THE EFFECT OF FINITE HEAT CONTENT AND THERMAL
DIFFUSION ON THE GROWTH OF A SEA-ICE COVER
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ABsTRACT. 'The practical analysis of the growth of a sea-ice cover is discussed with initial reference to the
classical work of Stefan, whose basic equation connecting surface temperature with the growth of a uniform
ice cover of negligible specific heat and hence infinite diffusivity is extended to cover “real” cases. The separate
effects of a finite heat content and thermal diffusivity are derived theoretically and semi-empirically respec-
tively, and combined in a more general ice-growth equation which is then tested in the analysis of annual
sca-ice growth on Hudson Bay.

Reésume. L’analyse pratique de la croissance d’une couche de glace de mer est discutée. L’équation
classique de Stefan qui donne la croissance en fonction de la température de la surface d’une couche de glace
de chaleur spécifique négligeable et, par conséquent, de diffusivité thermique infinie, est modifiée pour
couvrir les cas pratiques. Les influences de la chaleur spécifique sont déduites théoriquement et celles de la
diffusivité thermale d’une fagon semi-empirique. Elles sont enfin combinées dans une equation plus
généralisee, qui est ensuite vérifiée dans I'étude de la croissance de la glace de mer annelle faite a la baie de
Hudson.

ZUsAMMENFASSUNG. Die praktische Untersuchung des Wachstums einer Meer-Eisdecke wird unter anfing-
lichem Bezug auf die klassische Arbeit Stefan’s besprochen, dessen Grundgleichung den Zusammenhang
zwischen Oberflichentemperatur und Eisbildung im Fall vernachlissigbarer spezifischer Wirme und daher
unendlicher Warmediffusion darstellt. Der Anwendungsbereich dieser Gleichung wird auf “wirkliche” Fille
erweitert. Die Einflasse einer endlichen spezifischen Wirme und Wirmediffusion werden getrennt theoretisch
beziehungsweise halb-empirisch hergeleitet und dann zu einer allgemeinen Eisbildungsgleichung verbunden,
die durch eine Untersuchung des Wachstums jihrlichen Meer-Eises in der Hudson Bay gepriift wird.

1. INTRODUCTION

Theoretical studies of heat transmission through floating covers of even pure ice are
considerably complicated by the continuous formation of ice at the ice—water interface. In the
absence of warm water currents below, as long as a temperature gradient exists at the lower
boundary, the ice must grow. The three equations of basic importance in specifying the thermal
conditions existing in an ice cover of uniform thermal conductivity k, specific heat ¢, density p,
and thickness # at time ¢ are

el k &0
— = ——, (1.1)
ot pe ox

ot
J=kz (1.2)
dh k (06 1
dt TP(Z;) et g (1-3)

where 0 is the temperature, 7 is the heat flux at a depth o <C x < A, L is the latent heat of
formation, and dh/dt is the rate of advance of the lower boundary.

Numerous works, e.g. Kolesnikov (1958), which have appeared since Stefan’s (18gr1)
classical solutions to the ice-growth problem, have, on the whole, resulted in unwieldy
expressions requiring many unsatisfactory approximations to permit practical applications.
A clear quantitative (and qualitative) picture of thermal occurrences in a floating ice cover,
especially if non-uniform, is best given by electrical analogue methods. This technique has
been discussed by Schwerdtfeger (1964), in a design which involves the usual electrical
analogues for equations (1.1) and (1.2), and a novel automatic switching device to simulate
freezing and hence to provide an adjustable electrical analogue for latent heat and equation
(1.3).

When an analogue computer of the above type is not available or when short calculations
are required, it is still desirable to have suitable analytical procedures at hand. Stefan (1891)
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derived a simple solution for ice of negligible specific heat, which although infrequently
acknowledged, is often used. It states that the ice thicknesses &; and £ before and after a time
interval f;—{; during which the surface temperature is given by 6,, are given by

&
k
necl Bodt. (1.4)
Lp

f

ha?—h,?

Stefan himself discussed the two serious limitations of this equation which both result from
neglecting the specific heat of the ice. These are that no allowance is made for the variable
energy content of an ice cover nor for the time taken for a change in surface temperature to
modify the temperature gradient at the ice-water interface. The assumption of zero specific
heat of course implies infinite thermal diffusivity, & = k/pc¢, under which conditions equation
(1.1) shows all temperature changes to occur instantaneously throughout the ice cover, which
in turn results in a constant uniform temperature gradient. Observations reported by Barnes
(1928, p. 28) to support his simple, Stefan-type equation actually show that the effect of finite
thermal diffusivity is important even in the history of ice whose thickness is only of the order
of a millimetre. Barnes made rapid measurements on St. Lawrence River ice formed in areas
cleared by icebreakers and ferries. Invariably, the theoretically calculated ice thickness
exceeded the observed value and, although no comment was given, this error progressively
increased for greater ice thicknesses.

As a result of the high values for the specific heat of sea ice (Schwerdtfeger, 1963[b])
especially at temperatures near to the freezing point, Stefan’s growth solution for ice of constant

specific heat ¢:
i

A 2( fa:) Bt ‘ 661 ak 0. dt -
A G ¥ (ITEZ) =Ta (1.5)

1

where 6, and 6. are the ice surface temperatures at times /; and /. respectively, and the other
symbols are as in equation (1.4), is not sufficiently accurate in general. In the original paper,
equation (1.5) is merely quoted, and appears to be partly empirical.

Because Stefan’s general equation is inapplicable to ice in general, particularly sea ice to
which most work on floating ice is directed, this paper will discuss the energy content of an
inhomogeneous ice cover and the rate of transfer of heat through this medium, with a view of
deriving a two-stage correction to Stefan’s basic equation (1.4).

2. Crances ofF HEAT ConTENT OF A GROWING IcE COVER
Figure 1 shows the temperature distribution in an ice cover initially of thickness A, before

and after an additional thin layer of thickness 4k has been formed, assuming the idealized

case of continued uniformity of temperature gradient, which would occur only in the case of

very slow growth. It is seen that the temperature of the ice at a distance x below the surface is

given by:

h—x X

8 = (8,—0r) e Oy = 3(3—(90—91-‘)‘&

(2.1)
where 8, is the ice surface temperature, and 8y, the freezing temperature, that of the ice—water

interface. The change in temperature of the ice at depth x after freezing of the layer 4k is

# x x dh
46 = (9‘,791?)34(90-—611‘) m ~ (B.‘—BF) —h—'_"* (2.2)
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Fig. 1. Temperature changes during ice growth

The change in heat content of a volume 4x, in a cylinder of unit cross-sectional area, at a
depth x is thus given by:
x dh
A4Q; = (6,—8p) = Axpes x (2-3)
where cq, is the specific heat of the sea ice at a depth x. The specific heat of sea ice, or any ice
frozen from water containing soluble impurities, was shown by the author (Schwerdtfeger,
1963(b]) to be given by

a

ag
Bp = o ﬁlli‘F o (cw—e1) ey (24-)
where # and o are the temperature and salinity of the ice, « is a constant relating temperature
to the equilibrium salinity of the concentrated mother solution, L; and ¢; are the latent and
specific heats of pure ice and ¢y is the specific heat of water. Substitution of equation (2.1) in

(2.4) gives the specific heat ¢5; as a function of x, so that 4Q ; can be integrated through the ice
cover to give the total change in heat content for unit increase in ice thickness,

Qi = p(szﬂﬂ
h
B iPULi dx
= —J.(SU_BF) P a [9(,—(6c)_BF)x!h]2

0
h I

x pol(cw—rci) dx

+f(9(,—ap) [ [6o— (6,—05)x/h] *f(a“_BF) P

0 0

The integration leads to
Qi = pcd8
- [( Li+(cw—ei)b, 9(,) B (]‘iT((’wkfi)HF) ¥ (0,—0r)c;

al
2

—(90761“)“ ne—F. J (2.5)

fra
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The term 40 is a convenient notation for the mean value of the product of the specific heat
and temperature change throughout the ice cover.
At the same time, the heat involved in the freezing of new ice only, is simply given by

Qr = —Lgp (2.6)
where L, is the latent heat of sea ice. The author has previously shown (1963[b]) that:
Ly = (1—a—as)Ls (2.7)
where s is the salt content of the parent sea-water. Hence
Qr = —p(1—o—os)L;. (2.8)

It can immediately be seen that as f,—f%, Qi/Qyr >0, and as 6,——00, Q/Q >} ®©
substantiating Stefan’s observation that equation (1.4) holds most accurately for ice surface
temperatures near to the freezing point.

Using values for the specific heat calculated by the author (1963[b]), Q.1/Q ¥, the ratio of
heat involved in cooling the ice cover to that connected with simultaneous freezing, may be
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Fig. 2. Corrections to Stefan’s simple ice-growth equation. Ratio of contributions to surface heat flux from ice-cover cooling Q; to
that for new ice forming Q v as a function of ice surface temperature for various salinities
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calculated. The graph in Figure 2 shows these values as a function of salinity and temperature
for ice frozen from sea-water having a [reezing point of —1-8° C.

It is clear from Figure 2 that the latent heat due to freezing at the bottom of the ice cover
is comparable in magnitude to the heat content change taking place in the cover as a whole.
The first step towards an improved form of equation (1.4) must thercfore be to replace the
latent heat L by its “‘effective’ value Ls(1+Qi/QF) = Ls—+cod0. It remains to correct for the
time delay between changes in temperature gradients at the surface and at the ice-water
interface; a method for this is given in the next section.

3. THE RATE oF TRANSFER OF ENERGY THROUGH AN IcE CoOVER

Solution of the thermal diffusion equation (1.1) shows that the time taken for a given
degree of completion of a temperature change initiated by a sudden discontinuity in surface
temperature is directly proportional to the square of the ice thickness, and inversely so to the
diffusivity, i.e.

tyoc K. (g.1)
The author has shown (Schwerdtfeger, unpublished) that a similar relation holds for an ice
cover whose surface temperature is continually changing with time.

On considering sea ice, it is difficult to include the diffusivity changes in any practical
application, as the time lags in temperature change are most conveniently determined from
maxima or minima in the growth rate and temperature curves. This means that a significant
change in the diffusivity occurs during a single interval of observation. However, the mean
value of the diffusivity in the time interval between a minimum and the next maximum, or
between a maximum and a minimum, in the ice temperature remains approximately constant,
unless the temperatures averaged over the same times themselves show a marked change.
Hence equation (3.1) is written: B

tyg = yh?. (3-2)
_ The general application of equation (3.2) requires an expression for the mean thickness
h over the time interval {,. It is usually possible to write:
h = L(2ho+ttydh/dt)
where A, is the initial ice thickness* and dh/d! is the mean rate of increase during the time #,.
Therefore
b o B
O 1 —xhodh(dl

In order to obtain values for y, the set of observations of temperature, heat flux and ice
growth shown in Table I and Figures g and 4, were obtained on annual sea ice in Hudson
Bay near Churchill, Manitoba, between January and May 1961. As well as showing rate of
ice growth, the graph in Figure 3 also shows the heat flux at a depth of 20 cm. in the ice cover.
The time axes in Figures § and 4 use single capital abbreviations for the months. Although the
ice growth curve necessarily lacks detail, owing to the limited number of observations, the
main features are visible and similar on both curves. The predominant minimum and
maximum in the heat flux, occurring between 8 February and g February, and 22 February
and 23 February respectively, are reproduced particularly clearly on the growth curve, but
other minor trends also appear to be followed. The ratios of the two minima and the two
maxima are approximately 8o and 70 cal. cm.—3 respectively. As these values are reasonable
approximations to the latent heat of formation plus cooling of the existing ice, it is reasonable
to assume that the information from the graph is a suitable basis for further deduction.

Tables IT and 111 below, summarize the method of calculating y and time delays from the
observations, reports on which have appeared by Schwerdtfeger and Pounder (1963) and
Schwerdtfeger (1963[a]), the latter describing the heat-flux measurements.

* Strictly speaking, below the temperature probe or flux meter.

(3-4)
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Fig. 3. Ice surface heat flux and growth rate of sea ice in Hudson Bay near Churchill, Manitoba, Fanuary to

TasLe I, Ice THickness AND RaTE oF GrowTH AT BurTOoN Bay

Day
13 January
16 January
25 January
2 February
13 February
20 February

March

8 March
15 March
22 March

4 April

Thickness Mean growth rate Mean date for rale
cm. cm. day '
85-2
0-37 14-5 January
86-3
1:07 20-5 January
959
101 29-0 January
1040
0-41 7+5 February
1085
0-11, 16-5 February
109-3
0-28 24-5 February
rr-8
0-384 4-5 March
1145
0-71 11-5 March
1195
0:43 18-5 March
1225
0:385 28  March
127:5
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TasLE 11
Date of Date of Time difference Mean ice depth
fux maxtimum corresponding in days, 1y below flux X
or minimum ice growth meler during
maximum or minimum lime, 1 g days em.—*
7-5 February 19 February 1145 86 (1-6+0:3) x 1073
22-5 February 11 March 16-5 935 (1-84+0:3) x 1073

TasrLe I11. Summary oF DaTa on EFFecT oF SURFACE FLux o GrowTH RATE
Depth of ice Date for
Date of flux below meter Mean growth ly surface flux
measurement at that time rate, dh/dt from eq. (3 4) to be seen
0 in growth
cm. cm.day " days rale
30 January 81 0-6 1242 11 February
19 March 101 0-3 1843 6 April

321

In Table IT we are thus led to a numerical value for what might be termed the “‘lag
coefficient” y = (1:7+0-3) ¥ 1073 days cm.~?, which is applied in Table III.

When the surface temperature, rather than the heat flux at a depth of 20 cm., was com-
pared with the rate of growth of ice, y was found to be equal to 1-24-0"2, and the values for
{4 calculated by means of equation (g.4) were found to be 13-+2 and 1843 days respectively.
The lower value of y in this case is due to the higher value of the diffusivity when the ice
above the flux meter influenced the mean value. The two alternatives for calculating ¢, are
certainly in satisfactory accord.

The above conclusions are supported by the records showing ice temperature as a function
of depth and time. In Figure 4 the ice temperatures in the Hudson Bay ice cover being dis-
cussed are shown at five points separated by 25 cm. along a vertical axis in the cover. It is seen
that the time for similar characteristics became longer between the lower levels where the
temperatures are higher and the mean diffusivity is lower. Similarly the time lag for trans-
mission of a minimum in temperature was greater than for a maximum for the same reason.
This is of course also why the mean value for y was less for the entire cover than for the portion
below the flux meter at the 20 cm. level. More extensive observations would permit the
determination of the lag coefficient for an ice cover as a function of surface temperature. In
general, of course, mean surface temperature and hence the lag coefficient tend to increase
toward the end of the winter.

4. ConpucTED SURFACE HEAT FLux AND THE LATENT aAnD SeeciFic Heats oF SEa Ice

The same Hudson Bay observations provide empirical estimates for the latent and specific
heats of sea ice for comparison with theoretical values such as that given by equation (2-7).
The daily heat-flux totals at the 20 em. level are shown in Figure 3. Table IIT shows that the
flux measurements on g0 January and 19 March are reflected in terms of ice growth on
11 February and 6 April respectively. A graph of the ice thickness such as may be obtained
from Table I, shows that the heat lost between the former dates caused the growth of 21 - g cm.
of new ice and the cooling of an average of 97-8 cm. of established ice below the flux meter.
The total flux of heat lost between 30 January and 19 May may be calculated as 1514-5
cal. em.—*. These quantities satisfy Stefan’s simple ice growth equation with an effective latent
heat L. = 77+1 cal. cm.3, or for a density of 0-915 g.cm. 3, L = 77-6 cal. g.=".

This experimental result may now be compared to theoretically calculated values. A
salinity profile, reported by the author (1963[b]), indicated a mean salinity of 5%, for the ice
cover. Equation (2.7) shows the latent heat of formation of this ice from sea-water of 309,
salinity to be 65-8 cal. g.-'. Figure 2 indicates that 106 cal. g.=' were lost by cooling of the
older established ice, whose average surface temperature was —g-0” C. These two thermal
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Fig. 4. Ice lemperatures at various depths in degrees Centigrade below the sea-water temperature of — 165" C. Data from
Hudson Bay near Churchill, Mamitoba, January to April 1961

quantities total 76-4 cal. g.7%, being in good agreement with the experimentally determined
77+6 cal. g.='. Assuming that the mean salinity of the cover was estimated to the nearest part
per thousand, a little less than 5 per cent uncertainty is attached to the theoretically calculated
quantity.

5. IcE SurracE TEMPERATURE, GrRoOwTH AND THERMAL CoNDUCTIVITY
The necessary modifications to enable a practical application of Stefan’s simple ice growth
equation (1-4) have been separately tested in the preceding sections. The full procedure will
now be illustrated for the same Hudson Bay data which provided some of the necessary
t

empirical information. In calculating the freezing exposure, i.e. fﬁ,,di, it is considered that
t
surface temperatures on 30 January and 19 March became effective in influencing the ice

growth on 11 February and 6 April respectively.
The fully modified form of Stefan’s equation (1.4) is

k Y
hit—hi* = ——== > (,—6)4L. (s.
illadrw= Z‘( ) 5-1)

In the case of the data at hand
h: = 107-7 cm. (11 February) .
hz = 128 cm. (6 April)
__p = 0°915g. cm. =3
Litc 48 = 77-0 cal.g.”* (from Section 4)

?(9., _0) = 397-7° C. day = 3-44 % 107 ° C. sec. (from Table IV)

!.

At = 1 day
ty = 30 January
t» = 19 March
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From these figures we obtain a thermal conductivity of k = 4-87 x 107 cal. cm. ' sec.” * C. 7!
for the sea-ice cover. The chief sources of error are in the effective latent heat term, some
5 per cent, and the uncertainty in the temperature transmission time, which leads to a possible
5 per cent error in the freezing exposure. The value of the thermal conductivity is thus only
certain to within about 7 per cent.

It may be noted that the thermal conductivity of sea ice of 5%, salinity and a temperature
of —5-5° C. (the mean temperature of the cover) has been given as 47> 1077 c.g.s. units on
theoretical grounds by the author (Schwerdtfeger, 1963[b]). This is well within the limits of
the experimental determinations.

TasLE IV, IcE SURFACE TEMPERATURE

Date Temperature Date Temperature Date Temperature
0g.00 hr, 21.00 hr, 0g9.00 hr. 21.00 hr. 0g.00 hr. 21.00 hr.

30 January 11:5 114 24 February I1-0 10-8 21 March 55

31 January 12:53 12-8 25 9-4 g-2 22 54 53
1 February 12-8 12:9 26 8-8 9-1 29 54 54
2 12-8 115 27 8-7 8-9 24 53 53
3 10-1 g2 28 February 8.9 9-4 25 53 54
4 8.4 8.6 1 March 93 8-0 26 52 52
5 8-6 8.9 2 8-0 27 53 49
6 8.2 7:0 3 7°9 28 51 5:0
7 6-1 56 4 7-8 29 49 4:9
8 5-5 54 5 7-8 30 4-8 46
9 53 6-8 6 T 31 March 4-6 45
10 6.8 7-4 75 7:6 1 April 45 4-5
11 6.5 8.1 8 7:6 97 2 45 4-2
12 72 7.5 9 7-8 7'9 3 43 39
13 7% 81 10 7-8 il 4 43 4-1
14 7:8 7°9 1 77 T 5 4-2 41
15 7:2 8-1 12 7-6 75 6 4-0 3-8
16 8.6 93 13 74 7:6 7 39 39
17 9:6 100 14 7-1 70 8 3:9 30
18 1001 10-5 15 7-1 6-9 9 3-9 3-7
19 10 4 10+7 16 7-0 6-9 10 3-8 3-9
20 10-8 11-2 17 6-4 6-4 11 3-9 3-8
21 112 114 18 6 6-2 12 3-6 35
22 11-4 12-0 19 6-0 59 13 3-4 35
29 February 11:3 10-9 20 March 57 14 April 3.8 9

Temperatures in *C. below the freezing point of sea-water (—1-65"C.).
The eight single values are estimated daily mean temperatures only.

6. CoNCLUSION

The two examples given in Sections 4 and 5 show to what degree the thermal properties
of an inhomogeneous ice cover can he accounted for by relatively simple techniques. It
should be stressed that this discussion has taken no account of the fact that the heat content of
upper and lower ice layers respond at different times to a change in surface temperature.
Because of this, the modified Stefan equation (5.1) is more accurate when covering longer
periods of time. Although it would be possible to calculate the time distribution of heat energy
from different depths, as distinct from that of the actual freezing process, more accurate
information on the temperature and specific-heat profiles than would normally be available,
or calculable, would be required. Given such information there would be ample justification
for the use of an analogue computer. In many practical cases however the modified Stefan
equation (5.1) will provide an adequate answer.
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