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ABSTRACT. The practical ana lysis of the growth of a sea-ice cover is discussed with initial reference to the 
classical work of Stefan , whose basic equation connecting surface temperature with the growth of a uniform 
ice cover of negligible specific heat and h ence infinite diffusivity is extended to cover " real" cases. The separate 
effects of a finite heat content and thermal diffusivity are derived theoretica lly and semi-empirically respec
tively, a nd combined in a more general ice-growth equation which is then tested in the analysis of annua l 
sea-ice growth on Hudson Bay. 

RESUME. L 'analyse pratique de la croissance d'une couche de glace de mer est discutee. L'equation 
classique de Stefan qui donne la croissance en fonction d e la temperature d e la surface d'une couche de glace 
de chaleur specifique negligeable et, par consequent, de diffusivite thermique infinie, est m odifiee pour 
couvrir les cas pratiques. Les influences de la chaleur specifique sont deduites theoriquement e t celles de la 
diffusivite thermale d'une fa<;on semi-empirique. Elles sont enfin combinees dans une equation plus 
generalisee, qui est ensuite ve rifi ee dans l' etude de la croissance de la glace d e mer annelle faite a la baie de 
Hudson . 

ZUSAMMENFASSUNC. Die praktische Untersuchung d es Wachstums einer M eer-Eisdecke wird unter anfang
lichem Bezug auf die klassische Arbeit Stefan 's besprochen, dessen Grundgleichung den Zusammenhang 
zwischen Oberflachentemperatur und Eisbildung im Fa ll vernachlassigbarer spezifischer Warme und daher 
unendlicher W a rmediffusion darstell t. D er Anwendungsbereich dieser Gleichung wird auf " wirk liche" Falle 
erweilert. Die Einflusse einer endlichen spezifischen Warme und Wa rmediffusion werden getrennt theoretisch 
beziehungsweise halb-empirisch hergeleitet und dann zu einer allgemeinen E isbildungsgleichung verbunden, 
die durch eine Untersuchung d es Wachstums jahrlichen M eer-Eises in d er Hudson Bay gepruft wird. 

I. INTRODUCTION 

Theoretical studies of heat transmiSSIOn through floating covers of even pure ice are 
considerably complicated by the continuous formation of ice at the ice- water interface. In the 
absence of warm water currents below, as long as a temperature gradient exists at the lower 
boundary, the ice must grow. The three equations of basic importance in specifying the thermal 
conditions existing in an ice cover of uniform thermal conductivity k, specific heat c, density p, 
and thi ckness h at time tare 

ae k a'e 
at pc ax" (1.1 ) 

ae 
J k ax' ( 1.2) 

dh k (a8) I 

d/ Lp ax x~ h Lp J x~h ( 1.3) 

where e is the temperature, J is the heat flux at a depth 0 ~ x ~ h, L is the latent heat of 
formation , and dh/dt is the rate of advance of the lower boundary. 

Numerous works, e.g. Kolesnikov (1958), which have appeared since Stefan's (1891) 
classical solutions to the ice-growth problem, have, on the whole, resulted in unwieldy 
expressions requiring many unsatisfactory approximations to permit practical applications. 
A clear quantitative (and qualitative) picture of thermal occurrences in a floating ice cover, 
especially if non-uniform, is best given by electrical analogue methods. This technique has 
been discussed by Schwerdtfeger ( 1964), in a design which involves the usual electrical 
analogues for equations (1.1 ) and (1.2), and a novel automatic switching device to simulate 
freezing and hence to provide an adjustable electrical analogue for latent heat and equation 
( 1.3)· 

When an analogue computer of the above type is not avai lable or when short calculations 
are required , it is sti ll desirable to have suitable analytical procedures at hand. Stefan (1891 ) 
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derived a simple solution for ice of negligible specific heat, which a lthough infrequently 
acknowledged, is often used. It states that the ice thicknesses hi and h, before and after a time 
interval t, - I, during which the surface temperature is given by Bo, are given by 

/ , 

h/ - h[' = ~:J Bodl. 
/, 

Stefan himself discussed the two serious limitations of this equation which both result from 
neglecting the specific heat of the ice. These are that no a llowance is made for the variable 
energy content of a n ice cover nor for the time taken for a change in surface temperature to 
modify the temperature gradient at the ice- water interface. The assumption of zero specific 
heat of course implies infinite thermal diffusivity, K = k( pc, under which conditions equation 
( I . I ) shows all temperature changes to occur instantaneously throughout the ice cover, which 
in turn results in a constant uniform temperature gradient. Observations reported by Barnes 
( lg28, p. 28) to support his simple, Stefan-type equation actua lly show that the effect of finite 
thermal diffusivity is important even in the history of ice whose thickness is on ly of the order 
of a millimetre. Barnes made rapid measurements on St. Lawrence River ice formed in areas 
cleared by icebreakers and ferries. Invariably, the theoreticall y calcu lated ice thickness 
exceeded the observed value and, although no comment was given, this error progressively 
increased for greater ice thicknesses. 

As a result of the high values fOl- the specific heat of sea ice (Schwerdtfeger, Ig63[bJ ) 
especially at temperatures near to the freezing point, Stefan 's growth solution for ice of constant 
specific heat c: 

where BI and B, are the ice surface temperatures at times I 1 and I, respectively, and the other 
symbols are as in equation ( I A), is not sufficiently accurate in general. In the origina l paper, 
equation (1.5) is merely quoted, and appears to be partly empirical. 

Because Stefan's genera l equation is inapplicable to ice in general, particularly sea ice to 
which most work on floating ice is directed , this paper will discuss the energy content of an 
inhomogeneous ice cover and the rate of transfer of heat through this medium, with a view of 
deriving a two-stage correction to Stefan 's basic equation (1.4). 

2 . CHANGES OF HEAT CONTENT OF A GROWI NG ICE COVER 

Figure I shows the temperature distribution in an ice cover initially of thickness h, before 
and after an additiona l thin layer of thickness iJh has been formed, assuming the idealized 
case of continued uniformity of temperature gradient, which wou ld occur on ly in the case of 
very slow growth. It is seen that the temperature of the ice at a distance x below the surface is 
given by: 

where Bo is the ice surface temperature, and BF, the freezing temperature, that of the ice- water 
interface. The change in temperature of the ice at depth x after freezin g of the layer iJh is 
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The change in heat content of a volume Llx, in a cylinder of unit cross-sectional area, at a 
depth x is thus given by: 

where Cs x is the specific heat of the sea ice at a depth x. The specific heat of sea ice, or any ice 
frozen from water containing soluble impurities, was shown by the author (Schwerdtfegcr, 
1963 [b] ) to be given by 

where (J and a are the temperature and salinity of the ice, a is a constant relating temperature 
to the equilibrium salinity of the concentrated mother solu tion, Li and C j are the latent and 
specific heats of pure ice and Cw is the specific heat of water. Substitution of equation (2. I) in 
(2.4) gives the specific heat Cs x as a function of x, so that Ll Q.i can be integrated through the ice 
cover to give the total change in heat content for unit increase in ice thi ckness, 

Q.i = pcsLl(J 
h 

f x paLi dx 
- ( (Jo- (JF ) h' -a- [(Jo- ( (Jo- (JF )x /h] 1 

https://doi.org/10.3189/S0022143000029051 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000029051


JOURNAL OF GLACIOLOGY 

The term csLl8 is a convenient notation for the mean value of the product of the specific heat 
and temperature change throughout the ice cover. 

At the same time, the heat involved in the freezing of new ice only, is simply given by 

QF = -Lsp (2.6) 

where Ls is the latent heat of sea ice. The author has previously shown ( I g63[b] ) that: 

Ls = ( I -a- a/s)L i (2.7 ) 

where s is the salt content of the parent sea-water. Hence 

QF = -p(1 - a- a/s)L i . (2.8) 

It can immediately be seen that as 8o~8F, Qi /QF~O, and as 8o~- 00, Qi /QF~+ 00 
substantiating Stefan's observation that equation (1.4) holds most accurately for ice surface 
temperatures near to the freezing point. 

Using values for the specific heat calculated by the author ( I g63[b] ) , Qi/ QF, the ratio of 
heat involved in cooling the ice cover to that connected with simultaneous freezing, may be 
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calculated. The graph in Figure 2 shows these valu~s as a function of salinity and temperature 
for ice frozen from sea-water having a freezing point of - I . 8 0 C. 

It is clear from Figure 2 that the latent heat due to freezing at the bottom of the ice cover 
is comp.arable in magnitude to the heat content change taking place in the cover as a whole. 
The first step towards an improved form of equation (1.4) must therefore be to replace the 

latent heat L by its " effective" value Ls( 1 + Qi/QF) = L s+csiJlJ. It remains to correct for the 
time delay between changes in temperature gradients at the surface and at the ice- water 
interface ; a method for this is given in the next section. 

3. THE RATE OF TRANSFER OF ENERGY THROUGH AN ICE COVER 

Solution of the thermal diffusion equation ( I. I) shows that the time taken for a given 
degree of completion of a temperature change initiated by a sudden discontinuity in surface 
temperature is directly proportional to the square of the ice thickness, and inversely so to the 
diffusivity, i.e. 

to ex h2 jK. 
The author has shown (Schwerdtfeger, unpublished ) that a similar relation holds for an Ice 
cover whose surface temperature is continually changing with time. 

On considering sea ice, it is difficult to include the diffusivity changes in any practical 
application, as the time lags in temperature change are most conveniently determined from 
maxima or minima in the growth rate and temperature curves. This means that a significant 
change in the diffusivity occurs during a single interval of observation. However, the mean 
value of the diffusivity in the time interval between a minimum and the next maximum, or 
between a maximum and a minimum, in the ice temperature remains approximately constant, 
unless the temperatures averaged over the same times themselves show a marked change. 
Hence equation (3. I) is written: 

to = xll/. 
The general a pplication of equation (3.2 ) requires an 

h over the time interval t ll . It is usually possible to write : 

h = t(2 ha + todh/dt ) 

(3. 2 ) 

expression for the mean thickness 

where ha is the initial ice thickness * and dh/dt is the mean rate of increase during the time to. 
Therefore 

In order to obtain values for x, the set of observations of temperature, heat flux and ice 
growth shown in Table I and Figures 3 and 4, were obtained on annual sea ice in Hudson 
Bay near Churchill, Manitoba, between January and M ay 1961 . As well as showing rate of 
ice growth, the graph in Figure 3 also shows the heat flux at a depth of 20 cm. in the ice cover. 
The time axes in Figures 3 and 4 use single capital abbreviations for the months. Although the 
ice growth curve necessarily lacks detail, owing to the limited number of observations, the 
main features are visible and similar on both curves. The predominant minimum and 
maximum in the heat flux, occurring between 8 February and 9 February, and 22 February 
and 23 February respectively, are reproduced particularly clearly on the growth curve, but 
other minor trends also appear to be followed. The ratios of the two minima and the two 
maxima are approximately 80 and 70 ca!. cm. -3 respectively. As these values are reasonable 
approximations to the latent heat of formation plus cooling of the existing ice, it is reasonable 
to assume that the information from the graph is a suitable basis for further deduction. 

Tables 11 and III below, summarize the method of calculating X and time delays from the 
observations, reports on which have appeared by Schwerdtfeger and Pounder (1963) and 
Schwerdtfeger ( I 963 [a] ), the latter describing the heat-flux measurements. 

* Strictly speaking, below the temperature probe or Aux meter. 
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Fig. 3. l ee surface heat flux and growth rate of sea ice in Hudson Bay near Churchill, Manitoba, January to April J96J 

TABLE 1. I CE THICKNESS AND RATE OF GROWTH AT B UTTON B AY 

Day Thickness M eall growth rate Mean date for rate 
cm. cm. day- ' 

'3 January 85 ' 2 
° ' 37 '4 ' 5 January 

16 January 86'3 
1'°7 20· 5 January 

25 January 95'9 
J ·01 29 o January 

2 F ebruary 104'0 
0'4 ' 7'5 February 

' 3 February 108· 5 
o· ,, ~ 16'5 February 

20 February '°9' 3 
0'28 24'5 Februa ry 

I l\larch I11 ·8 
°'386 4' 5 M arch 

8 M a rch "4 ' 5 
0'7 ' 

11 '5 March 

'5 March "9 ' 5 
0'43 18· 5 March 

22 March 122'5 
0'385 28 March 

4 April 127 ' 5 
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TABL.E II 

Dale of Date 0/ Time difference M ean ice depth 
jlux n~a~imllm corresponding in days, te below .flux X 

or mzmmU1Tl ii.e grow th meter during . . . 
lime, to days cm .- ' maxwWJn or tnlll1mUm 

7 5 February 19 Fe bruary 11' 5 86 (1·6 ± 0·3) X 10- 3 

22 5 F ebruary 11 March 16'5 93'5 (1·8 ± 0·3 ) X 10- 3 

TABLE Ill. SUMMARY OF DATA ON EFFECT OF SURFACE FLUX ON GROWTH RATE 

Depth o/ice Date/or 
Date of jiux below meter M ean growth t o surface flux 
measurement at that time rate, dh /dt from eq. (3' 4) 10 be seen 

ho in growth 
cm. cm .day- ' days rale 

30 January 8 1 0·6 12 ± 2 I1 F ebruary 
19 March 101 0'3 18 ± 3 6 Apri l 

In Table 11 we are thus led to a numerical value for what might be termed the " lag 
coefficient" X = ( I' 7 ± o· 3) X 10- 3 days cm. - \ which is applied in Table Ill. 

When the surface temperature, rather than the heat flux at a depth of 20 cm., was com
pared with the rate of growth of ice, X was found to be equal to 1 '2 ± 0'2, and the values for 
l e calculated by means of equation (3.4) were found to be 13 ± 2 and 18 ± 3 days respectively. 
The lower value of X in this case is due to the higher value of the diffusivity when the ice 
above the flux meter influenced the mean value. The two a lternatives for calculating to are 
certain ly in satisfactory accord . 

The above conclusions are supported by the records showing ice temperature as a function 
of depth and time. In Figure 4 the ice temperatures in the Hudson Bay ice cover being dis
cussed are shown at five points separated by 25 cm. a long a vertica l axis in the cover. It is seen 
that the time for similar characteristics became longer between the lower levels where the 
temperatures are higher and the mean diffusivity is lower. Simi larly the time lag for trans
mission of a minimum in temperature was greater than for a maximum for the same reason. 
This is of course also why the mean va lue for X was less for the entire cover than for the portion 
below the flux meter at the 20 cm. level. More extensive observations would permit the 
determination of the lag coefficient for an ice cover as a function of surface temperature. In 
genera l, of course, mean surface temperature and hence the lag coefficient tend to increase 
toward the end of the win ter. 

4. CONDUCTED SURFACE HEAT FLUX AND THE LATENT AND SPECIFIC HEATS OF SEA ICE 

The same Hudson Bay observations provide empirical estimates for the latent and specific 
heats of sea ice for comparison with theoretical values such as that g iven by equation (2'7). 
T he daily heat-flux totals at the 20 cm. level are shown in Figure 3. Table III shows that the 
flux measurements on 30 January and 19 March are reflected in terms of ice growth on 
I I February and 6 April respectively. A graph of the ice thickness such as may be obtained 
from Table I , shows that the heat lost between the former dates caused the growth of 21 . 3 cm. 
of new ice and the cooling of an average of 97.8 cm. of established ice below the flux meter. 
The total flux of heat lost between 30 January a nd 19 May may be calculated as 15 14' 5 
cal. cm. - l . These quantities satisfy Stefan's simple ice growth equation with an effective latent 
heat L = 77' I ca l. cm.- 3, or for a density of 0'915 g. cm. - 3, L = 77.6 cal.g.- I

• 

This experimental result may now be compared to theoretica ll y calcu lated values . A 
salini ty profile, reported by the au thor ( 1963 [b 1), indicated a mean sa lini ty of 5%0 for the ice 
cover. Equation (2.7) shows the latent heat of formation of this ice from sea-water of 30%0 
sa lini ty to be 65.8 cal. g. - I. Figure 2 indicates that 10·6 cal. g. - I were lost by cooling of the 
o lder established ice, whose average surface temperature was - 9' 0 ° C. These two thermal 
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·Fig. 4. Ice temperatures at various depths in degrees Centigrade below the sea-water temperatllre ~f - 1' 65° C. Data from 
Hudson B av near Churchill, Manitoba, J anuary to April 196 r 

quantities total 76'4 cal. g.- I, being in good agreement with the experimenta lly d etermined 
77 .6 cal. g . - I. Assuming that the mean sali.nity of the cover was estima ted to the neares t part 
per thousand , a little less than 5 per cent uncertainty is a ttached to the theoretica ll y calcu lated 
q uantity. 

5. I CE S U RFACE. TEMPERATURE, GROWTH AND THE RMAL CONDUCTIVITY 

The necessary m odifications to enable a. practical application of Stefan's sim ple ice growth 
equation (J . 4). have been sepa rately tested in the preceding sections. The full procedure will 
now be illustrated for the same Hudson Bay data which provided some of the necessary 

t, 

empirical information. In calcul ating the freezing exposure, i.e. fOodt, it is considered that 
t, 

surface temperatures on 30 J anuary and 19 March became effective in influencing the ice 
growth on I I February and 6 April respectively. 

The fully modified form of Stefan 's equation (1.4) is 
2k t , . 

h22 _ hI2 = L (OO - OF)Ll t. (5.1 ) 
Ls+ c Ll O I, . • 

In the case of the data at hand 
h I 107'7 cm . ( 11 February) 
h2 = 128 cm. (6 April) 
p = 0·9 15g· cm .- 3 

Ls+c LlO 77'0 cal.g. - ' (from Section 4) 

397' 70 C. day = 3 ' 44 X IO i 0 C. sec. (from Table IV) 
t, 

LI t T day 
tI 30 January 
t2 19 M arch 
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From these fi gures we obtain a thermal conductivity of k = 4. 87 X 10- 3 ca l. cm. _ J sec. - I 0 C. - l 

for the sea-ice cover. The chief sources of error are in the effective latent heat term, some 
5 per cent, a nd the uncertainty in the tempera ture transmission time, which leads to a possible 
5 per cent error in the freezing exposure. The va lue of the thermal conductivity is thus onl y 
certa in to within a bout 7 per cent. 

It may be noted that the thermal conductivity of sea ice of 5%0 sa lini ty and a tempera ture 
of - 5 .5 0 C. (the mean tempera ture of the cover ) has been given as 4 ·7 X 10 - 3 c.g.s. uni ts on 
theoreti cal grounds by the a uthOl (Schwerdtfeger , Ig63[b] ) . This is well within the limits of 
the exper imen tal determinations. 

TABLE IV. ICE SURFACE TEMPERATURE 
Date Temperature Date T emperature Date T emperature 

og.oo hr. 21.00 hr. og.oo hr. 21 .00 hr. og .oo hr. 21.00 hr. 
30 J anuary 11 ·5 11 ·4 24 February 1 1 - 0 10·8 21 March 5·5 
31 J anuary 12·3 12 ·8 25 9 ·4 g·2 22 5· 4 5·3 

I February 12 ·8 12 ·g 26 8·8 g. I 23 5·4 5·4 
2 12·8 11 ·5 27 8 · 7 8 ·g 24 5·3 5-3 
3 10 · I g -2 28 February 8-g 9·4 25 5-3 5- 4 
4 8-4 8-6 I March 9 -3 8 -0 26 5 -2 5- 2 
5 8-6 8·g 2 8 ·0 27 5 -3 4 -9 
6 8-2 7- 0 3 7-9 28 5- I 5- 0 
7 6- I 5- 6 4 7- 8 2g 4-9 4-9 
8 5-5 5-4 5 7-8 30 4- 8 4- 6 
9 5-3 6-8 6 7-7 31 March 4- 6 4 -5 

10 6-8 7·4 7 7-6 I April 4 -5 4 -5 
11 6·5 8- 1 8 7- 6 7-7 2 4-5 4 -2 
12 7- 2 7-5 9 7- 8 7-9 3 4 -3 3-9 
13 7-7 8- I 10 7- 8 7·7 4 4-3 4· I 
14 7-8 7-9 11 7-7 7-5 5 4 -2 4 - I 
15 7-2 8- I 12 7 -6 7-5 6 4- 0 3-8 
16 8-6 9-3 13 7-4 7- 6 7 3-9 3-9 
17 g-6 10-0 14 7 - I 7-0 8 3-9 3-9 
18 10- 1 10-5 15 7 - I 6-g 9 3-9 3-7 
Ig 10-4 ·10- 7 16 7-0 6-g 10 3. 8 39 
20 10-8 11 -2 17 6-4 6 -4 11 3 -9 3 8 
21 I I ·2 11-4 18 6-3 6 2 12 3 -6 3-5 
22 11 -4 12-0 19 6-0 5-9 13 3-4 3 5 
23 Februa ry 11 -3 lo-g 20 March 5- 7 14 April 3 -8 3-
T empera tures in C. below the freezing point of sea-wa ler (- 1-65°C.)_ 
The eight single va lues are es timated da ily mean temperatures only_ 

6. CONCLUSION 

The two examples given in Sections 4 a nd 5 show to what degree the thermal p roper ties 
of an inhom ogeneous ice cover can be accounted for by rela tively simple techniques. I t 
should be stressed tha t this d iscussion has ta ken no account of the fac t that the heat con tent of 
u pper a nd lower ice layers respond at diffe rent times to a change in surface temperatu re. 
Because of thi s, the modified Stefan equa tion (5. 1) is m ore accura te when covering longer 
periods of time. Although i t would be possib le to calcula te the time distrib ution of heat energy 
from differen t depths, as distinct from tha t of the actua l freezing process, m ore accurate 
informa tion on the temperature and specific-h ea t profiles tha n would norma ll y be availa ble, 
or ca lcula ble, would be required . Given such information there would be a m ple justificat ion 
for the use of a n analogue compu ter. In m a ny practical cases however the m odifi ed Stefa n 
equation (S. J) will provide a n adequate a nswer. 
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