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Abstract
For every positive integer n, we introduce a set T𝑛 made of (𝑛 + 3)2 Wang tiles (unit squares with labeled edges).
We represent a tiling by translates of these tiles as a configuration Z2 → T𝑛. A configuration is valid if the common
edge of adjacent tiles has the same label. For every 𝑛 ≥ 1, we show that the Wang shift Ω𝑛, defined as the set of valid
configurations over the tiles T𝑛, is self-similar, aperiodic and minimal for the shift action. We say that {Ω𝑛}𝑛≥1 is a
family of metallic mean Wang shifts, since the inflation factor of the self-similarity of Ω𝑛 is the positive root of the
polynomial 𝑥2 − 𝑛𝑥 − 1. This root is sometimes called the n-th metallic mean, and in particular, the golden mean
when 𝑛 = 1, and the silver mean when 𝑛 = 2. When 𝑛 = 1, the set of Wang tiles T1 is equivalent to the Ammann
aperiodic set of 16 Wang tiles.
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1. Introduction

One of the most well-known aperiodic tilings was discovered by Penrose. In its original version, four
shapes derived from the regular pentagon can be used to tile the plane, and none of the allowed tilings
are periodic [48]. Penrose tilings were soon given an equivalent description in terms of multigrids or
cut and project schemes [12]; see also [24, §10] and [5, §6.2]. The aperiodic structure of Penrose tilings
is explained by the properties of a specific irrational number: the positive root 𝜑 of the polynomial
𝑥2 − 𝑥 − 1, also known as the golden ratio or golden mean. For example, in the kite-and-dart version of
the Penrose tilings, the ratio of kites to darts is equal to the golden ratio [49].

Recently, the discovery of an aperiodic monotile [58] attracted a lot of attention [60, 6, 2]. Smith and
coauthors presented a single shape, a 13-edge polygon called the hat, whose isometric copies tile the
plane but never periodically. Again, the golden ratio appears in tilings by the hat. In a tiling by isometric
copies of the hat, both the hat and its mirror image appear (up to orientation preserving isometries –
that is, translations and rotations). The frequency of the hat and its mirror image in a tiling are not
equal. The ratio of the most frequent orientation of the hat to the least frequent one is equal to the fourth
power of the golden ratio.1 Two months later, the same authors discovered another aperiodic tile called
Spectre, which does not need its mirror image to tile the plane [59]. Tilings by the Spectre are not all
combinatorially equivalent to tilings by the hat: some are periodic (if the reflected tile is allowed). But
every tiling by the hat tile is combinatorially equivalent to some Spectre tiling.

Other examples of aperiodic tilings are related to the golden mean, including Ammann A2 L-shaped
tiles [4] (also studied in [1, 15]); see Figure 1. The golden mean also appears in the description of tilings
generated by the Jeandel–Rao aperiodic set of 11 Wang tiles [26]: the frequency of the tiles [34], the

1The figure [58, Fig. 2.11] shows a substitution where the image of a shape 𝐻7 contains 5 shapes 𝐻8 and 1 shape 𝐻7 and the
image of the shape 𝐻8 contains 6 shapes 𝐻8 and 1 shape 𝐻7. Shape 𝐻7 contains 6 hats and 1 anti-hats; shape 𝐻8 contains 7 hats
and 1 anti-hats. We compute that the Perron–Frobenius dominant right-eigenvector

(
−3𝜑+5
3𝜑−4

)
of the incidence matrix

( 1 1
5 6

)
of the

substitution is mapped to
(
𝜑4
1

)
by the matrix

( 6 7
1 1

)
.
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Figure 1. Two shapes belonging to the Ammann A2 family. The matching conditions are given by what
are called Ammann bars appearing as dashed and solid lines in the interior of the tiles and which must
continue straight across the edges of the tiling. This is a reproduction of Figure 10.4.1 from [24]. See
also Figure 12 from [1].

inflation factor of its self-similarity [33, 35], and the slopes of its nonexpansive directions [36] are all
expressed in Q(𝜙).

It is then natural to ask whether there are aperiodic tilings out there such that the ratios of tile
frequencies are not in Q(𝜑). It turns out that there are many. Recall that the first examples of aperiodic
tilings provided by Berger [8], simplified by Knuth [30] and Robinson [53], are described by substitutions
whose inflation factor is an integer (2 in this case). Many other substitutive and aperiodic planar tilings
have an integer inflation factor and are listed in [5, §6.4]. It includes the chair tiling [52], the sphinx
tiling [63], the (1 + 𝜀 + 𝜀2)-tiling [50] and the Taylor and Socolar-Taylor tilings [61].

Many substitution tilings with non-integer inflation factor are known. Various types of planar aperi-
odic substitution tilings with n-fold rotational symmetry involving cyclotomic numbers were described
in recent years [22, 29, 17, 47, 28]; see the sections [18, §1.7] and [5, §7.3]. Examples of algebraic non-
Pisot aperiodic tilings were portrayed in [5, §6.5]. Moreover, substitution tilings with transcendental
inflation factor were recently proposed in [19] using compact alphabets.

Closer to golden mean are other algebraic integers, starting with those of degree two, for which
aperiodic tilings exist. In Ammann A4 and A5 aperiodic tilings [24], the ratio of frequency of the two
involved tiles is

√
2 [4, p. 22]. Nowadays these tilings are known as Ammann–Beenker tilings [5, §6.1]

since their algebraic properties were independently described in [7]. In [4], the question whether there
exist sets of aperiodic prototiles associated with irrational numbers other than

√
2 and the golden ratio

was mentioned. But they had ‘no conjecture concerning the characterization of all numbers that are
possible for such ratios’ of frequencies of tiles.

The inflation factor of Ammann–Beenker substitution tilings is 1 +
√

2 [5, Prop. 6.2]. This number is
sometimes called the silver mean because its continued fraction expansion is [2; 2, 2, . . . ], where that of
the golden mean is [1; 1, 1, . . . ]. The golden mean and the silver mean belong to a larger family made
of the positive root of the polynomial 𝑥2 − 𝑛𝑥 − 1, where n is a positive integer:

𝛽𝑛 =
𝑛 +
√
𝑛2 + 4
2

= 𝑛 + 1

𝑛 + 1

𝑛 + 1
. . .

.

We refer to this root as the 𝑛𝑡ℎ metallic mean [46]. These numbers were called silver means [56] and
noble means in [5, §4.4] (note that noble numbers was already defined in [56, Appendix B, p. 392–
394] for a different meaning). Observe also that the definition of metallic means from [13] is larger,
as it contains all positive roots of polynomial 𝑥2 − 𝑝𝑥 − 𝑞, where p and q are positive integers. In this
contribution, we consider only the metallic means, in the sense of de Spinadel, which are algebraic
units; that is, 𝑝 ≥ 1 and 𝑞 = 1.
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When a tiling space is preserved by a substitution, it is also preserved by powers of this substitution.
Since odd-powers of metallic means are metallic means, we know substitution tilings for infinitely many
other metallic means. In particular, the inflation factor of the third power of the substitution for Penrose
tilings is the 4𝑡ℎ metallic mean 𝛽3

1 = 𝛽4. Also, the inflation factor of the third power of the substitution
for Ammann–Beenker tilings is the cube of the silver ratio, which is the 14𝑡ℎ metallic mean 𝛽3

2 = 𝛽14,
etc. For more information, we refer the reader to the OEIS [45] where indices of metallic means that are
powers of other metallic means are listed as sequence A352403.

In recent years, new discoveries were made in the theory of quasicrystals related to metallic mean
numbers. A self-similar hexagonal quasicrystal whose inflation factor is the 3𝑟𝑑 metallic mean (also
called bronze-mean) was described in [14]. It is given by a substitution rule involving a small and a
large equilateral triangles and a rectangle; see [20]. Their construction was further extended to every
(3𝑛)𝑡ℎ metallic mean in [44] where 𝑛 ≥ 1 is a positive integer.

Our contribution

In this contribution, we introduce a new family of aperiodic tiles using the oldest known shape for
aperiodic tiles: the unit square. Unit squares with labeled edges and tilings of the plane by infinitely
many translated copies of them were considered by Wang [66] with the condition that adjacent tiles must
share the same label on the common edge. Such tiles are nowadays called Wang tiles. A set of Wang
tiles is aperiodic if it admits at least one valid tiling, and none of them is periodic. The first known
aperiodic set of tiles was discovered by Berger [8]: a set of 20426 Wang tiles. Many smaller examples
were discovered thereafter, and we refer the reader to [26] for an overview of these developments leading
to the discovery of the smallest possible size (= 11) for an aperiodic set of Wang tiles.

For every positive integer n, we construct a set T𝑛 made of (𝑛 + 3)2 Wang tiles, and we consider the
subshift Ω𝑛 defined as the set of valid configurations Z2 → T𝑛 over these tiles. We also say that Ω𝑛 is a
Wang shift because it is a subshift defined from a set of Wang tiles. The set T𝑛 is the disjoint union of
5 sets of tiles:

◦ 𝑛2 white tiles,
◦ n yellow horizontal stripe tiles and n yellow vertical stripe tiles,
◦ n blue horizontal stripe tiles and n blue vertical stripe tiles,
◦ 𝑛 + 1 green horizontal overlap tiles and 𝑛 + 1 green vertical overlap tiles,
◦ 7 junction tiles.

We observe that the sum of cardinalities of the five subsets is 𝑛2 + 2𝑛 + 2𝑛 + 2(𝑛 + 1) + 7 = (𝑛 + 3)2.
The sets T𝑛 of Wang tiles for 𝑛 = 1, 2, 3, 4, 5 are shown in Figure 2, and rectangular valid tilings over
the sets T𝑛 for 𝑛 = 1, 2, 3, 4 are shown in Figure 3, Figure 4, Figure 5 and Figure 6.

The family of Wang shift (Ω𝑛)𝑛≥1 has too many nice properties to hold in one article. In this first
article dedicated to its study, we focus on its substitutive properties. Its dynamical properties and the
consideration of T𝑛 as the set of instances of a computer chip will be considered separately in a follow-up
contribution.

The main result of the current contribution is to prove that the Wang shift Ω𝑛 is self-similar for
every integer 𝑛 ≥ 1. The self-similarity is given by a 2-dimensional substitution over an alphabet of size
(𝑛 + 3)2. The self-similarity is not a bijection, but informally it is essentially one. This is formalized
with the terminology of recognizability (one-to-one up to a shift) and surjectivity up to a shift. See
Section 2 for the definition of Wang shifts and Section 3 for the definition of 2-dimensional substitutions,
self-similarity and recognizability.

Theorem A. For every integer 𝑛 ≥ 1, the set T𝑛 containing (𝑛 + 3)2 Wang tiles defines a Wang shift
Ω𝑛 which is self-similar. More precisely, there exists an expansive and recognizable 2-dimensional
substitution 𝜔𝑛 : Ω𝑛 → Ω𝑛 which is onto up to a shift – that is, such that Ω𝑛 = 𝜔𝑛 (Ω𝑛)

𝜎
.
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Figure 2. Metallic mean Wang tile sets T𝑛 for 𝑛 = 1, 2, 3, 4, 5.

The proof of Theorem A is the same for every integer 𝑛 ≥ 1. Indeed, we show that every configuration
inΩ𝑛 can be decomposed uniquely into rectangular blocks that we call return blocks. These return blocks
and their right, top, left and bottom labels are in bijection with an extended set T ′𝑛 ⊃ T𝑛 of Wang tiles.
Then we show that in the extended Wang shift Ω′𝑛 ⊇ Ω𝑛 defined from the extended set T ′𝑛 of Wang tiles,
only the tiles in T𝑛 appear. Thus, Ω′𝑛 ⊆ Ω𝑛. This shows that Ω𝑛 = Ω′𝑛 and that Ω𝑛 is self-similar.

As a corollary, we deduce that the Wang shift Ω𝑛 is aperiodic.

Corollary B. For every integer 𝑛 ≥ 1, the Wang shift Ω𝑛 is aperiodic.

Our second result is that the self-similarity is primitive. As in the 1-dimensional case, we say that a
2-dimensional substitution 𝜔 is primitive if there exists 𝑚 ∈ N such that, for every 𝑎, 𝑏 ∈ A, the letter b
occurs in 𝜔𝑚(𝑎).

Theorem C. For every integer 𝑛 ≥ 1, the 2-dimensional substitution 𝜔𝑛 : Ω𝑛 → Ω𝑛 is primitive.
The Perron–Frobenius dominant eigenvalue of the incidence matrix of 𝜔𝑛 is 𝛽2

𝑛, the square of the 𝑛𝑡ℎ
metallic mean number, and the inflation factor of 𝜔𝑛 is 𝛽𝑛.
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Figure 3. A valid 17 × 23 pattern with Wang tile set T1.
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Figure 4. A valid 17 × 23 pattern with Wang tile set T2.
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Figure 5. A valid 17 × 23 pattern with Wang tile set T3.
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Figure 6. A valid 17 × 23 pattern with Wang tile set T4.
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Our third result is that the Wang shift Ω𝑛 is minimal; that is, if 𝑋 ⊆ Ω𝑛 is a nonempty closed
shift-invariant subset, then 𝑋 = Ω𝑛. Equivalently, every shift orbit is dense, which implies that every
configuration in 𝜔𝑛 is uniformly recurrent. Every small set of aperiodic Wang tiles does not satisfy this
property. For instance, the Robinson Wang shift is not minimal [21], and neither is the Jeandel–Rao
Wang shift [35]. The proof of minimality is based on a criterion involving the patterns of shapes 1 × 2,
2 × 1 and 2 × 2 and their images under the substitution; see Lemma 10.4.
Theorem D. For every integer 𝑛 ≥ 1, the Wang shift Ω𝑛 is minimal and is equal to the substitutive
subshift Ω𝑛 = X𝜔𝑛 .

In a tiling of the plane by the two shapes shown in Figure 1 respecting the matching condition, there
appear what are called Ammann bars. In this case, the slopes of the Ammann bars take four different
values: two slope values for the dashed Ammann bars and two slope values for the solid Ammann bars.
As explained in [24, p.594–598], the solid bars can be regarded as the edges of a new tiling by rhombs
and parallelograms, for which the dashed bars can be regarded as markings on the tiles specifying the
matching conditions. Sixteen parallelogram tiles arise from this construction which can be recoded as
16 Wang tiles. As we show in Theorem E, the Ammann 16 Wang tiles are equivalent to T1, the first
member of the family T𝑛 when 𝑛 = 1.
Theorem E. When 𝑛 = 1, the set T𝑛 is equal, up to symbol relabeling, to the Ammann set of 16 Wang
tiles.

Thus, the family (T𝑛)𝑛≥1 can be considered as an extension of the Ammann set of Wang tiles to the
metallic mean numbers.

Structure of the article

In Section 2, we present preliminaries on dynamical systems, subshifts and Wang shifts. In Section 3, we
recall definitions of 2-dimensional substitutions. In Section 4, we introduce two Wang shifts Ω𝑛 ⊆ Ω′𝑛
defined by the sets T𝑛 ⊆ T ′𝑛 of Wang tiles. In Section 5, we define two substitutions 𝜔′𝑛 : Ω′𝑛 → Ω′𝑛 and
𝜔𝑛 : Ω𝑛 → Ω𝑛. In Section 6, we describe the return blocks in the Wang shifts Ω𝑛 and Ω′𝑛, and we prove
that every configuration in the Wang shift Ω𝑛 can be desubstituted into a configuration from Ω′𝑛. In
Section 7, we prove that tiles in T ′𝑛 \T𝑛 do not appear in configurations of Ω′𝑛. Thus, Ω′𝑛 ⊆ Ω𝑛. Observe
that Section 7 depends on the results from Section 5 and Section 6. In Section 8, we prove that Ω𝑛 is
self-similar and aperiodic. In Section 9, we prove that the self-similarity is primitive. In Section 10,
we prove that Ω𝑛 is minimal. In Section 11, we state some questions raised by the current work. The
article finishes with two appendices. Section A (Appendix A) gathers pictures of the substitutions𝜔𝑛 for
1 ≤ 𝑛 ≤ 5. In Section B (Appendix B), we prove the self-similarity of Ω𝑛 when 𝑛 = 2 using computer
explorations.

2. Preliminaries on Wang shifts

This section follows the preliminary section of the chapter [37].

2.1. Topological dynamical systems

Most of the notions introduced here can be found in [65]. A dynamical system is a triple (𝑋, 𝐺,𝑇),
where X is a topological space, G is a topological group and T is a continuous function 𝐺 × 𝑋 → 𝑋
defining a left action of G on X: if 𝑥 ∈ 𝑋 , e is the identity element of G and 𝑔, ℎ ∈ 𝐺, then using additive
notation for the operation in G, we have 𝑇 (𝑒, 𝑥) = 𝑥 and 𝑇 (𝑔 + ℎ, 𝑥) = 𝑇 (𝑔, 𝑇 (ℎ, 𝑥)). In other words, if
one denotes the transformation 𝑥 ↦→ 𝑇 (𝑔, 𝑥) by 𝑇𝑔, then 𝑇𝑔+ℎ = 𝑇𝑔𝑇ℎ . In this work, we consider the
Abelian group 𝐺 = Z × Z.

If 𝑌 ⊂ 𝑋 , let 𝑌 denote the topological closure of Y and let 𝑌𝑇 := ∪𝑔∈𝐺𝑇
𝑔 (𝑌 ) denote the T-closure

of Y. A subset 𝑌 ⊂ 𝑋 is T-invariant if 𝑌𝑇
= 𝑌 . A dynamical system (𝑋, 𝐺,𝑇) is called minimal if X

https://doi.org/10.1017/fms.2025.10069 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10069


Forum of Mathematics, Sigma 11

does not contain any nonempty, proper, closed T-invariant subset. The left action of G on X is free if
𝑔 = 𝑒 whenever there exists 𝑥 ∈ 𝑋 such that 𝑇𝑔 (𝑥) = 𝑥.

Let (𝑋, 𝐺,𝑇) and (𝑌, 𝐺, 𝑆) be two dynamical systems with the same topological group G. A homo-
morphism 𝜃 : (𝑋, 𝐺,𝑇) → (𝑌, 𝐺, 𝑆) is a continuous function 𝜃 : 𝑋 → 𝑌 satisfying the commuting
property that 𝑆𝑔 ◦ 𝜃 = 𝜃 ◦ 𝑇𝑔 for every 𝑔 ∈ 𝐺. A homomorphism 𝜃 : (𝑋, 𝐺,𝑇) → (𝑌, 𝐺, 𝑆) is called
an embedding if it is one-to-one, a factor map if it is onto, and a topological conjugacy if it is both
one-to-one and onto and its inverse map is continuous. If 𝜃 : (𝑋, 𝐺,𝑇) → (𝑌, 𝐺, 𝑆) is a factor map,
then (𝑌, 𝐺, 𝑆) is called a factor of (𝑋, 𝐺,𝑇) and (𝑋, 𝐺,𝑇) is called an extension of (𝑌, 𝐺, 𝑆). Two
dynamical systems are topologically conjugate if there is a topological conjugacy between them.

2.2. Subshifts and shifts of finite type

In this section, we introduce multidimensional subshifts, a particular type of dynamical systems
[40, §13.10], [55, 39, 25]. Let A be a finite set, 𝑑 ≥ 1, and let AZ𝑑 be the set of all maps 𝑥 : Z𝑑 → A,
equipped with the compact product topology. An element 𝑥 ∈ AZ𝑑 is called configuration, and we write
it as 𝑥 = (𝑥𝒎) = (𝑥𝒎 : 𝒎 ∈ Z𝑑), where 𝑥𝒎 ∈ A denotes the value of x at 𝒎. The topology on AZ𝑑 is
compatible with the metric defined for all configurations 𝑥, 𝑥 ′ ∈ AZ𝑑 by dist(𝑥, 𝑥 ′) = 2−min{‖𝒏 ‖ : 𝑥𝒏≠𝑥′𝒏}
where ‖𝒏‖ = |𝑛1 |+· · ·+ |𝑛𝑑 |. The shift action𝜎 : 𝒏 ↦→ 𝜎𝒏 of the additive groupZ𝑑 onAZ𝑑 is defined by

(𝜎𝒏 (𝑥))𝒎 = 𝑥𝒎+𝒏 (2.1)

for every 𝑥 = (𝑥𝒎) ∈ AZ𝑑 and 𝒏 ∈ Z𝑑 . If 𝑋 ⊂ AZ𝑑 , let 𝑋 denote the topological closure of X and let
𝑋

𝜎 := {𝜎𝒏 (𝑥) | 𝑥 ∈ 𝑋, 𝒏 ∈ Z𝑑} denote the shift-closure of X. A subset 𝑋 ⊂ AZ𝑑 is shift-invariant if
𝑋

𝜎
= 𝑋 . A closed, shift-invariant subset 𝑋 ⊂ AZ𝑑 is a subshift. If 𝑋 ⊂ AZ𝑑 is a subshift, we write

𝜎 = 𝜎𝑋 for the restriction of the shift action (2.1) to X. When X is a subshift, the triple (𝑋,Z𝑑 , 𝜎) is a
dynamical system and the notions presented in the previous section hold.

A configuration 𝑥 ∈ 𝑋 is periodic if there is a nonzero vector 𝒏 ∈ Z𝑑 \ {0} such that 𝑥 = 𝜎𝒏 (𝑥), and
otherwise it is nonperiodic. We say that a nonempty subshift X is aperiodic if the shift action 𝜎 on X
is free.

For any subset 𝑆 ⊂ Z𝑑 let 𝜋𝑆 : AZ𝑑 → A𝑆 , denote the projection map which restricts every 𝑥 ∈ AZ𝑑

to S. A pattern is a function 𝑝 ∈ A𝑆 for some finite subset 𝑆 ⊂ Z𝑑 . To every pattern 𝑝 ∈ A𝑆 corresponds
a subset 𝜋−1

𝑆 (𝑝) ⊂ AZ𝑑 called cylinder. A nonempty set 𝑋 ⊂ AZ𝑑 is a subshift if and only if there
exists a set F of forbidden patterns such that

𝑋 = {𝑥 ∈ AZ𝑑 | 𝜋𝑆 ◦ 𝜎𝒏 (𝑥) ∉ F for every 𝒏 ∈ Z𝑑 and 𝑆 ⊂ Z𝑑}; (2.2)

see [25, Prop. 9.2.4]. A subshift 𝑋 ⊂ AZ𝑑 is a subshift of finite type (SFT) if there exists a finite set F
such that (2.2) holds. In this article, we consider shifts of finite type on Z × Z – that is, the case 𝑑 = 2.

2.3. Wang shifts

A Wang tile is a tuple of four colors (𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝐼 × 𝐽 × 𝐼 × 𝐽 where I is a finite set of vertical colors
and J is a finite set of horizontal colors; see [66, 53]. A Wang tile is represented as a unit square with
colored edges:

𝑎

𝑏

𝑐

𝑑
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Figure 7. The set of 3 Wang tiles introduced in [66] using letters {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} instead of numbers
from the set {1, 2, 3, 4, 5} for labeling the edges. Each tile is identified uniquely by an index from the set
{0, 1, 2} written at the center each tile.

Figure 8. A finite 3 × 3 pattern on the left is valid with respect to the Wang tiles since it respects
Equations (2.3) and (2.4). Validity can be verified on the tiling shown on the right.

For each Wang tile 𝜏 = (𝑎, 𝑏, 𝑐, 𝑑), let Right(𝜏) = 𝑎, Top(𝜏) = 𝑏, Left(𝜏) = 𝑐, Bottom(𝜏) = 𝑑
denote respectively the colors or labels of the right, top, left and bottom edges of 𝜏.

Let T = {𝑡0, . . . , 𝑡𝑚−1} be a set of Wang tiles as the one shown in Figure 7. A configuration
𝑥 : Z2 → {0, . . . , 𝑚 − 1} is valid with respect to T if it assigns a tile in T to each position of Z2, so that
contiguous edges of adjacent tiles have the same color; that is,

Right(𝑡𝑥 (𝒏) ) = Left(𝑡𝑥 (𝒏+𝒆1) ) (2.3)

Top(𝑡𝑥 (𝒏) ) = Bottom(𝑡𝑥 (𝒏+𝒆2) ) (2.4)

for every 𝒏 ∈ Z2 where 𝒆1 = (1, 0) and 𝒆2 = (0, 1). A finite pattern which is valid with respect to U is
shown in Figure 8.

Let ΩT ⊂ {0, . . . , 𝑚 − 1}Z2 denote the set of all valid configurations with respect to T , called the
Wang shift of T . To a configuration 𝑥 ∈ ΩT corresponds a tiling of the plane R2 by the tiles T where
the unit square Wang tile 𝑡𝑥 (𝒏) is placed at position 𝒏 for every 𝒏 ∈ Z2, as in Figure 8. Together with the
shift action 𝜎 of Z2, ΩT is a SFT of the form (2.2) since there exists a finite set of forbidden patterns
made of all horizontal and vertical dominoes of two tiles that do not share an edge of the same color.

A configuration 𝑥 ∈ ΩT is periodic if there exists 𝒏 ∈ Z2 \ {0} such that 𝑥 = 𝜎𝒏 (𝑥). A set T of Wang
tiles is periodic if there exists a periodic configuration 𝑥 ∈ ΩT . Originally, Wang thought that every set
T of Wang tiles is periodic as soon as ΩT is nonempty [66]. Wang noticed that if this statement were
true, it would imply the existence of an algorithm solving the domino problem – that is, taking as input
a set of Wang tiles and returning yes or no whether there exists a valid configuration with these tiles.
Berger, a student of Wang, later proved that the domino problem is undecidable and he also provided a
first example of an aperiodic set of Wang tiles [8]. A set T of Wang tiles is aperiodic if the Wang shift
ΩT is a nonempty aperiodic subshift.

2.4. Directional determinism

A set T of Wang tiles is called SW-deterministic if there do not exist two different tiles in T that would
have the same colors on their bottom and left edges, respectively [27]. In other words, for all colors 𝐶1
and𝐶2, there exists at most one tile in T whose bottom and left edges have colors𝐶1 and𝐶2, respectively.

Let 𝑆 = {𝑎1, 𝑎1 + 1, . . . , 𝑏1} × {𝑎2, 𝑎2 + 1, . . . , 𝑏2} be a rectangular support where 𝑎1, 𝑏1, 𝑎2, 𝑏2 are
integers such that 𝑎1 ≤ 𝑏1 and 𝑎2 ≤ 𝑏2. Let 𝑝 : 𝑆 → T be a valid rectangular pattern over the tiles T .
We say that the bottom labels of p and top labels of p are, respectively, the sequences
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Bottom(𝑝𝑎1 ,𝑎2 ),Bottom(𝑝𝑎1+1,𝑎2), . . . ,Bottom(𝑝𝑏1 ,𝑎2) and
Top(𝑝𝑎1 ,𝑏2),Top(𝑝𝑎1+1,𝑏2), . . . ,Top(𝑝𝑏1 ,𝑏2)

read on the pattern from left to right. Also, we say that the left labels of p and right labels of p are,
respectively, the sequences

Left(𝑝𝑎1 ,𝑎2 ),Left(𝑝𝑎1 ,𝑎2+1), . . . ,Left(𝑝𝑎1 ,𝑏2 ) and
Right(𝑝𝑏1 ,𝑎2),Right(𝑝𝑏1 ,𝑎2+1), . . . ,Right(𝑝𝑏1 ,𝑏2)

read on the pattern from bottom to top.
As shown in the next lemma, the local definition of SW-deterministic sets of Wang tiles extends into

a wider property on rectangular patterns.

Lemma 2.1. Let T be a SW-deterministic set of Wang tiles. If p and q are two rectangular valid patterns
with the same shape, the same sequence of bottom labels and the same sequence of left labels, then 𝑝 = 𝑞.

Proof. By contradiction, suppose that there are two distinct rectangular patterns p and q whose sequence
of bottom labels is X and sequence of left labels is Y. Since p and q are distinct, there exists a position
𝑘 ∈ N2 such that 𝑝𝑘 ≠ 𝑞𝑘 . Consider such a position in the support of p and q which minimizes the norm
‖𝑘 ‖1. Since the position is minimal, every tile at position smaller in norm is the same in both patterns.
In particular, it implies that Left(𝑝𝑘 ) = Left(𝑞𝑘 ) and Bottom(𝑝𝑘 ) = Bottom(𝑞𝑘 ). The set of Wang
tile T𝑛 is SW-deterministic. This implies that Top(𝑝𝑘 ) = Top(𝑞𝑘 ) and Right(𝑝𝑘 ) = Right(𝑞𝑘 ). Since
the four labels of the Wang tiles are the same, we must have 𝑝𝑘 = 𝑞𝑘 , a contradiction. We conclude the
uniqueness of the rectangular pattern. �

NW-, NE- and SE-deterministic sets of Wang tiles are defined analogously. Recall that it was shown
in [27] that there exist aperiodic tile sets that are deterministic in all four directions simultaneously.

3. Preliminaries on 2-dimensional substitutions

Rectangular 2-dimensional substitutions and their symbolic dynamical systems were considered in [43].
For a certain class of 2-dimensional substitution systems, it was shown how to construct a set of Wang
tiles such that the associated Wang shift is an almost everywhere one-to-one extension of the substitution
system [43, Theorem 4.5]. This result was generalized later for geometrical substitutions over polygonal
tiles [23].

In this section, we introduce 2-dimensional substitutions. Our definition and the one presented in
[43] are incomparable. On the one hand, we restrict to the deterministic case (every letter has a unique
image). On the other hand, we extend to different alphabets A and B for the domain and codomain. The
section follows the preliminary section of the chapter [37].

3.1. d-dimensional word

We denote by {𝒆𝑘 |1 ≤ 𝑘 ≤ 𝑑} the canonical basis of Z𝑑 where 𝑑 ≥ 1 is an integer. If 𝑖 ≤ 𝑗 are integers,
then �𝑖, 𝑗� denotes the interval of integers {𝑖, 𝑖 + 1, . . . , 𝑗}. Let 𝒏 = (𝑛1, . . . , 𝑛𝑑) ∈ N𝑑 and A be an
alphabet. We denote by A𝒏 the set of functions

𝑢 : �0, 𝑛1 − 1� × · · · × �0, 𝑛𝑑 − 1� → A.

An element 𝑢 ∈ A𝒏 is called a d-dimensional word of size 𝒏 = (𝑛1, . . . , 𝑛𝑑) ∈ N𝑑 on the alphabet
A. We use the notation size(𝑢) = 𝒏 when necessary. The set of all finite d-dimensional words is
A∗𝑑 =

⋃
𝒏∈N𝑑 A𝒏. A d-dimensional word of size 𝒆𝑘 +

∑𝑑
𝑖=1 𝒆𝑖 is called a domino in the direction 𝒆𝑘 .

When the context is clear, we write A instead of A(1,...,1) . When 𝑑 = 2, we represent a d-dimensional
word u of size (𝑛1, 𝑛2) as a matrix with Cartesian coordinates:
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𝑢 =
�	

𝑢0,𝑛2−1 . . . 𝑢𝑛1−1,𝑛2−1
. . . . . . . . .
𝑢0,0 . . . 𝑢𝑛1−1,0

��
.
Let 𝒏,𝒎 ∈ N𝑑 and 𝑢 ∈ A𝒏 and 𝑣 ∈ A𝒎. If there exists an index i such that 𝑛 𝑗 = 𝑚 𝑗 for all
𝑗 ∈ {1, . . . , 𝑑} \ {𝑖}, then the concatenation of u and v in the direction 𝒆𝑖 is defined: it is the d-
dimensional word 𝑢 �𝑖 𝑣 of size (𝑛1, . . . , 𝑛𝑖−1, 𝑛𝑖 + 𝑚𝑖 , 𝑛𝑖+1, . . . , 𝑛𝑑) ∈ N𝑑 given as

(𝑢 �𝑖 𝑣) (𝒂) =
{
𝑢(𝒂) if 0 ≤ 𝑎𝑖 < 𝑛𝑖 ,
𝑣(𝒂 − 𝑛𝑖𝒆𝑖) if 𝑛𝑖 ≤ 𝑎𝑖 < 𝑛𝑖 + 𝑚𝑖 .

The notation 𝑢 �𝑖 𝑣 was used in [11].
The following equation illustrates the concatenation of 2-dimensional words in the direction 𝒆2:

(
4 5

10 5

)
�2 �	


3 10
9 9
0 0

��
 =

�					

3 10
9 9
0 0
4 5
10 5

������

and in the direction 𝒆1:

�					

2 8 7
7 3 9
1 1 0
6 6 7
7 4 3

������

�1

�					

3 10
9 9
0 0
4 5
10 5

������

=

�					

2 8 7 3 10
7 3 9 9 9
1 1 0 0 0
6 6 7 4 5
7 4 3 10 5

������

.

Let 𝒏,𝒎 ∈ N𝑑 and 𝑢 ∈ A𝒏 and 𝑣 ∈ A𝒎. We say that u occurs in v at position 𝒑 ∈ N𝑑 if v is large
enough; that is, 𝒎 − 𝒑 − 𝒏 ∈ N𝑑 and

𝑣(𝒂 + 𝒑) = 𝑢(𝒂)

for all 𝒂 = (𝑎1, . . . , 𝑎𝑑) ∈ N𝑑 such that 0 ≤ 𝑎𝑖 < 𝑛𝑖 with 1 ≤ 𝑖 ≤ 𝑑. If u occurs in v at some position,
then we say that u is a d-dimensional subword or factor of v.

3.2. d-dimensional language

A subset 𝐿 ⊆ A∗𝑑 is called a d-dimensional language. A language 𝐿 ⊆ A∗𝑑 is called factorial if for
every 𝑣 ∈ 𝐿 and every d-dimensional subword u of v, we have 𝑢 ∈ 𝐿. All languages considered in this
contribution are factorial. Given a configuration 𝑥 ∈ AZ𝑑 , the language L(𝑥) defined by x is

L(𝑥) = {𝑢 ∈ A∗𝑑 | 𝑢 is a 𝑑-dimensional subword of 𝑥}.

The language of a subshift 𝑋 ⊆ AZ𝑑 is L𝑋 = ∪𝑥∈𝑋L(𝑥). Conversely, given a factorial language
𝐿 ⊆ A∗𝑑 , we define the subshift

X𝐿 = {𝑥 ∈ AZ𝑑 | L(𝑥) ⊆ 𝐿}.

A d-dimensional subword 𝑢 ∈ A∗𝑑 is legal (or allowed) in a subshift 𝑋 ⊂ AZ𝑑 if 𝑢 ∈ L𝑋 , and it is
illegal in X if 𝑢 ∉ L𝑋 [5]. A language 𝐿 ⊆ A∗𝑑 is illegal in a subshift 𝑋 ⊂ AZ𝑑 if 𝐿 ∩ L𝑋 = ∅.
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3.3. d-dimensional morphisms

Let A and B be two alphabets. Let 𝐿 ⊆ A∗𝑑 be a factorial language. A function 𝜔 : 𝐿 → B∗𝑑 is a
d-dimensional morphism if for every i with 1 ≤ 𝑖 ≤ 𝑑, and every 𝑢, 𝑣 ∈ 𝐿 such that 𝑢 �𝑖 𝑣 is defined
and 𝑢 �𝑖 𝑣 ∈ 𝐿, we have that the concatenation 𝜔(𝑢) �𝑖 𝜔(𝑣) in direction 𝒆𝑖 is defined and

𝜔(𝑢 �𝑖 𝑣) = 𝜔(𝑢) �𝑖 𝜔(𝑣).

Note that the left-hand side of the equation is defined since 𝑢 �𝑖 𝑣 belongs to the domain of 𝜔. A d-
dimensional morphism 𝐿 → B∗𝑑 is thus completely defined from the image of the letters in A, so we
sometimes denote a d-dimensional morphism as a rule A→ B∗𝑑 when the language L is unspecified.

As noticed by [43, p.144], the images under the morphism of any two letters appearing in the same
row of a word from L have the same height. Symmetrically, the images under the morphism of any two
letters appearing in the same column of a word from L have the same width.

Let 𝐿 ⊆ A∗𝑑 be a factorial language and X𝐿 ⊆ AZ𝑑 be the subshift generated by L. A d-dimensional
morphism 𝜔 : 𝐿 → B∗𝑑 can be extended to a continuous map 𝜔 : X𝐿 → BZ𝑑 (over the topology of
subshifts, as defined in Section 2.2) in such a way that the origin of 𝜔(𝑥) is at position 0 in the word
𝜔(𝑥0) for all 𝑥 ∈ X𝐿 . More precisely, the image under 𝜔 of the configuration 𝑥 ∈ X𝐿 is

𝜔(𝑥) = lim
𝑛→∞

𝜎 𝑓 (𝑛)𝜔
(
𝜎−𝑛1(𝑥 |�−𝑛1,𝑛1�)

)
∈ BZ𝑑 ,

where 1 = (1, . . . , 1) ∈ Z𝑑 , 𝑓 (𝑛) = size
(
𝜔(𝜎−𝑛1 (𝑥 |�−𝑛1,0�))

)
for all 𝑛 ∈ N and �𝒎, 𝒏�= �𝑚1, 𝑛1 − 1�×

· · · × �𝑚𝑑 , 𝑛𝑑 − 1�. We say that the map 𝜔 : X𝐿 → BZ𝑑 is a d-dimensional substitution.
In general, the image of a subshift under a d-dimensional substitution might not be closed under the

shift. But the closure under the shift of the image of a subshift 𝑋 ⊆ AZ𝑑 under 𝜔 is the subshift

𝜔(𝑋)
𝜎
= {𝜎𝒌𝜔(𝑥) ∈ BZ𝑑 | 𝒌 ∈ Z𝑑 , 𝑥 ∈ 𝑋} ⊆ BZ𝑑 .

This motivates the following definition.

Definition 3.1. Let X, Y be two subshifts and𝜔 : 𝑋 → 𝑌 be a d-dimensional substitution. If𝑌 = 𝜔(𝑋)
𝜎

,
then we say that 𝜔 is onto up to a shift.

3.4. Self-similar subshifts

In this section, we consider languages and subshifts defined from morphisms leading to self-similar
structures. In this situation, the domain and codomain of morphisms are defined over the same alphabet.
Formally, we consider the case of d-dimensional morphisms A→ B∗𝑑 where A = B.

The definition of self-similarity depends on the notion of expansiveness. It avoids the presence of
lower-dimensional self-similar structure by having expansion in all directions.

Definition 3.2. We say that a d-dimensional morphism 𝜔 : A → A∗𝑑 is expansive if for every 𝑎 ∈ A
and 𝐾 ∈ N, there exists 𝑚 ∈ N such that min(size(𝜔𝑚(𝑎))) > 𝐾 .

Definition 3.3. A subshift 𝑋 ⊆ AZ𝑑 is self-similar if there exists an expansive d-dimensional morphism
𝜔 : A→ A∗𝑑 such that 𝑋 = 𝜔(𝑋)

𝜎
.

Self-similar subshifts can be constructed by iterative application of a morphism 𝜔 starting with the
letters. The language L𝜔 defined by an expansive d-dimensional morphism 𝜔 : A→ A∗𝑑 is
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L𝜔 = {𝑢 ∈ A∗𝑑 | 𝑢 is a 𝑑-dimensional subword of 𝜔𝑛 (𝑎) for some 𝑎 ∈ A and 𝑛 ∈ N}.

The substitutive shift X𝜔 = XL𝜔 defined from the language of 𝜔 is a self-similar subshift since
X𝜔 = 𝜔(X𝜔)

𝜎
holds.

A d-dimensional morphism 𝜔 : A → A∗𝑑 is primitive if there exists 𝑚 ∈ N such that for every
𝑎, 𝑏 ∈ A, the letter b occurs in 𝜔𝑚(𝑎). Note that if 𝜔 is primitive, then the Perron–Frobenius theorem
applies for its incidence matrix 𝑀𝜔 = (|𝜔(𝑎) |𝑏)(𝑏,𝑎) ∈A×A; see [51].

3.5. d-dimensional recognizability

The definition of recognizability dates back to the work of Host, Quéffelec and Mossé [42]. The definition
introduced below is based on some work of Berthé et al. [9] on the recognizability in the case of S-adic
systems where more than one substitution is involved.

Definition 3.4 (recognizable). Let 𝑋 ⊆ AZ𝑑 and 𝜔 : 𝑋 → BZ𝑑 be a d-dimensional substitution. If
𝑦 ∈ 𝜔(𝑋)

𝜎
(i.e., 𝑦 = 𝜎𝒌𝜔(𝑥) for some 𝑥 ∈ 𝑋 and 𝒌 ∈ Z𝑑 , where 𝜎 is the d-dimensional shift map),

we say that (𝒌, 𝑥) is an 𝜔-representation of y. We say that it is centered if 𝑦0 lies inside of the image
of 𝑥0 (i.e., if 0 ≤ 𝒌 < size(𝜔(𝑥0)) coordinate-wise). We say that 𝜔 is recognizable in 𝑋 ⊆ AZ𝑑 if each
𝑦 ∈ BZ𝑑 has at most one centered 𝜔-representation (𝒌, 𝑥) with 𝑥 ∈ 𝑋 .

The self-similarity of Ω𝑛 allows us to conclude aperiodicity of the Wang shift using well-known
arguments (see [62, 42], who showed that recognizability and aperiodicity are equivalent for primitive
substitutive sequences).

The following statement corresponds to only one of the directions (the easy one) of the equivalence
which does not need the notion of primitivity. It was proved for 2-dimensional substitutions in [33]; see
also [37, Proposition 3.6].

Proposition 3.5 [33, Proposition 6]. Let 𝜔 : A → A∗𝑑 be an expansive d-dimensional morphism. Let
𝑋 ⊆ AZ𝑑 be a self-similar subshift such that 𝜔(𝑋)

𝜎
= 𝑋 . If 𝜔 is recognizable in X, then X is aperiodic.

4. The family of metallic mean Wang tiles

For every integer 𝑛 ∈ Z, we write 𝑛 to denote 𝑛 + 1 and 𝑛 to denote 𝑛 − 1:

𝑛 := 𝑛 + 1,
𝑛 := 𝑛 − 1.

For every Wang tile 𝜏 = (𝑎, 𝑏, 𝑐, 𝑑), we define its symmetric image under the positive diagonal as
𝜏̂ = (𝑏, 𝑎, 𝑑, 𝑐):

if 𝜏 = 𝑎

𝑏

𝑐

𝑑

, then 𝜏̂ = 𝑏

𝑎

𝑑

𝑐

.

4.1. The tiles

For every integer 𝑛 ≥ 1, let

𝑉𝑛 = {(𝑣0, 𝑣1, 𝑣2) ∈ Z3 : 0 ≤ 𝑣0 ≤ 𝑣1 ≤ 1 and 𝑣1 ≤ 𝑣2 ≤ 𝑛 + 1}

be a set of vectors having non-decreasing entries with an upper bound of 1 on the middle entry and
an upper bound of 𝑛 + 1 on the last entry. The label of the edges of the Wang tiles considered in this
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article are vectors in 𝑉𝑛. To lighten the figures and the presentation of the Wang tiles, it is convenient to
denote the vector (𝑣0, 𝑣1, 𝑣2) ∈ 𝑉𝑛 more compactly as a word 𝑣0𝑣1𝑣2. For instance, the vector (1, 1, 1)
is represented as 111.

For every integer 𝑛 ≥ 1, we define the following set of Wang tiles whose labels belong to the set 𝑉𝑛.
We have 𝑛2 white tiles whose labels all start with 11:

𝑊𝑛 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ 𝑤
𝑖, 𝑗
𝑛 := 11𝑖

11 𝑗

11𝑖

11 𝑗

�������� 1 ≤ 𝑖 ≤ 𝑛,
1 ≤ 𝑗 ≤ 𝑛

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (𝑛2 white tiles).

We have horizontal stripe tiles whose top and bottom labels all start with 11 and whose left and right
labels start with 0. These are divided into four sets according to the first two digits of the left and right
labels which can be 00 (associated with color blue) or 01 (associated with color yellow).

The set 𝐵′𝑛 of horizontal blue tiles are those such that both left and right labels start with 00 and
are identified with a horizontal blue stripe. The set 𝑌𝑛 of horizontal yellow tiles are those such that
both left and right labels start with 01 and are identified with a horizontal yellow stripe. The set 𝐺𝑛 of
horizontal green tiles are those such that the left label starts with 00 and right label starts with 01 and are
identified with a green region intersecting blue and yellow horizontal stripes. The set 𝐴𝑛 of horizontal
antigreen tiles contains the tiles whose left label starts with 01 and whose right label starts with 00.
They are identified with non-intersecting blue and yellow horizontal stripes and no green intersecting
region.

The tiles in 𝐴𝑛 are called ‘antigreen’ because they are ‘against the system’ as shown later in
Lemma 7.2. Antigreen tiles do not appear in any valid configuration, but they are needed as they play
an important role in the description of the substitutive structure of the valid configurations allowed by
these tiles; see Proposition 5.9 and Proposition 6.7.

We also have vertical stripe tiles which are the symmetric images of the horizontal stripe tiles under
a reflection over the positive diagonal:
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Finally, we have 9 junction tiles (the gray region is drawn in blue or yellow color depending on the
specific values of 𝑘, ℓ, 𝑟, 𝑠):

We may observe that white tiles and junction tiles are closed under the reflection over the positive
diagonal:

𝑊𝑛 = 𝑊𝑛 and 𝐽 ′𝑛 = 𝐽 ′𝑛.

Junction tiles play a similar role to junction tiles in [43]; thus, we reuse the same vocabulary.
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Figure 9. Extended metallic mean Wang tile sets T ′𝑛 for 𝑛 = 4. The junction tiles in D are shown with
a ×-mark in their center.

4.2. The extended set T ′𝑛 of metallic mean Wang tiles

For every integer 𝑛 ≥ 1, the extended set of metallic mean Wang tiles is the union of all of the tiles
defined above:

T ′𝑛 = 𝑊𝑛 ∪ 𝐵′𝑛 ∪ 𝐺𝑛 ∪ 𝑌𝑛 ∪ 𝐴𝑛 ∪ 𝐵′𝑛 ∪ 𝐺𝑛 ∪ 𝑌𝑛 ∪ 𝐴𝑛 ∪ 𝐽 ′𝑛.

The set T ′𝑛 of tiles defines the extended metallic mean Wang shift

Ω′𝑛 = ΩT ′𝑛 .

The set T ′𝑛 contains 𝑛2 + 2(𝑛 + 1 + 𝑛 + 1 + 𝑛 + 𝑛) + 9 = 𝑛2 + 8𝑛 + 13 Wang tiles. The set T ′𝑛 of Wang tiles
for 𝑛 = 4 is shown in Figure 9.

4.3. The subset T𝑛 of metallic mean Wang tiles

We need to define an important subset of the extended metallic mean Wang tiles T ′𝑛 because some
of the tiles are not necessary as they do not appear in any valid configurations of Ω′𝑛. For example,
we can observe that no tile of T ′𝑛 has label 00𝑛 on the left or bottom. Therefore, the last horizontal
blue tile and last vertical blue tile which use label 00𝑛 on their top or right edge admit no immediate
surroundings with tiles in T ′𝑛 . As shown in Section 7 using results proved in Section 5 and Section 6,
other tiles from T ′𝑛 do not admit arbitrarily large surroundings. Therefore, it is convenient to remove
them.
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Let

be the set containing the last blue horizontal and vertical tiles as well as two of the junction tiles. For
every positive integer n, we delete the four tiles of D from T ′𝑛 as well as all of the antigreen tiles. We
obtain the following subset of metallic mean Wang tiles

T𝑛 = T ′𝑛 \
(
𝐴𝑛 ∪ 𝐴𝑛 ∪D

)
= 𝑊𝑛 ∪ 𝐵𝑛 ∪ 𝐺𝑛 ∪ 𝑌𝑛 ∪ 𝐵𝑛 ∪ 𝐺𝑛 ∪ 𝑌𝑛 ∪ 𝐽𝑛,

where 𝐵𝑛 = 𝐵′𝑛 \ D is the remaining set of n horizontal blue stripe tiles and 𝐽𝑛 = 𝐽 ′𝑛 \ D ={
𝑗0,0,0,0𝑛 , 𝑗0,1,0,0𝑛 , 𝑗0,0,0,1𝑛 , 𝑗0,1,0,1𝑛 , 𝑗1,1,0,1𝑛 , 𝑗0,1,1,1𝑛 , 𝑗1,1,1,1𝑛

}
is the remaining set of 7 junction tiles. The

set T𝑛 contains 𝑛2 + 2(𝑛+ 𝑛+ 1+ 𝑛) + 7 = (𝑛+ 3)2 Wang tiles. It is shown in Figure 2 for 𝑛 = 1, 2, 3, 4, 5.
The set T𝑛 of tiles defines the Metallic mean Wang shift

Ω𝑛 = ΩT𝑛 ,

which is a subshift of Ω′𝑛 because T𝑛 ⊂ T ′𝑛 .

Remark 4.1. The reader may wonder why we need to introduce the extended set T ′𝑛 if only the tiles
in the subset T𝑛 appear in configurations of Ω′𝑛. This is because the extended set is needed to describe
and prove the self-similarity of T𝑛 in Theorem A. In the proof (using the vocabulary of supertiles from
the only article published by Ammann [4]), we show that if the markings of the supertiles at level k are
in bijection with the tiles in T𝑛, then the markings of the supertiles at level 𝑘 + 1 are in bijection with
tiles in T ′𝑛 (not T𝑛!). In other words, we cannot get rid of the ghost tiles in T ′𝑛 \ T𝑛 because they keep
reappearing at the next level of the hierarchy in bigger sizes.

4.4. The Ammann aperiodic set of 16 Wang tiles

A reproduction of the Ammann aperiodic set of 16 Wang tiles [24, p.595, Figure 11.1.13] is shown in
Figure 10. The Ammann set of 16 Wang tiles corresponds to T1.

Theorem E. When 𝑛 = 1, the set T𝑛 is equal, up to symbol relabeling, to the Ammann set of 16 Wang
tiles.

Proof. The following is a bijection from the labels of the Ammann set of 16 Wang tiles and the labels
of the tiles in T1:

1 ↦→ 112, 2 ↦→ 111, 3 ↦→ 001, 4 ↦→ 011, 5 ↦→ 012, 6 ↦→ 000.

See Figure 10 (note that the order of the tiles is not the same). �

Thus, the family (T𝑛)𝑛≥1 can be considered as a generalization of the Ammann aperiodic set of 16
Wang tiles.
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Figure 10. Left: a reproduction of the Ammann aperiodic set of 16 Wang tiles [24, p.595, Figure
11.1.13]. Middle: the Ammann aperiodic set of 16 Wang tiles in the same order but with coloring
corresponding to the white, yellow, green, blue and junction tiles of the set T1. Right: The set T1 of Wang
tiles whose edge labels are vectors in N3. The sets are equivalent up to a bijection of the edge labels.

4.5. Symmetric properties

The set T𝑛 has nice symmetric properties. The first being that it is closed under the mirror image through
the positive diagonal; that is, T̂𝑛 = T𝑛. Another less evident observation is that the set T𝑛 is equivalent
to its image under a half-turn rotation up to the application of an involution of 𝑉𝑛 \ {(0, 0, 𝑛)} applied
on the edge labels of the Wang tiles.
Lemma 4.2. Let 𝜎 : (𝑖, 𝑗 , 𝑘) ↦→ (𝑖, 1 + 𝑖 − 𝑗 , 𝑛 + 1 + 𝑖 − 𝑘) (an involution on 𝑉𝑛 \ {(0, 0, 𝑛)}). Then,

T𝑛 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ 𝜎 (𝑢)

𝜎 (𝑣)

𝜎 (𝛼)

𝜎 (𝛽)

�������� 𝛼

𝛽

𝑢

𝑣

∈ T𝑛

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Proof. When rotating the tiles of T𝑛 by half a turn and applying the map 𝜎 on the resulting labels, we
may observe that yellow tiles become blue tiles and vice versa, white tiles are mapped to white tiles,
junction tiles are mapped to junction tiles and green tiles are mapped to green tiles. �

This translates into the existence of nontrivial reflection symmetry and rotational symmetry for the
Wang shift Ω𝑛. As we show in this article, it has no translational symmetries.

4.6. Directional determinism

We show in this section that the sets T𝑛 and T ′𝑛 are SW- and NE-deterministic.
Lemma 4.3. The sets T𝑛 and T ′𝑛 are SW- and NE-deterministic. However, the sets T𝑛 and T ′𝑛 are neither
NW- nor SE-deterministic.

Proof. Let us show that T ′𝑛 is SW-deterministic. Let 𝑠, 𝑡 ∈ T ′𝑛 be such that Left(𝑠) = 𝑢 = Left(𝑡) and
Bottom(𝑠) = 𝑣 = Bottom(𝑡) for some vectors 𝑢 = (𝑢0, 𝑢1, 𝑢2), 𝑣 = (𝑣0, 𝑣1, 𝑣2) ∈ 𝑉𝑛.
◦ If 𝑢0 = 0, 𝑣0 = 0, then 𝑠, 𝑡 ∈ 𝐽 ′𝑛.
◦ If 𝑢0 = 1, 𝑣0 = 1, then 𝑠, 𝑡 ∈ 𝑊𝑛.
◦ If 𝑢0 = 0, 𝑣0 = 1, 𝑢1 = 0 and 𝑣2 = 𝑛, then 𝑠, 𝑡 ∈ 𝐵′𝑛.
◦ If 𝑢0 = 0, 𝑣0 = 1, 𝑢1 = 0 and 𝑣2 = 𝑛, then 𝑠, 𝑡 ∈ 𝐺𝑛.
◦ If 𝑢0 = 0, 𝑣0 = 1, 𝑢1 = 1 and 𝑣2 = 𝑛, then 𝑠, 𝑡 ∈ 𝐴𝑛.
◦ If 𝑢0 = 0, 𝑣0 = 1, 𝑢1 = 1 and 𝑣2 = 𝑛, then 𝑠, 𝑡 ∈ 𝑌𝑛.
◦ If 𝑢0 = 1, 𝑣0 = 0, 𝑣1 = 0 and 𝑢2 = 𝑛, then 𝑠, 𝑡 ∈ 𝐵′𝑛.
◦ If 𝑢0 = 1, 𝑣0 = 0, 𝑣1 = 0 and 𝑢2 = 𝑛, then 𝑠, 𝑡 ∈ 𝐺𝑛.
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◦ If 𝑢0 = 1, 𝑣0 = 0, 𝑣1 = 1 and 𝑢2 = 𝑛, then 𝑠, 𝑡 ∈ 𝐴𝑛.
◦ If 𝑢0 = 1, 𝑣0 = 0, 𝑣1 = 1 and 𝑢2 = 𝑛, then 𝑠, 𝑡 ∈ 𝑌𝑛.

One can observe that each of the subsets 𝑊𝑛, 𝐵′𝑛, 𝐺𝑛, 𝑌𝑛, 𝐴𝑛, 𝐽 ′𝑛 is SW-deterministic. By symmetry,
𝐵′𝑛, 𝐺𝑛, 𝑌𝑛 and 𝐴𝑛 are SW-deterministic. We conclude that 𝑠 = 𝑡. Thus, T ′𝑛 is SW-deterministic. Using
a similar argument, one can observe that T ′𝑛 is NE-deterministic. By restriction, the subset T𝑛 ⊂ T ′𝑛 is
SW- and NE-deterministic.

However, T𝑛 is neither NW- nor SE-deterministic because the subset 𝐽𝑛 is neither NW- nor SE-
deterministic. By extension, the extended set T ′𝑛 is neither NW- nor SE-deterministic. �

5. A substitution Ω𝑛 → Ω𝑛

The goal of this section is twofold. First, we introduce a 2-dimensional substitution Ω𝑛 → Ω𝑛 deduced
from a substitution 𝜏𝑛 : 𝑉𝑛 → (𝑉𝑛)∗ defined on the boundary labels of the Wang tiles. Then, we charac-
terize the possible valid rectangular tilings with external labels in the image of 𝜏𝑛; see Proposition 5.9.

5.1. A 1-dimensional substitution for the boundary

It is convenient to define, for every integer 𝑛 ≥ 1, the following map:

𝜏𝑛 : 𝑉𝑛 → (𝑉𝑛)∗

𝑥𝑦𝑧 ↦→
{

0(𝑥−𝑦+1)𝑛 · (11𝑛)𝑧−𝑥−1 · (11𝑛)𝑛+1−𝑧 if 𝑥 ≠ 𝑧,
0(𝑥−𝑦+1)𝑛 · (11𝑛)𝑛−𝑧 if 𝑥 = 𝑧.

The above formula declines into the following five cases:

𝜏𝑛 (000) = 01𝑛 · (11𝑛)𝑛,
𝜏𝑛 (111) = 01𝑛 · (11𝑛)𝑛−1,

𝜏𝑛 (00𝑖) = 01𝑛 · (11𝑛)𝑖 · (11𝑛)𝑛−𝑖 if 0 ≤ 𝑖 ≤ 𝑛,
𝜏𝑛 (01𝑖) = 00𝑛 · (11𝑛)𝑖 · (11𝑛)𝑛−𝑖 if 0 ≤ 𝑖 ≤ 𝑛,
𝜏𝑛 (11𝑖) = 01𝑛 · (11𝑛)𝑖−1 · (11𝑛)𝑛−𝑖 if 1 ≤ 𝑖 ≤ 𝑛.

(5.1)

For example, when 𝑛 = 1, 𝑛 = 2 or 𝑛 = 4, we have

𝜏1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

000 ↦→ 012, 112
001 ↦→ 011, 112
002 ↦→ 011, 111
011 ↦→ 001, 112
012 ↦→ 001, 111
111 ↦→ 012
112 ↦→ 011

, 𝜏2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

000 ↦→ 013, 113, 113
001 ↦→ 012, 113, 113
002 ↦→ 012, 112, 113
003 ↦→ 012, 112, 112
011 ↦→ 002, 113, 113
012 ↦→ 002, 112, 113
013 ↦→ 002, 112, 112
111 ↦→ 013, 113
112 ↦→ 012, 113
113 ↦→ 012, 112

, 𝜏4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

000 ↦→ 015, 115, 115, 115, 115
001 ↦→ 014, 115, 115, 115, 115
002 ↦→ 014, 114, 115, 115, 115
003 ↦→ 014, 114, 114, 115, 115
004 ↦→ 014, 114, 114, 114, 115
005 ↦→ 014, 114, 114, 114, 114
011 ↦→ 004, 115, 115, 115, 115
012 ↦→ 004, 114, 115, 115, 115
013 ↦→ 004, 114, 114, 115, 115
014 ↦→ 004, 114, 114, 114, 115
015 ↦→ 004, 114, 114, 114, 114
111 ↦→ 015, 115, 115, 115
112 ↦→ 014, 115, 115, 115
113 ↦→ 014, 114, 115, 115
114 ↦→ 014, 114, 114, 115
115 ↦→ 014, 114, 114, 114

.

The map 𝜏𝑛 was discovered during computer explorations. It appears naturally when searching for
a self-similarity for the tilings in Ω𝑛; see Appendix B in Section B and in particular the output of the
computation performed at line 84.
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Figure 11. A horizontal strip of tiles from T ′𝑛 made of a bottom right part q of a junction tile and a
sequence 𝑡1𝑡2 . . . 𝑡𝑘−1 of horizontal stripe tiles. The bottom labels of the strip is 𝜏𝑛 (𝑣) for some 𝑣 ∈ 𝑉𝑛.
The top labels of the horizontal stripe tiles is 𝛾 ∈ (𝑉𝑛)∗ and its right-most right label is 𝛿 ∈ 𝑉𝑛.

Lemma 5.1. For every (𝑥, 𝑦, 𝑧) ∈ 𝑉𝑛, the map 𝜏𝑛 satisfies the following:

◦ the length of 𝜏𝑛 (𝑥𝑦𝑧) ∈ (𝑉𝑛)∗ is 𝑛 + 1 − 𝑥;
◦ the first item of 𝜏𝑛 (𝑥𝑦𝑧) is 0(𝑥−𝑦+1)𝑛 or 0(𝑥−𝑦+1)𝑛;
◦ there are 𝑧 − 𝑥 occurrences of ∗∗𝑛 in the image of 𝜏𝑛 (𝑥𝑦𝑧).

In particular, 𝜏𝑛 is injective.

Proof. The three items follow from the definition. We prove that 𝜏𝑛 is injective. Assume that 𝑥𝑦𝑧 ≠
𝑥 ′𝑦′𝑧′. We want to show that 𝜏𝑛 (𝑥𝑦𝑧) ≠ 𝜏𝑛 (𝑥 ′𝑦′𝑧′). If 𝑥 ≠ 𝑥 ′, then the images are distinct because their
lengths are different. If 𝑥 = 𝑥 ′ and 𝑦 ≠ 𝑦′, then the images are distinct because the second digit of their
first item satisfies 𝑥−𝑦+1 ≠ 𝑥−𝑦′+1. If 𝑥 = 𝑥 ′, 𝑦 = 𝑦′ and 𝑧 ≠ 𝑧′, then the images are distinct because
there are 𝑧 − 𝑥 occurrences of ∗∗𝑛 in the image of 𝜏𝑛 (𝑥𝑦𝑧). �

5.2. A substitution 𝜔′𝑛 for the tiles in T ′𝑛
Let

be the set of possible values for the bottom right part of a junction tile in 𝐽 ′𝑛.

Lemma 5.2. Let 𝑛 ≥ 1 be an integer. For every 𝑣 ∈ 𝑉𝑛, there exist a unique bottom right part 𝑞 ∈ 𝑄𝑛

and a unique sequence 𝑡1𝑡2 . . . 𝑡𝑘−1 of tiles in T ′𝑛 such that 𝑞 𝑡1𝑡2 . . . 𝑡𝑘−1 is a valid horizontal strip of
tiles from left to right whose sequence of bottom labels is 𝜏𝑛 (𝑣) where 𝑘 = |𝜏𝑛 (𝑣) |.

Moreover, if 𝛾 is the sequence of top labels of 𝑡1𝑡2 . . . 𝑡𝑘−1 and 𝛿 is its right-most right label – that is,
the right label of 𝑡𝑘−1 (see Figure 11) – then the following statements hold.

◦ If 𝑣 = 00𝑖 with 0 ≤ 𝑖 ≤ 𝑛, then
– if 0 ≤ 𝑖 ≤ 𝑛, then 𝛾 = (111)𝑖 · (112)𝑛−𝑖 and 𝛿 = 01𝑛,
– if 𝑖 = 𝑛 + 1, then 𝛾 = (111)𝑛 and 𝛿 = 00𝑛.

◦ If 𝑣 = 01𝑖 with 1 ≤ 𝑖 ≤ 𝑛, then
– if 1 ≤ 𝑖 ≤ 𝑛, then 𝛾 = (111)𝑖 · (112)𝑛−𝑖 and 𝛿 = 01𝑛,
– if 𝑖 = 𝑛 + 1, then 𝛾 = (111)𝑛 and 𝛿 = 00𝑛.

◦ If 𝑣 = 11𝑖 with 1 ≤ 𝑖 ≤ 𝑛, then
– if 1 ≤ 𝑖 ≤ 𝑛, then 𝛾 = (111)𝑖−1 · (112)𝑛−𝑖 and 𝛿 = 01𝑛,
– if 𝑖 = 𝑛 + 1, then 𝛾 = (111)𝑛−1 and 𝛿 = 00𝑛.

In particular, no antigreen tiles appear in the horizontal strip. Also, if 𝑣 ∈ 𝑉𝑛 \ {00𝑛}, then the last blue
tile does not appear in the strip.
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Figure 12. Horizontal strip with bottom word 𝜏𝑛 (00𝑖) with 0 ≤ 𝑖 ≤ 𝑛.

Figure 13. Horizontal strip with bottom word 𝜏𝑛 (01𝑖) with 1 ≤ 𝑖 ≤ 𝑛 + 1.

Proof. Assume 𝑣 = 00𝑖 with 0 ≤ 𝑖 ≤ 𝑛. The following three cases occur.

◦ If 𝑖 = 0, then the sequence of bottom labels is 𝜏𝑛 (000) = 01𝑛 · (11𝑛)𝑛, the sequence of top labels is
(112)𝑛 and the right-most right label is 01𝑛.

◦ If 1 ≤ 𝑖 ≤ 𝑛, then the sequence of bottom labels is 𝜏𝑛 (00𝑖) = 01𝑛 · (11𝑛)𝑖−1 · (11𝑛)𝑛+1−𝑖 , the sequence
of top labels is (111)𝑖 · (112)𝑛−𝑖 and the right-most right label is 01𝑛.

◦ If 𝑖 = 𝑛 + 1, then the sequence of bottom labels is 𝜏𝑛 (00𝑖) = 01𝑛 · (11𝑛)𝑛, the sequence of top labels
is (111)𝑛 and the right-most right label is 00𝑛.

The 𝑛 + 1 tiles of the strip for the three cases are illustrated in Figure 12. We observe that the last blue
tile (the blue horizontal stripe tile with left label 00𝑛) is used in the strip only when 𝑖 = 𝑛 + 1.

Assume 𝑣 = 01𝑖 with 1 ≤ 𝑖 ≤ 𝑛. The following two cases occur.

◦ If 1 ≤ 𝑖 ≤ 𝑛, then the sequence of bottom labels is 𝜏𝑛 (01𝑖) = 00𝑛 · (11𝑛)𝑖−1 · (11𝑛)𝑛+1−𝑖 , the sequence
of top labels is (111)𝑖 · (112)𝑛−𝑖 and the right-most right label is 01𝑛.

◦ If 𝑖 = 𝑛 + 1, then the sequence of bottom labels is 𝜏𝑛 (00𝑖) = 00𝑛 · (11𝑛)𝑛, the sequence of top labels
is (111)𝑛 and the right-most right label is 00𝑛.

The 𝑛 + 1 tiles of the strip for the two cases are illustrated in Figure 13.
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Figure 14. Horizontal strip with bottom word 𝜏𝑛 (11𝑖) with 1 ≤ 𝑖 ≤ 𝑛 + 1.

Assume 𝑣 = 11𝑖 with 1 ≤ 𝑖 ≤ 𝑛. The following three cases occur.
◦ If 𝑖 = 1, then the sequence of bottom labels is 𝜏𝑛 (111) = 01𝑛 · (11𝑛)𝑛−1, the sequence of top labels

is (112)𝑛−1 and the right-most right label is 01𝑛.
◦ If 2 ≤ 𝑖 ≤ 𝑛, then the sequence of bottom labels is 𝜏𝑛 (11𝑖) = 01𝑛 · (11𝑛)𝑖−2 · (11𝑛)𝑛+1−𝑖 , the sequence

of top labels is (111)𝑖−1 · (112)𝑛−𝑖 and the right-most right label is 01𝑛.
◦ If 𝑖 = 𝑛+1, then the sequence of bottom labels is 𝜏𝑛 (11𝑖) = 01𝑛 · (11𝑛)𝑛−1, the sequence of top labels

is (111)𝑛−1 and the right-most right label is 00𝑛.
The n tiles of the strip for the three cases are illustrated in Figure 14. �

Since T𝑛 = T̂𝑛, Lemma 5.2 has a symmetric version describing the vertical strip of tiles from T ′𝑛 with
left labels equal to 𝜏𝑛 (𝑢) for some 𝑢 ∈ 𝑉𝑛. Lemma 5.2 and its symmetric version can be used together
to construct valid rectangular patterns with external boundaries given by the images under the map 𝜏𝑛;
see Figure 16.

Lemma 5.3. Let 𝛼, 𝛽, 𝑢, 𝑣 ∈ 𝑉𝑛. If 𝛼

𝛽

𝑢

𝑣

∈ T ′𝑛 , then there exists a unique valid rectangular pattern

with tiles in T ′𝑛 whose right, top, left and bottom labels are respectively 𝜏𝑛 (𝛼), 𝜏𝑛 (𝛽), 𝜏𝑛 (𝑢) and 𝜏𝑛 (𝑣).
Proof. Let 𝑢, 𝑣 ∈ 𝑉𝑛. For every tile in T ′𝑛 , the left label starts with 0 if and only if the right label starts
with 0, and, symmetrically, the bottom label starts with 0 if and only if the top label starts with 0. Since
we have 𝜏𝑛 (𝑉𝑛) ⊂ {00𝑛, 01𝑛, 01𝑛} · {11𝑛, 11𝑛}∗, any valid rectangular pattern with tiles in T ′𝑛 whose
sequence of bottom labels is 𝜏𝑛 (𝑣) and sequence of left labels is 𝜏𝑛 (𝑢) can be split into four disjoint
regions: a junction tile at the bottom left corner, a row of horizontal stripe tiles at the bottom, a column
of vertical stripe tiles on the left and a rectangular pattern of white tiles for the remaining rectangle; see
Figure 15.

(Existence) Let 𝑢, 𝑣, 𝛼, 𝛽 ∈ 𝑉𝑛 be such that 𝑡 = 𝛼

𝛽

𝑢

𝑣

∈ T ′𝑛 . First, we show that the junction tile

at the bottom left corner of the rectangular pattern with bottom labels 𝜏𝑛 (𝑣) and left labels 𝜏𝑛 (𝑢) is one
of the 9 junction tile in T ′𝑛 . For every 𝑢, 𝑣 ∈ 𝑉𝑛, we have 𝜏𝑛 (𝑢), 𝜏𝑛 (𝑣) ∈ {00𝑛, 01𝑛, 01𝑛} · (𝑉𝑛)∗. For
every 𝑥, 𝑦 ∈ {00𝑛, 01𝑛, 01𝑛}, there exists a unique junction tile in T ′𝑛 with bottom label x and left label y.
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Figure 15. The global shape of a rectangular pattern whose sequence of bottom labels is 𝜏𝑛 (𝑣) and
sequence of left labels is 𝜏𝑛 (𝑢). The pattern is split into four disjoint parts: the junction tile, the left
column, the bottom row and the white tiles.

Figure 16. Left: some antigren tile in T ′4 . Middle: the images under 𝜏4 of the labels of the tile form the
boundary labels of a rectangle. Right: there is a unique rectangular pattern with such boundary words
and tiles in T ′4 . As shown in Lemma 5.3, this holds for every 𝑛 ≥ 1 and for every tile in T ′𝑛 allowing to
define the map 𝜔′𝑛.

It remains to show the existence of tiles from T ′𝑛 to cover the bottom row, the left column and the
region of white tiles while respecting the label constraints; see Figure 15. Again, we proceed case by
case.

Suppose that t is a junction tile inT ′𝑛 ; that is, 𝑢, 𝑣 ∈ {00𝑛, 01𝑛, 01𝑛}. We have |𝜏𝑛 (𝑢) | = |𝜏𝑛 (𝑣) | = 𝑛+1.
In order to formalize the argument that follows, it is practical to define the following two maps on the
subset {00𝑛, 01𝑛, 01𝑛} ⊂ 𝑉𝑛:

𝜎 : {00𝑛, 01𝑛, 01𝑛} → 𝑉𝑛

00𝑛 ↦→ 01𝑛,
01𝑛 ↦→ 01𝑛,
01𝑛 ↦→ 00𝑛,

and

𝜇 : {00𝑛, 01𝑛, 01𝑛} → 𝑉𝑛

00𝑛 ↦→ 000,
01𝑛 ↦→ 001,
01𝑛 ↦→ 011.
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Notice that 𝛼 = 𝜇(𝑣) and 𝛽 = 𝜇(𝑢) and 𝜎 is an involution. Also, if 𝑣 ∈ {00𝑛, 01𝑛, 01𝑛}, then
𝜏𝑛 ◦ 𝜇(𝑣) = 𝜎(𝑣) · (11𝑛)𝑛. From Lemma 5.2, there exists a unique choice of tiles for the bottom row
whose sequence of top labels is (111)𝑛 and right-most right label is 01𝑛 if 𝑣 = 00𝑛, 01𝑛 if 𝑣 = 01𝑛, 00𝑛
if 𝑣 = 01𝑛. In other words, the right-most right label of the bottom row is 𝜎(𝑣). Symmetrically, there
exists a unique choice of tiles for the left column whose sequence of right labels is (111)𝑛 and top-most
top label is 𝜎(𝑢). Since the bottom row is of length n, and white tiles increase the last digit by one, the
remaining region can be uniquely filled with white tiles such that the sequence of right labels of the
rectangular pattern is 𝜎(𝑣) · (11𝑛)𝑛 = 𝜏𝑛 ◦ 𝜇(𝑣) = 𝜏𝑛 (𝛼). Symmetrically, the sequence of top labels of
the rectangular pattern is 𝜎(𝑢) · (11𝑛)𝑛 = 𝜏𝑛 ◦ 𝜇(𝑢) = 𝜏𝑛 (𝛽).

Suppose that 𝑡 = 𝛼

𝛽

𝑢

𝑣

= 11 𝑗

11𝑖
11 𝑗

11𝑖

is a white tile in T ′𝑛 ; that is, 𝑢 = 11 𝑗 with 1 ≤ 𝑗 ≤ 𝑛 and

𝑣 = 11𝑖 with 1 ≤ 𝑖 ≤ 𝑛. Also, 𝛼 = 11 𝑗 and 𝛽 = 11𝑖. We have |𝜏𝑛 (𝑢) | = |𝜏𝑛 (𝑣) | = 𝑛. From Lemma 5.2,
there exists a unique choice of tiles for the bottom row whose sequence of top labels is (111)𝑖−1 · (112)𝑛−𝑖
and right-most right label is 01𝑛. From a symmetric version of Lemma 5.2, there exists a unique choice
of tiles for the left column whose sequence of right labels is (111) 𝑗−1 · (112)𝑛− 𝑗 and top-most top label
is 01𝑛. The remaining region can be uniquely filled with white tiles. In this case, the sequence of right
labels of the rectangular pattern is 01𝑛 · (11𝑛) 𝑗−1 · (11𝑛)𝑛− 𝑗 = 𝜏𝑛 (11 𝑗) = 𝜏𝑛 (𝛼). Symmetrically, the
sequence of top labels of the rectangular pattern is 01𝑛 · (11𝑛)𝑖−1 · (11𝑛)𝑛−𝑖 = 𝜏𝑛 (11𝑖) = 𝜏𝑛 (𝛽).

Suppose that t is a horizontal stripe tile in T ′𝑛 . We have 𝑢 = 00 𝑗 with 0 ≤ 𝑗 ≤ 𝑛 or 𝑢 = 01 𝑗 with 1 ≤
𝑗 ≤ 𝑛. Also 𝑣 ∈ {11𝑛, 11𝑛}. Let

𝛽 =

{
111 if 𝑢 = 00 𝑗 with 0 ≤ 𝑗 ≤ 𝑛,
112 if 𝑢 = 01 𝑗 with 1 ≤ 𝑗 ≤ 𝑛,

and 𝛼 =

{
00 𝑗 if 𝑣 = 11𝑛,
01 𝑗 if 𝑣 = 11𝑛.

Also, |𝜏𝑛 (𝑢) | = 𝑛 + 1 and |𝜏𝑛 (𝑣) | = 𝑛. There are two cases for v:

◦ If 𝑣 = 11𝑛, then from Lemma 5.2, there exists a unique choice of tiles for the bottom row whose
sequence of top labels is (111)𝑛−1 and right-most right label is 01𝑛.

◦ If 𝑣 = 11𝑛, then from Lemma 5.2, there exists a unique choice of tiles for the bottom row whose
sequence of top labels is (111)𝑛−1 and right-most right label is 00𝑛.

There are two cases for u:

◦ If 𝑢 = 00 𝑗 with 0 ≤ 𝑗 ≤ 𝑛, then from the symmetric version of Lemma 5.2, there exists a unique
choice of tiles for the left column whose sequence of right labels is (111) 𝑗 · (112)𝑛− 𝑗 and top-most
top label is 01𝑛.

◦ If 𝑢 = 01 𝑗 with 1 ≤ 𝑗 ≤ 𝑛, then from the symmetric version of Lemma 5.2, there exists a unique
choice of tiles for the left column whose sequence of right labels is (111) 𝑗 · (112)𝑛− 𝑗 and top-most
top label is 01𝑛.

Thus, the remaining region can be uniquely filled with white tiles, and the sequence of right labels of
the rectangular pattern is

𝜏𝑛 (𝛼) =
{

01𝑛 · (11𝑛) 𝑗 · (11𝑛)𝑛− 𝑗 = 𝜏𝑛 (00 𝑗) if 𝑣 = 11𝑛,
00𝑛 · (11𝑛) 𝑗 · (11𝑛)𝑛− 𝑗 = 𝜏𝑛 (01 𝑗) if 𝑣 = 11𝑛.

Symmetrically, the sequence of top labels of the rectangular pattern is

𝜏𝑛 (𝛽) =
{

01𝑛 · (11𝑛)𝑛−1 = 𝜏𝑛 (111) if 𝑢 = 00 𝑗 with 0 ≤ 𝑗 ≤ 𝑛,
01𝑛 · (11𝑛)𝑛−1 = 𝜏𝑛 (112) if 𝑢 = 01 𝑗 with 1 ≤ 𝑗 ≤ 𝑛.
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Figure 17. The substitution 𝜔′1. An ×-mark indicates the tiles in 𝐽 ′1 \ 𝐽1.

Suppose that t is a vertical stripe tile in T ′𝑛 . A rectangular pattern respecting the constraints can be
obtained by taking the image under reflection of the rectangular pattern constructed above for when t is
a horizontal stripe tile in T ′𝑛 .

(Uniqueness) Uniqueness follows from Lemma 2.1 and Lemma 4.3. �

Following Lemma 5.3, we define the following map:

𝜔′𝑛 : T ′𝑛 → (T ′𝑛 )∗2

𝛼

𝛽

𝑢

𝑣

↦→ the unique rectangular
pattern with external labels

𝜏𝑛 (𝛼)

𝜏𝑛 (𝛽)

𝜏𝑛 (𝑢)

𝜏𝑛 (𝑣)

.
(5.2)

For example, the map 𝜔′1 is illustrated in Figure 17.

Lemma 5.4. The map 𝜔′𝑛 defines a 2-dimensional substitution 𝜔′𝑛 : Ω′𝑛 → Ω′𝑛.

Proof. From Lemma 5.3, for every tile 𝑡 ∈ T ′𝑛 , the image 𝜔′𝑛 (𝑡) is a valid rectangular pattern over the
Wang tiles T ′𝑛 . Moreover, if 𝑠 �1 𝑡 ∈ (T ′𝑛 )∗

2 is a valid horizontal domino, then 𝜔′𝑛 (𝑠 �1 𝑡) is a valid
rectangular pattern over the Wang tiles T ′𝑛 . Similarly, if 𝑠 �2 𝑡 ∈ (T ′𝑛 )∗

2 is a valid vertical domino, then
𝜔′𝑛 (𝑠 �2 𝑡) is a valid rectangular pattern over the Wang tiles T ′𝑛 . Thus, if 𝑦 ∈ Ω′𝑛 is a valid configuration,
then 𝜔′𝑛 (𝑦) is also a valid configuration. Therefore, 𝜔′𝑛 (𝑦) ∈ Ω′𝑛. �

5.3. A substitution 𝜔𝑛 for the tiles in T𝑛

Not all tiles of T ′𝑛 appear in the image of a tile under the substitution 𝜔′𝑛. For example, it follows from
Lemma 5.2 that antigreen stripe tiles do not appear in the images of tiles under 𝜔′𝑛. Therefore, the
substitution 𝜔′𝑛 is not primitive.

As it can be observed in Figure 17, some tiles in T ′1 \ T1 appear in the images of 𝜔′1. Namely, the
images of the antigreen tiles under 𝜔′1 contain junction tiles in 𝐽 ′1 \ 𝐽1 = { 𝑗0,0,1,11 , 𝑗1,1,0,01 }. As shown in
the next lemma, this is the only exception.

Lemma 5.5. Let 𝑛 ≥ 1 be an integer and 𝑡 ∈ T ′𝑛 . The pattern 𝜔′𝑛 (𝑡) contains a tile in T ′𝑛 \ T𝑛 if and
only if 𝑛 = 1 and t is an antigreen tile.
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Proof. Let 𝑛 ≥ 1 be an integer. ( ⇐= ) If 𝑛 = 1, the set of antigreen tiles in T ′1 is 𝐴1 ∪ 𝐴̂1 = {𝑎1
1, 𝑎

1
1}.

In Figure 17, we observe that 𝜔′1(𝑎
1
1) contains the junction tile 𝑗1,1,0,01 ∈ T ′1 \ T1 and 𝜔′1 (𝑎

1
1) contains

the junction tile 𝑗0,0,1,11 ∈ T ′1 \ T1.

( =⇒ ) Let 𝑡 = 𝛼

𝛽

𝑢

𝑣

∈ T ′𝑛 . The labels of the boundary of 𝜔′𝑛 (𝑡) are 𝜏𝑛 (𝛼)

𝜏𝑛 (𝛽)

𝜏𝑛 (𝑢)

𝜏𝑛 (𝑣)

.

Suppose that the pattern 𝜔′𝑛 (𝑡) contains a tile in T ′𝑛 \ T𝑛. We have 𝑣 ∈ 𝑉𝑛 \ {00𝑛}. From Lemma 5.2,
the bottom row of the pattern 𝜔′𝑛 (𝑡) does not contain the last blue tile. Also, 𝑢 ∈ 𝑉𝑛 \ {00𝑛}. From the
symmetric version of Lemma 5.2, the left column of the pattern 𝜔′𝑛 (𝑡) does not contain the last blue
tile. From Lemma 5.2, the pattern 𝜔′𝑛 (𝑡) does not contain any antigreen (vertical or horizontal) stripe
tile. Therefore, the pattern 𝜔′𝑛 (𝑡) must contain a junction tile in 𝐽 ′𝑛 \ 𝐽𝑛 = { 𝑗1,1,0,0𝑛 , 𝑗0,0,1,1𝑛 }.

Suppose that 𝜔′𝑛 (𝑡) contains the junction tile 𝑗1,1,0,0𝑛 . Therefore, we must have 𝜏𝑛 (𝑣) ∈ 01𝑛 · (𝑉𝑛)∗
and 𝜏𝑛 (𝑢) ∈ 00𝑛 · (𝑉𝑛)∗. Thus, 𝑣 ∈ {000, 111} and 𝑢 = 01 𝑗 with 1 ≤ 𝑗 ≤ 𝑛. We proceed case by case.

◦ Assume 𝑣 = 000. The only tile 𝑡 ∈ T ′𝑛 with bottom label 𝑣 = 000 is a blue or green vertical stripe tile
whose left label is 𝑢 = 11𝑛 or 𝑢 = 11𝑛, a contradiction.

◦ Assume 𝑣 = 111 and 𝑛 > 1. The only tile 𝑡 ∈ T ′𝑛 with bottom label 𝑣 = 111 is a white tile whose left
label is 𝑢 = 11𝑖 with 1 ≤ 𝑖 ≤ 𝑛, a contradiction.

◦ Assume 𝑣 = 111 and 𝑛 = 1. The only tile 𝑡 ∈ T ′1 with bottom label 𝑣 = 111 is a white tile whose
left label is 𝑢 = 111, a blue horizontal stripe tile whose left label is 000 or 001, or an antigreen tile
𝑎1

1 whose left label is 011. Only the antigreen tile does not yield a contradiction with the value of u
given above. Thus, 𝑡 = 𝑎1

1.

Symmetrically, if 𝜔′𝑛 (𝑡) contains the junction tile 𝑗0,0,1,1𝑛 , we conclude that 𝑛 = 1 and 𝑡 = 𝑎1
1. �

A consequence of Lemma 5.5 is that if 𝑛 ≥ 2 and 𝑡 ∈ T ′𝑛 , then the pattern 𝜔′𝑛 (𝑡) contains only
tiles from T𝑛. Also for every 𝑛 ≥ 1 and 𝑡 ∈ T𝑛, the pattern 𝜔′𝑛 (𝑡) contains only tiles from T𝑛. Thus, it
becomes natural to restrict the substitution 𝜔′𝑛 to the set T𝑛. We obtain the following map 𝜔𝑛 = 𝜔′𝑛 |T𝑛 :

𝜔𝑛 : T𝑛 → (T𝑛)∗2

𝛼

𝛽

𝑢

𝑣

↦→ the unique rectangular
pattern with external labels

𝜏𝑛 (𝛼)

𝜏𝑛 (𝛽)

𝜏𝑛 (𝑢)

𝜏𝑛 (𝑣)

(5.3)

The substitutions 𝜔𝑛 for 𝑛 = 1, . . . , 5 are illustrated in Figure 31, Figure 32, Figure 33, Figure 34 and
Figure 35 (in the appendix).

Lemma 5.6. The map𝜔𝑛 defines a 2-dimensional substitution𝜔𝑛 : Ω𝑛 → Ω𝑛 such that𝜔𝑛 (Ω𝑛)
𝜎
⊂ Ω𝑛.

Proof. From Lemma 5.4, the map𝜔′𝑛 defines a 2-dimensional substitution Ω′𝑛 → Ω′𝑛. From Lemma 5.5,
𝜔′𝑛 (𝑥) ∈ Ω𝑛 for every configuration 𝑥 ∈ Ω𝑛. Thus, 𝜔′𝑛 (Ω𝑛) ⊆ Ω𝑛. The restriction of 𝜔′𝑛 to Ω𝑛 is 𝜔𝑛, so
that 𝜔𝑛 (Ω𝑛) ⊆ Ω𝑛. Since Ω𝑛 is a subshift, it is closed under the shift. Therefore, 𝜔𝑛 (Ω𝑛)

𝜎
⊂ Ω𝑛. �

The goal of the next section is to show that Ω𝑛 = 𝜔𝑛 (Ω𝑛)
𝜎

– namely, that every configuration in
Ω𝑛 can be desubstituted using 𝜔𝑛. The proof of this is completed in Section 8. Following the above
discussion, the 2-dimensional substitution 𝜔′𝑛 is not primitive, but we show in Section 9 that the
substitution 𝜔𝑛 is primitive.
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5.4. A sufficient and necessary condition

The goal of this section is to show that the sufficiency in the statement of Lemma 5.3 is also a necessity
– namely, that every rectangular pattern, with external boundary labeled by images under 𝜏𝑛, is obtained
from a tile in T ′𝑛 . The precise statement is given in Proposition 5.9.

For every integer 𝑛 ≥ 1, let

𝑍𝑛 = {𝑣0𝑣1𝑣2 ∈ 𝑉𝑛 | 𝑣0 = 0}

be the set of vectors of 𝑉𝑛 such that the first entry is zero and let

𝑀𝑛 = {𝑣0𝑣1𝑣2 ∈ 𝑉𝑛 | 𝑣2 ≥ 𝑛}

be the set of vectors of 𝑉𝑛 such that the last entry is n or 𝑛.
Lemma 5.7. If

(𝑢, 𝑣) ∈ ({11𝑛} ×𝑉𝑛 \ 𝑍𝑛) ∪ (𝑉𝑛 \ 𝑍𝑛 × {11𝑛})
∪ ({00𝑛} × 𝑀𝑛 ∩ 𝑍𝑛) ∪ (𝑀𝑛 ∩ 𝑍𝑛 × {00𝑛})
∪ ({00𝑛, 01𝑛} × 𝑀𝑛 \ 𝑍𝑛) ∪ (𝑀𝑛 \ 𝑍𝑛 × {00𝑛, 01𝑛}),

(5.4)

then there exists a unique valid rectangular pattern with tiles in T ′𝑛 whose right, top, left and bottom
labels are respectively R, T, 𝜏𝑛 (𝑢) and 𝜏𝑛 (𝑣) for some 𝑅,𝑇 ∈ (𝑉𝑛)∗, and there is no (𝛼, 𝛽) ∈ 𝑉𝑛 × 𝑉𝑛

such that 𝑅 = 𝜏𝑛 (𝛼) and 𝑇 = 𝜏𝑛 (𝛽).
Proof. Suppose that 𝑢 ∈ 𝑉𝑛 \ 𝑍𝑛 and 𝑣 = 11𝑛. We have |𝜏𝑛 (𝑢) | = |𝜏𝑛 (𝑣) | = 𝑛. Since 𝑣 = 11𝑛, then
from Lemma 5.2, there exists a unique choice of tiles for the bottom row whose sequence of top labels
is (111)𝑛−1 and right-most right label is 00𝑛. There are two cases to consider for u:
◦ If 𝑢 = 11 𝑗 with 1 ≤ 𝑗 ≤ 𝑛, then from a symmetric version of Lemma 5.2, there exists a unique choice

of tiles for the left column whose sequence of right labels is (111) 𝑗−1 · (112)𝑛− 𝑗 .
◦ If 𝑢 = 11𝑛, then from a symmetric version of Lemma 5.2, there exists a unique choice of tiles for the

left column whose sequence of right labels is (111)𝑛−1.
In both cases, the remaining region of the rectangular pattern can be uniquely filled with white tiles. The
sequence of right labels of the rectangular pattern starts with 00𝑛. Such a sequence cannot be written as
an image under the map 𝜏𝑛 because there is no 𝛼 ∈ 𝑉𝑛 such that 𝜏𝑛 (𝛼) starts with 00𝑛 and is of length n.

Suppose that 𝑢 ∈ 𝑀𝑛 ∩ 𝑍𝑛 = {00𝑛, 00𝑛, 01𝑛, 01𝑛} and 𝑣 = 00𝑛. We have |𝜏𝑛 (𝑢) | = |𝜏𝑛 (𝑣) | = 𝑛 + 1.
From Lemma 5.2, there exists a unique choice of tiles for the bottom row whose sequence of top labels
is (111)𝑛. Since 𝑣 = 00𝑛, from a symmetric version of Lemma 5.2, there exists a unique choice of tiles
for the left column whose sequence of right labels is (111)𝑛 and top-most top label is 00𝑛. Since the
bottom row is of length n, and white tiles increase the last digit by one, the remaining region can be
uniquely filled with white tiles. Since the sequence of top labels of the rectangular pattern starts with
00𝑛, it cannot be written as an image under the map 𝜏𝑛.

Suppose that 𝑢 ∈ {00𝑛, 01𝑛} and 𝑣 ∈ 𝑀𝑛 \𝑍𝑛 = {11𝑛, 11𝑛}. We have |𝜏𝑛 (𝑢) | = 𝑛+1 and |𝜏𝑛 (𝑣) | = 𝑛.
From Lemma 5.2, there exists a unique choice of tiles for the bottom row whose sequence of top labels
is (111)𝑛. Symmetrically, there exists a unique choice of tiles for the left column whose sequence of
right labels is (111)𝑛 and top-most top label is in {00𝑛, 00𝑛}. The remaining region can be uniquely
filled with white tiles. The sequence of top labels is in {00𝑛, 00𝑛} · (11𝑛)𝑛−1. Such a sequence cannot
be written as an image under the map 𝜏𝑛 because there is no 𝛼 ∈ 𝑉𝑛 such that 𝜏𝑛 (𝛼) starts with 00𝑛 or
00𝑛 and is of length n.

Suppose that 𝑢 = 11𝑛 and 𝑣 ∈ 𝑉𝑛 \ 𝑍𝑛, or 𝑢 = 00𝑛 and 𝑣 ∈ 𝑀𝑛 ∩ 𝑍𝑛, or 𝑢 ∈ 𝑀𝑛 \ 𝑍𝑛 and
𝑣 ∈ {00𝑛, 01𝑛}. A rectangular pattern respecting the constraints can be obtained by taking the image
under reflection of the rectangular pattern constructed above. �
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Figure 18. The height of a valid vertical column made entirely of white tiles from T𝑛 is at most 𝑛 − 1 if
the bottom label of the bottom-most tile is 112 or if the top label of the top-most tile is 11𝑛.

Proposition 5.8. Let 𝑢, 𝑣 ∈ 𝑉𝑛. There exists a valid rectangular pattern of tiles in T ′𝑛 whose sequence
of bottom labels is 𝜏𝑛 (𝑣) and sequence of left labels is 𝜏𝑛 (𝑢) if and only if

(𝑢, 𝑣) ∈ (𝑉𝑛 \ 𝑍𝑛 ×𝑉𝑛 \ 𝑍𝑛) ∪ (𝑀𝑛 ∩ 𝑍𝑛 × 𝑀𝑛 ∩ 𝑍𝑛) ∪ (𝑀𝑛 \ 𝑍𝑛 × 𝑍𝑛) ∪ (𝑍𝑛 × 𝑀𝑛 \ 𝑍𝑛). (5.5)

Proof. Let 𝑢, 𝑣 ∈ 𝑉𝑛. ( =⇒ ) We show the contrapositive – namely, that if (5.5) does not hold, then there
is no rectangular pattern with 𝜏𝑛 (𝑢) as the sequence of labels on the left and 𝜏𝑛 (𝑣) as the sequence of
labels at the bottom. If (5.5) does not hold, then

(𝑢, 𝑣) ∈
(
(𝑍𝑛 ×𝑉𝑛 \ 𝑍𝑛) ∪ (𝑉𝑛 \ 𝑍𝑛 × 𝑍𝑛) ∪ (𝑍𝑛 × 𝑍𝑛)

)
\
(
(𝑀𝑛 ∩ 𝑍𝑛 × 𝑀𝑛 ∩ 𝑍𝑛) ∪ (𝑀𝑛 \ 𝑍𝑛 × 𝑍𝑛) ∪ (𝑍𝑛 × 𝑀𝑛 \ 𝑍𝑛)

)
= (𝑍𝑛 ×𝑉𝑛 \ (𝑀𝑛 ∪ 𝑍𝑛)) ∪ (𝑉𝑛 \ (𝑀𝑛 ∪ 𝑍𝑛) × 𝑍𝑛) ∪ (𝑍𝑛 × 𝑍𝑛 \ 𝑀𝑛) ∪ (𝑍𝑛 \ 𝑀𝑛 × 𝑍𝑛).

There are four cases to consider:

◦ Assume 𝑢 ∈ 𝑍𝑛 and 𝑣 ∈ 𝑉𝑛 \ (𝑀𝑛 ∪ 𝑍𝑛). We have 𝑣 = 11 𝑗 with 1 ≤ 𝑗 < 𝑛. From Lemma 5.2, the
bottom row of the rectangular pattern has at least one label 112 on its top. Since the difference between
the last digit of the top label and the last digit of the bottom label of a white tile is 1 and the maximal
last digit of a white tile in T𝑛 is 𝑛, the height of the white tile region is at most 𝑛 − 1; see Figure 18.
Thus, |𝜏𝑛 (𝑢) | ≤ 𝑛. This is incompatible with 𝑢 ∈ 𝑍𝑛 because 𝑢 ∈ 𝑍𝑛 implies that |𝜏𝑛 (𝑢) | = 𝑛 + 1.

◦ Assume 𝑢 ∈ 𝑉𝑛 \ (𝑀𝑛∪𝑍𝑛) and 𝑣 ∈ 𝑍𝑛. This case also leads to a contradiction following an argument
symmetric to the previous one.

◦ Assume 𝑢 ∈ 𝑍𝑛 and 𝑣 ∈ 𝑍𝑛 \ 𝑀𝑛. We have 𝑣 = 00 𝑗 with 0 ≤ 𝑗 < 𝑛 or 𝑣 = 01 𝑗 with 1 ≤ 𝑗 < 𝑛. In
both cases, we have from Lemma 5.2 that the bottom row of the rectangular pattern has at least one
label 112 on its top. For the same reason as in the first item, the height of the rectangular pattern is
|𝜏𝑛 (𝑢) | ≤ 𝑛. This is incompatible with 𝑢 ∈ 𝑍𝑛 because 𝑢 ∈ 𝑍𝑛 implies that |𝜏𝑛 (𝑢) | = 𝑛 + 1.

◦ Assume 𝑢 ∈ 𝑍𝑛 \ 𝑀𝑛 and 𝑣 ∈ 𝑍𝑛. This case also leads to a contradiction following an argument
symmetric to the previous one.

(⇐= ) Let

𝑃 = (𝑉𝑛 \ 𝑍𝑛 ×𝑉𝑛 \ 𝑍𝑛) ∪ (𝑀𝑛 ∩ 𝑍𝑛 × 𝑀𝑛 ∩ 𝑍𝑛) ∪ (𝑀𝑛 \ 𝑍𝑛 × 𝑍𝑛) ∪ (𝑍𝑛 × 𝑀𝑛 \ 𝑍𝑛),

𝑄 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(𝑢, 𝑣) ∈ 𝑉𝑛 ×𝑉𝑛

������� there exists 𝛼, 𝛽 ∈ 𝑉𝑛 such that 𝛼

𝛽

𝑢

𝑣

∈ T ′𝑛

⎫⎪⎪⎪⎬⎪⎪⎪⎭.
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Notice that 𝑄 ⊂ 𝑃 and

𝑃 \𝑄 = ({11𝑛} ×𝑉𝑛 \ 𝑍𝑛) ∪ (𝑉𝑛 \ 𝑍𝑛 × {11𝑛})
∪ ({00𝑛} × 𝑀𝑛 ∩ 𝑍𝑛) ∪ (𝑀𝑛 ∩ 𝑍𝑛 × {00𝑛})
∪ ({00𝑛, 01𝑛} × 𝑀𝑛 \ 𝑍𝑛) ∪ (𝑀𝑛 \ 𝑍𝑛 × {00𝑛, 01𝑛}).

(5.6)

We assume that (5.5) holds; that is, (𝑢, 𝑣) ∈ 𝑃. There are two cases to consider.

◦ If (𝑢, 𝑣) ∈ 𝑄, then, from Lemma 5.3, there exists a valid rectangular pattern with tiles in T ′𝑛 whose
left and bottom labels are respectively 𝜏𝑛 (𝑢) and 𝜏𝑛 (𝑣).

◦ If (𝑢, 𝑣) ∈ 𝑃 \ 𝑄, then using (5.6) and Lemma 5.7, there exists a valid rectangular pattern with tiles
in T ′𝑛 whose left and bottom labels are respectively 𝜏𝑛 (𝑢) and 𝜏𝑛 (𝑣). �

Proposition 5.9. Let 𝛼, 𝛽, 𝑢, 𝑣 ∈ 𝑉𝑛. There exists a valid rectangular pattern with tiles in T ′𝑛 whose right,

top, left and bottom labels are respectively 𝜏𝑛 (𝛼), 𝜏𝑛 (𝛽), 𝜏𝑛 (𝑢) and 𝜏𝑛 (𝑣) if and only if 𝛼

𝛽

𝑢

𝑣

∈ T ′𝑛 .

Proof. Let 𝛼, 𝛽, 𝑢, 𝑣 ∈ 𝑉𝑛. (⇐= ) The existence of the rectangular pattern was proved in Lemma 5.3.
( =⇒ ) Suppose that there exists a valid rectangular pattern with tiles in T ′𝑛 whose right, top, left

and bottom labels are respectively 𝜏𝑛 (𝛼), 𝜏𝑛 (𝛽), 𝜏𝑛 (𝑢) and 𝜏𝑛 (𝑣). From Proposition 5.8, (𝑢, 𝑣) satisfies
(5.5); that is (𝑢, 𝑣) ∈ 𝑃. From Lemma 5.7, (𝑢, 𝑣) does not satisfy (5.4) because all boundary words can
be written as the image of 𝜏𝑛. Thus, (𝑢, 𝑣) ∉ 𝑃 \𝑄 using (5.6). We conclude that (𝑢, 𝑣) ∈ 𝑄. Thus, there

exists 𝛼′, 𝛽′ ∈ 𝑉𝑛 such that 𝛼′

𝛽′

𝑢

𝑣

∈ T ′𝑛 . From Lemma 5.3, there exists a valid rectangular pattern

with tiles in T ′𝑛 whose right, top, left and bottom labels are respectively 𝜏𝑛 (𝛼′), 𝜏𝑛 (𝛽′), 𝜏𝑛 (𝑢) and 𝜏𝑛 (𝑣).
From Lemma 2.1, we must have 𝜏𝑛 (𝛼′) = 𝜏𝑛 (𝛼) and 𝜏𝑛 (𝛽′) = 𝜏𝑛 (𝛽) because T ′𝑛 is SW-deterministic
from Lemma 4.3. Since 𝜏𝑛 is injective over the set 𝑉𝑛, we have 𝛼 = 𝛼′ and 𝛽 = 𝛽′. �

Proposition 5.9 is used in Lemma 6.6 in order to desubstitute configurations in Ω𝑛 over tiles in T𝑛.
Nevertheless, considering tiles in T ′𝑛 is necessary for Proposition 5.9 to hold for every integer 𝑛 ≥ 1.
Following Lemma 5.5, Proposition 5.9 can be restated as follows when 𝑛 ≥ 2.

Corollary 5.10. Suppose that 𝑛 ≥ 2 is an integer and let 𝛼, 𝛽, 𝑢, 𝑣 ∈ 𝑉𝑛. There exists a valid rectangular
pattern with tiles in T𝑛 whose right, top, left and bottom labels are respectively 𝜏𝑛 (𝛼), 𝜏𝑛 (𝛽), 𝜏𝑛 (𝑢) and

𝜏𝑛 (𝑣) if and only if 𝛼

𝛽

𝑢

𝑣

∈ T ′𝑛 .

Proof. Let 𝛼, 𝛽, 𝑢, 𝑣 ∈ 𝑉𝑛. ( =⇒ ) follows from Proposition 5.9 since T𝑛 ⊂ T ′𝑛 .
(⇐= ) From Lemma 5.5, for every tile 𝑡 ∈ T ′𝑛 , the rectangular pattern 𝜔′𝑛 (𝑡) satisfies the boundary

conditions, and it contains only the tiles from the set T𝑛. �

6. A desubstitution Ω𝑛 ← Ω′𝑛

In this section, we decompose configurations in Ω′𝑛 and in Ω𝑛 into rectangular blocks called return
blocks. The external boundary labels of the return blocks within a configuration in Ω𝑛 behave like a
new set T ′𝑛 of Wang tiles which contains T𝑛 as a subset.

6.1. Return blocks in the Wang shift Ω′𝑛
In this section, we study some properties of the Wang shift Ω′𝑛 defined by the Wang tiles T ′𝑛 . Since
T𝑛 ⊂ T ′𝑛 for every 𝑛 ≥ 1, we have Ω𝑛 ⊂ Ω′𝑛. Thus, the properties shown for Ω′𝑛 also hold for Ω𝑛.
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Figure 19. A valid 15 × 15 pattern using the extended set T ′4 of Wang tiles. Note that it contains some
antigreen tiles.

A tiling with the set T ′4 is shown in Figure 19. We observe the presence of rows and columns of
colored tiles. At the intersection of these colored rows and columns are junction tiles. In other words,
the set of positions of junction tiles in the figure is the Cartesian product of two sets. Also, the distance
between two consecutive junction tiles in the same row or column is 4 or 5. In the following lemmas,
we prove that these observations hold in general.

Lemma 6.1. Let 𝑛 ≥ 1 be an integer. For every valid configuration 𝑐 ∈ Ω′𝑛, the distance between two
consecutive occurrences of junction tiles in the same row is n, 𝑛 + 1 or 𝑛 + 2.

Also, the sequence of bottom labels of the tiles between two consecutive junction tiles (including the
left junction tile but not the right one) belongs to {00𝑛, 01𝑛, 01𝑛} · {11𝑛, 11𝑛}∗.

Proof. The horizontal Rauzy graph restricted to tiles whose vertical edge labels are starting with zero
is shown in Figure 20. An arc in the horizontal Rauzy graph links two tiles 𝑠→ 𝑡 if and only if the right
label of tile s is equal to the left label of tile t. The graph allows to visualize the combinatorial structure
between two consecutive junction tiles on the same horizontal row within a configuration of Ω′𝑛.

The right label of a junction tile is 000, 001 or 011, which implies that the last digit of the right label
of a junction tile is 0 or 1. The left label of a junction tile is 00𝑛, 01𝑛 or 01𝑛, which implies that the last
digit of the left label of a junction tile is n or 𝑛. Since the last digit increases by 1 from the left label to
the right label of every intermediate tile (a tile appearing in between two consecutive junction tiles in
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Figure 20. Combinatorial structure between two consecutive junction tiles on the same horizontal row
within a configuration of Ω′𝑛. The nodes of the graph are placed such that any two tiles appearing in the
same column have the same last digit for its left or right labels. The length of a path from a junction tile
to a junction tile is n, 𝑛 + 1 or 𝑛 + 2.

the same row), the number of tiles in between two consecutive junction tiles on the same row is at least
𝑛 − 1 and at most 𝑛 − 0 = 𝑛 + 1. We conclude that the distance (number of edges in the Rauzy graph)
between two consecutive junction tiles in the same row is n, 𝑛 + 1 or 𝑛 + 2. In particular, it is at least n.

The bottom label of a junction tile is in the set {00𝑛, 01𝑛, 01𝑛}. The bottom label of every intermediate
tile is 11𝑛 or 11𝑛. Therefore, the sequence of bottom labels of the tiles between two consecutive junction
tiles (including the left junction tile but not the right one) belongs to {00𝑛, 01𝑛, 01𝑛} · {11𝑛, 11𝑛}∗; see
Figure 20. �

Lemma 6.2. Let 𝑛 ≥ 1 be an integer. For every valid configuration 𝑐 ∈ Ω′𝑛, the distance between two
consecutive occurrences of a vertical stripe tile (blue, green, yellow or antigreen) in the same row is
𝑛 − 1, n or 𝑛 + 1.

Proof. The horizontal Rauzy graph restricted to vertical edge labels starting with 1 is shown in Figure 21.
An arc in the horizontal Rauzy graph links two tiles 𝑠 → 𝑡 if and only if the right label of tile s is
equal to the left label of tile t. The graph allows to visualize the combinatorial structure between two
consecutive vertical stripe tiles on the same horizontal row within a configuration of Ω′𝑛.

The right label of a vertical stripe tile is 111 or 112, which implies that the last digit of the right label
of a vertical stripe tile is 1 or 2. The left label of a vertical stripe tile is 11𝑛 or 11𝑛, which implies that
the last digit of the left label of a vertical stripe tile is n or 𝑛. Since the last digit increases by 1 from
the left label to the right label of every intermediate tile (a tile appearing in between two consecutive
vertical stripe tiles in the same row), the number of tiles in between two consecutive vertical stripe tiles
on the same row is at least 𝑛 − 2 and at most 𝑛 − 1 = 𝑛. We conclude that the distance (number of edges
in the Rauzy graph) between two consecutive vertical stripe tiles in the same row is 𝑛 − 1, n or 𝑛 + 1. In
particular, it is at most 𝑛 + 1. �

Lemma 6.3. Let 𝑛 ≥ 1 be an integer. For every valid configuration 𝑐 ∈ Ω′𝑛, there exist two strictly
increasing sequences 𝐴, 𝐵 : Z→ Z such that the following hold.
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Figure 21. Combinatorial structure between two consecutive vertical stripe tile on the same horizontal
row within a configuration of Ω′𝑛. The length of a path from a vertical stripe tile to a vertical stripe tile
is 𝑛 − 1, n or 𝑛 + 1.

1. The set of positions of junction tiles in the configuration c is the Cartesian product 𝑐−1 (𝐽 ′𝑛) =
𝐴(Z) × 𝐵(Z).

2. The distance between two consecutive occurrences of junction tiles in the same row is n or 𝑛 + 1;
that is, 𝐴(𝑘 + 1) − 𝐴(𝑘) ∈ {𝑛, 𝑛 + 1} for every 𝑘 ∈ Z.

3. The distance between two consecutive occurrences of junction tiles in the same column is n or 𝑛 + 1;
that is, 𝐵(𝑘 + 1) − 𝐵(𝑘) ∈ {𝑛, 𝑛 + 1} for every 𝑘 ∈ Z.

Proof. (1) Let

𝐸 = {(𝛼1𝛼2𝛼3, 𝛽1𝛽2𝛽3, 𝛾1𝛾2𝛾3, 𝛿1𝛿2𝛿3) ∈ T ′𝑛 | 𝛼1 = 0} ⊂ T ′𝑛 ,
𝐹 = {(𝛼1𝛼2𝛼3, 𝛽1𝛽2𝛽3, 𝛾1𝛾2𝛾3, 𝛿1𝛿2𝛿3) ∈ T ′𝑛 | 𝛽1 = 0} ⊂ T ′𝑛 .

Tiles in E have zero as the first coordinate of their right and left edge labels since 𝛼1 = 𝛾1. Tiles in
F have zero as the first coordinate of their top and bottom edge labels since 𝛽1 = 𝛿1. Notice that we
have 𝐸 ∪ 𝐹 ⊂ 𝑌𝑛 ∪ 𝑌𝑛 ∪ 𝐺𝑛 ∪ 𝐺𝑛 ∪ 𝐵′𝑛 ∪ 𝐵′𝑛 ∪ 𝐽 ′𝑛 ∪ 𝐴𝑛 ∪ 𝐴𝑛 and 𝐸 ∩ 𝐹 = 𝐽 ′𝑛. Let 𝑐 ∈ Ω′𝑛 be a valid
configuration. The positions of tiles from E in c are contiguous rows; that is, there exists 𝐵 ⊂ Z such
that 𝑐−1(𝐸) = Z × 𝐵. The positions of tiles from F in c are contiguous columns; that is, there exists
𝐴 ⊂ Z such that 𝑐−1 (𝐹) = 𝐴 × Z. Therefore, the set of positions of junction tiles in c is given by the
Cartesian product of A and B:

𝑐−1 (𝐽 ′𝑛) = 𝑐−1 (𝐸 ∩ 𝐹) = 𝑐−1 (𝐸) ∩ 𝑐−1 (𝐹) = (Z × 𝐵) ∩ (𝐴 × Z) = 𝐴 × 𝐵.

The fact that the sets A and B are the images of increasing maps Z→ Z follows from observations (2)
and (3) proved below.

(2) From Lemma 6.1, the distance between two consecutive occurrences of junction tiles in the same
row is n, 𝑛+1 or 𝑛+2. From Lemma 6.2, the distance between two consecutive occurrences of a vertical
stripe tile (blue, green, yellow or antigreen) in the same row is 𝑛− 1, n or 𝑛 + 1. Since vertical strips and
junction tiles are vertically aligned, the difference between two consecutive elements of 𝐴 ⊂ Z is n or
𝑛 + 1. Also, if 𝑎 ∈ 𝐴, then 𝑎 + 𝑛 ∈ 𝐴 or 𝑎 + 𝑛 + 1 ∈ 𝐴. Also 𝑎 − 𝑛 ∈ 𝐴 or 𝑎 − 𝑛 − 1 ∈ 𝐴. Thus, A is the
image of an increasing map 𝐴 : Z→ Z such that 𝐴(𝑘 + 1) − 𝐴(𝑘) ∈ {𝑛, 𝑛 + 1} for every 𝑘 ∈ Z.

(3) From the symmetry of the set T ′𝑛 of tiles, the same observation holds for the distance between
consecutive junction tiles in the same column. �

Lemma 6.3 means that we can subdivide valid configurations inΩ′𝑛 by rectangular patterns containing
a unique junction tile at their bottom left corners; see Figure 22.
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Figure 22. Return blocks appearing in Figure 19. Each return block contains a unique junction tile at
its bottom left corner.

Proposition 6.4. Every configuration in Ω′𝑛 can be divided uniquely into rectangular blocks of sizes
𝑛 × 𝑛, 𝑛 × 𝑛, 𝑛 × 𝑛 and 𝑛 × 𝑛 with a unique junction tile at their bottom left corners.

Proof. Let 𝑐 ∈ Ω′𝑛 be a configuration. Let 𝐴, 𝐵 : Z→ Z be the two increasing maps from Lemma 6.3
such that 𝑐−1 (𝐽 ′𝑛) = 𝐴(Z) × 𝐵(Z). For every ℓ = (ℓ1, ℓ2) ∈ Z2, the pattern appearing in c at support
[𝐴(ℓ1), 𝐴(ℓ1 + 1) − 1] × [𝐵(ℓ2), 𝐵(ℓ2 + 1) − 1] is a rectangular pattern containing a unique junction tile
at its bottom left corner. �

We call such a rectangular pattern described in Proposition 6.4 a return block (to a junction tile)
(see Figure 23), following the terminology of return words in combinatorics on words [16, 64]. While
the classical notion of return word is to a single pattern, here the notion of return block is to a subset of
tiles – namely, the junction tiles. From Proposition 6.4, the width (and height) of these blocks is n or
𝑛 + 1. On the right of the junction tile within a return block is the bottom row where horizontal blue,
green, yellow or antigreen tiles appear. Similarly, above the junction tile within a return block is the left
column where vertical blue, green, yellow or antigreen tiles appear.

We may observe that the sequences of bottom labels of a return block made of tiles in T ′4 appearing
completely in Figure 19 and in Figure 22 are in the set

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

004 · 114 · 115 · 114 · 115,
004 · 115 · 114 · 115 · 115,
015 · 114 · 115 · 115 · 115,
014 · 114 · 115 · 115,
014 · 115 · 115 · 115,
015 · 115 · 115 · 115

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
⊄ 𝜏𝑛 (𝑉𝑛). (6.1)

In particular, 004 · 114 · 115 · 114 · 115 does not belong to the image of 𝜏𝑛 when 𝑛 = 4. But the sequence
of bottom labels of a return block has a particular structure for configurations in Ω𝑛. This is the subject
of the next section.
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Figure 23. A return block is split into four disjoint parts: the junction tile, the left column, the bottom
row and the white tiles. Both its width W and its height H take values in the set {𝑛, 𝑛 + 1}.

Figure 24. Combinatorial structure between two consecutive junction tiles on the same horizontal row
within a configuration of Ω𝑛. The nodes of the graph are placed such that any two tiles appearing in the
same column have the same last digit for its left or right labels.

6.2. Return blocks in the Wang shift Ω𝑛

When considering configurations in Ω𝑛 instead of Ω′𝑛, there are no antigreen tiles in the row between
two consecutive junction tiles. Thus, Figure 20 simplifies to Figure 24. In particular, in the bottom row
of a return block within a configuration in Ω𝑛, the horizontal blue, green and yellow stripes appear in
this order (when they appear). The same observation holds for the left column of a return block ordered
from bottom to top.

Surprisingly, when the tiles are restricted to the set T𝑛, the boundary of the return blocks can be
decoded using the map 𝜏𝑛 defined in Section 5.

Lemma 6.5. Let r be a return block appearing in a configuration 𝑐 ∈ Ω𝑛. The sequences of bottom
labels of tiles in the bottom row of the return block r (from left to right) belong to the set
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𝜏𝑛 (𝑉𝑛) = {01𝑛 · (11𝑛)𝑖 | 𝑛 − 1 ≤ 𝑖 ≤ 𝑛}
∪ {01𝑛 · (11𝑛)𝑖 (11𝑛) 𝑗 | 𝑖, 𝑗 ≥ 0, 𝑛 − 1 ≤ 𝑖 + 𝑗 ≤ 𝑛}
∪ {00𝑛 · (11𝑛)𝑖 (11𝑛) 𝑗 | 𝑖, 𝑗 ≥ 0, 𝑖 + 𝑗 = 𝑛}.

Proof. From Lemma 6.1, the sequence of bottom labels of the tiles between two consecutive junction
tiles (including the left junction tile but not the right one) belongs to {00𝑛, 01𝑛, 01𝑛} · {11𝑛, 11𝑛}∗.

In the bottom row of every return block within a configuration in Ω𝑛, there is no antigreen stripe
tile, and the horizontal blue, green and yellow stripe tiles appear in this order: blue→ green→ yellow.
Since the bottom label of a blue horizontal stripe tile is 11𝑛 and the bottom label of a green or yellow
horizontal stripe tile is 11𝑛, the sequence of bottom labels of tiles in a horizontal row starting from a
junction tile and ending before the next occurrence of a junction tile is in the set

{00𝑛, 01𝑛, 01𝑛} · (11𝑛)∗(11𝑛)∗.

Some more restrictions are imposed:

◦ If it starts with 00𝑛, the length of the sequence is 𝑛 + 1. Indeed, if the bottom label of a junction
tile is 00𝑛, then its right label is 000 with last digit 0. From Figure 24, the width of the return block
containing this junction tile must be 𝑛 + 1 or 𝑛 + 2. A return block of width𝑊 = 𝑛 + 2 is impossible
from Proposition 6.4. Thus, the width of the return bock is𝑊 = 𝑛 + 1.

◦ Also, if it starts with 01𝑛, the next label is not 11𝑛 and has to be 11𝑛. Indeed 01𝑛 is the bottom label
of a junction tile with right label 011, and 011 must be the left label of a yellow horizontal stripe tile
with bottom label 11𝑛; see Figure 24.

Restricting the sequences to those of lengths n or 𝑛, we have that the sequence of bottom labels of tiles
in the bottom row of the return block r (from left to right) belongs to the set

{01𝑛 · (11𝑛)𝑖 | 𝑛 − 1 ≤ 𝑖 ≤ 𝑛}
∪ {01𝑛 · (11𝑛)𝑖 (11𝑛) 𝑗 | 𝑖, 𝑗 ≥ 0, 𝑛 − 1 ≤ 𝑖 + 𝑗 ≤ 𝑛}
∪ {00𝑛 · (11𝑛)𝑖 (11𝑛) 𝑗 | 𝑖, 𝑗 ≥ 0, 𝑖 + 𝑗 = 𝑛}

= {𝜏𝑛 (111), 𝜏𝑛 (000)}
∪ {𝜏𝑛 (00𝑖) | 1 ≤ 𝑖 ≤ 𝑛 + 1} ∪ {𝜏𝑛 (11𝑖) | 2 ≤ 𝑖 ≤ 𝑛 + 1}
∪ {𝜏𝑛 (01𝑖) | 1 ≤ 𝑖 ≤ 𝑛 + 1}

= 𝜏(𝑉𝑛). �

6.3. Desubstitution Ω𝑛 ← Ω′𝑛

In this section, we prove that every valid configuration with the tiles T𝑛 can be desubstituted into a valid
configuration over T ′𝑛 using the substitution 𝜔′𝑛. It is based on the following lemma which relates return
blocks in Ω𝑛 to tiles of T ′𝑛 .

Lemma 6.6. Let 𝑦 ∈ Ω𝑛 be a configuration. For every return block r appearing in y, there exists a

unique tile 𝑡 = 𝛼

𝛽

𝛾

𝛿

∈ T ′𝑛 such that 𝑟 = 𝜔′𝑛 (𝑡) with external labels 𝜏𝑛 (𝛼)

𝜏𝑛 (𝛽)

𝜏𝑛 (𝛾)

𝜏𝑛 (𝛿)
.

Proof. Let 𝑦 ∈ Ω𝑛 be a configuration. From Proposition 6.4, the configuration y can be divided into
return blocks, – that is, rectangular blocks of sizes 𝑛 × 𝑛, 𝑛 × 𝑛, 𝑛 × 𝑛 or 𝑛 × 𝑛 with a unique junction
tiles at the bottom left corner; see Figure 23.

Let r be a return block appearing in y. From Lemma 6.5, the sequences of bottom labels of tiles in
the bottom row of the return block r (from left to right) belong to the set 𝜏𝑛 (𝑉𝑛). By symmetry and
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since r is surrounded by returns blocks, this also holds for the right, top and left labels of r. Therefore,
let 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝑉𝑛 such that the right, top, left and bottom labels of the return block r are respectively

𝜏𝑛 (𝛼), 𝜏𝑛 (𝛽), 𝜏𝑛 (𝛾) and 𝜏𝑛 (𝛿). From Proposition 5.9, 𝑡 = 𝛼

𝛽

𝛾

𝛿

∈ T ′𝑛 . From Lemma 5.3, there

exists a unique rectangular pattern with these external labels. Thus, 𝑟 = 𝜔′𝑛 (𝑡). �

Proposition 6.7. Let 𝑛 ≥ 1 be an integer. For every configuration 𝑦 ∈ Ω𝑛, there exist a unique
configuration 𝑥 ∈ Ω′𝑛 and a unique vector 𝒌 ∈ {0, 1, . . . , 𝑛}2 such that 𝑦 = 𝜎𝒌 (𝜔′𝑛 (𝑥)).

Proof. Let 𝜔′𝑛 : Ω′𝑛 → Ω′𝑛 be the 2-dimensional substitution defined in (5.2).
Let 𝑦 ∈ Ω𝑛 be a configuration. From Lemma 6.3, there exist two strictly increasing sequences

𝐴, 𝐵 : Z→ Z such that the set of positions of junction tiles in the configuration y is the Cartesian product
𝐴(Z) × 𝐵(Z). Also, the distance between two consecutive occurrences of junction tiles in the same row
or the same column is n or 𝑛+1; that is, 𝐴(ℓ +1) − 𝐴(ℓ) ∈ {𝑛, 𝑛+1} and 𝐵(ℓ +1) −𝐵(ℓ) ∈ {𝑛, 𝑛+1} for
every ℓ ∈ Z. We may suppose without loss of generality that the sequences A and B are defined in such
a way that the sequences take nonnegative values for nonnegative indices exclusively. In other words,
𝐴(ℓ) ≥ 0 if and only if ℓ ≥ 0 and 𝐵(ℓ) ≥ 0 if and only if ℓ ≥ 0.

For every ℓ = (ℓ1, ℓ2) ∈ Z2, consider the return block 𝑦 |𝑆ℓ of support 𝑆ℓ = [𝐴(ℓ1), 𝐴(ℓ1 + 1) − 1] ×
[𝐵(ℓ2), 𝐵(ℓ2 + 1) − 1]. From Lemma 6.6, there exists a unique tile 𝑥ℓ ∈ T ′𝑛 such that 𝑦 |𝑆ℓ = 𝜔′𝑛 (𝑥ℓ).
Let 𝒌 = (−𝐴(−1),−𝐵(−1)). The configuration 𝜎−𝒌 (𝑦) has a junction tile at the origin (0, 0). The
configuration 𝑥 = (𝑥ℓ)ℓ∈Z2 belongs to Ω′𝑛 and satisfies that 𝜔′𝑛 (𝑥) = 𝜎−𝒌 (𝑦). Thus, 𝑦 = 𝜎𝒌𝜔′𝑛 (𝑥). �

Proposition 6.8. For every integer 𝑛 ≥ 1, the 2-dimensional substitution 𝜔′𝑛 : Ω′𝑛 → Ω′𝑛 satisfies
Ω𝑛 ⊆ 𝜔′𝑛 (Ω′𝑛)

𝜎
.

Proof. From Proposition 6.7, for every configuration 𝑦 ∈ Ω𝑛, there exist a unique configuration 𝑥 ∈ Ω′𝑛
and a unique vector 𝒌 ∈ {0, 1, . . . , 𝑛}2 such that 𝑦 = 𝜎𝒌 (𝜔′𝑛 (𝑥)). Therefore, Ω𝑛 ⊆ 𝜔′𝑛 (Ω′𝑛)

𝜎
. �

7. Tiles in T ′𝑛 \ T𝑛 are illegal so that Ω′𝑛 = Ω𝑛

By definition T𝑛 ⊂ T ′𝑛 , so that Ω𝑛 ⊆ Ω′𝑛. In this section, we prove that in every configuration of the
Wang shift Ω′𝑛 defined from the set T ′𝑛 , only the tiles from T𝑛 appear; that is, Ω′𝑛 ⊆ Ω𝑛.

7.1. Illegal tiles

Recall that the additional tiles are

T ′𝑛 \ T𝑛 = 𝐴𝑛 ∪ 𝐴𝑛 ∪ { 𝑗0,0,1,1𝑛 , 𝑗1,1,0,0𝑛 } ∪ {𝑏𝑛𝑛, 𝑏̂𝑛𝑛}.

The proof that these tiles do not appear in any configuration in Ω′𝑛 follows from the following lemmas.
The easiest is to show that no configuration contains the last blue tile because the argument is very local.

Lemma 7.1. A valid configuration in Ω′𝑛 contains no blue tile in {𝑏𝑛𝑛, 𝑏̂𝑛𝑛}.

Proof. Let 𝑐 ∈ Ω′𝑛 be a valid configuration. The configuration c does not contain the tile 𝑏𝑛𝑛 =

because no tile from T ′𝑛 has left label 00𝑛. Similarly, the configuration c does not contain
the tile 𝑏̂𝑛𝑛 because no tile from T ′𝑛 has bottom label 00𝑛. �

Then, we show that no configuration of Ω′𝑛 contains any antigreen tile. The argument is more difficult
because antigreen tiles admit large surroundings; see Figure 19. As seen in the figure and proved in the

https://doi.org/10.1017/fms.2025.10069 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10069


40 S. Labbé

Figure 25. The presence of the antigreen 𝑎1
𝑛 leads to a contradiction.

next lemma, the presence of an antigreen tile forces the presence of another antigreen tile a few rows
below that is closer to the left to a junction tile.

Lemma 7.2. A valid configuration in Ω′𝑛 contains no antigreen tile from the set 𝐴𝑛 ∪ 𝐴𝑛.

Proof. Let 𝑐 ∈ Ω′𝑛 be a valid configuration. Recall that . The configuration c does
not contain the tile 𝑎𝑛𝑛 because 𝑎𝑛𝑛 has left label 00𝑛, but no tile from T ′𝑛 has left label 00𝑛. Similarly,
the configuration c does not contain the tile 𝑎𝑛𝑛 because 𝑎𝑛𝑛 has top label 00𝑛, but no tile from T ′𝑛 has
top label 00𝑛.

Suppose by contradiction that 𝑎𝑖𝑛 appears in the configuration c for some integer i such that 1 ≤ 𝑖 ≤
𝑛− 1. Let 𝐴, 𝐵 : Z→ Z be the two increasing maps from Lemma 6.3 such that 𝑐−1 (𝐽 ′𝑛) = 𝐴(Z) × 𝐵(Z).
Suppose that 𝑎𝑖𝑛 appears at position ℓ = (ℓ1, ℓ2) ∈ Z2. Let 𝒌 = (𝑘1, 𝑘2) ∈ Z2 be such that 𝐴(𝑘1) ≤ ℓ1 <
𝐴(𝑘1 +1) and 𝐵(𝑘2) ≤ ℓ2 < 𝐵(𝑘2 +1). Note that we must have 𝐵(𝑘2) = ℓ2. Suppose that the occurrence
ℓ is chosen such that ℓ1 − 𝐴(𝑘1) is the minimum among all occurrences of the tile 𝑎𝑖𝑛 in c – in other
words, such that the distance to the nearest junction tile to its left on the same row is minimal. Since the
bottom and top labels of 𝑎𝑖𝑛 start with 1, the column ℓ1 in the configuration c contains no junction tile;
thus, 𝐴(𝑘1) ≠ ℓ1 and ℓ1 − 𝐴(𝑘1) ≥ 1. There are two cases to consider.

Case ℓ1 − 𝐴(𝑘1) = 1. In this case, the tile at position (𝐴(𝑘1), 𝐵(𝑘2)) is a junction tile with right label
011 and bottom label 01𝑛. Also, the antigreen tile at position (ℓ1, ℓ2) is 𝑎1

𝑛. Below the antigreen tile are
white tiles, and below the junction tile is a yellow or green tile that we show in gray in Figure 25.

So the unit parts of horizontal edge labels decrease by one at each level from top to bottom until
we reach the white tile at position (ℓ1, 𝐵(𝑘2 − 1) + 1) with bottom label 111 and a tile at position
(𝐴(𝑘1), 𝐵(𝑘2 − 1) + 1) with bottom label 0∗2. The tile at position (ℓ1, 𝐵(𝑘2 − 1)) must be a green or
blue tile with left label 00∗. The tile at position (𝐴(𝑘1), 𝐵(𝑘2 − 1) must be a junction tile, but there are
no junction tiles with top label 0∗2. So this case leads to a contradiction.

Case ℓ1−𝐴(𝑘1) > 1. This means that tiles in the column to the left of 𝑎𝑖𝑛 do not contain junction tiles.
On Figure 20, we observe that only the yellow tile 𝑦𝑖−1

𝑛 has right label 01𝑖. Thus, the tile to the left of 𝑎𝑖𝑛 at
position (ℓ1−1, ℓ2) needs to be the yellow tile 𝑦𝑖−1

𝑛 . For every integer j such that 𝐵(𝑘2−1) < 𝑗 < 𝐵(𝑘2),
the tiles at positions (ℓ1 − 1, 𝑗) and (ℓ1, 𝑗) are white tiles. So the unit parts of the horizontal edge labels
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Figure 26. The presence of the antigreen 𝑎𝑖𝑛 leads to a contradiction.

decrease by one at each level from top to bottom. Thus, the tile at position (ℓ1−1, 𝐵(𝑘2−1)) has top label
112, and the tile at position (ℓ1, 𝐵(𝑘2 − 1)) has top label 111. The situation is illustrated in Figure 26.

Since 112 and 111 are the labels of consecutive horizontal edges, we deduce from Figure 20 that
the tile at position (ℓ1 − 1, 𝐵(𝑘2 − 1)) must be an antigreen tile as well. We observe that this antigreen
tile is closer in distance to a junction tile to its left on the same row. This is a contradiction with the
minimality of ℓ1 − 𝐴(𝑘1). Thus, the configuration c does not contain the antigreen tile 𝑎𝑖𝑛.

Finally, by contradiction, suppose that the tile 𝑎𝑖𝑛 appears in the configuration c. Since T ′𝑛 is symmetric
– that is, T̂ ′𝑛 = T ′𝑛 – the symmetric configuration 𝑐̂ is also a valid configuration in Ω′𝑛. Thus, the
configuration c contains the tile 𝑎𝑖𝑛 which contradicts the conclusion of the previous paragraph. �

The previous lemma implies that the pattern shown in Figure 19 cannot be extended to a valid
configuration in Ω′𝑛.

Lemma 7.3. A valid configuration in Ω′𝑛 contains no junction tile from the set { 𝑗0,0,1,1𝑛 , 𝑗1,1,0,0𝑛 }.

Proof. Recall that

Let 𝑥 ∈ Ω′𝑛 be a valid configuration. We first prove that x does not contain the tile 𝑗0,0,1,1𝑛 . By
contradiction, suppose that the tile 𝑗0,0,1,1𝑛 appears in the configuration x at some position ℓ ∈ Z2.
Consider the return block containing this junction tile and let W be its width and H be its height.

The bottom label of the junction tile 𝑗0,0,1,1𝑛 is 00𝑛, and its right label is 000 with last digit 0. From
Figure 20, the width of the return block containing this junction tile must be 𝑛+1 or 𝑛+2. A return block
of width𝑊 = 𝑛 + 2 is impossible from Proposition 6.4. Thus, the width of the return bock is𝑊 = 𝑛 + 1.

If 𝑛 > 1, then we have𝑊 = 𝑛, which is a contradiction. Indeed, the tile appearing above the junction
tile 𝑗0,0,1,1𝑛 must be a vertical stripe tile with right label 112, either yellow or antigreen. From the
observation made in Figure 18, the width of this return block is𝑊 = 𝑛.
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Figure 27. Extended metallic mean Wang tile sets T ′𝑛 for 𝑛 = 1.

If 𝑛 = 1, three different junction tiles can appear on top of 𝑗0,0,1,1𝑛 . All of them have right label 001.
On the right of 𝑗0,0,1,1𝑛 , there may be a green or a blue tile, both of them having top label 111. We get
the following picture where we illustrate the blue or green tile in gray.

But no tiles from T ′1 have left label 001 and bottom label 111; see Figure 27. Thus, no tile can be
placed at position ℓ + (1, 1). This is a contradiction.

Finally, by contradiction, suppose that the tile 𝑗1,1,0,0𝑛 = �
𝑗0,0,1,1𝑛 appears in the configuration x. Since

T ′𝑛 is symmetric – that is T̂ ′𝑛 = T ′𝑛 – the symmetric configuration 𝑥̂ is also a valid configuration in Ω′𝑛.
Thus, the configuration x contains the tile 𝑗0,0,1,1𝑛 , which contradicts the first part of the proof. �

We may now prove the following result.

Proposition 7.4. For every integer 𝑛 ≥ 1, Ω′𝑛 = Ω𝑛.

Proof. Since T𝑛 ⊆ T ′𝑛 , we have Ω𝑛 ⊆ Ω′𝑛.
Let 𝑐 ∈ Ω′𝑛 be a valid configuration. From Lemma 7.1, the configuration c contains no blue tile in

{𝑏𝑛𝑛, 𝑏̂𝑛𝑛}. From Lemma 7.2, the configuration c contains no antigreen tile from 𝐴𝑛 ∪ 𝐴𝑛. From Lemma
7.3, the configuration c contains no junction tile from the set { 𝑗0,0,1,1𝑛 , 𝑗1,1,0,0𝑛 }. Thus, the range of c is
𝑐(Z2) ⊂ T𝑛. Thus, 𝑐 ∈ Ω𝑛, from which we conclude that Ω′𝑛 ⊆ Ω𝑛. �

8. Ω𝑛 is self-similar and aperiodic

In this section, we show that Ω𝑛 is self-similar and aperiodic. We prove Theorem A below after recalling
its statement.

Theorem A. For every integer 𝑛 ≥ 1, the set T𝑛 containing (𝑛 + 3)2 Wang tiles defines a Wang shift
Ω𝑛 which is self-similar. More precisely, there exists an expansive and recognizable 2-dimensional
substitution 𝜔𝑛 : Ω𝑛 → Ω𝑛 which is onto up to a shift – that is, such that Ω𝑛 = 𝜔𝑛 (Ω𝑛)

𝜎
.
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Proof. Let 𝑛 ≥ 1 be an integer. From Proposition 6.8, the 2-dimensional substitution 𝜔′𝑛 : Ω′𝑛 → Ω′𝑛
defined in (5.2) satisfies Ω𝑛 ⊆ 𝜔′𝑛 (Ω′𝑛)

𝜎
. From Proposition 7.4, we have Ω′𝑛 = Ω𝑛. The restriction

of 𝜔′𝑛 to Ω𝑛 is the 2-dimensional substitution 𝜔𝑛 : Ω𝑛 → Ω𝑛 defined in (5.3). From Lemma 5.6,
𝜔𝑛 (Ω𝑛) ⊂ Ω𝑛. Therefore, we have

Ω𝑛 ⊆ 𝜔′𝑛 (Ω′𝑛)
𝜎
= 𝜔′𝑛 (Ω𝑛)

𝜎
= Ω𝑛 (𝜔𝑛)

𝜎
⊆ Ω𝑛.

Therefore, 𝜔𝑛 is in fact a 2-dimensional substitution Ω𝑛 → Ω𝑛 satisfying Ω𝑛 = 𝜔𝑛 (Ω𝑛)
𝜎

. The 2-
dimensional substitution 𝜔𝑛 is recognizable following Proposition 6.4 since every configuration in Ω𝑛

can be uniquely divided into return blocks. The 2-dimensional substitution 𝜔𝑛 is expansive (the image
of every tile contains a junction tile and the image of every junction tile has a height and width at least 2).
Hence, the Wang shift Ω𝑛 is self-similar with respect to the substitution 𝜔𝑛. �

Proof of Corollary B. From Theorem A, we have that the Wang shift Ω𝑛 is self-similar, satisfying
Ω𝑛 = 𝜔𝑛 (Ω𝑛)

𝜎
. Since the substitution𝜔𝑛 is expansive and recognizable, it follows from Proposition 3.5

that Ω𝑛 is aperiodic. �

9. The self-similarity is primitive

Substitutive shifts obtained from expansive and primitive morphisms are interesting for their properties.
As in the 1-dimensional case, we say that 𝜔 is primitive if there exists 𝑚 ∈ N such that for every
𝑎, 𝑏 ∈ A, the letter b occurs in 𝜔𝑚(𝑎). In this section, we show that the 2-dimensional substitution 𝜔𝑛

is primitive.

Lemma 9.1. For every integer 𝑛 ≥ 1, the 2-dimensional substitution 𝜔𝑛 : Ω𝑛 → Ω𝑛 is primitive.

Proof. The proof follows from the following observations about the substitution 𝜔𝑛:

◦ in the image of every tile in T𝑛 under 𝜔𝑛, there is some junction tile;
◦ in the image of every junction tile, there is a white tile 𝑤1,1

𝑛 ;
◦ in the image of the white tile 𝑤1,1

𝑛 , there is the junction tile 𝑗1,1,1,1𝑛 ;
◦ in the image of the junction tile 𝑗1,1,1,1𝑛 , there are the junction tile 𝑗0,0,0,0𝑛 , all white tiles𝑊𝑛 including

the white tile 𝑤1,1
𝑛 , and all blue tiles 𝐵𝑛 ∪ 𝐵𝑛 including the blue tiles {𝑏0

𝑛, 𝑏̂
0
𝑛} (all blue tiles appear

in the image because the left and bottom label of 𝑗1,1,1,1𝑛 is 01𝑛; see Lemma 5.2 and Figure 13);
◦ in the image of the blue tiles {𝑏0

𝑛, 𝑏̂
0
𝑛}, there are all yellow tiles 𝑌𝑛 ∪ 𝑌𝑛 including the yellow tiles

{𝑦1
𝑛, 𝑦̂

1
𝑛} (all yellow tiles appear in the images because the left label of 𝑏0

𝑛 is 000 and the bottom label
of 𝑏̂0

𝑛 is 000; see Lemma 5.2 and Figure 12);
◦ in the image of yellow tiles 𝑌𝑛 ∪ 𝑌𝑛, there are the junction tiles { 𝑗0,1,0,0𝑛 , 𝑗0,0,0,1𝑛 };
◦ in the image of 𝑌𝑛 ∪ 𝑌𝑛 ∪ { 𝑗0,0,0,0𝑛 }, there are all green tiles 𝐺𝑛 ∪ 𝐺𝑛:

– green tiles 𝑔𝑛𝑛 and 𝑔𝑛𝑛 appear in the image of 𝑗0,0,0,0𝑛 because the left and bottom label of 𝑗0,0,0,0𝑛 is
00𝑛; see Lemma 5.2 and Figure 12;

– green tiles 𝑔𝑖𝑛 and 𝑔̂𝑖𝑛 for 0 ≤ 𝑖 < 𝑛 appear in the images of the yellow tiles because the bottom

label of 𝑦̂𝑖𝑛 is 01𝑖; see Lemma 5.2 and Figure 13);
◦ in the image of 𝑗0,0,0,0𝑛 , there is the junction tile 𝑗0,1,0,1𝑛 ;
◦ in the image of the blue tiles {𝑦1

𝑛, 𝑦̂
1
𝑛}, there are the green tiles {𝑔0

𝑛, 𝑔̂
0
𝑛};

◦ in the image of the green tiles {𝑔0
𝑛, 𝑔̂

0
𝑛}, there are the junction tiles { 𝑗0,1,1,1𝑛 , 𝑗1,1,0,1𝑛 }.

The tiles that can be obtained from the successive application of the substitution 𝜔𝑛 are shown in
Figure 28. The graph in the figure shows that every tile appears at distance 7 of every tile in T𝑛. Thus,
for every tile 𝑡 ∈ T𝑛, the pattern (𝜔𝑛)7(𝑡) contains all tiles of T𝑛. Therefore, we conclude that 𝜔𝑛 is
primitive. �
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Figure 28. When an arrow appears linking sets of tiles 𝑆 → 𝑇 and vertex T has in-degree one, it means
that 𝑇 ⊆

⋃
𝑠∈𝑆{𝑡 ∈ T𝑛 | 𝑡 occurs in 𝜔𝑛 (𝑠)}; that is, every tile 𝑡 ∈ 𝑇 appears in the image of some tile

𝑠 ∈ 𝑆 under the substitution 𝜔𝑛. When two arrows 𝑆 → 𝑇 and 𝑆′ → 𝑇 appear, it means that every tile
𝑡 ∈ 𝑇 appears in the image of some tile 𝑠 ∈ 𝑆 ∪ 𝑆′ under the substitution 𝜔𝑛. The figure illustrates that
for every tile 𝑡 ∈ T𝑛, the pattern (𝜔𝑛)7(𝑡) contains every tile of T𝑛. This shows the primitivity of the
substitution 𝜔𝑛.

The exponent 7 deduced in the previous proof is not sharp, as computations illustrate that for every
integer 𝑛 ≥ 2, the incidence matrix of (𝜔𝑛)4 is already positive, while the incidence matrix of (𝜔1)5 is
positive.

Lemma 9.2. The Perron–Frobenius dominant eigenvalue of the incidence matrix of𝜔𝑛 is 𝛽2
𝑛, the square

of the 𝑛𝑡ℎ metallic mean number, and the inflation factor of 𝜔𝑛 is 𝛽𝑛.

Proof. We may deduce the dominant eigenvalue of the incidence matrix of 𝜔𝑛 from that of a simpler
substitution. For every integer 𝑛 ≥ 1, let 𝜌𝑛 be the following 1-dimensional substitution:

𝜌𝑛 : {a, b}∗ → {a, b}∗
a ↦→ ab𝑛
b ↦→ ab𝑛−1

.

The incidence matrix of 𝜌𝑛 is (
1 1
𝑛 𝑛 − 1

)
whose characteristic polynomial is 𝑥2 − 𝑛𝑥 − 1. The Perron–Frobenius dominant eigenvalue of the
incidence matrix of 𝜌𝑛 is the positive root 𝛽𝑛 of the polynomial 𝑥2 − 𝑛𝑥 − 1. Since 𝜌𝑛 is primitive,
the growth rate of |𝜌𝑘𝑛 (𝑢) | is independent of 𝑢 ∈ {a, b} and is equal to 𝛽𝑛 [51, Corollary 5.2]. In other
words, for every 𝑢 ∈ {a, b}, we have

lim
𝑘→∞
|𝜌𝑘𝑛 (𝑢) |

1
𝑘 = 𝛽𝑛. (9.1)
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We observe that the 2-dimensional substitution 𝜔𝑛 is an extension of the direct product 𝜌𝑛 × 𝜌𝑛 of
the 1-dimensional substitution 𝜌𝑛 with itself. By extension, we mean the existence of a map

𝜁 : T𝑛 → {a, b} × {a, b}

𝑡 ↦→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(a, a) if 𝑡 ∈ 𝐽𝑛,
(b, a) if 𝑡 ∈ 𝐵𝑛 ∪ 𝑌𝑛 ∪ 𝐺𝑛,

(a, b) if 𝑡 ∈ 𝐵𝑛 ∪ 𝑌𝑛 ∪ 𝐺𝑛,

(b, b) if 𝑡 ∈ 𝑊𝑛,

such that (𝜌𝑛 × 𝜌𝑛) ◦ 𝜁 = 𝜁 ◦ 𝜔𝑛.
Since 𝜔𝑛 is primitive, the dominant eigenvalue 𝜆 of the incidence matrix of the substitution 𝜔𝑛 is

equal to the growth rate of area(𝜔𝑘
𝑛 (𝑡)) as 𝑘 → ∞, where 𝑡 ∈ T𝑛 is any tile and area(𝑝) denotes the

cardinality of the support of a rectangular pattern 𝑝 ∈ (T𝑛)∗
2 . Let 𝑡 ∈ T𝑛 such that 𝜁 (𝑡) = (𝑡1, 𝑡2) for

some 𝑡1, 𝑡2 ∈ {a, b}. Since 𝜁 is a tile to tile map, it preserves the area. Thus, we have

𝜆 = lim
𝑘→∞

area(𝜔𝑘
𝑛 (𝑡))

1
𝑘 = lim

𝑘→∞
area(𝜁 ◦ 𝜔𝑘

𝑛 (𝑡))
1
𝑘 = lim

𝑘→∞
area((𝜌𝑛 × 𝜌𝑛)𝑘 ◦ 𝜁 (𝑡))

1
𝑘

= lim
𝑘→∞

area((𝜌𝑛 × 𝜌𝑛)𝑘 (𝜁 (𝑡)))
1
𝑘 = lim

𝑘→∞
area((𝜌𝑛 × 𝜌𝑛)𝑘 (𝑡1, 𝑡2))

1
𝑘

= lim
𝑘→∞

(
|𝜌𝑘𝑛 (𝑡1) | · |𝜌𝑘𝑛 (𝑡2) |

) 1
𝑘
= lim

𝑘→∞
|𝜌𝑘𝑛 (𝑡1) |

1
𝑘 · lim

𝑘→∞
|𝜌𝑘𝑛 (𝑡2) |

1
𝑘
(9.1)
= 𝛽𝑛 · 𝛽𝑛 = 𝛽2

𝑛.

Therefore, the incidence matrices of the substitutions 𝜔𝑛 and 𝜌𝑛 × 𝜌𝑛 have the same Perron-Frobenius
dominant eigenvalue, and it is equal to 𝛽2

𝑛.
The inflation factor is the factor of the homogeneous dilation associated with the stone inflation

constructed from the direct product 𝜌𝑛 × 𝜌𝑛 [5, §5.6] (for example, a stone inflation for 𝜌4 × 𝜌4 is shown
in Figure 30 when 𝑛 = 4). The inflation factor of the stone inflation of 𝜌𝑛 × 𝜌𝑛 is 𝛽𝑛 as it multiplies
distances between points by 𝛽𝑛 and the areas by 𝛽2

𝑛. �

Theorem C. For every integer 𝑛 ≥ 1, the 2-dimensional substitution 𝜔𝑛 : Ω𝑛 → Ω𝑛 is primitive.
The Perron–Frobenius dominant eigenvalue of the incidence matrix of 𝜔𝑛 is 𝛽2

𝑛, the square of the 𝑛𝑡ℎ
metallic mean number, and the inflation factor of 𝜔𝑛 is 𝛽𝑛.

Proof. From Lemma 9.1, 𝜔𝑛 is primitive. The Perron–Frobenius dominant eigenvalue of the incidence
matrix of 𝜔𝑛 and its inflation factor is computed in Lemma 9.2. �

From Perron–Frobenius theorem, the primitivity of the substitution 𝜔𝑛 implies that every Wang tile
in T𝑛 appears with positive frequency in a configuration in the substitutive subshift X𝜔𝑛 generated by
the substitution 𝜔𝑛. The frequencies of the tiles are given by the entries of the right-eigenvector of the
incidence matrix of 𝜔𝑛 normalized so that the sum of its entries is 1.

10. Ω𝑛 is minimal

The goal of this section is to prove that Ω𝑛 is minimal. To prove minimality, we need more notions. We
use the method proposed in [37, §3.3].

10.1. A criterion for minimality of a self-similar subshift

Recall that a subshift X is self-similar if 𝑋 = 𝜔(𝑋)
𝜎

for some expansive d-dimensional substitution;
see Definition 3.2 and Definition 3.3. First we recall Lemma 3.8 from [37].
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Lemma 10.1. Let 𝜔 : A→ A∗𝑑 be an expansive and primitive d-dimensional morphism. Let 𝑋 ⊆ AZ𝑑

be a nonempty subshift such that 𝑋 = 𝜔(𝑋)
𝜎

. Then X𝜔 ⊆ 𝑋 .

Proof. The language of X is also self-similar satisfying L(𝑋) = L(𝜔(L(𝑋))). Recursively, L(𝑋) =
L(𝜔𝑚 (L(𝑋))) for every 𝑚 ≥ 1. Since X is nonempty, there exists a letter 𝑎 ∈ A such that for all 𝑚 ≥ 1,
the d-dimensional word 𝜔𝑚(𝑎) is in the language L(𝑋). From the primitivity of 𝜔, there exists 𝑚 ≥ 1
such that 𝜔𝑚 (𝑎) contains an occurrence of every letter of the alphabet A. Therefore, every letter is in
L(𝑋), and the d-dimensional word 𝜔𝑚(𝑎) is in the language L(𝑋) for all letters 𝑎 ∈ A and all 𝑚 ≥ 1.
So we conclude that L(X𝜔) ⊆ L(𝑋) and X𝜔 ⊆ 𝑋 . �

Proving that a self-similar d-dimensional subshift X satisfying 𝑋 = 𝜔(𝑋)
𝜎

is equal to X𝜔 can be
tricky. As illustrated in the following example, it depends on the combinatorics of the substitution.

Example 10.2. Consider the following 2-dimensional substitution 𝜈 over alphabet {𝑎, 𝑏, 𝑐}:

𝜈 : 𝑎 ↦→ �	

𝑐 𝑐 𝑐 𝑐 𝑐
𝑐 𝑐 𝑐 𝑐 𝑐
𝑐 𝑐 𝑎 𝑐 𝑐

��
, 𝑏 ↦→ �	

𝑐 𝑐 𝑏 𝑐 𝑎
𝑐 𝑐 𝑐 𝑐 𝑐
𝑐 𝑐 𝑐 𝑐 𝑐

��
, 𝑐 ↦→ �	

𝑐 𝑐 𝑎 𝑐 𝑐
𝑐 𝑐 𝑐 𝑏 𝑐
𝑐 𝑐 𝑐 𝑐 𝑐

��
.
We may observe that the vertical domino ( 𝑎𝑏 ) does not belong to the language of the substitutive subshift
X𝜈 since it does not appear in any of the k-th image of any letter under the substitution. But one can see
that the vertical domino ( 𝑎𝑏 ) is preserved by the substitution. Therefore, there exists a configuration x
containing a single vertical domino ( 𝑎𝑏 ) which is fixed by the substitution. Thus, we have

∅ ≠ X𝜈 � X𝜈 ∪ {𝜎𝑛 (𝑥) | 𝑛 ∈ Z2}.

The subshift X𝜈 ∪ {𝜎𝑛 (𝑥) | 𝑛 ∈ Z2} is self-similar, but it is not minimal because it contains a proper
nonempty subshift.

Therefore, to conclude that we have the equality X𝜔 = 𝑋 for a self-similar subshift X, it is convenient
to consider the domino patterns of size 1 × 2 and 2 × 1 straddling the images of the two letters of a
domino as well as the 2 × 2 patterns straddling the images of the four letters of 2 × 2 pattern. More
precisely, we need to consider the following directed graphs:

◦ Let 𝐺2×2
𝜔 = (𝑉2×2

𝜔 , 𝐸2×2
𝜔 ) be the directed graph whose vertices and edges are

𝑉2×2
𝜔 =

{(
𝑎 𝑏
𝑐 𝑑

)
∈ A2×2 | 𝑎 ≡1 𝑏, 𝑐 ≡1 𝑑, 𝑎 ≡2 𝑐, 𝑏 ≡2 𝑑

}
,

𝐸2×2
𝜔 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
𝑒 𝑓
𝑔 ℎ

)
→

(
𝑎 𝑏
𝑐 𝑑

) ��������
𝑎 is the bottom right letter of 𝜔(𝑒),
𝑏 is the bottom left letter of 𝜔( 𝑓 ),
𝑐 is the top right letter of 𝜔(𝑔),
𝑑 is the top left letter of 𝜔(ℎ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭.
◦ Let 𝐺2×1

𝜔 = (𝑉2×1
𝜔 , 𝐸2×1

𝜔 ) be the directed graph whose vertices and edges are

𝑉2×1
𝜔 =

{
( 𝑎 𝑏 ) ∈ A2×1 | 𝑎 ≡1 𝑏

}
,

𝐸2×1
𝜔 =

⎧⎪⎪⎨⎪⎪⎩( 𝑒 𝑓 ) → ( 𝑎 𝑏 )

������ there exists an integer 𝑗 such that 0 ≤ 𝑗 < height(𝜔(𝑒)) and
𝑎 is the letter in the 𝑗-th row in the right-most column of 𝜔(𝑒),
𝑏 is the letter in the 𝑗-th row in the left-most column of 𝜔( 𝑓 )

⎫⎪⎪⎬⎪⎪⎭.
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Figure 29. The graphs 𝐺2×2
𝜈 , 𝐺2×1

𝜈 and 𝐺1×2
𝜈 for the substitution 𝜈.

◦ Let 𝐺1×2
𝜔 = (𝑉1×2

𝜔 , 𝐸1×2
𝜔 ) be the directed graph whose vertices and edges are

𝑉1×2
𝜔 =

{
( 𝑎𝑐 ) ∈ A1×2 | 𝑎 ≡2 𝑐

}
,

𝐸1×2
𝜔 =

⎧⎪⎪⎨⎪⎪⎩
( 𝑒
𝑔
)
→ ( 𝑎𝑐 )

������ there exists an integer 𝑖 such that 0 ≤ 𝑖 < width(𝜔(𝑒)) and
𝑎 is the letter in the 𝑖-th column in the bottom-most row of 𝜔(𝑒),
𝑐 is the letter in the 𝑖-th column in the top-most row of 𝜔(𝑔)

⎫⎪⎪⎬⎪⎪⎭.
Finally, for every directed graph 𝐺 = (𝑉, 𝐸), we define the set of recurrent vertices – that is, those
belonging to a cycle of the graph:

RecurrentVertices(𝐺) = {𝑣 ∈ 𝑉 | 𝑣 belongs to a cycle of 𝐺}.

Example 10.3. The graphs 𝐺2×2
𝜈 , 𝐺2×1

𝜈 and 𝐺1×2
𝜈 for the 2-dimensional substitution 𝜈 defined in Exam-

ple 10.2 are shown in Figure 29. The recurrent vertices of the graphs are as follows:

RecurrentVertices(𝐺2×2
𝜈 ) = {( 𝑐 𝑐

𝑐 𝑐 )}
RecurrentVertices(𝐺2×1

𝜈 ) = {( 𝑐 𝑐 )}
RecurrentVertices(𝐺1×2

𝜈 ) = {( 𝑎𝑏 ), ( 𝑐𝑐 ), ( 𝑎𝑎 ), ( 𝑐𝑏 ), ( 𝑐𝑎 ), ( 𝑎𝑐 )}

In particular, we observe that the vertical domino ( 𝑎𝑏 ) belongs to a cycle of 𝐺1×2
𝜈 , even though it is not

in the language L(X𝜈).

The recurrent vertices of the three graphs𝐺2×2
𝜔 ,𝐺2×1

𝜔 and𝐺1×2
𝜔 provide a criteria for the minimality of

a self-similar subshift 𝑋 = 𝜔(𝑋)
𝜎

. Lemma 3.7 and Lemma 3.9 from [37] gave hypothesis under which
an expansive and primitive 2-dimensional substitution has a unique nonempty self-similar subshift. The
following lemma is a relaxed version which allows to conclude that a self-similar subshift is minimal
even when the 2-dimensional substitution admits more than one self-similar subshift (some made of
configurations which are not uniformly recurrent).

Lemma 10.4. Let 𝑋 = 𝜔(𝑋)
𝜎

be a nonempty self-similar subshift where 𝜔 : A→ A∗𝑑 is an expansive
and primitive 2-dimensional morphism. The following are equivalent:

(i) L(𝑋) ∩ RecurrentVertices(𝐺𝑠
𝜔) ⊂ L(X𝜔) for every size 𝑠 ∈ {2 × 2, 2 × 1, 1 × 2},

(ii) 𝑋 = X𝜔 ,
(iii) X is minimal.

An element 𝑢 ∈ A𝒏 is called a d-dimensional word of size 𝒏 = (𝑛1, . . . , 𝑛𝑑) ∈ N𝑑 on the alphabet
A. We use the notation size(𝑢) = 𝒏 when necessary.

https://doi.org/10.1017/fms.2025.10069 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10069


48 S. Labbé

Proof. Assume that 𝑋 = 𝜔(𝑋)
𝜎

for some ∅ ≠ 𝑋 ⊆ AZ𝑑 .
(i) =⇒ (ii) From Lemma 10.1, we have X𝜔 ⊆ 𝑋 . Let 𝑧 ∈ L(𝑋). We want to show that 𝑧 ∈ L(X𝜔).

Since 𝜔 is expansive, let 𝑚 ∈ N such that the image of every letter 𝑎 ∈ A by 𝜔𝑚 is larger than z; that
is, size(𝜔𝑚(𝑎)) ≥ size(𝑧) for all 𝑎 ∈ A. We have 𝑧 ∈ L(𝑋) = L(𝜔𝑚(L(𝑋))). By the choice of m, z
cannot overlap more than two blocks 𝜔𝑚 (𝑎) in the same direction. Thus, there exists a word 𝑢 ∈ L(𝑋)
of size 1×1, 2×1, 1×2 or 2×2 such that z is a subword of 𝜔𝑚(𝑢). If u is of size 1×1, then 𝑧 ∈ L(X𝜔).
We may assume that the word u has the smallest possible rectangular size 𝑠 ∈ {2 × 1, 1 × 2, 2 × 2}.

We have 𝑢 ∈ 𝑉 𝑠
𝜔 . Since 𝑢 ∈ L(𝑋) and X is self-similar, there exists a sequence (𝑢𝑘 )𝑘∈N with

𝑢𝑘 ∈ 𝑉 𝑠
𝜔 ∩ L(𝑋) for all 𝑘 ∈ N such that

· · · → 𝑢𝑘+1 → 𝑢𝑘 → · · · → 𝑢1 → 𝑢0 = 𝑢

is a left-infinite path in the graph𝐺𝑠
𝜔 . Since𝑉 𝑠

𝜔 is finite, there exist some 𝑘, 𝑘 ′ ∈ Nwith 𝑘 < 𝑘 ′ such that
𝑢𝑘 = 𝑢𝑘′ . Thus, 𝑢𝑘 ∈ RecurrentVertices(𝐺𝑠

𝜔) and u is a subword of 𝜔𝑘 (𝑢𝑘 ). From the hypothesis,
we have 𝑢𝑘 ∈ L(X𝜔). Since 𝜔 is primitive, there exists ℓ such that 𝑢𝑘 is a subword of 𝜔ℓ (𝑎) for every
𝑎 ∈ A. Therefore, z is a subword of 𝜔𝑚+𝑘+ℓ (𝑎) for every 𝑎 ∈ A. Then 𝑧 ∈ L(X𝜔) and L(𝑋) ⊆ L(X𝜔).
Thus, 𝑋 ⊆ X𝜔 and 𝑋 = X𝜔 .

(ii) =⇒ (i) If 𝑋 = X𝜔 , then L(𝑋) = L(X𝜔). Thus, L(𝑋) ∩ RecurrentVertices(𝐺𝑠
𝜔) ⊂ L(𝑋) =

L(X𝜔) for every size 𝑠 ∈ {2 × 2, 2 × 1, 1 × 2}.
(ii) =⇒ (iii) The substitutive shift of 𝜔 is well defined since 𝜔 is expansive, and it is minimal since

𝜔 is primitive, using standard arguments [51, §5.2].
(iii) =⇒ (ii) From Lemma 10.1, we haveX𝜔 ⊆ 𝑋 . Since X is minimal, we conclude thatX𝜔 = 𝑋 . �

10.2. The Wang shift Ω𝑛 is minimal when 𝑛 ≥ 2

The proof that the Wang shift Ω𝑛 is minimal needs to be split into two cases. When 𝑛 = 1, configurations
in Ω1 have consecutive rows containing junction tiles, whereas this does not happen when 𝑛 ≥ 2. This
affects the language of patterns of vertical domino support. In particular, a vertical domino made of two
junction tiles may appear in the language of Ω𝑛 when 𝑛 = 1. In this section, we consider the case 𝑛 ≥ 2.

Lemma 10.5. Let 𝑛 ≥ 2 be an integer. The following vertical dominoes appear in the language of the
substitutive subshift X𝜔𝑛 :

L1×2 (X𝜔𝑛 ) ⊇
{(
𝑗0,1,0,0𝑛

𝑔𝑛−1
𝑛

)
,

(
𝑗0,1,0,1𝑛

𝑔𝑛−1
𝑛

)
,

(
𝑗0,1,0,0𝑛

𝑦𝑛−1
𝑛

)
,

(
𝑗0,1,0,1𝑛

𝑦𝑛−1
𝑛

)
,

(
𝑗0,1,1,1𝑛

𝑦𝑛−1
𝑛

)}
∪

{(
𝑗1,1,0,1𝑛

𝑔𝑛𝑛

)
,

(
𝑗1,1,0,1𝑛

𝑦̂𝑛𝑛

)
,

(
𝑗1,1,1,1𝑛

𝑦̂𝑛𝑛

)
,

(
𝑗0,0,0,0𝑛

𝑏𝑛−1
𝑛

)
,

(
𝑗0,0,0,1𝑛

𝑏𝑛−1
𝑛

)}
∪

{(
𝑔𝑖−1
𝑛

𝑤𝑖,𝑛
𝑛

)
,

(
𝑔𝑖𝑛
𝑤𝑖,𝑛

𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛
}

∪
{(

𝑏𝑖−1
𝑛

𝑤𝑖,𝑛−1
𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛
}
∪

{(
𝑏𝑖𝑛

𝑤𝑖,𝑛−1
𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛 − 1
}

∪
{(
𝑦𝑖−1
𝑛

𝑤𝑖,𝑛
𝑛

)���� 2 ≤ 𝑖 ≤ 𝑛
}
∪

{(
𝑦𝑖𝑛
𝑤𝑖,𝑛

𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛
}
.

Proof. We show that every vertical domino listed above appears in the image of some tile under the
application of the 2-dimensional substitution 𝜔𝑛. Below, we use the notation 𝑝

𝜔𝑛−−→ 𝑞 to denote that q
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is a pattern appearing in the image 𝜔𝑛 (𝑝). We have

𝑗0,1,0,1𝑛

𝜔𝑛−−→
(

𝑏̂0
𝑛

𝑗0,0,0,0𝑛

)
𝜔𝑛−−→

(
j1,1,0,1
n 𝑦1

𝑛 𝑦2
𝑛 . . . 𝑦𝑛𝑛

ĝn
n 𝑤1,𝑛

𝑛 𝑤2,𝑛
𝑛 . . . 𝑤𝑛,𝑛

𝑛

)
,

𝑗0,1,0,1𝑛

𝜔𝑛−−→
(
𝑤1,1

𝑛

𝑏0
𝑛

)
𝜔𝑛−−→

(
j1,1,1,1
n 𝑦1

𝑛 𝑦2
𝑛 . . . 𝑦𝑛−1

𝑛

ŷn
n 𝑤2,𝑛

𝑛 𝑤3,𝑛
𝑛 . . . 𝑤𝑛,𝑛

𝑛

)
,

𝑗0,1,0,1𝑛

𝜔𝑛−−→
(
𝑤1,1

𝑛

𝑏0
𝑛

)
𝜔𝑛−−→

(
𝑗1,1,1,1𝑛

𝑦̂𝑛𝑛

)
𝜔𝑛−−→

(
j0,0,0,0
n 𝑏0

𝑛 𝑏1
𝑛 . . . 𝑏𝑛−1

𝑛

b̂n−1
n 𝑤1,𝑛−1

𝑛 𝑤2,𝑛−1
𝑛 . . . 𝑤𝑛,𝑛−1

𝑛

)
,

𝑔0
𝑛

𝜔𝑛−−→
(

𝑦̂1
𝑛

𝑗0,1,1,1𝑛

)
𝜔𝑛−−→

(
j0,0,0,1
n

b̂n−1
n

)
𝜔𝑛−−→

(
j0,1,0,0
n 𝑏1

𝑛 𝑏2
𝑛 . . . 𝑏𝑛−1

𝑛

ĝn−1
n 𝑤1,𝑛−1

𝑛 𝑤2,𝑛−1
𝑛 . . . 𝑤𝑛−1,𝑛−1

𝑛

)
.

Also,

𝑔1
𝑛

𝜔𝑛−−→
(

𝑔̂1
𝑛

𝑗0,1,0,1𝑛

)
𝜔𝑛−−→

(
j0,1,0,1
n

ĝn−1
n

)
.

Since 𝑛 ≥ 2, we have

𝑗1,1,1,1𝑛

𝜔𝑛−−→
(

𝑏̂0
𝑛

𝑗0,0,0,0𝑛

)
𝜔𝑛−−→

(
𝑦1
𝑛

𝑤1,𝑛
𝑛

)
𝜔𝑛−−→

(
j0,1,0,0
n

ŷn−1
n

)
,

𝑤1,1
𝑛

𝜔𝑛−−→
(
𝑤2,2

𝑛

𝑦1
𝑛

)
𝜔𝑛−−→

(
j0,1,0,1
n

ŷn−1
n

)
,

𝑔0
𝑛

𝜔𝑛−−→
(
𝑤2,1

𝑛

𝑏̂1
𝑛

)
𝜔𝑛−−→

(
j1,1,0,1
n
ŷn

n

)
,

𝑤1,1
𝑛

𝜔𝑛−−→
(

𝑦̂1
𝑛

𝑗1,1,1,1𝑛

)
𝜔𝑛−−→

(
𝑔0
𝑛

𝑤1,𝑛
𝑛

)
𝜔𝑛−−→

(
j0,1,1,1
n

ŷn−1
n

)
.

�

Lemma 10.6. The following four 2 × 2 patterns belong to the language of the substitutive subshift
L(X𝜔𝑛 ):

Proof. We show that every pattern listed above appears in the image of some tile under some repeated
application of the 2-dimensional substitution 𝜔𝑛. Below, we use the notation 𝑝

𝜔𝑛−−→ 𝑞 to denote that q is
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a pattern appearing in the image 𝜔𝑛 (𝑝). The four patterns can be obtained in a few steps when applying
the substitution 𝜔𝑛 on the tiles 𝑗1,1,1,1𝑛 and 𝑦1

𝑛. We have the following:

�

Lemma 10.7. Let 𝑛 ≥ 2 be an integer. The following two vertical dominoes are illegal in Ω𝑛:

Proof. Let 𝑐 ∈ Ω𝑛 be a valid configuration. Let 𝐴, 𝐵 : Z → Z be the two increasing maps from
Lemma 6.3 such that 𝑐−1(𝐽𝑛) = 𝐴(Z) × 𝐵(Z).

Suppose that 𝑗1,1,1,1𝑛 appears at position ℓ = (ℓ1, ℓ2) ∈ Z2 and that 𝑔𝑛𝑛 appears at position (ℓ1, ℓ2−1) in
c. Let 𝒌 = (𝑘1, 𝑘2) ∈ Z2 be such that 𝐴(𝑘1) ≤ ℓ1 < 𝐴(𝑘1+1) and 𝐵(𝑘2) ≤ ℓ2 < 𝐵(𝑘2+1). Since 𝑗1,1,1,1𝑛

is a junction tile, we must have 𝐴(𝑘1) = ℓ1 and 𝐵(𝑘2) = ℓ2. At position (ℓ1, ℓ2 − 2), there must be a blue
tile 𝑏𝑛−1

𝑛 since only this tile has top label 00𝑛 when 𝑛 ≥ 2. The current situation is illustrated below.
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Consider the return block with support [𝐴(𝑘1 − 1), 𝐴(𝑘1)) × [𝐵(𝑘2), 𝐵(𝑘2 + 1)). It has label 01𝑛
at the far right of its bottom row. From Lemma 5.2, the width of this return block cannot be n, so it
has to be

𝐴(𝑘1) − 𝐴(𝑘1 − 1) = 𝑛 + 1.

Now consider the return block with support [𝐴(𝑘1 − 1), 𝐴(𝑘1)) × [𝐵(𝑘2 − 1), 𝐵(𝑘2)). The white tile at
position (𝐴(𝑘1) − 1, ℓ2 − 2) has right label 11𝑛. From the observation made in Figure 18, the width of
this return block is

𝐴(𝑘1) − 𝐴(𝑘1 − 1) = 𝑛.

This is a contradiction. Thus,
(
𝑗1,1,1,1𝑛

𝑔𝑛𝑛

)
∉ L(Ω𝑛).

The same contradiction is obtained if we suppose that 𝑗0,1,1,1𝑛 appears at position ℓ = (ℓ1, ℓ2) ∈ Z2

and that 𝑔𝑛−1
𝑛 appears at position (ℓ1, ℓ2 − 1) in c. Indeed, a blue tile with left label 11𝑛 is also forced to

appear at position (ℓ1, ℓ2 − 2). �

Note that Lemma 10.7 cannot be extended to the case 𝑛 = 1.

Proposition 10.8. For every integer 𝑛 ≥ 2, the Wang shift Ω𝑛 is minimal and is equal to the substitutive
subshift Ω𝑛 = X𝜔𝑛 .

Proof. Let 𝑛 ≥ 2 be an integer. From Theorem C, the 2-dimensional substitution 𝜔𝑛 is primitive.
Also, 𝜔𝑛 is expansive. From Theorem A, the Wang shift Ω𝑛 is self-similar, satisfying Ω𝑛 = 𝜔𝑛 (Ω𝑛)

𝜎
.

Therefore, we may use Lemma 10.4 to show that the Wang shift Ω𝑛 is minimal and X𝜔𝑛 = Ω𝑛. From
Lemma 10.4, our goal is show that

L(Ω𝑛) ∩ RecurrentVertices(𝐺𝑠
𝜔𝑛
) ⊂ L(X𝜔𝑛 )

for every size 𝑠 ∈ {2 × 2, 2 × 1, 1 × 2}.
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Case 𝑠 = 1 × 2. We have

RecurrentVertices(𝐺1×2
𝜔𝑛
)

⊆

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
𝑎
𝑐

)��������
there exists 𝑒, 𝑔 ∈ A such that width(𝜔𝑛 (𝑔)) = width(𝜔𝑛 (𝑒))
there exists an integer 𝑖 such that 0 ≤ 𝑖 < width(𝜔𝑛 (𝑒)) and
𝑎 is the letter in the 𝑖-th column in the bottom-most row of 𝜔𝑛 (𝑒),
𝑐 is the letter in the 𝑖-th column in the top-most row of 𝜔𝑛 (𝑔)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

{(
𝑎
𝑐

)����� 𝑎 ∈ { 𝑗0,0,0,0𝑛 , 𝑗0,0,0,1𝑛 , 𝑗0,1,0,0𝑛 , 𝑗0,1,0,1𝑛 , 𝑗1,1,0,1𝑛 }
𝑐 ∈ {𝑏𝑛−1

𝑛 , 𝑔𝑛−1
𝑛 , 𝑔𝑛𝑛}

}
∪

{(
𝑎
𝑐

)����� 𝑎 ∈ { 𝑗0,1,0,0𝑛 , 𝑗0,1,0,1𝑛 , 𝑗0,1,1,1𝑛 , 𝑗1,1,0,1𝑛 , 𝑗1,1,1,1𝑛 }
𝑐 ∈ {𝑦𝑛−1

𝑛 , 𝑦̂𝑛𝑛, 𝑔
𝑛−1
𝑛 , 𝑔𝑛𝑛}

}
∪

{(
𝑔𝑖−1
𝑛

𝑤𝑖,𝑛
𝑛

)
,

(
𝑔𝑖−1
𝑛

𝑤𝑖,𝑛−1
𝑛

)
,

(
𝑔𝑖𝑛
𝑤𝑖,𝑛

𝑛

)
,

(
𝑔𝑖𝑛

𝑤𝑖,𝑛−1
𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛
}

∪
{(
𝑏𝑖−1
𝑛

𝑤𝑖,𝑛
𝑛

)
,

(
𝑏𝑖−1
𝑛

𝑤𝑖,𝑛−1
𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛
}
∪

{(
𝑏𝑖𝑛
𝑤𝑖,𝑛

𝑛

)
,

(
𝑏𝑖𝑛

𝑤𝑖,𝑛−1
𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛 − 1
}

∪
{(
𝑦𝑖−1
𝑛

𝑤𝑖,𝑛
𝑛

)
,

(
𝑦𝑖−1
𝑛

𝑤𝑖,𝑛−1
𝑛

)���� 2 ≤ 𝑖 ≤ 𝑛
}
∪

{(
𝑦𝑖𝑛
𝑤𝑖,𝑛

𝑛

)
,

(
𝑦𝑖𝑛

𝑤𝑖,𝑛−1
𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛
}
.

However, we can estimate the set of vertical dominoes in L(Ω𝑛) by the pair of tiles sharing the same
label on the common horizontal edge excluding the two illegal dominoes from Lemma 10.7:

L1×2 (Ω𝑛) ∩
{(
𝑎
𝑐

)���� 𝑎 is a junction tile or a horizontal stripe tile
}

⊆
{(
𝑎
𝑐

)����� 𝑎 ∈ { 𝑗0,1,0,0𝑛 , 𝑗0,1,0,1𝑛 , 𝑗0,1,1,1𝑛 }
𝑐 ∈ {𝑔𝑛−1

𝑛 , 𝑦𝑛−1
𝑛 }

}
\
{(
𝑗0,1,1,1𝑛

𝑔𝑛−1
𝑛

)}
(tiles sharing edge label 01𝑛)

∪
{(
𝑎
𝑐

)���� 𝑎 ∈ { 𝑗1,1,0,1𝑛 , 𝑗1,1,1,1𝑛 }
𝑐 ∈ {𝑔𝑛𝑛 , 𝑦̂𝑛𝑛}

}
\
{(
𝑗1,1,1,1𝑛

𝑔𝑛𝑛

)}
(tiles sharing edge label 01𝑛)

∪
{(
𝑎
𝑐

)����� 𝑎 ∈ { 𝑗0,0,0,0𝑛 , 𝑗0,0,0,1𝑛 }
𝑐 ∈ {𝑏𝑛−1

𝑛 }

}
(tiles sharing edge label 00𝑛)

∪
{(

𝑏𝑖𝑛
𝑤𝑘,𝑛−1

𝑛

)���� 0 ≤ 𝑖 ≤ 𝑛 − 1,
1 ≤ 𝑘 ≤ 𝑛

}
(tiles sharing edge label 11𝑛)

∪
{(

𝑦𝑖𝑛
𝑤𝑘,𝑛

𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛,
1 ≤ 𝑘 ≤ 𝑛

}
(tiles sharing edge label 11𝑛)

∪
{(

𝑔𝑖𝑛
𝑤𝑘,𝑛

𝑛

)���� 0 ≤ 𝑖 ≤ 𝑛,
1 ≤ 𝑘 ≤ 𝑛

}
(tiles sharing edge label 11𝑛).

Note that

RecurrentVertices(𝐺1×2
𝜔𝑛
) ⊂

{(
𝑎
𝑐

)���� 𝑎 is a junction tile or a horizontal stripe tile
}
.
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Thus, we can compute the intersection of the two sets, and using Lemma 10.5, we obtain

RecurrentVertices(𝐺1×2
𝜔𝑛
) ∩ L(Ω𝑛)

= RecurrentVertices(𝐺1×2
𝜔𝑛
) ∩ L1×2 (Ω𝑛)

=

{(
𝑎
𝑐

)����� 𝑎 ∈ { 𝑗0,1,0,0𝑛 , 𝑗0,1,0,1𝑛 , 𝑗0,1,1,1𝑛 }
𝑐 ∈ {𝑔𝑛−1

𝑛 , 𝑦𝑛−1
𝑛 }

}
\
{(
𝑗0,1,1,1𝑛

𝑔𝑛−1
𝑛

)}
∪

{(
𝑎
𝑐

)���� 𝑎 ∈ { 𝑗1,1,0,1𝑛 , 𝑗1,1,1,1𝑛 }
𝑐 ∈ {𝑔𝑛𝑛 , 𝑦̂𝑛𝑛}

}
\
{(
𝑗1,1,1,1𝑛

𝑔𝑛𝑛

)}
∪

{(
𝑎
𝑐

)����� 𝑎 ∈ { 𝑗0,0,0,0𝑛 , 𝑗0,0,0,1𝑛 }
𝑐 ∈ {𝑏𝑛−1

𝑛 }

}
∪

{(
𝑔𝑖−1
𝑛

𝑤𝑖,𝑛
𝑛

)
,

(
𝑔𝑖𝑛
𝑤𝑖,𝑛

𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛
}

∪
{(

𝑏𝑖−1
𝑛

𝑤𝑖,𝑛−1
𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛
}
∪

{(
𝑏𝑖𝑛

𝑤𝑖,𝑛−1
𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛 − 1
}

∪
{(
𝑦𝑖−1
𝑛

𝑤𝑖,𝑛
𝑛

)���� 2 ≤ 𝑖 ≤ 𝑛
}
∪

{(
𝑦𝑖𝑛
𝑤𝑖,𝑛

𝑛

)���� 1 ≤ 𝑖 ≤ 𝑛
}

⊂ L1×2 (X𝜔𝑛 ) ⊂ L(X𝜔𝑛 ).

Case 𝑠 = 2 × 1. The condition is satisfied because this case is symmetric to the case 𝑠 = 1 × 2.
Case 𝑠 = 2 × 2. The tiles appearing on the corners of images of letters under 𝜔𝑛 are quite restricted.

Therefore, we have the following inclusion:

RecurrentVertices(𝐺2×2
𝜔𝑛
)

⊆

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(
𝑎 𝑏
𝑐 𝑑

)����������
there exist 𝑒, 𝑓 , 𝑔, ℎ ∈ T𝑛 such that
𝑎 is the bottom right letter of 𝜔(𝑒),
𝑏 is the bottom left letter of 𝜔( 𝑓 ),
𝑐 is the top right letter of 𝜔(𝑔),
𝑑 is the top left letter of 𝜔(ℎ)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(
𝑎 𝑏
𝑐 𝑑

)���������
𝑎 ∈ {𝑏𝑛−1

𝑛 , 𝑔𝑛−1
𝑛 }

𝑏 ∈ { 𝑗0,1,0,0𝑛 , 𝑗0,1,0,1𝑛 , 𝑗0,0,0,1𝑛 , 𝑗0,0,0,0𝑛 }
𝑐 ∈ {𝑤𝑛−1,𝑛−1

𝑛 , 𝑤𝑛,𝑛−1
𝑛 , 𝑤𝑛−1,𝑛

𝑛 , 𝑤𝑛,𝑛
𝑛 }

𝑑 ∈ {𝑏𝑛−1
𝑛 , 𝑔𝑛−1

𝑛 }

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

The above set has size 2× 4× 4× 2 = 64. Of those, only four belong to L(Ω𝑛) because the choice made
for the tile b imposes a unique choice for the tiles a, d and c. Thus, using Lemma 10.6, we obtain

L(Ω𝑛) ∩ RecurrentVertices(𝐺2×2
𝜔𝑛
)

= L2×2 (Ω𝑛) ∩ RecurrentVertices(𝐺2×2
𝜔𝑛
)

⊆
{(

𝑏𝑛−1
𝑛 𝑗0,0,0,0𝑛

𝑤𝑛−1,𝑛−1
𝑛 𝑏𝑛−1

𝑛

)
,

(
𝑔𝑛−1
𝑛 𝑗0,1,0,1𝑛

𝑤𝑛,𝑛
𝑛 𝑔𝑛−1

𝑛

)
,

(
𝑏𝑛−1
𝑛 𝑗0,1,0,0𝑛

𝑤𝑛,𝑛−1
𝑛 𝑔𝑛−1

𝑛

)
,

(
𝑔𝑛−1
𝑛 𝑗0,0,0,1𝑛

𝑤𝑛−1,𝑛
𝑛 𝑏𝑛−1

𝑛

)}
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From Lemma 10.4, we conclude that the Wang shift Ω𝑛 is minimal and Ω𝑛 = X𝜔𝑛 . �

10.3. The Wang shift Ω𝑛 is minimal when 𝑛 = 1

From Theorem E, T𝑛 is equivalent to the 16 Ammann Wang tiles when 𝑛 = 1. We know from [24] that the
16 Ammann Wang tiles are self-similar and that the self-similarity is recognizable (the decomposition
of every configuration into the 16 supertiles shown in [24, Figure 11.1.6] is unique). This corresponds
to the case 𝑛 = 1 of Theorem A proved here. Therefore, from Lemma 10.1, we have X𝜔1 ⊆ Ω1. The goal
of this section is to prove that the equality holds and therefore that Ω1 is minimal. Note that minimality
of Ω1 was not proved in [24], neither in the more recent works about Ammann A2 tilings [1, 15].

The proof made in the previous section for 𝑛 ≥ 2 does not directly work for 𝑛 = 1 because it is
not true anymore that next to a junction tile is never a junction tile. Indeed, when 𝑛 = 1, two junction
tiles can be adjacent horizontally or vertically. This observation changes the description of vertical and
horizontal dominoes that appear in the language.

Adapting the proof made above for 𝑛 ≥ 2 to the case 𝑛 = 1 is possible. But, instead of doing this,
we have chosen to provide a proof based on computer experiments in order to check that the criterion
provided in Lemma 10.4 is satisfied. We hope that it may be useful to study other examples.

Lemma 10.9. The Wang shift Ω1 is minimal and Ω1 = X𝜔1 .

Proof. From Theorem C, the 2-dimensional substitution 𝜔1 is primitive. Also, 𝜔1 is expansive. From
Theorem A, the Wang shift Ω1 is self-similar, satisfying Ω1 = 𝜔1 (Ω1)

𝜎
. Therefore, we may use

Lemma 10.4 to show the minimality of Ω1.
We compute below the patterns inL𝑠 (Ω1) andL𝑠 (X𝜔1) for every size 𝑠 ∈ {2×2, 2×1, 1×2}. As we ob-

serve below, these sets are equal. Therefore, it is not necessary to compute RecurrentVertices(𝐺𝑠
𝜔1).

We define 𝜔1 as a 2-dimensional substitution over the alphabet {0, 1, 2, . . . , 15} according to the label-
ing of the tiles shown in Figure 31. We compute the patterns of size 𝑠 ∈ {2 × 2, 2 × 1, 1 × 2} in the
substitutive subshift X𝜔1 :

1sage: from slabbe import Substitution2d
2sage: omega1 = Substitution2d({0: [[9], [15]], 1: [[6], [7]], 2: [[13], [14]], 3: [[6]], 4:

[[5], [7]], 5: [[12, 4], [11, 3]], 6: [[12, 1], [11, 3]], 7: [[8, 4]], 8: [[13, 0],
[14, 3]], 9: [[12, 4], [14, 3]], 10: [[12, 1], [14, 3]], 11: [[6, 2]], 12: [[9, 0],
[15, 3]], 13: [[8, 4], [15, 3]], 14: [[10, 2]], 15: [[9, 0]]})

3sage: patterns_1x2_in_subst_shift = set((a,b) for [[a,b]] in omega1.list_dominoes(direction
="vertical", output_format="list_of_lists"))

4sage: len(patterns_1x2_in_subst_shift)
530
6sage: min(patterns_1x2_in_subst_shift) # show some minimal element
7(0, 5)
8sage: patterns_2x1_in_subst_shift = set((a,b) for [[a],[b]] in omega1.list_dominoes(

direction="horizontal", output_format="list_of_lists"))
9sage: len(patterns_2x1_in_subst_shift)
1030
11sage: min(patterns_2x1_in_subst_shift) # show some minimal element
12(0, 1)
13sage: patterns_2x2_in_subst_shift = sorted(omega1.list_2x2_factors())
14sage: len(patterns_2x2_in_subst_shift)
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1551
16sage: min(patterns_2x2_in_subst_shift) # show some minimal element
17[[0, 5], [3, 7]]

We choose a solver to compute the dominoes and 2×2 patterns below. Three reductions are available:
to a mixed-integer linear program, to a SAT instance or to an exact cover problem solved with Knuth’s
dancing links algorithm [31]. We use Knuth’s algorithm because it performs well and it is in SageMath
by default.

18sage: solver = "dancing_links" # other options are: solver="gurobi" or solver="kissat"

We define the set T1 of Wang tiles in an order consistent with the labeling of the tiles with the indices
in the set {0, 1, 2, . . . , 15} as shown in Figure 31. We compute the patterns of size 𝑠 ∈ {2×2, 2×1, 1×2}
in the Wang shift Ω1:

19sage: from slabbe import WangTileSet
20sage: tiles = [("111", "012", "112", "001"), ("111", "001", "111", "000"), ("112", "012", "

112", "011"), ("112", "112", "111", "111"), ("111", "011", "112", "000"), ("011", "001
", "011", "012"), ("011", "011", "012", "012"), ("012", "112", "011", "112"), ("001",
"000", "001", "011"), ("001", "001", "011", "011"), ("001", "011", "012", "011"), ("
001", "111", "000", "111"), ("000", "000", "001", "001"), ("000", "001", "011", "001")
, ("011", "111", "000", "112"), ("012", "111", "001", "112")]

21sage: T1 = WangTileSet(tiles)
22sage: T1
23Wang tile set of cardinality 16
24sage: patterns_1x2_in_sft = T1.dominoes_with_surrounding(i=2, radius=1, solver=solver)
25sage: len(patterns_1x2_in_sft)
2630
27sage: min(patterns_1x2_in_sft) # show some minimal element
28(0, 5)
29sage: patterns_2x1_in_sft = T1.dominoes_with_surrounding(i=1, radius=1, solver=solver)
30sage: len(patterns_2x1_in_sft)
3130
32sage: min(patterns_2x1_in_sft) # show some minimal element
33(0, 1)
34sage: patterns_2x2_in_sft = T1.tilings_with_surrounding(2,2, radius=3, solver=solver)
35sage: patterns_2x2_in_sft = sorted(pattern.table() for pattern in patterns_2x2_in_sft)
36sage: len(patterns_2x2_in_sft)
3751
38sage: min(patterns_2x2_in_sft) # show some minimal element
39[[0, 5], [3, 7]]

We compare the sets of horizontal dominoes, vertical dominoes and 2 × 2 patterns computed above
within the language of the substitutive subshift X𝜔1 and within the language of the Wang shift Ω1. We
observe their equality:

40sage: patterns_1x2_in_subst_shift == patterns_1x2_in_sft
41True
42sage: patterns_2x1_in_subst_shift == patterns_2x1_in_sft
43True
44sage: patterns_2x2_in_subst_shift == patterns_2x2_in_sft
45True

Therefore, the above computations prove that we have the following equality:

L𝑠 (Ω1) = L𝑠 (X𝜔1)

for every size 𝑠 ∈ {2 × 2, 2 × 1, 1 × 2}. Thus, for every size 𝑠 ∈ {2 × 2, 2 × 1, 1 × 2}, we have

L(Ω1) ∩ RecurrentVertices(𝐺𝑠
𝜔1) ⊂ L𝑠 (Ω1) = L𝑠 (X𝜔1) ⊂ L(X𝜔1).

From Lemma 10.4, we conclude that Ω1 is minimal and Ω1 = X𝜔1 . �
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10.4. Proof of Theorem D

Theorem D. For every integer 𝑛 ≥ 1, the Wang shift Ω𝑛 is minimal and is equal to the substitutive
subshift Ω𝑛 = X𝜔𝑛 .
Proof. If 𝑛 = 1, then Ω1 is minimal and Ω1 = X𝜔1 from Lemma 10.9. If 𝑛 ≥ 2, then Ω𝑛 is minimal and
Ω𝑛 = X𝜔𝑛 from Proposition 10.8. �

11. Open questions

Note that the 𝑛𝑡ℎ metallic mean is a quadratic Pisot unit; that is, it is an algebraic unit of degree two, and
all its algebraic conjugates have modulus strictly less than one. The other quadratic Pisot units are the
positive roots of 𝑥2−𝑛𝑥+1 for 𝑛 ≥ 3. The family of quadratic Pisot units has nice properties [10, 32, 41];
see also [3]. The continued fraction expansion of the positive root of 𝑥2 − 𝑛𝑥 + 1 is [𝑛 − 1; (1, 𝑛 − 2)∞].
In particular, it is not purely periodic.
Question 1. Let 𝛽 be a positive quadratic Pisot unit which is not a metallic mean. Can we construct a
self-similar set of Wang tiles whose inflation factor is 𝛽?

An alternative question is about those quadratic integers whose continued fraction expansion is purely
periodic.
Question 2. Let 𝛽 be a positive quadratic integer whose continued fraction expansion is purely periodic.
Does there exist a set of Wang tiles such that the shift is self-similar with inflation factor equal to 𝛽?

The procedure explained in [24, p.594–598] starts from the Ammann A2 shapes shown in Figure 1
and constructs a set of 16 Wang tiles which we show in Theorem E to be equivalent to the set T1.
A question we can ask is whether this construction can be inverted. More precisely, starting from the
Ammann set of 16 Wang tiles, can we recover the two Ammann shapes shown in Figure 1 with their
Ammann bars? In general, we ask the following question.
Question 3. For every integer 𝑛 ≥ 1, can we find geometrical shapes with Ammann bars on them such
that encoding their tilings by rhombi along a pair of Ammann bars is equivalent to the tiles T𝑛?

Theorem E together with the discussion [24, p.594–598] is an answer to Question 3 when 𝑛 = 1. An
answer to Question 3 would shed light on Mr. Ammann’s remarkable insights [57].

Relation to the work of Mozes

Let 𝑛 ≥ 1 be an integer and recall the 1-dimensional substitution

𝜌𝑛 =

{
a ↦→ ab𝑛

b ↦→ ab𝑛−1

over alphabet {a, b} defined in the proof of Lemma 9.2. The incidence matrix of 𝜌𝑛 is
( 1 1
𝑛 𝑛−1

)
whose

characteristic polynomial is 𝑥2 − 𝑛𝑥 − 1, and whose Perron–Frobenius dominant eigenvalue is the 𝑛𝑡ℎ

metallic mean. A right dominant eigenvector is
(

1
𝛽𝑛−1

)
and a left dominant eigenvector is ( 𝑛 𝛽𝑛−1 ).

Following the theory on inflation tilings [5, §6], a stone inflation associated with the substitution 𝜌𝑛
gives a volume of n to the letter a and a volume of 𝛽𝑛 − 1 to the letter b. The stone inflation induced by
the direct product 𝜌𝑛× 𝜌𝑛 of the substitution 𝜌𝑛 with itself in the sense of [43, §6] is shown in Figure 30;
see also [5, Example 5.9]. Note that another substitution with same inflation factor and often used in
examples illustrating metallic means is a ↦→ a𝑛b, b ↦→ a [5, Remark 4.7].

From the work of Mozes [43], we know that there exists a tiling system given by a finite set of tiles
and a finite set of matching rules such that the tiling system is a symbolic extension of the substitutive
dynamical system generated by the 2-dimensional substitution 𝜌𝑛 × 𝜌𝑛 over a four-letter alphabet. Since
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Figure 30. Stone inflation associated with the direct product of the substitution 𝜌𝑛 with itself with
inflation factor equal to 𝛽𝑛, the 𝑛𝑡ℎ metallic mean. The size of the rectangles are given by the entries of
a Perron–Frobenius dominant left-eigenvector of the incidence matrix of 𝜌𝑛. The figure is drawn with
parameter 𝑛 = 4. Color is added to the tiles to differentiate them and visually link them to the tiles in T𝑛.

the substitution 𝜌𝑛 × 𝜌𝑛 is recognizable (or has ‘unique derivation’, using the vocabulary of Mozes),
the tiling system constructed by Mozes is even measure-theoretically isomorphic to the substitutive
dynamical system. Note that the construction of an equivalent tiling system out of a substitution was
extended to geometric substitutions [23].

In this contribution, we provide an explicit construction of a tiling system Ω𝑛 which is a symbolic
extension of the 2-dimensional substitutive subshift defined by 𝜌𝑛 × 𝜌𝑛. The set of Wang tiles deduced
from [43] when applied on 𝜌𝑛 × 𝜌𝑛 would be much larger than (𝑛 + 3)2. This raises a question about the
optimality of a tiling system for 2-dimensional substitutions.

Question 4. Is the size of T𝑛 optimal? In other words, does there exist a set T of Wang tiles of cardinality
#T < (𝑛 + 3)2 such that the Wang shift ΩT is isomorphic to the 2-dimensional substitutive subshift
X𝜌𝑛×𝜌𝑛?

A. Appendix A: The substitutions 𝜔𝑛 for 1 ≤ 𝑛 ≤ 5

Figure 31. Substitution 𝜔1.
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Figure 32. Substitution 𝜔2.
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Figure 33. Substitution 𝜔3 (rotated 90 degrees counterclockwise).
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Figure 34. Substitution 𝜔4 (rotated 90 degrees counterclockwise).
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Figure 35. Substitution 𝜔5 (rotated 90 degrees counterclockwise).
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B. Appendix B: Proving the self-similarity of Ω2 in SageMath

In this section, we illustrate how Theorem A can be proved in SageMath for a specific but not too big
integer 𝑛 ≥ 1. Since the proof of Theorem A given in this article was deduced from such computer
experiments performed for small values of n, we hope that the approach shown below can be used to
study and show the self-similarity of other aperiodic set of Wang tiles.

We use here a method proposed in [35] to study the substitutive structure of the Jeandel–Rao Wang
shift [26]. The method is based on the notion of marker tiles (not to be confused with the notion of marker
used in Lemma 10.1.8 from [40]). A nonempty subset 𝑀 ⊂ A is called markers for the direction 𝒆2
within a subshift 𝑋 ⊂ AZ2 if for every configuration 𝑥 ∈ 𝑋 , the positions of the markers are nonadjacent
rows; that is, 𝑥−1 (𝑀) = Z × 𝑃 for some set 𝑃 ⊂ Z such that 1 ∉ 𝑃 − 𝑃. A symmetric definition holds
for markers for the direction 𝒆1. It was proved that the existence of marker tiles allows to decompose
uniquely a Wang shift. Informally, marker tiles are merged with the tiles that appear just on top of (or just
below) them. Remaining tiles are kept unchanged. The search for markers and the construction of the
substitution is performed by two algorithms FindMarkers and FindSubstitution. Their pseudocode
can be found in [35]; see also the chapter [37] where a simpler example is considered.

Below, we prove the self-similarity of Ω𝑛 when 𝑛 = 2 using SageMath [54] with optional package
slabbe [38]. The algorithms FindMarkers and FindSubstitution are used twice horizontally and
then twice vertically. The computations show that every configuration inΩ2 can be decomposed uniquely
into 25 supertiles. The 25 supertiles are equivalent to the original set of 25 tiles. Thus, the Wang shift
Ω2 is self-similar and we compute the self-similarity.

We choose a solver to search for markers and desubstitutions below.

46sage: solver = "dancing_links" # other options are: solver="gurobi" or solver="kissat"

First, we define the set T2 of Wang tiles.

47sage: from slabbe import WangTileSet
48sage: tiles = [("111", "013", "113", "002"), ("111", "002", "112", "001"), ("112", "013", "

113", "012"), ("112", "113", "111", "112"), ("113", "113", "112", "112"), ("111", "012
", "113", "001"), ("111", "001", "112", "000"), ("112", "012", "113", "011"), ("112",
"112", "111", "111"), ("113", "112", "112", "111"), ("111", "011", "113", "000"), ("
011", "001", "012", "013"), ("011", "011", "013", "013"), ("012", "112", "011", "113")
, ("013", "112", "012", "113"), ("001", "000", "002", "012"), ("001", "001", "012", "
012"), ("001", "011", "013", "012"), ("001", "111", "000", "112"), ("002", "111", "001
", "112"), ("000", "000", "002", "002"), ("000", "001", "012", "002"), ("011", "111",
"000", "113"), ("012", "111", "001", "113"), ("013", "111", "002", "113")]

49sage: T2 = WangTileSet(tiles)
50sage: T2_tikz = T2.tikz(ncolumns=10, scale=1.2, label_shift=.15)

Then, we search for markers for the direction 𝒆1 (such markers appear on nonadjacent columns). We
fusion the markers with the possible tiles appearing on their right (thus the marker appear on the left
side of each pair).

51sage: T2.find_markers(i=1, radius=1, solver=solver)
52[[0, 1, 2, 5, 6, 7, 10, 11, 12, 15, 16, 17, 20, 21]]
53sage: M = [0, 1, 2, 5, 6, 7, 10, 11, 12, 15, 16, 17, 20, 21]
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54sage: U1, s1 = T2.find_substitution(M=M, i=1, radius=2, solver=solver, side="left")
55sage: s1_tikz = s1.wang_tikz(domain_tiles=U1, codomain_tiles=T2, ncolumns=5, scale=1.2,

label_shift=.15, direction="left", extra_space=1.2)

The resulting set of Wang tiles (shown above at the source of the arrows) is obtained by concatenating
the top and bottom labels of the merged pairs:

56sage: U1_tikz = U1.tikz(scale=1.4, label_shift=0.15)

57sage: U1.find_markers(i=1, radius=1, solver=solver)
58[[0, 1, 2, 3, 4, 5, 6]]
59sage: M = [0, 1, 2, 3, 4, 5, 6]
60sage: U2, s2 = U1.find_substitution(M=M, i=1, radius=1, solver=solver)
61sage: U2_tikz = U2.tikz(scale=1.7, label_shift=0.15, ncolumns=12)
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62sage: U2.find_markers(i=2, radius=1, solver=solver)
63[[9, 10, 11, 12, 13, 14, 15, 16, 24, 25, 27, 28, 29, 30, 31, 32, 33]]
64sage: M = [9, 10, 11, 12, 13, 14, 15, 16, 24, 25, 27, 28, 29, 30, 31, 32, 33]
65sage: U3, s3 = U2.find_substitution(M=M, i=2, radius=1, solver=solver, side="left")
66sage: U3_tikz = U3.tikz(scale=1.9, label_shift=0.1)

67sage: U3.find_markers(i=2, radius=1, solver=solver)
68[[0, 1, 2, 3, 4, 5, 6]]
69sage: M = [0, 1, 2, 3, 4, 5, 6]
70sage: U4, s4 = U3.find_substitution(M=M, i=2, radius=1, solver=solver)
71sage: U4_tikz = U4.tikz(scale=2.2, label_shift=.1)

It turns out that tiles with indices 11, 14, 20, 27 are not needed within the above set of tiles as they do
not have a surrounding of radius 2 as confirmed by the following computation. Thus, they cannot appear
in any tiling. In fact, they correspond to antigreen tiles and other tiles proved to be illegal in Section 7.
We compute the remaining twenty five tiles below.

72sage: U5 = U4.tiles_allowing_surrounding(radius=2, solver=solver)
73sage: U5_tikz = U5.tikz(scale=2.1, label_shift=.1)
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74sage: U4_tiles = U4.tiles()
75sage: U5_tiles = U5.tiles()
76sage: d = {i:U4_tiles.index(U5_tiles[i]) for i in range(len(U5))}
77sage: from slabbe import Substitution2d
78sage: s5 = Substitution2d.from_permutation(d)

We confirm that the set 𝑈5 is equivalent to the set T𝑛 of Wang tiles we started with. We extract the
bijection s6 between the indices of the tiles. Also, it gives a bijection for the horizontal edge labels and
vertical edge labels. Both are equal. This bijection corresponds to the map 𝜏𝑛 when 𝑛 = 2 defined in
Section 5.1.

79sage: T2.is_equivalent(U5)
80True
81sage: _,vert_bijection,horiz_bijection,s6 = T2.is_equivalent(U5, certificate=True)
82sage: vert_bijection == horiz_bijection
83True
84sage: vert_bijection
85{’113’: ’012112’, ’111’: ’013113’, ’112’: ’012113’, ’012’: ’002112113’, ’011’: ’002113113’,

’013’: ’002112112’, ’001’: ’012113113’, ’000’: ’013113113’, ’002’: ’012112113’}

One may compare the bijection computed above with the map 𝜏𝑛 defined in Section 5. The only
difference is that the image of the label 003 does not appear in the computed bijection above because it
is does not appear as an edge label in the set T2.

The self-similarity is:

86sage: self_similarity = s1*s2*s3*s4*s5*s6
87sage: self_similarity

0 ↦→
(

1 8 9
16 19 24

)
, 1 ↦→

(
5 8 4

16 23 14

)
, 2 ↦→

(
1 8 9

21 18 23

)
, 3 ↦→

(
7 9

17 23

)
, 4 ↦→

(
5 8

16 23

)
,

5 ↦→
(

1 8 4
16 23 14

)
, 6 ↦→

(
5 3 4

11 13 14

)
, 7 ↦→

(
1 8 4

21 22 13

)
, 8 ↦→

(
7 4

12 13

)
, 9 ↦→

(
5 3

11 13

)
,

10 ↦→
(

1 3 4
11 13 14

)
, 11 ↦→ �	


5 3 4
6 8 9

20 18 19

��
, 12 ↦→ �	

1 3 4
6 8 9

20 18 19

��
, 13 ↦→ �	

7 4

10 8
15 19

��
, 14 ↦→ �	

5 3
6 8

15 19

��
,
15 ↦→ �	


0 3 4
1 8 9

21 18 23

��
, 16 ↦→ �	

5 3 4
6 8 9

20 18 23

��
, 17 ↦→ �	

1 3 4
6 8 9

20 18 23

��
, 18 ↦→ �	

2 4
7 9

17 23

��
, 19 ↦→ �	

2 4
5 8

16 23

��
,
20 ↦→ �	


0 3 4
1 8 9

16 19 24

��
, 21 ↦→ �	

5 3 4
6 8 9

15 19 24

��
, 22 ↦→ �	

2 4
7 9

17 19

��
, 23 ↦→ �	

2 4
5 8

16 19

��
, 24 ↦→ �	

0 3
1 8

16 19

��
.

The characteristic polynomial of the incidence matrix of the self-similarity is:

88sage: matrix(self_similarity).charpoly().factor()

(𝑥 − 1)3 · (𝑥 + 1)5 · 𝑥11 · (𝑥2 − 6𝑥 + 1) · (𝑥2 + 2𝑥 − 1)2

The self-similarity shown with the associated Wang tiles:

89sage: sim_tikz = self_similarity.wang_tikz(domain_tiles=T2, codomain_tiles=T2, ncolumns=5,
scale=1.2, label_shift=.15)
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