∣ = ∣ f (T) − {c1 , c2 , . . . , cp1}∣, there
is a bijection g ∶ T − T ′ → f (T) − {c1 , c2 , . . . , cp1}.

Let f ′ ∶ V → CL be defined as follows:

f ′(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f (v) if v ∉ T ,
c i if v = v i ∈ T ′ ,
g(v) if v ∈ T − T ′ .

Then f ′ is a near acceptable L-coloring of G, in contradiction to Lemma 6.1. ∎
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9 Final contradiction

We shall find a subset X of T and a set F′′ of k − p1 colors so that for each c ∈ F′′,

∣L−1(c) ∩ X∣ ≥ λ.

This would imply that all the k − p1 colors in F′′ are frequent (of Type (2)). This is in
contrary to Lemma 7.1.

For any color c ∈ CL − F, ∣L−1(c)∣ ≤ k + 1. Let

b =min{k + 1 − ∣L−1(c)∣ ∶ c ∈ CL − F}.

Lemma 9.1 There is a subset X of T such that

(1) ∣X∣ ≥ p1 − λ + 1.
(2) ∣L(X)∣ ≤ k + b.

Moreover, if b = 0 or p1 = λ − 1, then ∣X∣ ≥ p1 − λ + 2.

Proof Let c′ ∈ CL − F be a color with ∣L−1(c′)∣ = k + 1 − b. By Lemma 8.2, there is a
vertex w ∈ T such that c′ ∉ L(w). Define a list assignment L′ as follows:

L′(v) =
⎧⎪⎪⎨⎪⎪⎩

L(v) ∪ {c′} v = w ,
L(v) otherwise.

By the maximality of∑v∈V(G) ∣L(v)∣, G has an L′-coloring f. We must have f (w) = c′
and w is the only badly colored vertex, for otherwise f is a proper L-coloring of G.

Now f is a pseudo L-coloring of G. By Lemma 5.1, in the bipartite graph B f , Vf
has a subset X f such that ∣X f ∣ > ∣Yf ∣ = ∣NB f (X f )∣, and Vf − X f contains at most λ − 1
singletons of G.

It is easy to see that w ∈ X f and c′ ∉ Yf . Let

X = {v ∈ T ∶ {v} is an f -class in X f }.

Then ∣X∣ = ∣T ∣ − ∣(Vf − X f ) ∩ T ∣ ≥ p1 − λ + 1 and by Lemma 5.2, if p1 = λ − 1, then
∣X∣ = ∣T ∣ − ∣(Vf − X f ) ∩ T ∣ ≥ p1 − λ + 2.

Since each f -class in X f contains a vertex v for which c′ ∉ L(v), we have

∣L(X)∣ ≤ ∣Yf ∣ < ∣X f ∣ ≤ ∣V ∣ − ∣L−1(c′)∣ = k + 1 + b.

So ∣L(X)∣ ≤ k + b.
It remains to prove that if b = 0, i.e., ∣L−1(c′)∣ = k + 1, then ∣X∣ ≥ p1 − λ + 2.
Assume to the contrary that ∣L−1(c′)∣ = k + 1 and ∣X∣ = p1 − λ + 1. By Lemma 5.1,

∣Yf ∣ ≥ k + 1 and hence ∣X f ∣ ≥ k + 2, in contrary to ∣X f ∣ ≤ ∣V ∣ − ∣L−1(c′)∣ = k + 1.
This completes the proof of Lemma 9.1. ∎

We order the colors in L(X) as c1 , c2 , . . . , ct , so that

∣L−1(c1) ∩ X∣ ≥ ∣L−1(c2) ∩ X∣ ≥ . . . ≥ ∣L−1(ct) ∩ X∣,

where t = ∣L(X)∣. Let F′′ = {c1 , c2 , . . . , ck−p1}.
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It suffices to show that

∣L−1(ck−p1) ∩ X∣ ≥ λ,

and hence each color c i ∈ F′′ is a frequent of Type (2).
Let Z = {ck−p1 , ck−p1+1 , . . . , ct}. For each v ∈ X, ∣L(v) ∩ Z∣ ≥ ∣L(v)∣ − (k − p1 −

1) ≥ p1 + 1. Hence

∣Z∣∣L−1(ck−p1) ∩ X∣ ≥
t
∑

i=k−p1

∣L−1(c i) ∩ X∣ = ∑
v∈X
∣L(v) ∩ Z∣ ≥ ∣X∣(p1 + 1).(9.1)

By Lemma 9.1,

∣Z∣ = ∣L(X)∣ − (k − p1 − 1) ≤ p1 + 1 + b.

Plugging this into (9.1), we have

(p1 + 1 + b)∣L−1(ck−p1) ∩ X∣ ≥ ∣X∣(p1 + 1).

This implies that

∣L−1(ck−p1) ∩ X∣ ≥ ∣X∣(p1 + 1)
p1 + 1 + b

.(9.2)

For each c ∈ CL − F, ∣L−1(c)∣ ≤ k + 1 − b (by definition of b). By Lemma 3.2, for
c ∈ F, ∣L−1(c)∣ ≤ k + p1 + 2. Hence

(2k + 2)k ≤ ∑
v∈V
∣L(v)∣ = ∑

c∈CL

∣L−1(c)∣ ≤ ∣CL − F∣(k + 1 − b) + ∣F∣(k + p1 + 2).(9.3)

Plugging ∣CL ∣ = ∣V ∣ − λ = 2k + 2 − λ and ∣F∣ ≤ k − p1 − 1 into (9.3), we have

(2k + 2)k ≤ (2k + 2 − λ − (k − p1 − 1))(k + 1 − b) + (k − p1 − 1)(k + p1 + 2).(9.4)

(Note that the coefficient of ∣F∣ in the right hand side of (9.3) is positive.)
This implies

b ≤ (p1 + 3 − λ − k)(k + 1) + (k − p1 − 1)(k + p1 + 2)
k + p1 + 3 − λ

.(9.5)

If λ = 2, then since p1 ≥ 3, by plugging ∣X∣ ≥ p1 − λ + 1 (see Lemma 9.1) into (9.2),
we have

∣L−1(ck−p1) ∩ X∣ ≥ (p1 − λ + 1)(p1 + 1)
p1 + 1 + b

≥ (p1 − 1)(p1 + 1)
p1 + 1 + (p1+1)(k−p1−1)

k+p1+1

= (p1 − 1)(k + p1 + 1)
2k

≥ 2(k + p1 + 1)
2k

> 1.

Since ∣L−1(ck−p1) ∩ X∣ is an integer, ∣L−1(ck−p1) ∩ X∣ ≥ 2 = λ and we are done.
Therefore λ ≥ 3 and ∣CL ∣ ≤ 2k − 1. By Lemma 3.2, G has no 2-parts. By the same

reason as (8.3), we have

p1 ≥
k + 1

2
.
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Combining (8.1) with Lemma 8.3, together with p1 ≥ k+1
2 , we have

k − 3
2
≥ k − p1 − 1 ≥ ∣F′∣ ≥ kλ − ∣CL ∣

p1 + 1
= kλ − (2k + 2 − λ)

p1 + 1
= (k + 1)λ − 2k − 2

p1 + 1
.

Hence

λ ≤
(k−3)(p1+1)

2 + 2k + 2
k + 1

= p1 + 1
2
+ 2 − 2(p1 + 1)

k + 1
< p1 + 1

2
+ 1.

Since λ is an integer,

λ ≤ p1

2
+ 1.(9.6)

Therefore

p1 ≥ 2λ − 2 ≥ λ + 1.

Plugging this into (9.5), we have

b ≤ (p1 + 3 − λ − k)(k + 1) + (k − p1 − 1)(k + p1 + 2)
k + p1 + 3 − λ

≤ (p1 + 3 − λ − k)(k + 1) + (k − p1 − 1)(k + p1 + 2)
k + 4

( as p1 ≥ λ + 1)

= (p1 + 1)(k − p1 − 1) + (k + 1)(2 − λ)
k + 4

≤
k−3

2 (p1 + 1) + (k + 1)(2 − λ)
k + 4

(by (8.3), i.e., p1 ≥
k + 1

2
)

= 1
2
(p1 + 1 − 2λ) +

2k + 2 + 3λ − 7
2 (p1 + 1)

k + 4

≤ 1
2
(p1 + 1 − 2λ) + k + 1/2

k + 4

< 1
2
(p1 + 1 − 2λ) + 1.

It follows from (9.6) that p1 ≥ 2λ − 2.
If p1 ∈ {2λ − 2, 2λ − 1}, then b = 0. This implies that ∣X∣ ≥ p1 − λ + 2.
It follows from (9.2) that

∣L−1(ck−p1) ∩ X∣ ≥ ∣X∣(p1 + 1)
p1 + 1 + b

≥ (p1 − λ + 2)(p1 + 1)
p1 + 1

≥ λ.

If p1 ≥ 2λ, then

b ≤ 1
2
(p1 + 1 − 2λ) + 1

2
≤ 1

2
(p1 + 1 − 2λ) + 1

2
(p1 + 1 − 2λ) = p1 + 1 − 2λ.

Hence

∣L−1(ck−p1) ∩ X∣ ≥ (p1 − λ + 1)(p1 + 1)
p1 + 1 + b

≥ (p1 − λ + 1)(p1 + 1)
2(p1 + 1 − λ) = p1 + 1

2
≥ λ.

This completes the whole proof of Theorem 1.2.
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This paper characterizes all non-k-choosable complete k-partite graphs G with
2k + 2 vertices. If the number of vertices of G increases, and the chromatic number
remains k, then the choice number of G may increase. It was proved in [16] that
k-chromatic graphs with n ≥ 2k + 1 vertices have choice number at most ⌈ n+k−1

3 ⌉. It
would be interesting to characterize graphs for which this upper bound on the choice
number is sharp.
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