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BUBBLES RISING IN AN INCLINED TWO-DIMENSIONAL TUBE
AND JETS FALLING ALONG A WALL
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Abstract

The motion of a two-dimensional bubble rising at a constant velocity U in an inclined tube
of width H is considered. The bubble extends downwards without limit, and is bounded on
the right by a wall of the tube, and on the left by a free surface. The same flow configuration
describes also a jet emerging from a nozzle and falling down along an inclined wall. The
acceleration of gravity g and the surface tension T are included in the free surface condition.
The problem is characterized by the Froude number F = U/\/gH, the angle 8 between
the left wall and the horizontal, and the angle y between the free surface and the right wall
at the separation point. Numerical solutions are obtained via series truncation for all values
of 0 < B < m. The results extend previous calculations of Vanden-Broeck [12-14] for
B = /2 and of Couét and Strumolo [3] for 0 < B < /2. It is found that the behavior
of the solutions depends on whether 0 < 8 < 2n/3 or27/3 < B <nm. When T =0,
it is shown that there is a critical value F, of Froude number for each 0 < 8 < 2x/3
such that solutions with y =0, n/3and r — Boccurfor F > F,, F= F.and F < F,
respectively, and that all solutions are characterized by y = 0for2n/3 < 8 <. Whena
small amount of surface tension 7" is included in the free surface condition, it is found that
foreach 0 < B < m there exists an infinite discrete set of values of F for whichy = 7 — 8.
A particular value F* of the Froude number for which T = 0 and y = & — 8 is selected by
taking the limit as 7 approaches zero. The numerical values of F* and the corresponding
free surface profiles are found to be in good agreement with experimental data for bubbles
rising in an inclined tube when 0 < B < 7 /2.

1. Introduction

We consider a bubble rising at a constant speed U in an inclined two-dimensional tube
of width H (see Figure la). The bubble is bounded on the right by a wall of the tube
and on the left by a free surface. We assume that the tube is infinitely long and that
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FIGURE 1. Sketch of the flow domain and the coordinates. This is a computed profile for 8 = 7m/12
and F =0.11 and w = 10.

the bubble extends downwards without limit. We choose a frame of reference moving
with the bubble. Gravity is acting vertically downwards. The effect of the surface
tension 7 is included in the dynamic boundary condition. The angle between the left
wall and the horizontal is denoted by B and the angle between the negative x-axis and
the tangent line at the nose of the bubble by y (see Figure 1a). The flow configuration
of Figure la describes also a jet emerging from a nozzle and falling down along a
wall. In this case the flow is viewed as bounded on the left by an infinite wall and on
the right by a semi-infinite wall and a free surface (see Figure 1b).

The bubble of Figure la has been studied experimentally by Maneri [9] for
0 < B < m/2. No experimental results have been reported for 7/2 < 8 < =,
because the bubble tends to rise on the upper wall. Various configurations of jets
falling from a nozzle or an aperture have been considered analytically by Keller and
Gee [7] and numerically by Tuck [11], Dias and Vanden-Broeck [4], Lee and Vanden-
Broeck [8] and others. These authors included gravity but neglected surface tension.
Our calculations generalize some of their findings by including surface tension. We
consider solutions for the flow of Figure 1b for all values of 0 < 8 < =, although
the solutions for m/2 < B < m are “upside down flows” with the heavy fluid on
top of the light fluid. We have two motivations for considering such flows. First,
“upside down flows” are commonly observed. For example, when a liquid is poured
from a container, it sometimes flows along the underside of the spout of the pouring
vessel. This phenomenon was studied experimentally by Reiner [10], who called it
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the “teapot effect”. Analytical and numerical solutions of such pouring flows have
been found by Keller [6] and Vanden-Broeck and Keller [15, 16]. Secondly, it is of
interest to describe the local behavior of the flow near the separation point (that is, the
point of intersection of the free surface with the right wall) for all 0 < 8 < 7, and in
particular, the dependence of y on 8.

For each value of 8, the problem is characterized by the Froude number

F=U/J/gH (L.1)
and the Weber number
w=pU*H/T. (1.2)

Here, p is the density of the fluid.

Garabedian [5], Birkhoff and Carter 1] and Vanden-Broeck [12-14] considered
the problem of a free bubble rising in a two-dimensional tube. This configuration can
be obtained by reflecting the flow of Figure 1a with 8 = /2 into the right wall. After
reflection the width of the tube is 2H (see Figure 2). As we shall use results from
Vanden-Broeck [12-14] later, we summarize them here as follows. When w = 00
(thatis, T = 0), there is a critical value F, &~ (.506 of the Froude number F such that

y=nf/2for F<F,, y=n/3for F=F, y=0for F>F. (13)

We note that Vanden-Broeck ([12-14]) used a Froude number (which we denote here
by F,) based on the width of the tube. Thus F, is related to F by

F, = F/V2. (1.4)

The mathematical solution for 8 = 7 /2 has three interpretations: a jet falling from a
nozzle (see Figure 1b), a bubble bounded on the right by a wall and on the left by a
free surface (see Figure 1a) and a free bubble (see Figure 2).

If we use the interpretation of Figure 1b, relations (1.3) agree with our everyday
experience: there is a jet for each value of F.

If we use the interpretation of Figure 2, we need to require y = /2 so that the
slope is continuous at the nose of the bubble. Relations (1.3) show that there is a
solution for each value of 0 < F < F,. This is in contradiction with the experiments
of Collins [2] which show that there is only one bubble corresponding to F = 0.35.
Vanden-Broeck [13] showed that the discrepancy between the experiments and the
theory can be removed by introducing surface tension and taking the limit as the
surface tension approaches zero. Vanden-Broeck [13] showed that when w # oo (that
is, T # 0), the angle y is a function of w and F. For a fixed value of w, y oscillates
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FIGURE 2. Computed solutions for 8 = w/2 and F = F* =~ 0.325.

infinitely often around /2 as F decreases. There is a countably infinite number of
values of F for which y = /2. Furthermore, as w — 00, all the solutions approach a
unique solution characterized by F* = 0.325. Therefore an arbitrary small amount of
the surface tension can be used to select a particular solution with 7 = Qand y = n/2
(in the absence of surface tension, all solutions for 0 < F < F, are characterized by
y = m/2). The value F* = 0.325 is in good agreement with the experimental value
0.35 of Collins [2].

The flow problem with the interpretation of Figure 1a was solved numerically by
Couét and Strumolo [3]. They restrict their attention to 0 < 8 < w /2. Their results
showed that for given values of 8 and w, y oscillates infinitely often as F approaches
zero. For each value of 0 < 8 < 7/2 and w, they selected the particular solution
corresponding to the largest value of F for which y = m/2.

In this paper we extend the calculations of Vanden-Broeck [12-14] and Couét and
Strumolo [3] and present numerical solutions of the flow configurations of Figures 1a
and 1b for values of 0 < 8 < 7.

The numerical procedure uses series truncation. It is similar to the techniques used
by Vanden-Broeck [12-14], Couét and Strumolo [3] and Lee and Vanden-Broeck [8].
It is found that the behaviors of the solutions depend on whether 0 < 8 < 27/3 or
2n/3 < B <m.
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For T = 0 and each 0 < B < 2m/3, there is a critical value F_. of the Froude
number F, such that solutions withy =0, w/3andm — B occurfor F > F., F = F,
and F < F,, respectively. This includes (1.3) as a particular case for § = 7 /2. On
the other hand, for T = 0 and each value of 2 /3 < 8 < m, there is no such a critical
valueof Fand y =0forallQ < F < 0.

When the flow is interpreted as in Figure 1a, surface tension can be used to select
the physically relevant bubble. We propose a new selection criterion and show that the
selected values of the Froude number and the selected profiles are in good agreement
with the experiments of Maneri [9].

The problem is formulated in Section 2. The numerical procedure is described in
Section 3 and the results are presented and discussed in Sections 4, 5 and 6.

2. Formulation

Let us consider the steady two-dimensional potential flow of an inviscid incom-
pressible fluid in a domain bounded on the left by an infinite wall I'J’ and on the
right by a semi-infinite wall /S and a free surface SJ (see Figure 1a). As x — 00,
the velocity approaches the constant . We introduce Cartesian coordinates with
the origin at the separation point §. Gravity acts vertically downwards. Then, the
gravitational potential is given by

G =gxsinf8 —gycosf. 2.1)

On the free surface S/, the Bernoulli’s equation yields

1
59°+G —(T/p) K =B, @.2)
where ¢ is the flow speed, K is the curvature of the free surface and B is the Bernoulli

constant.

We define dimensionless variables by taking U as the unit velocity and H as the
unit length. We denote the potential function by ¢ and the stream function by . In
addition, we introduce the complex velocity by & = u —iv, and we define the function
T — {0 by the relation

C=u—iv=e"", (2.3)

We denote the complex potential by f = ¢ + iy. Without loss of generality, we
choose ¢ = ¥ = 0atx = y = 0. It follows from the choice of the dimensionless
variables that v = 0 on the surface of the bubble S/ and v = —1 on the wall I'J’.
The complex potential plane is sketched in Figure 3. We shall seek the function T — (6
as an analytic function of f in the strip —1 < ¢ < 0.
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FIGURE 3. The complex potential plane.

In terms of the dimensionless variables, (2.2) becomes

a0 B
3¢ U

21

e (x sinf — ycos ) — %e (2.4)

Here, F and w are the Froude number and the Weber number defined by (1.1) and
(1.2), respectively.
Differentiating (2.4) with respect to ¢ and using the relation

ax By 1

- — —r+if
% 36 m—iv ¢ (2.5)
we have
2 0T i 13 26
ﬁ+—e "sin (B — 9)——£ (e %) =0 onSJ. (2.6)

The kinematic conditions on the walls /'J" and I § yield

=m, ¢y =-—1, 2.7
6=nmn ¢v=0 ¢<0. (2.8)

This completes the formulation of the problem of determining 7 —i6. This function
must be analytic in the strip —1 < ¥ < 0 and satisfy the conditions (2.6)—(2.8).

3. Numerical Procedures

We solve the problem by following the procedures used by Vanden-Broeck [12-14],
Couét and Strumolo [3] and Lee and Vanden-Broeck [8].
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FIGURE 4. The complex ¢-plane.
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We first map the flow domain on the fourth quadrant of the unit circle in the complex
t-plane by the transformation
L]
e =~ t+7 . (3.1

The wall /S goes onto the real interval (0, 1) and the bubble surface SJ onto the
circumference (see Figure 4).
Next we define the function 2(t) by the relation

=" =_[-InCU+ )] (=InC) "B - 2)?/" %D, (3.2)

Here C is an arbitrary constant between O and 0.5. We choose C = 0.2. At the
points J and S, ¢ has singularities associated with a thin jet and a flow inside an angle
of m — y (see Figure la). These singularities are removed in (3.2) by the factors
[—InC(1 + ¢?)}'/? and (1 — £?)*/" (see Birkhoff and Carter [1], Vanden-Broeck [12—
14] and Lee and Vanden-Broeck [8] for details). It follows that 2(¢) can be represented
by a Taylor expansion in powers of ¢. Furthermore, the kinematic conditions (2.7)
and (2.8) imply that the expansion for 2(¢) has real coefficients a, and involves only
even powers of t. Thus we write

QO)::}:thth. (3.3)
n=1

We describe points on the free surface SJ by t = €'°, where —n/2 < 0 < 0.
Using (3.1), we rewrite (2.6) in the form

di 2 ., . d (. do
2T -7 . T _
mcotoe o + V2 e " sin(f—0) — 0 coto o (e coto d_cr) =0.3.4)
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Here, T (o) and 7] (o) denote the values of T and @ on the free surface SJ.

We solve the problem by truncating the infinite series in (3.3) after a finite number
of terms.

We first consider the case w = oo (that is, T = 0). The local analysis of Lee and
Vanden-Broeck [8] shows that the only possible values of y are O, 7/3 and m — 8.
Therefore, we have three different schemes corresponding to each of these values of
y. In each of them, we truncate the infinite series in (3.3) after N terms and satisfy
the free surface condition (3.4) at the N mesh points

T 1
Oy = — S 1=1,2,... . 3.5
Y Y; (1 2)’ T N G5

This leads a system of N nonlinear algebraic equations for the N unknowns a,,
n=12,...,N. We solve this system by Newton’s method. Once this system is
solved for given values of F and w (for each B), the shape of the bubble is obtained
by numerically integrating (2.5).

We now consider the case w # oo (that is, T # 0). The angle y is no longer
restricted to the values 0, /3 and 7 — 8 and must be found as part of the solution.
Thus we truncate the infinite series in (3.3) after N — 1 terms and satisfy (3.4) at the
N collocation points (3.5). This leads to a system of N nonlinear algebraic equations
for the N unknowns a,,n = 1,2,..., N — | and y. This system is also solved by
Newton’s method.

4. Numerical results

The numerical schemes of Section 3 were used to compute solutions for various
values of F, w and 8. We found that the coefficients a, decrease rapidly as n increases.
Forexample,a, ~ 1.6x 107!, a;0 ~ 5.7x1073, a3 ~ 2.2x 1073 and asp ~ 2.5x 10~*
for 8 =7n/12, w = 10and F = 0.14 when N = 70. Most of the computations were
performed with 70 < N < 200. We also repeated the calculations with C # 0.2 and
checked that the results were independent of the value of 0 < C < 0.5.

I. Solutions without surface tension. When surface tension is neglected, there
is a solution for each value of F' and B. As explained in Section 3, the angle y takes
only the values 0, 7/3 and m — 8. The numerical results show that there is a critical
Froude number F, for each 0 < 8 < 27/3 such that

y=m—fBwhen F < F,, y=n/3when F=F, y=0when F > F_
“.1

and that for 27/3 < B < m there is only one configuration with y = 0 for each
F>0.
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FIGURE 5. Values of the speed g,/ U versus F for various values of 8.
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FIGURE 6. Values of F, versus .

We denote by g the velocity at the separation point S. The solutions with y = 0
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are also characterized by gs # 0, and those with y =n/3andy =7 — Bbygs = 0.
For2n /3 < B < m, g5 tends to zero as F approaches zero. Figure 5 shows the values
of g5 versus F for various B. The results of Figure 5, restricted to 0 < 8 < 7/2, are
similar to those in Figure 11 of Couét and Strumolo [3]). Note that the inclination
used by Couét and Strumolo (which we denote by B.) is the complement of our angle
B. Thus B. = /2 — B.

Figure 6 shows the values of F, versus 8. For 8 = 7 /2, F, & 0.506, in accordance
with Vanden-Broeck’s [12] results. As 8 approaches 2w /3 from below, larger and
larger values of N are needed to obtain accurate values of F,. This numerical difficulty
is related to the fact that there are no solutions with y = 7r/3 for 8 > 27/3. However
an extrapolation of the results of Figure 6 confirms that F, approaches zero as § tends
to 27t /3 from below.

In Figures 7a, 7b and 7c, we present typical profiles for several values of 8. As
F — o0, the profile of the bubble approaches the wall. As F — 0, the profile of
the bubble approaches a horizontal line. When 0 < 8 < 2m/3, the bubble surface at
the contact point S is tangent to the wall for each value of F, < F < oo and leaves
horizontally from the wall for each 0 < F < F_ (see Figure 7a and 7b). On the other
hand, for 27 /3 < B < m, the free surface leaves tangentially from the point S for all
F > 0 ( see Figure 7c).

—0.5

FIGURE 7A. Computed solutions for 8 = /4 and T = 0. The free surface profiles from left to right
correspond to F = 0.2,0.45, F = F, = 0.6262 and F = 0.8 (g, = 0.491).
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FIGURE 7B. Computed solutions for § = 77 /12 and T = 0. The free surface profiles from left to
right correspond to F = 0.18, F = F, = 0.393 and F = 0.8.
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FIGURE 7C. Computed solutions for 8 = 3 /4 and T = 0. The free surface profiles from left to right
correspond to F = 0.2 (g; = 0.121), F = 0.5 (g, ~ 0.503) and F = 0.9 (g, = 0.761).
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II. Solutions with surface tension. When surface tension is included in the free
surface condition, the numerical computations show that there is a flow for each value
of F, B and w. As mentioned in Section 3, the angle y comes as part of the solution
and its values are no longer restricted to 0, /3 and m — 8. In Figure 8, we present
values of y versus F for w = 10 and several values of 0 < 8 < m. These results
confirm the calculations of Couét and Strumolo [3] for 0 < 8 < n/2 and extend them
to the range 0 < B < m (see their Figure 6). For each value of 8 we found that y
tends to zero as F tends to infinity. Figure 8 shows that for a fixed value of w, the
amplitude of the oscillation around y = m — B on each curve dies out as 8 increases.
Similar curves were obtained for other values of w sufficiently large. We observed
that the amplitude of the oscillations decreases as w increases when B is fixed.

150

135+

1204

0 T T T T

T
0 01 02 03 04 05 06 07 08 09 1
F

T T 1 T ]

FIGURE 8. Values of y versus F for @ = 10. The curves from the top to the bottom correspond to
B=mn/3,m/2,197/36,7n/12,237/36, 257 /36 and 377 /4. The dotted lines from the top to the bottom
correspond to the value y = n — 8 for 8 = /2, 237 /36 and 2571 /36, respectively.

Typical profiles for § = 3w /4 with @ = 1 are shown in Figure 9. We note that
equation (2.4) implies that the free surface approaches a horizontal line for any w and
B as F tends to zero.
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FIGURE 9. Computed solutions for 8 = 37 /4 and w = 1. The curves from left to right correspond to

F =0.2,0.4 and 0.6.

5. Discussion of the results, selection technique and comparison with
experiments

As we mentioned in the introduction, the flow configuration studied in this paper
describes two different physical problems.

The first is a jet falling down along a wall (see Figure 1b). In this case, the numerical
results with T = (O show that there is a jet for each value of Fand 0 < 8 < m.

The second physical problem is a bubble rising in an inclined tube (see Figure 1a).
The numerical results with 7 = 0 show that there is a mathematical solution for each
value of 0 < 8 < i and F. Recall that B is defined as the angle between the left wall
and the horizontal (see Figure 1a). For any value of 0 < 8, < m/2, the angles 8 = §,
and B = w — B, correspond to the same inclined tube viewed from the front or the
back. Therefore there are two solutions for a given inclined tube. However, solutions
with /2 < B < m have not been observed experimentally. Also, the experimental
data (Maneri [9]) show that for each 0 < B < /2, there is only one value of F for
which a bubble exists. This does not agree with the numerical results which predict
a solution for each values of F and 0 < B < m/2. The discrepancy can removed
by generalizing the procedure derived by Vanden-Broeck [13] for the configuration
of Figure 2 (see the introduction for a summary of the method). Thus we introduce
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surface tension and take the limit as the surface tension approaches zero. The details
are described below.

Couét and Strumolo [3] choose for each value of 8 and w, the particular solution
corresponding to the largest value of F for which y = m/2. Our results show that
there are no solutions with y = /2 when T = 0 unless 8 = 7 /2 (see (4.1)). This
finding does not invalidate the selection criterion of Couét and Strumolo because they
use it with 7 small but different from zero. In fact their selected solutions are in very
good agreement with experiments as shown for example in the Figures 15, 16 and 17
of their paper.

Here we show that an equally good agreement with experiments can be obtained by
a different selection criterion in which we take the limit as T — 0 instead of keeping
T # 0 as in Couét and Strumolo [3]. More precisely we select for each0 < B<m/2
the value F* of the Froude number defined by

F* = lim Fs(w), 5.1)
w0

where Fg(w) is the largest Froude number at which y = y,, for given values of
0 < B < /2 and w. The results of Section 41 show that y, can only take one of the
values m — B, /3 and O (that is, one of the only three possible values in the absence
of surface tension).

0.9

0.8+

0.71

0.6

0.44

0.31

0.2

0.14

0 30 60 90 120 150 180

FIGURE 10. Values of F, versus 8. The dots are the experimental values of Maneri (1970); A,
methanol; @, water.

https://doi.org/10.1017/50334270000009437 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000009437

346 J. Lee and J.-M. Vanden-Broeck [15]

Figure 8 shows that Fgz(w) = oo for y = 0 and w sufficiently large. Thus our
criterion (4.2) with y; = 0 leads to the uninteresting value F* = oo. The only
solutions with y = m/3 in the absence of surface tension corresponds to F = F,
(see (4.1)). Therefore our criterion with y, = 7 /3 leads to F* = F,. In Figure 10,
we compare these selected values with the experimental values of Maneri {9]. The
agreement is not very satisfactory and the selected values are too high.

For each value of w # oo and 0 < B < m/2, Figure 8 shows that there is a
discrete set of values for which y = m — 8. The values F* selected by our criterion
for y = w — B are shown in Figure 11. In order to find these values for each
0 < B < /2, we computed first Fz(w) by using a variant of the scheme of Section 3
in which the problem is reduced to a system of N algebraic equations for N unknowns
Fanda,,n=1,2,..., N —1tobe solved for y = m — B and given values of 8 and
. We then determined the value of F* for each B by evaluating Fj(w) for larger and
larger values of w.

0.9+

0.84

0.7+

P

0.3

0.2

0.14

0 T T T T T
0 30 60 90 120 150 180
B

FIGURE 11. Values of F* versus 8. The dots are the experimental values of Maneri (1970); A,

methanol; @, water.

We also show in Figure 11 the experimental values of Maneri [9]. The agreement
between experiments and the theoretical curve is uniformly good. This finding in-
dicates that our criterion should be used with yo = 7 — . The agreement is better
for methanol than water. This is to be expected since the value of the surface tension
T for methanol is 3 times smaller than for water (recall that our selection criterion
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applies in the limit as 7" approaches zero).

0.5 4

-0.5

FIGURE 12. Computed solution for 8 = m/3 and F = F* = 0.527. The dots are the experimental
values of Maneri (1970).

A free surface profile for 8 = 7/3 and F = F* = 0.527 is shown in Figure 12.

We also compared in Figure 12 our selected profile for 8 = m /6 with the same
experimental values as Couét and Strumolo in their Figure 15. The agreement is also
very good and supports our choice yy = m — f in (4.2).

It is worthwhile mentioning that our selection criterion can be generalized by
replacing Fs(w) in (4.2), by the n — th largest Froude number at whichy =7 — 8
for given values of 0 < B < 7/2 and w. Here n denotes an integer. Since both the
amplitude and the wavelength of the oscillations around = — 8 in Figure 8 tend to
zero as T — 0, the criterion yields the same value of F* independently of the value
of n.

Finally we consider further the case 8 = /2. As described in the introduction
there are two different possible bubbles. The first one is a bubble bounded on the left
by a free surface and on the right by a wall of the tube (see Figure 1a with 8 = 7/2).
The corresponding selected value of F* is 0.325. The second one is the free bubble of
Figure 2. The experiments of Collins [2] and Maneri [9] show that the second bubble
is the one which is observed. The selected value of the Froude number based on the
width of the tube for the free bubble of Figure 2 was found by Vanden-Broeck [13]
to be F, = 0.23 (see introduction again for details). This values of 0.23 does not
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agree with the value 0.325 predicted in Figure 11 for B8 = m/2. The reason for this
discrepancy is that the free bubble solution of Figure 2 is part of another family of
solutions which is not described by our model, namely a free bubble in an inclined tube
(see Figure 13 for a sketch). It is only in the case 8 = /2 that the free bubble can be
obtained from the configuration of Figure 1a by a simple reflection. The experiments
of Maneri [9] suggest that the branch of free bubbles exist only for values of 8 close
to /2. As B decreases from /2, there is a transition to the solutions described in
this paper.

FIGURE 13. Sketch of a free bubble rising in an inclined tube.

6. Conclusions

We have presented numerical solutions for a flow bounded by two walls and a free
surface. The configuration models a bubble rising in a tube or a jet falling down
from a nozzle along a wall. When surface tension is neglected there are solutions
corresponding to three different values of the angle . These three types of solutions
are consistent with the local analysis of Vanden-Broeck and Tuck {17]. When surface
tension is included in the free surface condition, the angle y can take arbitrary values.
It was found that for given values of w, F and B, there is a unique solution. This is
in agreement with our everyday experience with jets falling from a nozzle. However,
if we interpret the flow as a model for a bubble rising in a tube, this finding is in
contradiction with experiments which predict that there is only one bubble for given
values of w and 8. Couét and Strumolo [3] presented a criterion to select the physically
relevant solution which requires T to be different from zero. We have presented an
alternative criterion which works in the limit as 7 — 0. We have shown that our
predicted values of the Froude number and our selected profiles are in as good an
agreement with experimental data as those of Couét and Strumolo.
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