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Introduction. Einstein-Weyl geometry has received much attention in recent
years [2,4], particularly in three dimensions [5,7], where Einstein-Weyl structures
arise as symmetry reductions of the self-duality equations for four dimensional
conformal structures [6]. An Einstein-Weyl structure on an n-manifold M, with
n � 3, consists of a conformal structure together with a compatible (i.e., conformal)
torsion-free connection D such that the symmetric trace-free part of the Ricci tensor
of D vanishes. When D is the Levi-Civita connection of a compatible Riemannian
metric then this metric is Einstein. As with Einstein metrics, the two dimensional
story is somewhat exceptional. A conformal surface with compatible torsion-free
connection D is said to be Einstein-Weyl [1] if and only if

DscalD � 2 divDFD ¼ 0;

where divD ¼ trD is the divergence on 2-forms, FD is the Faraday 2-form of D,
which is the curvature of D on a natural real line bundle L1, and scalD is the scalar
curvature of D viewed as a section of L�2 :¼ ðL1Þ�� ðL1Þ�. If FD ¼ 0, then D is
locally the Levi-Civita connection of a metric of constant scalar curvature.

The idea of studying the two dimensional case was first suggested in [7], in which
Pedersen and Tod proposed the goal of classifying the compact examples. This
classification was carried out in [1]. Pedersen and Tod also claimed that the local
solutions should depend on a single holomorphic function of one variable. The main
aim of this paper is to show that this is true for the definition above and to obtain all
the solutions explicitly in terms of this holomorphic function.

Theorem 1.1. Let D be an Einstein-Weyl structure in two dimensions. Then there
is a local complex coordinate � ¼ xþ iy and a holomorphic function h such that
D ¼ Dg þ !, where g ¼ dx2 þ dy2 is the flat metric and

! ¼
1

h� �
d� þ

1

h� �
d�:

The notation used in this paper follows [1]. In particular Lw is the real line
bundle associated to the representation A 7!j detAjw=2 of GL2ðRÞ, so that L�2 may
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be identified with �2T�M once an orientation is chosen. A conformal structure on
M may be viewed as a metric on TM with values in L2. A Weyl derivative is a cov-
ariant derivative D on L1. Each choice of compatible metric g trivialises L1. If the
corresponding trivial Weyl derivative is denoted by Dg, then D ¼ Dg þ ! for some
connection 1-form !. It is well known that Weyl derivatives on a conformal mani-
fold correspond bijectively to compatible torsion-free connections. For instance, Dg

corresponds to the Levi-Civita connection of g.
I prove Theorem 1.1 in Section 2. In the following sections I discuss the extent

to which the solutions are genuinely distinct Einstein-Weyl structures, explain the
geometry behind the solutions and show how the compact examples arise when h is
a (possibly degenerate) Möbius transformation. I end the paper, with a brief dis-
cussion of the ‘‘twistor theory’’ of Möbius structures.

2. Local solution of the two dimensional Einstein-Weyl equations. The two
dimensional Einstein-Weyl condition is, a priori, nonlinear, but may in fact be line-
arised. In order to do this I shall make use of the relationship between Weyl struc-
tures and Möbius structures [1].

Definition 2.1. A Möbius structure on a conformal manifold M is a (smooth)
second order linear differential operator H from L1 to S2

0T
�M� L1 such that for

some Weyl derivative D, the operator H� sym 0D
2 is zero order.

A Möbius structure is a possibly non-integrable and unoriented version of a
complex projective structure. More precisely, a Möbius structure H possesses a
tensorial invariant CH 2 C1

ðM;L�2 � T�MÞ called the Cotton-York tensor of H, by
analogy with the three dimensional case. The Möbius structure is integrable (i.e.,
given locally by the trace-free Hessian in a suitable chart) if and only if CH ¼ 0
(see [1]). In this case, if M is oriented and � is a local orientation preserving con-
formal diffeomorphism then ��H �H can be identified with the Schwarzian deriva-
tive of �, and so the Möbius structure defines a complex projective structure.

In general the Cotton-York tensor of H may be computed using an arbitrary
Weyl derivative D. The result is as follows:

CH ¼ divD rD0 � 1
4 scal

Didþ 1
2F
D

� �
;

where rD0 ¼ H� sym 0D
2. From this, the following result is immediate.

Proposition 2.2. A Weyl structure D in two dimensions is Einstein-Weyl if and
only if the trace-free Hessian sym 0D

2 is locally the trace-free Hessian in some con-
formal chart.

Consequently, if D is Einstein-Weyl, there is locally a flat metric g such that
sym 0D

2 ¼ sym 0ðD
gÞ
2. If D ¼ Dg þ !, then sym 0D

g!� !�0 ! ¼ 0. Solving this
will give all local solutions of the Einstein-Weyl equation.

Although this equation is still nonlinear, its resemblance to the Riccati equation
suggests a way of linearising it. To do this, let � be a local complex coordinate such
that g ¼ d� d� and write ! ¼ fd� þ fd� for some complex-valued function f. Then the
equation for ! becomes f 0 ¼ f 2, where f 0 denotes the complex linear part of df. This
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is the Riccati equation if f is holomorphic. Substituting f ¼ �u�1u0 (which is always
possible locally) gives u00 ¼ 0 and so u0 ¼ h0, for some holomorphic function h0.
Hence u ¼ h0ð� � hÞ, where h is also holomorphic, and so f ¼ �u�1u0 ¼ 1=ðh� �Þ.

This proves Theorem 1.1.

3. Gauge transformations. In order to show that the Einstein-Weyl solutions of
Theorem 1.1 depend in an essential way on a single holomorphic function, it is
necessary to ask to what extent the solutions are equivalent under a change of
complex coordinate �.

An initial observation is that the scalar curvature and Faraday curvature of D
are given by the real and imaginary parts of h0=ðh� �Þ2. In particular, D is flat if and
only if h is constant, and so most of the solutions are non-trivial.

More generally, note that the complex coordinate � has been partially fixed by
requiring that the trace-free Hessian induced by this coordinate chart is the Möbius
structure determined by D. Hence, the only remaining freedom in � is the freedom to
apply Möbius transformations.

If � ¼ �ðzÞ ¼ ðazþ bÞ=ðczþ dÞ with ad� bc 6¼ 0, then

d� d� ¼
ad� bc

ðczþ dÞ2

����
����
2

dz dz:

After rescaling the metric, the Einstein-Weyl structure is given by the new holo-
morphic function ~hh ¼ �

�1
� h � �, where �ðzÞ ¼ ðazþ bÞ=ðczþ dÞ. Thus the Einstein-

Weyl structure determines h up to conjugation by a Möbius transformation.

4. Geometry of Weyl connections. The transformation law for h may be traced
back to the fact that it defines aWeyl derivativeD. If J1L1 denotes the bundle of 1-jets
of L1, then D is a section of the affine subbundle AðMÞ of L�1 � J1L1 given by the
splittings of the 1-jet projection J1L1 ! L1. This affine bundle is modelled on T�M.

A Möbius structure on M, as a second order linear differential operator on L1,
defines a vector subbundle EðMÞ of the 2-jet bundle J2L1. Since this operator is
given in coordinates by the trace-free Hessian plus a zero order term, the 1-jet pro-
jection EðMÞ ! J1L1 is surjective, and its kernel, which is the intersection of EðMÞ

with S2T�M� L1, is the line bundle L�1, embedded as the trace-like tensors.
If � is a nonvanishing section of L1 and g is the compatible metric correspond-

ing to this trivialisation, then scal g�2 is a function whose value at x depends quad-
ratically on ð j 2�Þx. This turns out to define a natural metric of signature ð3; 1Þ on
EðMÞ such that the distinguished line L�1 is null and is the only null line in the ker-
nel of the projection from EðMÞ to L1 (see [1], and also [3] for more details in the
analogous higher dimensional case). Consequently, there is a natural sphere bundle
S2ðMÞ over M, namely the space of null lines in EðMÞ, and this sphere bundle has a
distinguished section. The complement of this section is an affine bundle and this
affine bundle is canonically isomorphic to AðMÞ by projecting each null line into
J1L1. Therefore a Weyl connection is a section of S2ðMÞ that does not meet the
distinguished section.

Now suppose that the Möbius structure is integrable. Then EðMÞ also possesses
a canonical flat connection compatible with the Lorentzian structure. This flat
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connection identifies S2ðMÞ locally withM� S2, and the distinguished section gives
the developing map from (open subsets of) M to S2. A complex coordinate � on M
compatible with the Möbius structure identifies this sphere of parallel sections with
C [ f1g, so that � itself corresponds to the distinguished section of S2ðMÞ. The
function h arising in Theorem 1.1 is therefore the local coordinate representation of
an antiholomorphic section of S2ðMÞ. The expression 1=ðh� �Þ may be viewed as
stereographic projection from S2ðMÞ onto AðMÞ. It is well defined for hð�Þ 6¼ � and
sends poles of h to the origin of AðMÞ determined by the Levi-Civita connection of g.

In fact, if the Weyl connection D is viewed as a section of AðMÞ, its covariant
derivative (as a section of T�M� VðAðMÞÞ ¼ T�M� T�M) can be identified with
rD0 þ 1

4 scal
Did� 1

2F
D, where rD0 ¼ H� sym 0D

2 (cf. [3]). Hence D is holomorphic if
and only if it is flat, and antiholomorphic (with respect to H) if and only if
H ¼ sym 0D

2. The apparent nonlinearity of the Einstein-Weyl condition arises from
the fact that the flat connection on AðMÞ is not affine. Nevertheless, it identifies
AðMÞ locally with an open subset ofM� S2, and so the condition for a section to be
antiholomorphic is in fact linear.

5. The compact examples. In [1], the local forms of the Einstein-Weyl structures
on compact surfaces were found. In this section I shall show that these solutions are
obtained when h is a (possibly degenerate) Möbius transformation.

The solutions are given explicitly in terms of a compatible metric and connec-
tion 1-form as follows:

where g ¼ PðvÞ�1dv2 þ v2dt2;

! ¼ Av2dt;

PðvÞ ¼ �A2v4 þ Bv2 þ C;

and A;B;C are arbitrary constants, constrained only by the condition that PðvÞ
should be somewhere positive. In [1], I showed that these Einstein-Weyl structures
are defined on S2 (for C > 0) or T2 (for C < 0) by writing v as an elliptic function of
x so that v0ðxÞ2 ¼ PðvÞ. If instead, one substitutes v2 ¼ 1=u and rescales g and t by 2,
then the Einstein-Weyl structure becomes

g ¼
1

u

du2

�A2 þ Buþ Cu2
þ dt2

� �
;

! ¼
Adt

2u
:

Now for C > 0 introduce a new coordinate r by u0ðrÞ2 ¼ ð�A2 þ Buþ Cu2Þ=ðCr2Þ.
This is readily integrated to give

uðrÞ ¼
ðB2 þ 4A2CÞ � 2Br2 þ r4

4Cr2
:

Rescaling, so that the metric is dr2 þ r2dt2 leads to the solution of Theorem 1.1 given
by hð�Þ ¼ ðB� 2iA

ffiffiffiffi
C

p
Þ=�. Notice that hð�Þ ¼ � if and only if �� ¼ ðB� 2iA

ffiffiffiffi
C

p
Þ.

Hence if A
ffiffiffiffi
C

p
6¼ 0, the solution is globally defined on S2.
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For C < 0 introduce instead a coordinate 
 by u0ð
Þ2 ¼ ð�A2 þ Buþ Cu2Þ=ð�CÞ.
This integrates to give

uð
Þ ¼
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4A2C

p
sin 


�2C

and the Einstein-Weyl structure becomes

g ¼
1

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4A2C

p
sin 


dt2 þ d
2
� �

;

! ¼
A

ffiffiffiffiffiffiffiffi
�C

p
dt

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4A2C

p
sin 


;

which is globally defined on T2 (for C < 0 and B2 þ 4A2C > 0). After rescaling so
that the metric is e2tðdt2 þ d
2Þ, the solution hð�Þ ¼ iðBþ 2A

ffiffiffiffiffiffiffiffi
�C

p
Þ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4A2C

p
of

Theorem 1.1 is obtained.
More generally if h is an orientation reversing Möbius transformation, then the

Weyl connection is well defined away from the fixed points of this transformation.
Hence the elliptic elements, apart from the simple inversions (which have an invar-
iant circle), give solutions globally defined on S2 (equivalent to one of the solutions
above). The hyperbolic elements, with two fixed points, correspond to the solutions
on T2 (they are periodic solutions on a cylinder). The remaining cases occur as lim-
its. For instance the simple inversions, such as � 7!1=�, give the hyperbolic metric.

6. Twistor theory. The twistor space of a conformal 2-manifold M is its orien-
tation double cover, viewed as a complex curve 
. This is a rather trivial two
dimensional analogue of the four dimensional theory (see, for instance, [4]). Note
that 
 has a real structure given by the nontrivial involution in each fibre and that
M may be recovered from 
 as the moduli space of real pairs of points. The full
moduli space of (unordered, distinct) pairs of points in
 isMC ¼

�

�
n�ð
Þ

�
=S2.

This complex surface has a natural conformal structure: a tangent vector to MC at
fx1; x2g consists of a pair of tangent vectors to 
 (at x1 and x2), and it is null if one
of these components vanishes. Hence 
 is (locally) the space of null geodesics in
MC. Of course MC is the natural space in which real analytic functions on M may
be written f ¼ fðz; zÞ with f holomorphic in two variables.

Although this notion of twistor space has no real content, it does provide a
formal way to distinguish an integrable Möbius structure in two dimensions from a
one dimensional complex projective structure. The former is a trace-free Hessian
L1 ! S20T

�M� L1, whereas the latter is a second order operator L ! ðT�
Þ
2
� L

(on a line bundle L with L
2
¼ T
) whose symbol is the identity. The two are easily

related: ðT�
Þ
2 is the pullback of S20T

�M, and since T
� T
 is (the pullback of)
L2 � C, it follows that L � L can be identified with L1 � C. The projectivisation of
J1L corresponds to S2ðMÞ, and the complex projective structure defines a connection
J1L ! J2L � J1ðJ1LÞ that projectivises to the flat connection on S2ðMÞ induced by
the integrable Möbius structure.

A more satisfying twistorial description would encode the Möbius structure in
pure holomorphic geometry. Nevertheless, I hope the naı̈ve twistor theory given
here at least provides some light entertainment.
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