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Abstract

We derive the limit behaviour of the distribution tail of the global maximum of a
critical Galton-Watson process and also of the expectations of partial maxima of the
process, when the offspring law belongs to the domain of attraction of a stable law. Th us
the Lindvall (1976) and Athreya (1988) results are extended to the infinite variance case.
It is shown that in the general case these two asymptotics are closely related to each
other. and the latter follows readily from the former. We also discuss a related problem
from the theory of general branching processes.
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1. Introduction and main results

Let Z,1' n==O, 1,2"" be a critical Galton-Watson process (GWP) with Zo== 1, and v
be the 'offspring variable' (the distribution of which coincides with that of Z; conditioned
that Zn-I == 1) with the generating function (g.f.) f(s):

f(s)==EsV, Ev==f'(I-)==I.

Denote by M/I==maxO~k~/I Zk and M==max'l M/I the partial and global maxima of the
process {Z/I} respectively. Recall that, in the critical case, M < CfJ a.s., for the process
becomes extinct in a finite time !o==min{n : Z; ==O} with probability one.

The two problems of (i) studying the limit behaviour of the distribution tail P(M > x)
of the global maximum M as x ~ 00, and (ii) studying the limit behaviour of the
expectations E M" of partial maxima M; as n~ 00 have, by now, a rather long history.
So far, only the case of a finite second moment Ev 2 < 00 has been considered, and the
final results by Lindvall (1976) and Athreya (1988) are that, in this case,
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(1.1) limxP(M>x)=1
x ....... x

and

(1.2)
EMnlim --= 1

n ....... o: logn

respectively. In fact, in both papers the results are stated for the processes with Zo= i,
i ~ 1, in which case the units on the right-hand sides of (1.1) and (1.2) should be replaced
by i. However, an elementary argument shows that the original assertions are equivalent
to our (1.1) and (1.2) for Zo= 1, and therefore we restrict ourselves to a consideration
of the case Z, = 1 only.

We mention here also the papers by Weiner (1984), Kamrnerle and Schuh (1986) and
Pakes (1987) containing intermediate results on EMn •

Strangely enough, so far the two problems (i) and (ii) have been treated quite separately.
However, they are closely connected to each other and, in regular cases (when the g.f.
of the process is of the form (1.3)), the solution to problem (ii) follows readily as soon
as we can solve problem (i), as our Lemma 2 below shows. Thus it turns out that the
lemma also gives, as a by-product, a simple and straightforward alternative proof of
(1.2) in the finite variance case.

To solve problem (i) for GWP with infinite variance, we make use of the 'natural'
embedding of a GWP into the corresponding random walk (r.w.) of which the jumps
are distributed as ~ = v-1 (the same approach was employed by Lindvall (1976) when
proving (1.1); see also Dwass (1969) and Viskov (1970), where this point of view was
adopted to get relations for the total progeny of a branching process, and Borovkov
(1985) for the use of this embedding for the diffusion approximation). We show that the
distribution tail of the total maximum of any critical GWP is in fact equivalent to that
of the maximum of the corresponding zero-drift r.w. stopped at the time when it first
hits zero (Lemma 1), thus removing a superficial condition of the finiteness of the
second moment in the similar assertion in Lindvall (1976). As for the asymptotics of
the distribution of the stopped r.w., it turned out to be known for the walks of interest
(Pakes (1978); we are grateful to R. A. Doney, whose bibliographical comments helped
us to find this reference).

Now we state our main results. Let the g.f. of the GWP {Z'}, for some a E (1,2],
have the form

(1.3) f(s)=s+(I-s)aL(I-s),

where L is a slowly varying (at zero) function. The form of the assertions (1.1) and (1.2)
(the value of the variance does not appear there in any form) tempted us to suspect at
first that these are true for any critical GWP, and our Lemma 1 below seemed to confirm
this suspicion. However, as the final result of Theorem 1 shows (it involves the exponent
a), one can scarcely expect the asymptotics xP(M > x) ~ constant to hold without an
assumption of the form (1.3). The same applies seemingly to the asymptotics (still not
depending on a) of EMn •
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Theorem 1. If the g.f. j(s) of a GWP has the form (1.3), then

(1.4) lim xP(M >x)=ex-l.
x-x

The basic result relating in the general case the behaviour of the probabilities of
interest to the corresponding characteristics of stopped r.w. is of independent interest.
We state this result as Lemma 1 below. Let ~n, n = 1, 2,··· be i.i.d. random variables
having the same distribution as ~ = v-I and hence having zero means. Put

(1.5)

Recall that, without loss of generality, we may assume that the process {Z} is embedded
into the r.w. {Sn}: for V_I =0,

(1.6)
n

Zn=SVIl_I' Vn= L z.,
k=O

n~O.

Clearly Vk are stopping times for the r.w. {Sn}, and the latter can be replaced in (1.6)
by the stopped r.w.

(1.7)

Denote by M* = max'I~O S,~ the global maximum of the stopped r.w. {S,J. It is obvious
from (1.6) that M~M*, and for the maximum M*, it was proved in Pakes (1978) that,
if (1.3) holds for ex E (1,2], then

(1.8) lim xP(M* > x) = ex -1.
x-x

One should only note here that the strong aperiodicity property, assumed throughout
by Pakes (1978), was not used there to establish (1.8).

The following lemma shows that, on the other hand, M* cannot be 'essentially greater'
than M, and hence the relation (1.8) implies the same asymptotics for the distribution
of M.

Lemma 1. For any critical GWP {Z'}, there exists a function c=8(x) ~°as x ~ 00,

such that

(1.9)
1

(l-c)P(M* >(1 +c)x) ~ P(M >x) ~ P(M* >x) ~ -.
x

If c,. = E I~ I" < 00 for some r E (1, 2], one can take

(1.10)
r-l

8(X)= max(l, 2cr vx:", f3 = --1 .
r+

Now we turn to the exact statement relating problems (i) and (ii) above. The next
lemma gives both upper and lower bounds for the expectations EMn in terms of the tail
P(M>x).

Recall that To is the extinction time of the process {Z'}.
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Lemma 2. For any r E (1,2] and t >0,

rt
. nc, + 1 .

(1.11) -tP(ro>n);;;'EMn - Jo P(M>x)dx;;;'2' --;:=t t':'.

617

The remarkable fact is that Theorem 1 and Lemma 2 yield for EMtl logarithmic
asymptotics not depending on a.

Theorem 2. If the g.f. f(s) of a GWP {Z} has the form (1.3) for a E (1, 2], then the
relation (1.2) holds true.

Remark. Clearly, in view of Lemma 1, problem (i) is very close to the boundary
problem for the r.w. (1.5) with two zero-slope linear boundaries YI =0 and Y2=X:

{M* > x} = {the r.w. S; hits the boundary Y2 before hitting YI} .

Let r(x)=min{k: Sk >x} and X(x)=St(X)-x be the first overshoot over the level x in
the walk (1.5). Since the stopping time r* = min {k > 0 : S, > x or Sk~ O} is integrable
(in fact, its distribution tail tends to zero exponentially fast), we have by the Wald identity
that

1=ESt*=(x+E(X(x) I s.: > O))P(St* >0)-0· P(St*= -1).

Hence

(1.12)
1 1

P(M* >x)=P(St* >0) = x+E(X(x) Is; >0) <:;:

(1.13)

assuming only that the expectation Ei; = O.
Now (1.8) implies that, if (1.3) holds, then

1 2-a
.J~~ ~ E(X(x) Is; >0) = a-I' aE(I,2].

Note that, if we omit conditioning on the event {St* > O}, the expectation EX( 1) is
finite if and only if E~~ < 00 (see e.g. Example 2 in Section XVII. 18 of Spitzer (1964)).
Thus, for unconditional expectations, we have in the cases a = 2 and a < 2 that EX(x) =

o(x) (which is essentially the integral renewal theorem for the sequence of i.i.d. random
variables of which the distribution coincides with that of 1+X(1); see, for example,
Appendix 1 in Borovkov (1976)) and EX(x) = 00 respectively. Comparing these last rela­
tions with (1.13), we see now how large, in the case a<2, is the contribution to EX(x)

of those 'very large' jumps which carry the walk from below 0 over the (high) level x.

2. Proofs

Proof of Lemma 1. The second inequality in (1.9) is obvious from (1.6), while the
last inequality in (1.9) has already been proved in (1.12) (it follows also from the Doob
inequality for the stopped r.w. S:, which is clearly a martingale with ES: = ESt = 1).
Thus it remains only to prove the first inequality in (1.9).
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(2.1)

(2.2)

Letting y=(l +c)x, t: >0, we get

P(M>x) ~ P(M>x; M* >y)=P(M>x IM* > y)P(M* > y)

=(l-P(M ~ x IM* > y))P(M* > y).

Put T = min {k ~ 1 : Sk* > y}, and m = min {j ~ 1 : Vj > T}. Since {M* > y} = {T < 00 },

we see that

P(M~x IM* > y) = P(M~x IT< (0)

~ P(ZI1l~X, ZI1l+1 ~x I T< (0)

~P(ZI1l~x,Sv/ll-ST~x-ylT<oo).

But V,lI-T~ZI1l by the definition of m and, on the event {ZI1l~x}, one has
SV/II - ST ~ min, ~x (ST+.i - ST). By the strong Markov property, the last expression does
not depend on T and has, conditioned that T < 00, the same distribution as minj~x Sj.

Therefore the right-hand side of (2.2) does not exceed

(2.3) P (m.. in s, ~ -xc) = P (x- I ~in s, ~ -c) .
I~X J~X

(2.4)

Further, by the strong law of large numbers X-ISx ~°a.s. as x ~ 00, and hence
X-I maxj~x ISj I~°a.s. as x ~ 00, so that, for any fixed s >0, the probability (2.3)
tends to °as x ~ 00. This means that, for some positive function c(x)~°as x ~ 00,

P ( ~1? s, ~ -XS(X)) ~ sex).

In view of (2.1) and (2.2) or y = (1 +c(x))x, relation (2.4) gives

P(M >x) ~ (l-c(x))P(M* > (1 +c(x))x).

If c,.=EI~I"<oo for some rE(l, 2], we take c(x) as defined in (1.10) and apply the
von Bahr-Esseen inequality (von Bahr and Esseen 1965) to estimate the probability in
(2.3) by

Lemma 1 is proved.

The proof of Theorem 1 follows immediately from Lemma 1 and relation (1.8).

Proof of Lemma 2. For any t > 0,

(2.5) EM" = LX) P(M" >x)dx ~ f P(M>x)dx+ foo P(M" >x)dx.

To estimate the last integral observe that, since ZI1 is a martingale, the Doob inequality
yields, for r ~ 1,
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(2.6) P(Mn > x) ~ x- r
EZ~.

Further, put Xk = Z, - Z, -I and note that by the total probability formula and the von
Bahr-Esseen inequality we have, for rE(I, 2],

Therefore, by the same inequality,

and hence (2.6) implies that

f
oo foo nc.+l

t P(Mn >x)dx ~ t 2'(nc, + 1)x-'dx=2'~ i':',

The right inequality in (1.11) is proved. On the other hand

EMn~ E(Mn ; To~n)=E(M; To~n)

~LP(M>x; ro~n)dx=LP(M>x)dx

-LP(M>x;ro>n)dx~ LP(M>x)dx-tP(ro>n).

Lemma 2 is proved.

Proof of Theorem 2. First we note that, if f=n h for some h >0, then Theorem 1
yields

(2.7) LP(M >x)dx=(l +O)(oc-l)h log n.

Here, and in what follows, we denote by f} (possibly different) quantities tending to zero
as n~ 00.

Now let c5 >0 be arbitrarily small. First we choose f=fn=nl/(rl-I+b). As is well known
(Slack (1968); see also Borovkov (1988) for an alternative proof), in the case (1.3) with
a E (1, 2], the non-extinction probability P(To > n) =n- lI(rl-I)L

1(n), where L1(x) is slowly
varying as x ~ 00. Combining this relation with (2.7) and using the left inequality in
(1.11), we conclude that, under our choice of t,
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(2.8)
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To make use of the right inequality in (1.11), one has to choose

Since c,«:«: for any r «:« when (1.3) holds, we see from (1.11) that

(2.9)
a-I

EMil ~ (1 +8) a_l_c5log n+ 0(1).

Now c5 >°is arbitrarily small, and therefore relations (2.8) and (2.9) mean that, for
any positive e > 0,

EMil EMil
1- t:~ lim inf -- ~ lim sup -- ~ 1+e,

- Il-X logn- n-x logn-

which yields immediately (1.2). Theorem 2 is proved.

3. General branching process

In this section we discuss another relevant embedding of discrete time branching
processes in left-continuous integer-valued r.w. (i.e. when the jumps are ~ -1), for
which the asymptotic (2.4) gives the behaviour of the non-extinction probabilities of the
processes. This construction leads not to a GWP, but to a general branching process {YIl }

of special type, the study of which is of independent interest. (In fact, this construction is
close to that proposed by Dwass (1975) for the simple r.w., in which case it gives a GWP
with geometric g.f.)

Let {S,J be the r.w. on integers given by (1.5) and S;=Snl\r be the stopped version
(1.7) of the walk. Put Yo= 1. To each positive jump ~jo of the walk {S;}, we relate a
particle, say 11, born at time Sj~_I. This particle lives ~jo units of time and is dead at
time S.~. The evolution of its descendants is described by the evolution of the walk on

the segment Un, i6), where i6 = min U> io : S; = S%_I}.
o

Note that, since the walk {S,J is left-continuous with zero drift, i6 < 00 a.s., and, by
the strong Markov property, the evolution of the walk on the time interval Un, i6] (and
hence that of the descendants of our particle 11) does not depend on what occurs outside
the segment Un, i6] (i.e. on evolution of the descendants of other particles which do not
belong to the progeny of 11). Note also that, to each positive jump ~jo 'covering' the time
m (so that m E [Sj~_1 , Sj~)' the particle 11 is alive at time m), there corresponds one and
only one negative jump at the epoch i6 returning the walk to the point S~_I' and
hence the number ~11 of particles which are alive at time m is

Ym = # U< 7: : Sj-I = m + 1, Sj = m}.

All positive jumps of the walk (1.5) (or (1.7)) on the segment Un, i6) 'generate'
descendants of the particle 11. The particle corresponding to a positive jump ~jl >0,
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i, E Un, it), is a direct descendant of /1, if i, - 1 is a weak lower ladder epoch in the
segment of our walk starting from the point Un, Sjo)' i.e. if

Since all the negative jumps in the walk (1.5) are equal to - 1, it is easy to see that at
each time mE [Sjo-h Sjo) (recall that this is just the life interval of the particle /1), the
particle /1 gives birth to (m direct descendants ((m is the number of weak lower ladder
epochs on the segment of the walk starting from Un, Sjo) till it , which are on the level
m and are followed immediatley by a positive jump of the walk),

(3.1)

where

Clearly (m are independent of each other. Thus the mean total number of direct descen­
dants of the particle /1 is

E(~l; ~l > 0) P(~l > 0)
E(~I I~I > O)E( = P(~I > 0) . P(~I = -1) = 1,

for O=E~1 =E(~l; ~l > O)-P(~l = -1).
Thus we have constructed a critical general branching process {YIl } , Yo = 1, of which

the initial particle dies at time 1 giving birth to (I particles. In the sequel, all the particles
of the process live a random time having distribution of ~ I conditioned that ~ I > 0 and
generate new particles with constant rate (l-q)/q (see (3.1)) all their lives.

Now clearly the lifetime of the process coincides with M*, the maximum of the stopped
r.w. (1.7), and hence we have from (2.4) the following assertion on the non-extinction
probabilities Q(n) = P( Yn > 0) of the process {Yn } .

Theorem 3. Let {Yn } be a critical discrete time general branching process starting
with one particle dying at time t = 1, and such that all the other particles in the process
live a random time having the g.f. (f(s) - f(O))/sf(O) , where f(s) is given by (1.3) for
11 E (1, 2]. We suppose that at each time epoch during its life, a particle in the process
gives birth to a geometric number of particles (following the law (3.1)). Then

lim nQ(n)=11-1.

Thus Q(n) behaves just as the non-extinction probability of a critical GWP with finite
variance (equal to 2/(11- 1)), although the number of direct descendants of a particle in
our process has infinite variance if 11 < 2 and can have infinite variance when 11 = 2. For
general results on non-extinction probabilities of general branching processes, see Topchii
(1987).
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