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Abstract

For every positive integer 7, we introduce a set 75, made of (1 + 3)%> Wang tiles (unit squares with labeled edges).
We represent a tiling by translates of these tiles as a configuration 72 5 T, A configuration is valid if the common
edge of adjacent tiles has the same label. For every n > 1, we show that the Wang shift €,,, defined as the set of valid
configurations over the tiles 7, is self-similar, aperiodic and minimal for the shift action. We say that {Q,}, > isa
family of metallic mean Wang shifts, since the inflation factor of the self-similarity of €2, is the positive root of the
polynomial x2 — nx — 1. This root is sometimes called the n-th metallic mean, and in particular, the golden mean
when n = 1, and the silver mean when n = 2. When n = 1, the set of Wang tiles 77 is equivalent to the Ammann
aperiodic set of 16 Wang tiles.
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1. Introduction

One of the most well-known aperiodic tilings was discovered by Penrose. In its original version, four
shapes derived from the regular pentagon can be used to tile the plane, and none of the allowed tilings
are periodic [48]. Penrose tilings were soon given an equivalent description in terms of multigrids or
cut and project schemes [12]; see also [24, §10] and [5, §6.2]. The aperiodic structure of Penrose tilings
is explained by the properties of a specific irrational number: the positive root ¢ of the polynomial
x2 —x — 1, also known as the golden ratio or golden mean. For example, in the kite-and-dart version of
the Penrose tilings, the ratio of kites to darts is equal to the golden ratio [49].

Recently, the discovery of an aperiodic monotile [58] attracted a lot of attention [60, 6, 2]. Smith and
coauthors presented a single shape, a 13-edge polygon called the hat, whose isometric copies tile the
plane but never periodically. Again, the golden ratio appears in tilings by the hat. In a tiling by isometric
copies of the hat, both the hat and its mirror image appear (up to orientation preserving isometries —
that is, translations and rotations). The frequency of the hat and its mirror image in a tiling are not
equal. The ratio of the most frequent orientation of the hat to the least frequent one is equal to the fourth
power of the golden ratio.! Two months later, the same authors discovered another aperiodic tile called
Spectre, which does not need its mirror image to tile the plane [59]. Tilings by the Spectre are not all
combinatorially equivalent to tilings by the hat: some are periodic (if the reflected tile is allowed). But
every tiling by the hat tile is combinatorially equivalent to some Spectre tiling.

Other examples of aperiodic tilings are related to the golden mean, including Ammann A2 L-shaped
tiles [4] (also studied in [, 15]); see Figure 1. The golden mean also appears in the description of tilings
generated by the Jeandel-Rao aperiodic set of 11 Wang tiles [26]: the frequency of the tiles [34], the

1The figure [58, Fig. 2.11] shows a substitution where the image of a shape H7 contains 5 shapes Hg and 1 shape H7 and the
image of the shape Hg contains 6 shapes Hg and 1 shape H7. Shape H7 contains 6 hats and 1 anti-hats; shape Hg contains 7 hats
—3¢+5

and 1 anti-hats. We compute that the Perron—Frobenius dominant right-eigenvector ( 3p—4

) of the incidence matrix ( ; é) of the

T 4 .
substitution is mapped to ( ¢ ) by the matrix (§7).
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Figure 1. Two shapes belonging to the Ammann A2 family. The matching conditions are given by what
are called Ammann bars appearing as dashed and solid lines in the interior of the tiles and which must
continue straight across the edges of the tiling. This is a reproduction of Figure 10.4.1 from [24]. See
also Figure 12 from [1].

inflation factor of its self-similarity [33, 35], and the slopes of its nonexpansive directions [36] are all
expressed in Q(¢).

It is then natural to ask whether there are aperiodic tilings out there such that the ratios of tile
frequencies are not in Q(¢). It turns out that there are many. Recall that the first examples of aperiodic
tilings provided by Berger [8], simplified by Knuth [30] and Robinson [53], are described by substitutions
whose inflation factor is an integer (2 in this case). Many other substitutive and aperiodic planar tilings
have an integer inflation factor and are listed in [5, §6.4]. It includes the chair tiling [52], the sphinx
tiling [63], the (1 + & + £%)-tiling [50] and the Taylor and Socolar-Taylor tilings [61].

Many substitution tilings with non-integer inflation factor are known. Various types of planar aperi-
odic substitution tilings with n-fold rotational symmetry involving cyclotomic numbers were described
in recent years [22, 29, 17, 47, 28]; see the sections [18, §1.7] and [5, §7.3]. Examples of algebraic non-
Pisot aperiodic tilings were portrayed in [5, §6.5]. Moreover, substitution tilings with transcendental
inflation factor were recently proposed in [19] using compact alphabets.

Closer to golden mean are other algebraic integers, starting with those of degree two, for which
aperiodic tilings exist. In Ammann A4 and A5 aperiodic tilings [24], the ratio of frequency of the two
involved tiles is V2 [4, p. 22]. Nowadays these tilings are known as Ammann—Beenker tilings [5, §6.1]
since their algebraic properties were independently described in [7]. In [4], the question whether there
exist sets of aperiodic prototiles associated with irrational numbers other than V2 and the golden ratio
was mentioned. But they had ‘no conjecture concerning the characterization of all numbers that are
possible for such ratios’ of frequencies of tiles.

The inflation factor of Ammann—Beenker substitution tilings is 1 + V2 [5, Prop. 6.2]. This number is
sometimes called the silver mean because its continued fraction expansion is [2;2, 2, . .. ], where that of
the golden mean is [1;1,1,...]. The golden mean and the silver mean belong to a larger family made
of the positive root of the polynomial x> — nx — 1, where 7 is a positive integer:

n+vVn2+4 1
Po=—F——=nt——1—
n+ i
n+—

We refer to this root as the n'” metallic mean [46]. These numbers were called silver means [56] and
noble means in [5, §4.4] (note that noble numbers was already defined in [56, Appendix B, p. 392—
394] for a different meaning). Observe also that the definition of metallic means from [13] is larger,
as it contains all positive roots of polynomial x> — px — ¢, where p and g are positive integers. In this
contribution, we consider only the metallic means, in the sense of de Spinadel, which are algebraic
units; thatis, p > 1l and g = 1.
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When a tiling space is preserved by a substitution, it is also preserved by powers of this substitution.
Since odd-powers of metallic means are metallic means, we know substitution tilings for infinitely many
other metallic means. In particular, the inflation factor of the third power of the substitution for Penrose
tilings is the 4'" metallic mean 35 = B4. Also, the inflation factor of the third power of the substitution
for Ammann-Beenker tilings is the cube of the silver ratio, which is the 14’ " metallic mean ,83 = B4,
etc. For more information, we refer the reader to the OEIS [45] where indices of metallic means that are
powers of other metallic means are listed as sequence A352403.

In recent years, new discoveries were made in the theory of quasicrystals related to metallic mean
numbers. A self-similar hexagonal quasicrystal whose inflation factor is the 3"¢ metallic mean (also
called bronze-mean) was described in [14]. It is given by a substitution rule involving a small and a
large equilateral triangles and a rectangle; see [20]. Their construction was further extended to every
(3n)!" metallic mean in [44] where n > 1 is a positive integer.

Our contribution

In this contribution, we introduce a new family of aperiodic tiles using the oldest known shape for
aperiodic tiles: the unit square. Unit squares with labeled edges and tilings of the plane by infinitely
many translated copies of them were considered by Wang [66] with the condition that adjacent tiles must
share the same label on the common edge. Such tiles are nowadays called Wang tiles. A set of Wang
tiles is aperiodic if it admits at least one valid tiling, and none of them is periodic. The first known
aperiodic set of tiles was discovered by Berger [8]: a set of 20426 Wang tiles. Many smaller examples
were discovered thereafter, and we refer the reader to [26] for an overview of these developments leading
to the discovery of the smallest possible size (= 11) for an aperiodic set of Wang tiles.

For every positive integer n, we construct a set 7,, made of (n + 3)> Wang tiles, and we consider the
subshift 2, defined as the set of valid configurations 72 — T,, over these tiles. We also say that Q,, is a
Wang shift because it is a subshift defined from a set of Wang tiles. The set 7, is the disjoint union of
5 sets of tiles:

n? white tiles,

n yellow horizontal stripe tiles and n yellow vertical stripe tiles,

n blue horizontal stripe tiles and n blue vertical stripe tiles,

n + 1 green horizontal overlap tiles and n + 1 green vertical overlap tiles,
7 junction tiles.

O O O O ©

We observe that the sum of cardinalities of the five subsets is n2 +2n +2n +2(n+ 1) +7 = (n + 3)2.
The sets 7, of Wang tiles for n = 1,2,3,4,5 are shown in Figure 2, and rectangular valid tilings over
the sets 7, forn = 1,2, 3,4 are shown in Figure 3, Figure 4, Figure 5 and Figure 6.

The family of Wang shift (£2,,),>1 has too many nice properties to hold in one article. In this first
article dedicated to its study, we focus on its substitutive properties. Its dynamical properties and the
consideration of 7, as the set of instances of a computer chip will be considered separately in a follow-up
contribution.

The main result of the current contribution is to prove that the Wang shift Q,, is self-similar for
every integer n > 1. The self-similarity is given by a 2-dimensional substitution over an alphabet of size
(n + 3)%. The self-similarity is not a bijection, but informally it is essentially one. This is formalized
with the terminology of recognizability (one-to-one up to a shift) and surjectivity up to a shift. See
Section 2 for the definition of Wang shifts and Section 3 for the definition of 2-dimensional substitutions,
self-similarity and recognizability.

Theorem A. For every integer n > 1, the set T, containing (n + 3)> Wang tiles defines a Wang shift

Q,, which is self-similar. More precisely, there exists an expansive and recognizable 2-dimensional
—_——
substitution w,, : &, — Q, which is onto up to a shift — that is, such that Q,, = w, () .
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Figure 2. Metallic mean Wang tile sets T, forn =1,2,3,4,5.

The proof of Theorem A is the same for every integer n > 1. Indeed, we show that every configuration
in Q,, can be decomposed uniquely into rectangular blocks that we call return blocks. These return blocks
and their right, top, left and bottom labels are in bijection with an extended set 7,] > 7, of Wang tiles.
Then we show that in the extended Wang shift Q;, D €,, defined from the extended set 7,/ of Wang tiles,
only the tiles in 7, appear. Thus, Q! C Q,. This shows that Q,, = Q;, and that Q,, is self-similar.

As a corollary, we deduce that the Wang shift Q,, is aperiodic.

Corollary B. For every integer n > 1, the Wang shift Q, is aperiodic.

Our second result is that the self-similarity is primitive. As in the 1-dimensional case, we say that a
2-dimensional substitution w is primitive if there exists m € N such that, for every a, b € A, the letter b
occurs in w" (a).

Theorem C. For every integer n > 1, the 2-dimensional substitution w, : Q, — Q, is primitive.
The Perron—Frobenius dominant eigenvalue of the incidence matrix of w,, is 82, the square of the n'"
metallic mean number, and the inflation factor of w, is By.

https://doi.org/10.1017/fms.2025.10069 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10069

6 S. Labbé

—o11_[2000_] _111_]2001_]Jo00_I 111_[Joo1_I _111_]_or1_[Jo60_[ 111_[2001_]2000_] 111_]2009_] 111_[_011_
5 QP - G- - G - QAP - VAR - 9 - 4
0117|0017 [ 71127 | Tora™ [T 017 | T112” | Tour™ | T112” | o1 | Tp01” | T112” | Ton1T | 01T [ T1i2T | Tonn” |12 | Vot
o1t [ oot | 112 [ oi1 [ 004 [ 112 [ 011 [ 112 | 011 [ 004 | 112 | 011 | 00% | 112 011 | 112 ]| 0L
/e o e S g i e o) el a5 g ol (S ey fa S o i o] fofan fadi o -
00~ | To00™ | 7111 | So00™ | To00™ | 7115 | Sao | "111° | Sood™ | Tooa™ | 7111 | So00™ | To00™ | 7115 | Soeo” | "111° | Sood
2000_ [ 2000_ ] _111_].2000_] 2000_1 1111 J000_| _i11_[2000_[2000_ [ _111_[2000_[2000_] 111_]2000_[ 111_12000_
P i€ EIEP €GBl ClElE D € PGl D" C P CElE 0.6 D ¢
0117 | 70017 [ 111~ [T0117 [T 017 | T111 | 0017 | 111 | 0117 | 0017 | <111 |"0117 |~ 017 ST | 017 [ 111 | 011
o11_[door_] _111_[ ot Joor_I _i111_[door_| 111 [ o11_][door_] _111_[_o11_[d001_] 111_[Zo01_] _111_[_o11
B ~lE CIEIR|Ic BIREMSISTEIE |IBVL|IS B |IBISIE. S|EASISTEE |IBI(S S
0127 | Ton1™ [T 112”7 | Vo1 | Ton” [ T112” | Tonr™ [T 112 Mo12T | Tonr” [T 112 Yo12” | 01T | T12T | TonaT | 112 | V012
012 [ ott | 112 | 012 [ 004 [ 112 [ 011 [ 112 [ 012 [ 011 | 112 | 012 | 00% | 112 011 | 112 | 012,
R ol el ad it o) i fadiiay jati of heiuied ladi of Heliiiie] ciiie et o) oy o S i of i e el e
o11” |“pog | T111™ | V001 | Te00 | T111™|~00d” | T111™ | “o11™ | Moo | 111 | oot | Teoo | T111™ | “ood” | T111™ | Voot
—o11_ldoo0_] _111_]2001_] J000_I 111l dooo_| 111_[_o11_[Jooo_[ _111_[d001_[2000_] 111l J000_] 111_[2001_
K/ g /S £ YK S S S/ R
0117|001 | T1127 | To11™ | Tgor” | T111 | o1 | 112 | MoudT | gor” | T112T | To11T | gor” | 111 | @01 | 1127 | To11
o11_[do01_ [ iz [ cona [ Joor_t 111 ona_| 12| om1_|doon_ [ _r12_[_o11_[d001_[ 111_[J001_[ _112_[ 011
S F=ui = | o Fc = g, = o o) e ey o SR = e ol e
0127 | To12” | 7112”7 | Vo1 | "o ™ [ 7112 | M1 | 119 Mo12T | Toa2” | T112™ | Mo12” | Tg01” | T12T | To12™ | T112™ | V012
o12_[_o12 [ 112 [ o12_ [ o011 | 112 [ o012 | 112 [ o012 [ o012 | 112 [ o012 | foox [ 112 [ 012 [ 112 [ 012
20121, 012 1, 112, 0121, L1, | 112410121, 012 0z 012,
o feiad e ol feilii o] oSty fagit o] hefiiad fadit of el ©] Seioa fas ey fa S ad g ol el aicl IR ©
011 | “oo1™ | T111™ | Y011 | Me0d” | "1™ Neor | T111 | Yo11” | Meor | "1™ | Neor | Teoo” | T111” | Vor | T111” | Vo1l
o1_[door_] _111_]o11_Jdooo_I _111_|Jdoor_I 111 _or1_|[doon_[ _111_[d001_[d000_] 111_]J001_] 111_[_o011_
oL mE CIRIN |t BIBALSISIE R |IBUN|IS  BIELSISTE (S |IEALS|IS S C|E |IR o
0127 | To11™ [ 1127 | Mo |07 | T112” | Toar™ [T 112 Mo12T | Tg0rT | 112 | To11™ | T p01” | T12” | TonaT | 112 | V012
o12_f ou [ 112 | ot |, poy [ 112 [ o1t [ 112 [ 012 [ 004 [ 112 [ 011 [ 04 [ 112 [ 011 [ 112 | 012
— = | = —_ — | = i | = | — —

G E" = — = — : : = — : 5 S : : : B : — — = = | = == —
011 | S0d™ | 111 | So00™ | oo™ | 7111 | Shoo™ | "101® | Sooa” | Tooo” | =111° | Sood™ | Tooa™ | 7111 | So00™ | "111° | Sos
o11_[2000_] _111_].2000_] 2000_1 1111 Jo00_| 111_ | Z001_[2000_ [ _111_[2000_[2000_] 111_]2000_] 111_[2001_
x / £ / J A / £ /J /I
0117 | 0017 | T111” | T011™ | gorT [ T111 | 0017 | T112T | ToadT | gorT [ T111T | 0117 | go1” | 111 | go1T | 1127 | To1l
o11_[door_] _111_]o11_]oor_I _111_|Jdoor_|_i12_|_or1_|[doon_[ _111_[_o11_[ 001 ] 111_]J001_] _t12_[_o11_
= i = =] e e = == =S o R g, = = o~ | B ASIS i ey = o | e
0127 | Ton1™ [T 1127 | Vo1 | T0a” [ T112” | To12” | 112 Mo12T | Tonr™ [T 112 Yo12” | 017 | Tr12” | To12” | T112” | V012
o012 [ o1 [ 112 | _o12 [ o1 [ 112 [ o1z | 112 | o12 [ o11 | 112 [ o1 | loo1 | 112 [ o12 | 112 [ o012
I o) o e ol ey e o ey o] T o e ey S ad i ol el fei R ©
0117 | "o | 111 | oo™ | Tood | 111 | Neor | T111™ | Yo11” | Meod” | "1™ | Neor” | Teoo” | T111” | Veor | T111” | Vo1l
o11_ldoo0_] _111_]2001_] Jooo_I _111_|Joo1_I 111 _o11_[Jooo_[ _111_[d001_[d000_] 111_]2001_] 111_[_011_
. QP - G- - G- - QVARP- - QAP - 9 - 4
0117 | 0017 | T1127 | To11™ | gor” [ T112T | ToarT | 112 | MoudT | gor” | T112T | To11T | gor” [ 112 [ TorrT [T 112” | Vo1l
—ou1_| Joon_ [ _112_[ o11_] Joon_ [ _112_| _o11_[_112_]_o11_[door_[_112_|_o11_[Joo1_|_112_[_o11_|_112_|_o11_
g 2|gve|lg elg 2gve 2 2|8 2|8 glgve 2 2|gve 2 8 /s
%) = | = = = N | N = | = — 1© = | = o | N = | = — 1©) = | = — 1 — —
0127 | To12™ | T112 | Mo12™ | To12™ | T112™ [ Mor2T | T112¥ | Mo12™ | To12T | T112™ [ MorgT | Ton2T | T112™ | Vo129 | T112™ | V012
012 [ 012 | 112 |, 012 | 012 [ 112 [ 013 [ 112 [ 012 [ o12 [ 112 [ 012 [ 013 [ 112 [ 012 [ 112 | 012
012 ], 12, 012 SOZ ), 1121, 012, ), 012, - 012,
CT] fel e fa ] iv ey lagghe] e ey fadi o Fe IR vl e ey jagiie] el fa g ol I ©
o1t | Bor™ | 110 | Sou® [ Soor™ | P10 | Soi™ | P101® [ Fons®™ | Bor™ | =11 | Sont® | Bor” | 7110 oo™ | P11 | B
o11_[door_] _111_]o11_[oor_I _111_|Joor_I 111 [ _o11_|[doon_[ _111_[_o11_[d001_] 111_]J001_] 111_[_o011_
oo mlE CIRIR |t BIREASISIE IR |IBUN|IS BRSBTS SEASISTE|E |IR o
0127 | To11™ [ 112”7 | Vo1 | Te0a7 [ T112” | Toar™ [T 112 MongT | Tonr™ [T 112 Yo12” | Tg01” | T112” | TonaT | T112” | V012
012 [ ott [ 112 [ 012 [ 004 [ 112 [ 011 [ 112 | 012 [ 011 | 112 | 012 | 001 | 112 011 | 112 ] 012
8 1 | Roh /e S /i g ol el ol el e e ol et fag far S o i o] e e o) oS
011 | %06~ | 7111 | oo™ | o0~ | 7111 | S0 | "111® | Soas®™ | Sooo” | =111° | Soon™ | Tooa™ | 7111|000~ | "111° | Soos
D000 Sl | 001 2000 | i | 2000, 1 i1 | 011|000 i1 | 001|000 (i (2000 11 | 001,
K/ G /S 0 L YK S HEK S/
011717017 [F112™ [ Torr™ [T goa” [ Srar | ort” | 1127 NourT [T 017 | T112™ | Ton1™ | T goi” [Tt | gor” | -112” | Toll
SO [00n [tz | 011 [ 00 [ 011 [ 12 [ 01 [ 00T [ iz, [ 011, [ 001 [l | 001 [ 112 [ 011y
I ==y = o e gl = | = & BB SIE. EIE SIE BE F|EALS[S e ol e
0127 | To12” | T112% | Mo1g | Tonn™ |12 Mor2™ | T112” | Mong™ | Toa2” | T112 | Mor2” | Tgoa” | T2 | o1 | T112” | 012
012 [ 012 | 112 [ 012 [ o1t [ 112 [ 012 [ 112 | 012 | 012 | 112 | 012 | D01 | 112 | 012 | 112 | 012

R o el O el ey o] T o (g i ja oy jegi el Feiia faliic

o1t | Sor™ | 110 [ Sou® [ So0d™ | P10 | Soi™ | P10 [ Foas®™ | Booa™ | =111° | Soor” | Tooa™ | 7110 | Soor™ | P11 | B
o11_[door_] 111 [ o11_dooo_I 11| Joor_| 111 [ _o11_]|door_] _111_][J001_[doo0_] 111_[2001_] _111_[_o11
5, EC s (D - G- cEAE- - GO - GEp - -
(O3 ' 75 e S ' B - ) i S T B T N e S T S S i S T O
o012 [ 011 [ 112 [_ o1 [ loox [ _r12 [ o11 [ _112_| or2 | Joor | 112 | o11 [ joor [ 112 [ o11 [ 112 [ o012
O] e e ol iy oy fan i i o e o g o g o
011 | oo | 111" Y000 | 000 | "111™ | o0 | T111™ | Yooa” | Teod” | 111|000 | oo | T111” | “e0d” | T111 | “o01

https://doi.org/10.1017/fms.2025.10069 Published online by Cambridge University Press

Figure 3. A valid 17 X 23 pattern with Wang tile set T;.
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Figure 4. A valid 17 X 23 pattern with Wang tile set ;.
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Figure 5. A valid 17 X 23 pattern with Wang tile set T3.
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Figure 6. A valid 17 X 23 pattern with Wang tile set .
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Our third result is that the Wang shift Q,, is minimal; that is, if X € Q, is a nonempty closed
shift-invariant subset, then X = Q,,. Equivalently, every shift orbit is dense, which implies that every
configuration in w,, is uniformly recurrent. Every small set of aperiodic Wang tiles does not satisfy this
property. For instance, the Robinson Wang shift is not minimal [21], and neither is the Jeandel-Rao
Wang shift [35]. The proof of minimality is based on a criterion involving the patterns of shapes 1 x 2,
2 x 1 and 2 x 2 and their images under the substitution; see Lemma 10.4.

Theorem D. For every integer n > 1, the Wang shift Q,, is minimal and is equal to the substitutive
subshift Q, = X,,, .

In a tiling of the plane by the two shapes shown in Figure 1 respecting the matching condition, there
appear what are called Ammann bars. In this case, the slopes of the Ammann bars take four different
values: two slope values for the dashed Ammann bars and two slope values for the solid Ammann bars.
As explained in [24, p.594-598], the solid bars can be regarded as the edges of a new tiling by rhombs
and parallelograms, for which the dashed bars can be regarded as markings on the tiles specifying the
matching conditions. Sixteen parallelogram tiles arise from this construction which can be recoded as
16 Wang tiles. As we show in Theorem E, the Ammann 16 Wang tiles are equivalent to 77, the first
member of the family 7, when n = 1.

Theorem E. When n = 1, the set T, is equal, up to symbol relabeling, to the Ammann set of 16 Wang
tiles.

Thus, the family (7,),»1 can be considered as an extension of the Ammann set of Wang tiles to the
metallic mean numbers.

Structure of the article

In Section 2, we present preliminaries on dynamical systems, subshifts and Wang shifts. In Section 3, we
recall definitions of 2-dimensional substitutions. In Section 4, we introduce two Wang shifts Q, C Q;,
defined by the sets 7,, C 7,/ of Wang tiles. In Section 5, we define two substitutions w, : Q; — €/ and
wn : Qy — Q,. In Section 6, we describe the return blocks in the Wang shifts €2,, and Q;,, and we prove
that every configuration in the Wang shift Q,, can be desubstituted into a configuration from €/,. In
Section 7, we prove that tiles in 7,; \ 7,, do not appear in configurations of Q/,. Thus, Q;, C Q,. Observe
that Section 7 depends on the results from Section 5 and Section 6. In Section 8, we prove that Q,, is
self-similar and aperiodic. In Section 9, we prove that the self-similarity is primitive. In Section 10,
we prove that Q,, is minimal. In Section 11, we state some questions raised by the current work. The
article finishes with two appendices. Section A (Appendix A) gathers pictures of the substitutions w,, for
1 < n < 5. In Section B (Appendix B), we prove the self-similarity of Q, when n = 2 using computer
explorations.

2. Preliminaries on Wang shifts

This section follows the preliminary section of the chapter [37].

2.1. Topological dynamical systems

Most of the notions introduced here can be found in [65]. A dynamical system is a triple (X,G,T),
where X is a topological space, G is a topological group and T is a continuous function G X X — X
defining a left action of G on X: if x € X, e is the identity element of G and g, i € G, then using additive
notation for the operation in G, we have T(e,x) = x and T(g + h,x) = T(g, T (h,x)). In other words, if
one denotes the transformation x — T(g,x) by T8, then T8*h = T8Th 1n this work, we consider the
Abelian group G =Z X Z.

IfY c X, let Y denote the topological closure of ¥ and let Y o= UgecT4(Y) denote the T-closure
of Y. A subset Y C X is T-invariant if Y = Y. A dynamical system (X, G, T) is called minimal if X
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does not contain any nonempty, proper, closed T-invariant subset. The left action of G on X is free if
g = e whenever there exists x € X such that 78 (x) = x.

Let (X,G,T) and (Y, G, S) be two dynamical systems with the same topological group G. A homo-
morphism 6 : (X,G,T) — (Y,G,S) is a continuous function € : X — Y satisfying the commuting
property that S8 o @ = 0 o T8 for every g € G. A homomorphism 6 : (X,G,T) — (¥, G,S) is called
an embedding if it is one-to-one, a factor map if it is onto, and a topological conjugacy if it is both
one-to-one and onto and its inverse map is continuous. If 6 : (X,G,T) — (Y, G, S) is a factor map,
then (Y, G, S) is called a factor of (X,G,T) and (X,G,T) is called an extension of (Y, G, S). Two
dynamical systems are topologically conjugate if there is a topological conjugacy between them.

2.2. Subshifts and shifts of finite type

In this section, we introduce multidimensional subshifts, a particular type of dynamical systems
[40, §13.10], [55, 39, 25]. Let A be a finite set, d > 1, and let AZ be the set of all maps x : Z¢ — A,
equipped with the compact product topology. An element x € AZ s called configuration, and we write
itasx = (xm) = (X : m € Z%), where x,, € A denotes the value of x at m. The topology on AZ s
compatible with the metric defined for all configurations x, x” € AZ by dist(x,x") =27 min{ [In | - %, }
where ||r|| = |n{|+- - -+|ng|. The shift action o : n +— o™ of the additive group Z¢ on AZ! s defined by

(0" (X))m = Xm+n (2.1

for every x = (xp) € A and n € Z4.1f X ¢ AZ’, let X denote the topological closure of X and let
X7 = {o™(x) | x € X, n € Z¢} denote the shift-closure of X. A subset X C AZ? is shift-invariant if
X7 =Xx. A closed, shift-invariant subset X C AZ" is a subshift. If X ¢ A% is a subshift, we write
o = X for the restriction of the shift action (2.1) to X. When X is a subshift, the triple (X, 74, o)isa
dynamical system and the notions presented in the previous section hold.

A configuration x € X is periodic if there is a nonzero vector n € Z¢ \ {0} such that x = o (x), and
otherwise it is nonperiodic. We say that a nonempty subshift X is aperiodic if the shift action o on X
is free.

For any subset S c Z9 let rs : AZ' — AS, denote the projection map which restricts every x € A%’
to S. A pattern is a function p € AS for some finite subset S ¢ Z¢. To every pattern p € A corresponds
a subset 7r§1 (p) c AZ! called cylinder. A nonempty set X C AZ" is a subshift if and only if there
exists a set F of forbidden patterns such that

X ={xeA¥ | 75 0 0™ (x) ¢ F forevery n € Z¢ and § c Z9}; 2.2)
{x € A% y

see [25, Prop. 9.2.4]. A subshift X C AZ" is a subshift of finite type (SFT) if there exists a finite set F
such that (2.2) holds. In this article, we consider shifts of finite type on Z X Z — that is, the case d = 2.

2.3. Wang shifts

A Wang tile is a tuple of four colors (a, b, c,d) € I X J X I x J where I is a finite set of vertical colors
and J is a finite set of horizontal colors; see [66, 53]. A Wang tile is represented as a unit square with
colored edges:
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C E D
AOB|B1C||C2A
D C E

Figure 7. The set of 3 Wang tiles introduced in [66] using letters {A, B, C, D, E} instead of numbers
from the set {1,2,3,4,5} for labeling the edges. Each tile is identified uniquely by an index from the set
{0, 1,2} written at the center each tile.
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Figure 8. A finite 3 X 3 pattern on the left is valid with respect to the Wang tiles since it respects
Equations (2.3) and (2.4). Validity can be verified on the tiling shown on the right.

For each Wang tile 7 = (a, b, ¢, d), let Rigut(7) = a, Tor(7) = b, LEFT(7) = ¢, Bortom(7) = d
denote respectively the colors or labels of the right, top, left and bottom edges of 7.

Let 7 = {to,...,tm-1} be a set of Wang tiles as the one shown in Figure 7. A configuration
x 17> = {0,...,m— 1} is valid with respect to 7 if it assigns a tile in 7 to each position of Z2, so that
contiguous edges of adjacent tiles have the same color; that is,

RIGHT(tx(n)) = LEFT(tx(n14e,)) 2.3)

TOP(l‘x(n)) = BOTTOM([X(,H,eZ)) 2.4

for every n € Z> where e; = (1,0) and e, = (0, 1). A finite pattern which is valid with respect to I/ is
shown in Figure 8.

Let Qr c {0,...,m — 1}ZZ denote the set of all valid configurations with respect to 7, called the
Wang shift of 7. To a configuration x € Q7 corresponds a tiling of the plane R? by the tiles 7 where
the unit square Wang tile 7, () is placed at position n for every n € 72, as in Figure 8. Together with the
shift action o of Z2, Q7 is a SFT of the form (2.2) since there exists a finite set of forbidden patterns
made of all horizontal and vertical dominoes of two tiles that do not share an edge of the same color.

A configuration x € Q7 is periodic if there exists n € Z?\ {0} such that x = o™ (x). A set 7 of Wang
tiles is periodic if there exists a periodic configuration x € Q. Originally, Wang thought that every set
T of Wang tiles is periodic as soon as Q7 is nonempty [66]. Wang noticed that if this statement were
true, it would imply the existence of an algorithm solving the domino problem — that is, taking as input
a set of Wang tiles and returning yes or no whether there exists a valid configuration with these tiles.
Berger, a student of Wang, later proved that the domino problem is undecidable and he also provided a
first example of an aperiodic set of Wang tiles [8]. A set T of Wang tiles is aperiodic if the Wang shift
Q7 is a nonempty aperiodic subshift.

2.4. Directional determinism

A set T of Wang tiles is called SW-deterministic if there do not exist two different tiles in 7 that would
have the same colors on their bottom and left edges, respectively [27]. In other words, for all colors C}
and C», there exists at most one tile in 7 whose bottom and left edges have colors C; and Cy, respectively.

LetS={aj,a;+1,...,b1} x{az,ar+1,..., by} be arectangular support where ay, by, ay, b, are
integers such that a; < by and a; < by. Let p : S — 7T be a valid rectangular pattern over the tiles 7.
We say that the bottom labels of p and top labels of p are, respectively, the sequences
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BortoM(pg,.a4,), BOTTOM(P4y+1,4,)s - - - » BOTTOM(pp, 4,) and

TOP(pal,bz)» TOP(pa1+],b2), cees TOP(pbl,bz)

read on the pattern from left to right. Also, we say that the left labels of p and right labels of p are,
respectively, the sequences

LEFT(pa,.a,)> LEFT(Pa, ar+1)s - - - » LEFT(pg, p,) and
RIGHT(Pp, a,), RIGHT(Pb, ap+1), - - - » RIGHT(Pp, 1,)

read on the pattern from bottom to top.
As shown in the next lemma, the local definition of SW-deterministic sets of Wang tiles extends into
a wider property on rectangular patterns.

Lemma 2.1. Let T be a SW-deterministic set of Wang tiles. If p and q are two rectangular valid patterns
with the same shape, the same sequence of bottom labels and the same sequence of left labels, then p = q.

Proof. By contradiction, suppose that there are two distinct rectangular patterns p and ¢ whose sequence
of bottom labels is X and sequence of left labels is Y. Since p and ¢ are distinct, there exists a position
k € N? such that py # gy. Consider such a position in the support of p and ¢ which minimizes the norm
[|k]l;. Since the position is minimal, every tile at position smaller in norm is the same in both patterns.
In particular, it implies that LErt(pg) = LerT(q%) and BortoM(py) = Bortom(gy). The set of Wang
tile 7,, is SW-deterministic. This implies that Top(py) = Tor(q) and RiguT(py) = RiGuT(g4). Since
the four labels of the Wang tiles are the same, we must have p; = gy, a contradiction. We conclude the
uniqueness of the rectangular pattern. O

NW-, NE- and SE-deterministic sets of Wang tiles are defined analogously. Recall that it was shown
in [27] that there exist aperiodic tile sets that are deterministic in all four directions simultaneously.

3. Preliminaries on 2-dimensional substitutions

Rectangular 2-dimensional substitutions and their symbolic dynamical systems were considered in [43].
For a certain class of 2-dimensional substitution systems, it was shown how to construct a set of Wang
tiles such that the associated Wang shift is an almost everywhere one-to-one extension of the substitution
system [43, Theorem 4.5]. This result was generalized later for geometrical substitutions over polygonal
tiles [23].

In this section, we introduce 2-dimensional substitutions. Our definition and the one presented in
[43] are incomparable. On the one hand, we restrict to the deterministic case (every letter has a unique
image). On the other hand, we extend to different alphabets .A and 5 for the domain and codomain. The
section follows the preliminary section of the chapter [37].

3.1. d-dimensional word

We denote by {e|1 < k < d} the canonical basis of Z¢ where d > 1 is an integer. If i < j are integers,
then [[i, /] denotes the interval of integers {i,i + 1,...,j}. Let n = (ny,...,ng) € N¢ and A be an
alphabet. We denote by A" the set of functions

u:[0,n; — 1] x---x[0,ny — 1] — A.

An element u € A" is called a d-dimensional word of size n = (n1,...,ny) € N on the alphabet
A. We use the notation size(u) = r when necessary. The set of all finite d-dimensional words is
A = Upene A™. A d-dimensional word of size ey + Z‘.J:l e; is called a domino in the direction ey.
When the context is clear, we write A instead of AU-+D . When d = 2, we represent a d-dimensional
word u of size (ny, ny) as a matrix with Cartesian coordinates:
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uo,nz—l e um—l,nz—l
uo’o e unl_l’o

Let n,m € N? and u € A" and v € A™. If there exists an index i such that n; = m; for all

j € {1,...,d} \ {i}, then the concatenation of u# and v in the direction e; is defined: it is the d-
dimensional word u @' v of size (ny, ..., ni_1,n; + m;, nis1, . .., ng) € N¢ given as
: u(a if 0<a; <n;,
o' v@={"" A Osa<m
v(a —nje;) if n; <a; <n;+m;.

The notation u © v was used in [11].
The following equation illustrates the concatenation of 2-dimensional words in the direction e;:

3 10
310 9 9
(1402)9299=00
00 4 5
10 5
and in the direction e:
287 310 287 3 10
739 9 9 7399 9
110fe'f0 0]=]1100 0
667 4 5 667 4 5
743 10 5 74310 5

Let n,m € N and u € A" and v € A™. We say that u occurs in v at position p € N if v is large
enough; that is, m — p — n € N4 and

v(a+p) = u(a)

forall a = (ay,...,aq) € N9 such that 0 < a; < n; with 1 < i < d. If u occurs in v at some position,
then we say that u is a d-dimensional subword or factor of v.

3.2. d-dimensional language

A subset L € A* is called a d-dimensional language. A language L C A is called factorial if for
every v € L and every d-dimensional subword u of v, we have u € L. All languages considered in this
contribution are factorial. Given a configuration x € A% the language £ (x) defined by x is

L(x)={uce A | u is a d-dimensional subword of x}.

The language of a subshift X C A% s Ly = Uxex L(x). Conversely, given a factorial language
LC A*d, we define the subshift

X, ={xe A% | £(x) c L).

A d-dimensional subword u € A** is legal (or allowed) in a subshift X C AZ iy e Lx, and it is
illegal in X if u ¢ Lx [5]. A language L € A* is illegal in a subshift X ¢ AZ if LN Ly = 2.
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3.3. d-dimensional morphisms

Let A and B be two alphabets. Let L C A** be a factorial language. A function w : L — B isa
d-dimensional morphism if for every i with 1 < i < d, and every u,v € L such that u ©' v is defined
and u ©' v € L, we have that the concatenation w(u) ©' w(v) in direction e; is defined and

w(u ' v) = wu) 0 wv).

Note that the left-hand side of the equation is defined since u ©' v belongs to the domain of w. A d-
dimensional morphism L — B* is thus completely defined from the image of the letters in A, so we
sometimes denote a d-dimensional morphism as a rule A — B* when the language L is unspecified.

As noticed by [43, p.144], the images under the morphism of any two letters appearing in the same
row of a word from L have the same height. Symmetrically, the images under the morphism of any two
letters appearing in the same column of a word from L have the same width.

Let L € A* be a factorial language and X7, C AZ! be the subshift generated by L. A d-dimensional
morphism w : L — B** can be extended to a continuous map w : X, — B (over the topology of
subshifts, as defined in Section 2.2) in such a way that the origin of w(x) is at position 0 in the word
w(xy) for all x € X. More precisely, the image under w of the configuration x € X7 is

w(x) = lim U'f(n)w(o'_nl(x“[—nl,nl[[)) e ¥,

where1=(1,...,1) € Z4, f(n) = SIZE(a)(O'_nl(Xlu_nl’oﬂ))) foralln € Nand [m, n[[= [m,n — 1] x

-+ X [mg, ng — 1]]. We say that the map w : X, — B%! is a d-dimensional substitution.
In general, the image of a subshift under a d-dimensional substitution might not be closed under the
shift. But the closure under the shift of the image of a subshift X C AZ* under w is the subshift

0X) ={c*wkx) e B |k ez,x e X} c BY.
This motivates the following definition.

Definition 3.1. Let X, Y be two subshifts and w : X — Y be a d-dimensional substitution. If Y = w(X )0-,
then we say that w is onto up to a shift.

3.4. Self-similar subshifts

In this section, we consider languages and subshifts defined from morphisms leading to self-similar
structures. In this situation, the domain and codomain of morphisms are defined over the same alphabet.

Formally, we consider the case of d-dimensional morphisms A4 — B*' where A = B.
The definition of self-similarity depends on the notion of expansiveness. It avoids the presence of
lower-dimensional self-similar structure by having expansion in all directions.

Definition 3.2. We say that a d-dimensional morphism w : A — A s expansive if for every a € A
and K € N, there exists m € N such that min(size(w" (a))) > K.

Definition 3.3. A subshift X C A%’ is self-similar if there exists an expansive d-dimensional morphism
w: A— A such that X = w(X)U.

Self-similar subshifts can be constructed by iterative application of a morphism w starting with the
letters. The language £, defined by an expansive d-dimensional morphism w : A — A s
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Lo={ue A | u is a d-dimensional subword of w" (a) for some a € A and n € N}.

The substitutive shift X, = X defined from the language of w is a self-similar subshift since
Xy = w(Xw)U holds.

A d-dimensional morphism w : A — A s primitive if there exists m € N such that for every
a,b € A, the letter b occurs in w™ (a). Note that if w is primitive, then the Perron—Frobenius theorem
applies for its incidence matrix M, = (|w(a)|p) b, a)ec.ax4; see [51].

3.5. d-dimensional recognizability

The definition of recognizability dates back to the work of Host, Quéffelec and Mossé [42]. The definition
introduced below is based on some work of Berthé et al. [9] on the recognizability in the case of S-adic
systems where more than one substitution is involved.

Definition 3.4 (recognizable). Let X C AZ and w : X — BZ be a d-dimensional substitution. If
y € ma (.e., y = o*w(x) for some x € X and k € Z¢, where o is the d-dimensional shift map),
we say that (k, x) is an w-representation of y. We say that it is centered if y¢ lies inside of the image
of xg (i.e., if 0 < k < s1ize(w(xg)) coordinate-wise). We say that w is recognizable in X C AZ* if each
y e BZ has at most one centered w-representation (k, x) with x € X.

The self-similarity of €, allows us to conclude aperiodicity of the Wang shift using well-known
arguments (see [62, 42], who showed that recognizability and aperiodicity are equivalent for primitive
substitutive sequences).

The following statement corresponds to only one of the directions (the easy one) of the equivalence
which does not need the notion of primitivity. It was proved for 2-dimensional substitutions in [33]; see
also [37, Proposition 3.6].

Proposition 3.5 [33, Proposition 6]. Let w : A — A be an expansive d-dimensional morphism. Let
—0C
X c A% bea self-similar subshift such that w(X) = X. If w is recognizable in X, then X is aperiodic.

4. The family of metallic mean Wang tiles

For every integer n € Z, we write n to denote n + 1 and n to denote n — 1:

=n+1,

IS 3

=n-1.

For every Wang tile T = (a, b, ¢, d), we define its symmetric image under the positive diagonal as
T=(b,a,d,c):

4.1. The tiles

For every integer n > 1, let
Vo ={(vo,vi,v2) €Z°:0<vg<v; < landv; < <n+1}

be a set of vectors having non-decreasing entries with an upper bound of 1 on the middle entry and
an upper bound of n + 1 on the last entry. The label of the edges of the Wang tiles considered in this
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article are vectors in V,,. To lighten the figures and the presentation of the Wang tiles, it is convenient to
denote the vector (vg, vi,v2) € V,, more compactly as a word voviv,. For instance, the vector (1,1, 1)
is represented as 111.

For every integer n > 1, we define the following set of Wang tiles whose labels belong to the set V/,.
We have n? white tiles whose labels all start with 11:

17

W, = wn = 1l 17 (n* white tiles).

115

‘We have horizontal stripe tiles whose top and bottom labels all start with 11 and whose left and right
labels start with 0. These are divided into four sets according to the first two digits of the left and right
labels which can be 00 (associated with color blue) or 01 (associated with color yellow).

111

B, = bil = 00i 00i |0<i<nm (n + 1 horizontal blue stripe tiles),
11n
111

G, = gﬁ, = 00i 01 |0<i<n (n + 1 horizontal green stripe tiles),
11n
112

Yo=13 9y = ou 017 |1 £i<n (n horizontal yellow stripe tiles),
11n
112

A, = af1 = 0l 00i |1<i<n (n horizontal antigreen tiles).
11n

The set B;, of horizontal blue tiles are those such that both left and right labels start with 00 and
are identified with a horizontal blue stripe. The set Y,, of horizontal yellow tiles are those such that
both left and right labels start with 01 and are identified with a horizontal yellow stripe. The set G,, of
horizontal green tiles are those such that the left label starts with 00 and right label starts with 01 and are
identified with a green region intersecting blue and yellow horizontal stripes. The set A,, of horizontal
antigreen tiles contains the tiles whose left label starts with 01 and whose right label starts with 00.
They are identified with non-intersecting blue and yellow horizontal stripes and no green intersecting
region.

The tiles in A, are called ‘antigreen’ because they are ‘against the system’ as shown later in
Lemma 7.2. Antigreen tiles do not appear in any valid configuration, but they are needed as they play
an important role in the description of the substitutive structure of the valid configurations allowed by
these tiles; see Proposition 5.9 and Proposition 6.7.

We also have vertical stripe tiles which are the symmetric images of the horizontal stripe tiles under
a reflection over the positive diagonal:
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00i

1’37,1 = ZZ = 1ln 111 |0<i<n (n + 1 vertical blue stripe tiles),
00i
0li

Gp = g = 1la 111 |0<i<n (n + 1 vertical green stripe tiles),
00i
0li

Y, = ;Z = 1ln 112 |1 <i<n (n vertical yellow stripe tiles),
01i
00i

;\\n = Zz-ﬁz = 1ln 112 |1 <i<n (n vertical antigreen tiles).
01i

Finally, we have 9 junction tiles (the gray region is drawn in blue or yellow color depending on the
specific values of k, ¢, r, s):

0,r,s)
7= kers o 0,0+ (0.k.0) giffff}
(0, ¢, k +n) -
000 001 011 > - -
= oon |l olnL,I" 015{,", X\ il 1000 % ]001 d ]011
00n Oln O0ln
000 001 011
00n | X |011 Oln 011 Oln 011
Oln O0ln Oln
000 001 011
=< 00n 001 Oln 001 Oln 001 (9 junction tiles).
Oln Oln Oln
000 001 011
00n 000 Oln 000 Oln| % {000
00n 00n 00n

We may observe that white tiles and junction tiles are closed under the reflection over the positive
diagonal:

W, =W, andf,’l =J,.
Junction tiles play a similar role to junction tiles in [43]; thus, we reuse the same vocabulary.
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Figure 9. Extended metallic mean Wang tile sets T, for n = 4. The junction tiles in D are shown with
a X-mark in their center.

4.2. The extended set T, of metallic mean Wang tiles

For every integer n > 1, the extended set of metallic mean Wang tiles is the union of all of the tiles
defined above:

7. =W,UB,UG,UY,UA,UB,UG,UY, UA, UJ..
The set 7,/ of tiles defines the extended metallic mean Wang shift

Q =Qr.

n

The set 7,/ contains n® +2(n+1+n+1+n+n)+9 = n®> + 8n + 13 Wang tiles. The set 7,/ of Wang tiles
for n = 4 is shown in Figure 9.

4.3. The subset T, of metallic mean Wang tiles

We need to define an important subset of the extended metallic mean Wang tiles 7, because some
of the tiles are not necessary as they do not appear in any valid configurations of Q. For example,
we can observe that no tile of 7,/ has label 007 on the left or bottom. Therefore, the last horizontal
blue tile and last vertical blue tile which use label 007 on their top or right edge admit no immediate
surroundings with tiles in 7,/. As shown in Section 7 using results proved in Section 5 and Section 6,
other tiles from 7, do not admit arbitrarily large surroundings. Therefore, it is convenient to remove
them.
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Let

_ n 7n :00,1,1 -1,1,0,0
D - {bn’ bﬁ’ .]n > .]n }

111 00n 011 000
= 00n 00n , 1ln 111, 0lmn| X 000 , 00n X 011
11n 00n 00n 0ln

be the set containing the last blue horizontal and vertical tiles as well as two of the junction tiles. For
every positive integer n, we delete the four tiles of D from 7, as well as all of the antigreen tiles. We
obtain the following subset of metallic mean Wang tiles

7;:7;’\(AnuAnuD)
=W,UB,UG,UY, UB, UG, UY,UJ,,
where B, = B, \ D is the remaining set of n horizontal blue stripe tiles and J, = J;, \ D =
{jﬂ"””’o,jﬂ’l’o’o,j,?"””’l,j,‘}l’o’l,j,l;l"“,jﬂ’l’“,j,i’l’“} is the remaining set of 7 junction tiles. The

set T, contains n> +2(n+n+1+n)+7 = (n+3)> Wang tiles. It is shown in Figure 2 forn = 1,2, 3,4, 5.
The set 7, of tiles defines the Metallic mean Wang shift

Q, =Qr,,

which is a subshift of Q! because 7, C 7,/.

Remark 4.1. The reader may wonder why we need to introduce the extended set 7,/ if only the tiles
in the subset 7, appear in configurations of Q. This is because the extended set is needed to describe
and prove the self-similarity of 7, in Theorem A. In the proof (using the vocabulary of supertiles from
the only article published by Ammann [4]), we show that if the markings of the supertiles at level k are
in bijection with the tiles in 7,,, then the markings of the supertiles at level k + 1 are in bijection with
tiles in 7,/ (not 7,!). In other words, we cannot get rid of the ghost tiles in 7, \ 7, because they keep
reappearing at the next level of the hierarchy in bigger sizes.

4.4. The Ammann aperiodic set of 16 Wang tiles

A reproduction of the Ammann aperiodic set of 16 Wang tiles [24, p.595, Figure 11.1.13] is shown in
Figure 10. The Ammann set of 16 Wang tiles corresponds to 7.

Theorem E. When n = 1, the set T, is equal, up to symbol relabeling, to the Ammann set of 16 Wang
tiles.

Proof. The following is a bijection from the labels of the Ammann set of 16 Wang tiles and the labels
of the tiles in 7;:

1—112, 2111, 3001, 4011, 5012, 6~ 000.

See Figure 10 (note that the order of the tiles is not the same). m|

Thus, the family (7;),>1 can be considered as a generalization of the Ammann aperiodic set of 16
Wang tiles.
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1 3 4 6 1 3 4 6 o012 |[ Joox |[ o012 ][ 112
2 1{|4 3||5 4||3 6 2 1{(4 €3[|5 4[|13 (L6 E E E E 5 E E E
2 4 5 3 2 4 5 3 001 || 000 || 0117 || T111
3 3 4 6 3 3 4 6 o011 _|[4001_1[ Jo11_][ _112
4 4114 6|5 3|3 3 4 4||4 6|5 «3||3 <3 E E E’ E E E E E
5 3 4 4 b 3 4 000 012 012 112
2 2 1 2 2 2 1 2 000_|[ f001_][ 011 111
3 5|6 allas|lc s |Es @Rl s EEE 878l E||S ||EkE
1 1 1 2 1 1 1 2 o011~ || To11™ || To11™ | [ 11T
4 5 3 5 4 5 3 5 000_][ %001 _J[ 111 ][ 111
1o2(1_2[2 2|1 1 12|11 08 2) 120211 1 S 8= 8|8 2|8 2
6 3 6 4 6 3 6 4 0017 || "0017 || 112 | [T 112

Figure 10. Left: a reproduction of the Ammann aperiodic set of 16 Wang tiles [24, p.595, Figure
11.1.13]. Middle: the Ammann aperiodic set of 16 Wang tiles in the same order but with coloring
corresponding to the white, yellow, green, blue and junction tiles of the set T. Right: The set T of Wang
tiles whose edge labels are vectors in N°. The sets are equivalent up to a bijection of the edge labels.

4.5. Symmetric properties

The set 7, has nice symmetric properties. The first being that it is closed under the mirror image through
the positive diagonal; that is, /’T; = T,. Another less evident observation is that the set 7, is equivalent
to its image under a half-turn rotation up to the application of an involution of V,, \ {(0,0,7)} applied
on the edge labels of the Wang tiles.

Lemma4.2. Let o : (i,j, k) — (i,1+i—j,n+1+i— k) (an involution on V,, \ {(0,0,n)}). Then,

o(v) B
7;1 = o(a) o (u) u a € 7;

o(B) v

Proof. When rotating the tiles of 7,, by half a turn and applying the map o on the resulting labels, we
may observe that yellow tiles become blue tiles and vice versa, white tiles are mapped to white tiles,
junction tiles are mapped to junction tiles and green tiles are mapped to green tiles. m

This translates into the existence of nontrivial reflection symmetry and rotational symmetry for the
Wang shift ,,. As we show in this article, it has no translational symmetries.

4.6. Directional determinism
We show in this section that the sets 7, and 7,] are SW- and NE-deterministic.

Lemma 4.3. The sets T, and T,] are SW- and NE-deterministic. However, the sets T,, and T,] are neither
NW- nor SE-deterministic.

Proof. Let us show that 7, is SW-deterministic. Let s,¢ € 7,/ be such that Lerr(s) = u = Lerr(s) and
Borrom(s) = v = BorroMm(t) for some vectors u = (uq, uy,us),v = (vo, vi,v2) € V.

Ifup =0,vo =0, then s,z € J;,.

Ifug=1,vo=1,thens,t € W,.

Ifup=0,vo=1,u; =0and vy =n, then s,t € B,.
Ifup=0,vo=1,u; =0and v, =n, then s,t € G,,.
Ifup=0,vo=1,u; =1and v, = n, thens,t € A,,.
Ifuyg=0,vog=1, u; =1andV2=ﬁ,thens,teZ,L.
Ifug=1,vg=0, v, =0andu2=n,thens,t€§’ﬂ.
Ifug=1,vo=0,vi =0and up =n, then s,t € G,,.

O 0 0O 0O 0O 0o O O
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o Ifup=1,vog=0, vy =1andu2:n,thens,t€;\;.
o Ifuy=1,vo=0,vi =1and up = n, then s,1 € ?;,
One can observe that each of the subsets W, B;,, G, Y,, A,, J,, is SW-deterministic. By symmetry,
EZ, (’}\n, f’:, and Z\n are SW-deterministic. We conclude that s = ¢. Thus, 7,/ is SW-deterministic. Using
a similar argument, one can observe that 7,/ is NE-deterministic. By restriction, the subset 7,, C 7,/ is
SW- and NE-deterministic.

However, 7,, is neither NW- nor SE-deterministic because the subset J,, is neither NW- nor SE-
deterministic. By extension, the extended set 7, is neither NW- nor SE-deterministic. m]

5. A substitution Q,, — Q,

The goal of this section is twofold. First, we introduce a 2-dimensional substitution Q, — €, deduced
from a substitution 7, : V,; — (V},)* defined on the boundary labels of the Wang tiles. Then, we charac-
terize the possible valid rectangular tilings with external labels in the image of 7,,; see Proposition 5.9.

5.1. A I-dimensional substitution for the boundary
It is convenient to define, for every integer n > 1, the following map:
T Vo = (V)

O(x=y+D)n- (11n)2>"1. (1) 1=2  ifx # 2,
xXyz = — —\n— .
O(x—y+D)n - (11n)"* if x = z.
The above formula declines into the following five cases:

7,(000) = 017 - (117)",
7.(111) = 017 - (117)" ",

7,(00) = 01n - (11n)" - (117)"" if0<i<n, (5.1)
7,(017) = 00n - (11n)" - (117)"" if0<i<n,
7,(117) = 0ln - (11n)"~" - (11m)"~" if1 <i<n.

For example, whenn = 1, n = 2 or n = 4, we have

000 — 015,115,115, 115,115

001 - 014, 115, 115,115, 115
88(1) = g}gi}gi}g 002 - 014, 114, 115, 115, 115
= ) ) 003 - 014, 114, 114, 115, 115
88(1) = 83 H; 002 — 012,112,113 004 - 014, 114, 114, 114, 115
— ) 005 - 014, 114, 114, 114, 114
002 — 011,111 003 — 012,112, 112 011 — 004, 115,115,115, 115
011 001’ 112 011 — 002,113,113 012 > 004, 114, 115, 115, 115
T = VUL e, ) 012 — 002,112,113 ° T4) 013 > 004, 114, 114, 115, 115 *
012 — 001,111 013 > 002.112. 112 014+ 004, 114, 114, 114, 115
111 = 012 11 013’ 113’ 015 - 004, 114, 114, 114, 114
112 011 = ) 111+ 015, 115, 115, 115
112 — 012,113 112 +— 014, 115, 115, 115

113+ 014,114,115, 115
114 — 014,114, 114, 115
115+ 014,114,114, 114

113 — 012,112

The map 7, was discovered during computer explorations. It appears naturally when searching for
a self-similarity for the tilings in Q,; see Appendix B in Section B and in particular the output of the
computation performed at line 84.
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p ity ... te—1 )

7,(v) {

Figure 11. A horizontal strip of tiles from T,) made of a bottom right part q of a junction tile and a
sequence tt; . . . tx—1 of horizontal stripe tiles. The bottom labels of the strip is 7,,(v) for some v € V,,.
The top labels of the horizontal stripe tiles is y € (V,,))* and its right-most right label is 6 € V,,.

Lemma 5.1. For every (x,y,z) € V,, the map 1, satisfies the following:

o the length of 7,(xyz) € (V)" isn+1—x;
o the first item of 7, (xyz) is 0(x—y+1)n or O(x—y+1)n;
o there are 7 — x occurrences of *+n in the image of T,,(xyz).

In particular, T, is injective.

Proof. The three items follow from the definition. We prove that 7, is injective. Assume that xyz #
x'y’z’. We want to show that 7,,(xyz) # 7,,(x"y’z’). If x # x’, then the images are distinct because their
lengths are different. If x = x” and y # y’, then the images are distinct because the second digit of their
first item satisfies x—y+1 # x—y’+1. If x = x’, y = y’ and z # 7/, then the images are distinct because
there are z — x occurrences of #xn in the image of 7, (xyz). )

5.2. A substitution w), for the tiles in T,

Let
4 4 4
e e e
e e 7/
O, = y 000 K 001 K 011
00n 0ln 0ln

be the set of possible values for the bottom right part of a junction tile in J},.

Lemma 5.2. Let n > 1 be an integer. For every v € V,,, there exist a unique bottom right part q € Q,,
and a unique sequence tity .. .tx_1 of tiles in T,] such that qtity .. .tx_1 is a valid horizontal strip of
tiles from left to right whose sequence of bottom labels is 1,,(v) where k = |1,,(v)|.

Moreover, if y is the sequence of top labels of t1t, . . . ti—1 and § is its right-most right label — that is,
the right label of t;._1 (see Figure 1) — then the following statements hold.

o Ifv=00iwithQ <i <n, then
— if0<i<n theny=(111)"-(112)" 7 and § = 017,
— ifi=n+1, theny = (111)" and 6 = 00n.

o Ifv=01liwithl <i <n, then
— if1 <i<n, theny = (111)" - (112)" and § = 0ln,
— ifi=n+1, theny = (111)" and § = 00n.

o Ifv=11liwithl <i <n, then
—ifl <i<n theny=(111)"1.(112)"" and § = 0ln,
—ifi=n+1, theny = (111)""! and § = 00n.

In particular, no antigreen tiles appear in the horizontal strip. Also, if v € V,, \ {00n}, then the last blue
tile does not appear in the strip.
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} (112)" {
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Figure 12. Horizontal strip with bottom word 1,,(00i) with 0 < i < n.

} (111)? } (112)n-f ———
horizontal strip with : , 111 111 111 111 112 112O O112
bottom word "4 § § § § § |5O?. |§. __S ? g. 15 I§ 5
7o (01i) with 1 <i <7 !,700n 11n 11n 11n 117 117 11n 117
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} (nr <
horizontal strip with ! , 111 111 111 111 111 L b 1Ll
bottom word Lz § § § § ,% .,8., .g. ..8 g _SI |§ 5 5
7n(0172) = 00n - (11m)™ 1 400 11n 11n 11n 11n 11n 11n 11n

| (11n)" {

Figure 13. Horizontal strip with bottom word 7,(0li) with 1 <i < n+ 1.

Proof. Assume v = 00i with 0 < i < 7. The following three cases occur.

o If i = 0, then the sequence of bottom labels is 7,,(000) = 017 - (11%)", the sequence of top labels is
(112)" and the right-most right label is 017.

o If 1 <i < n, then the sequence of bottom labels is 7,,(00i) = 01n- (11n)"~" - (117)"*1~, the sequence
of top labels is (111)7 - (112)"~ and the right-most right label is 017.

o Ifi = n+ 1, then the sequence of bottom labels is 7,,(00i) = Oln - (11n)", the sequence of top labels
is (111)" and the right-most right label is 007.

The n + 1 tiles of the strip for the three cases are illustrated in Figure 12. We observe that the last blue
tile (the blue horizontal stripe tile with left label 00n) is used in the strip only wheni =n + 1.
Assume v = 01/ with 1 <7 < 7. The following two cases occur.

o If 1 <i < n, then the sequence of bottom labels is 7,,(01i) = 00n - (11x2)"~" - (1172)"*1~, the sequence
of top labels is (111)% - (112)"*~ and the right-most right label is 01n.

o Ifi = n+ 1, then the sequence of bottom labels is 7,,(00i) = 00n - (11n)", the sequence of top labels
is (111)" and the right-most right label is 00n.

The n + 1 tiles of the strip for the two cases are illustrated in Figure 13.
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Figure 14. Horizontal strip with bottom word t,,(11i) with 1 <i < n+ 1.

Assume v = 117 with 1 < i < 7. The following three cases occur.

o If i = 1, then the sequence of bottom labels is 7, (111) = 017 - (1172)"~!, the sequence of top labels
is (112)"~! and the right-most right label is 01n.

o If2 < i < n, then the sequence of bottom labels is 7,,(11i) = Oln- (11x2)i=2- (117)"*!~/, the sequence
of top labels is (111)i~! - (112)"*~ and the right-most right label is 017.

o Ifi = n+1, then the sequence of bottom labels is 7, (11i) = 01n- (11n)"*"!, the sequence of top labels
is (111)"~! and the right-most right label is 00n.

The n tiles of the strip for the three cases are illustrated in Figure 14. O

Since 7, = Tn, Lemma 5.2 has a symmetric version describing the vertical strip of tiles from 7,/ with
left labels equal to 7, («) for some u € V,,. Lemma 5.2 and its symmetric version can be used together
to construct valid rectangular patterns with external boundaries given by the images under the map 7,;
see Figure 16.

B

Lemma5.3. Leta, B, u,v € V. If D a €T, then there exists a unique valid rectangular pattern
v

with tiles in T,] whose right, top, left and bottom labels are respectively t, (@), 7,(B), Tn(u) and 7, (v).

Proof. Letu,v € V,. For every tile in 7,/, the left label starts with O if and only if the right label starts
with 0, and, symmetrically, the bottom label starts with 0 if and only if the top label starts with 0. Since
we have 7,(V,,) € {00n,01n,01n} - {11n, 117}*, any valid rectangular pattern with tiles in 7,] whose
sequence of bottom labels is 7, (v) and sequence of left labels is 7, (u#) can be split into four disjoint
regions: a junction tile at the bottom left corner, a row of horizontal stripe tiles at the bottom, a column
of vertical stripe tiles on the left and a rectangular pattern of white tiles for the remaining rectangle; see

Figure 15.
B
(Existence) Let u,v,a, B € V,, be such thatr = D a € 7T, . First, we show that the junction tile
v

at the bottom left corner of the rectangular pattern with bottom labels 7,,(v) and left labels 7,,(u) is one
of the 9 junction tile in 7,/. For every u,v € V,, we have 7, (u), 7,(v) € {00n,01n,01n} - (V,))*. For
every x,y € {00n, 01n, 017}, there exists a unique junction tile in 7,/ with bottom label x and left label y.
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7, (B)
E 2
_:’ = white
S = tiles
Tn (1) = | = (@)
(111)*(112)*
junction tile %
0 bottom row
T, (V)

Figure 15. The global shape of a rectangular pattern whose sequence of bottom labels is 1,,(v) and
sequence of left labels is 1, (u). The pattern is split into four disjoint parts: the junction tile, the left

column, the bottom row and the white tiles.
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Figure 16. Left: some antigren tile in ). Middle: the images under 4 of the labels of the tile form the
boundary labels of a rectangle. Right: there is a unique rectangular pattern with such boundary words
and tiles in T). As shown in Lemma 5.3, this holds for every n > 1 and for every tile in T, allowing to

define the map w;,.

It remains to show the existence of tiles from 7, to cover the bottom row, the left column and the
region of white tiles while respecting the label constraints; see Figure 15. Again, we proceed case by

case.

Suppose that ¢ is a junction tile in 7,/’; that is, u, v € {00n, 01n, 01n}. We have |1, (1) | = |7, (v)| = n+1.
In order to formalize the argument that follows, it is practical to define the following two maps on the

subset {00n,01n,01n} C Vj,:

o : {00n,01n,01n} — V,

00n — 017, .
0ln > 0ln, ™
017 — 00n,
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Notice that @« = u(v) and 8 = u(u) and o is an involution. Also, if v € {00n,01n,01n}, then
T, o u(v) = o(v) - (11n)". From Lemma 5.2, there exists a unique choice of tiles for the bottom row
whose sequence of top labels is (111)" and right-most right label is 017 if v = 00n, O1n if v = 01n, 00n
if v = 01n. In other words, the right-most right label of the bottom row is o-(v). Symmetrically, there
exists a unique choice of tiles for the left column whose sequence of right labels is (111)" and top-most
top label is o-(u). Since the bottom row is of length n, and white tiles increase the last digit by one, the
remaining region can be uniquely filled with white tiles such that the sequence of right labels of the
rectangular pattern is o-(v) - (11r)" = 1, o u(v) = 7, (). Symmetrically, the sequence of top labels of
the rectangular pattern is o (u) - (117)" = 7, o pu(u) = 7, (B).
B 11i
Suppose thatt = D a = 11j D 117 is a white tile in 7,); thatis, u = 11 with 1 < j < nand
v 11i

v =11i with 1 <i < n. Also, @ = 11 and 8 = 11i. We have |7, ()| = |7, (v)| = n. From Lemma 5.2,
there exists a unique choice of tiles for the bottom row whose sequence of top labelsis (111)*~1-(112)"~
and right-most right label is 01xn. From a symmetric version of Lemma 5.2, there exists a unique choice
of tiles for the left column whose sequence of right labels is (111)/~! - (112)"~/ and top-most top label
is O1n. The remaining region can be uniquely filled with white tiles. In this case, the sequence of right
labels of the rectangular pattern is Oln - (117)/~' - (117)" 7/ = 7,,(11j) = 7, (a). Symmetrically, the
sequence of top labels of the rectangular pattern is 01z - (11n)""! - (117)"™ = 7,(117) = 7,(B).

Suppose that 7 is a horizontal stripe tile in 7,/. We have u = 005 with 0 < j <noru =01; with 1 <
Jj <n. Alsov € {l1n, 11n}. Let

111 ifu=00j with0 < j <n, q 00; ifv=11n,
an a = —
112 ifu=01jwithl <j <n, 017 ifv=11%.

Also, |1,(u)| =n+ 1 and |1,,(v)| = n. There are two cases for v:

o If v = 11n, then from Lemma 5.2, there exists a unique choice of tiles for the bottom row whose
sequence of top labels is (111)*! and right-most right label is 01z.

o If v = 117, then from Lemma 5.2, there exists a unique choice of tiles for the bottom row whose
sequence of top labels is (111)"~! and right-most right label is 00n.

There are two cases for u:

o If u = 00j with 0 < j < n, then from the symmetric version of Lemma 5.2, there exists a unique
choice of tiles for the left column whose sequence of right labels is (111)/ - (112)"~/ and top-most
top label is O17.

o If u =01j with 1 < j < n, then from the symmetric version of Lemma 5.2, there exists a unique
choice of tiles for the left column whose sequence of right labels is (111)7 - (112)"~/ and top-most
top label is O1n.

Thus, the remaining region can be uniquely filled with white tiles, and the sequence of right labels of
the rectangular pattern is

(@) = 0ln- (11n)7 - (117)*7 = 7,(005) ifv =11n,
T 00n - (11n)! - (11R)" = 1,(017)  if v = 117

Symmetrically, the sequence of top labels of the rectangular pattern is

) 017 - (117)" ' = 7,,(111)  ifu =007 with0 < j < n,
T, =
" Oln- (117)" ' =1,(112) ifu=01j with1 < j < n.
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Figure 17. The substitution w}. An X-mark indicates the tiles in J{ \ J;.

Suppose that 7 is a vertical stripe tile in 7,/. A rectangular pattern respecting the constraints can be
obtained by taking the image under reflection of the rectangular pattern constructed above for when ¢ is
a horizontal stripe tile in 7,,.

(Uniqueness) Uniqueness follows from Lemma 2.1 and Lemma 4.3. O

Following Lemma 5.3, we define the following map:

i T (T
B 7 (B)
the unique rectangular (5.2)
u a T (1) (a) |
pattern with external labels
v Tn (V)

For example, the map w/ is illustrated in Figure 17.
Lemma 5.4. The map w,, defines a 2-dimensional substitution w), : Q; — Q.

Proof. From Lemma 5.3, for every tile t € 7,/, the image w,(¢) is a valid rectangular pattern over the
Wang tiles 7,/. Moreover, if s ©' t € (’7:1’)*2 is a valid horizontal domino, then w/,(s ®' #) is a valid
rectangular pattern over the Wang tiles 7. Similarly, if s o’te (T, )*2 is a valid vertical domino, then
w! (s ©* ) is a valid rectangular pattern over the Wang tiles 7,’. Thus, if y € Q/ is a valid configuration,
then w), (y) is also a valid configuration. Therefore, w/,(y) € Q,. O

5.3. A substitution w,, for the tiles in T,

Not all tiles of 7, appear in the image of a tile under the substitution w,. For example, it follows from
Lemma 5.2 that antigreen stripe tiles do not appear in the images of tiles under w;,. Therefore, the
substitution w?, is not primitive.

As it can be observed in Figure 17, some tiles in 7, \ 7| appear in the images of w]. Namely, the
images of the antigreen tiles under w] contain junction tiles in J{ \ J; = {j?’o’l’l, j11,1,0,0
the next lemma, this is the only exception.

}. As shown in

Lemma 5.5. Let n > 1 be an integer and t € T,). The pattern w, (t) contains a tile in T,) \ T, if and
only if n = 1 and t is an antigreen tile.
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Proof. Letn > 1 be an integer. ( <= ) If n = 1, the set of antigreen tiles in 7, is A} U A = {aj,al}.
In Figure 17, we observe that w] (ai) contains the junction tile jll’l’o’o € 7/ \ T and w] (a}) contains
the junction tile j?’o’l’l eT/\ T

B T (B)

(= )Lett = u D @ ¢ T/ The labels of the boundary of w),(r) are 7n(w) To(a@) |

v

0 (V)

Suppose that the pattern w;,(¢) contains a tile in 7,/ \ 7,,. We have v € V,, \ {00n}. From Lemma 5.2,
the bottom row of the pattern w), () does not contain the last blue tile. Also, u € V,, \ {00n}. From the
symmetric version of Lemma 5.2, the left column of the pattern w;,(#) does not contain the last blue
tile. From Lemma 5.2, the pattern w;, () does not contain any antigreen (vertical or horizontal) stripe
tile. Therefore, the pattern w;, () must contain a junction tile in J;, \ J,, = {j,l,’l’o’o, 12’0’“ 1

Suppose that w;, () contains the junction tile j,l,’l’o’o. Therefore, we must have 7,,(v) € 01n - (V,,)*
and 1, (1) € 00n - (V,,)*. Thus, v € {000, 111} and u = 01 with 1 < j < n. We proceed case by case.

o Assume v = 000. The only tile ¢ € 7, with bottom label v = 000 is a blue or green vertical stripe tile
whose left label is u = 11n or u = 11n, a contradiction.

o Assume v = 111 and n > 1. The only tile # € 7,/ with bottom label v = 111 is a white tile whose left
label is u = 11i with 1 < i < n, a contradiction.

o Assume v = 111 and n = 1. The only tile # € 7" with bottom label v = 111 is a white tile whose
left label is u = 111, a blue horizontal stripe tile whose left label is 000 or 001, or an antigreen tile
ai whose left label is 011. Only the antigreen tile does not yield a contradiction with the value of u
given above. Thus, t = a|.

Symmetrically, if w;, (¢) contains the junction tile jS’O"*l, we conclude thatn = 1 and ¢ = a{. O

A consequence of Lemma 5.5 is that if » > 2 and ¢ € 7/, then the pattern w,,(¢) contains only
tiles from 7,,. Also for every n > 1 and ¢ € 7,,, the pattern w/,(¢) contains only tiles from 7,,. Thus, it
becomes natural to restrict the substitution w), to the set 7,,. We obtain the following map w, = w,|7;:

wp Tu - (Ta)*?
Tn (,B )
B
the unique rectangular (5.3)
u a . Tn (1) Tn(@)
pattern with external labels
v T, (v)
The substitutions w,, forn = 1,...,5 are illustrated in Figure 31, Figure 32, Figure 33, Figure 34 and

Figure 35 (in the appendix).
Lemma 5.6. The map w,, defines a 2-dimensional substitution w,, : £, — Q, suchthat w, (Q,,) 7 c Q,.

Proof. From Lemma 5.4, the map w/, defines a 2-dimensional substitution Q;, — Q. From Lemma 5.5,
w;, (x) € Q, for every configuration x € Q,,. Thus, w;, (2,) C Q. The restriction of w, to Q,, is wy, S0
that w, (€2,) € Q,. Since Q,, is a subshift, it is closed under the shift. Therefore, wn(Qn)(r cQ, O

The goal of the next section is to show that Q,, = wn(Qn)(T — namely, that every configuration in
Q, can be desubstituted using w,. The proof of this is completed in Section 8. Following the above
discussion, the 2-dimensional substitution w;, is not primitive, but we show in Section 9 that the
substitution w,, is primitive.
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5.4. A sufficient and necessary condition

The goal of this section is to show that the sufficiency in the statement of Lemma 5.3 is also a necessity
—namely, that every rectangular pattern, with external boundary labeled by images under 7,,, is obtained
from a tile in 7,,. The precise statement is given in Proposition 5.9.

For every integer n > 1, let

Zy ={vovivz2 € V; | vo = 0}
be the set of vectors of V,, such that the first entry is zero and let
My ={voviva € Vy | va 2 n}

be the set of vectors of V,, such that the last entry is n or n.
Lemma 5.7. If

(u,v) € ({117} X Vi \ Zn) U (Vo \ Zp X {1172})
U ({007} X My, O\ Zy) U (My, N Zp, % {007}) (5.4)
U ({007, 0172} X My, \ Zy) U (M, \ Z,, % {007, 017}),

then there exists a unique valid rectangular pattern with tiles in T,) whose right, top, left and bottom
labels are respectively R, T, 1,,(u) and 7,,(v) for some R,T € (V,)*, and there is no (a,B) € V, XV,
such that R = t,(a) and T = 1,(B).

Proof. Suppose that u € V,, \ Z, and v = 11n. We have |1,(u)| = |1, (v)| = n. Since v = 11n, then
from Lemma 5.2, there exists a unique choice of tiles for the bottom row whose sequence of top labels
is (111)"~! and right-most right label is 00n. There are two cases to consider for u:

o Ifu =11 with 1 < j < n, then from a symmetric version of Lemma 5.2, there exists a unique choice
of tiles for the left column whose sequence of right labels is (111)/=1 . (112)"/.

o If u = 11n, then from a symmetric version of Lemma 5.2, there exists a unique choice of tiles for the
left column whose sequence of right labels is (111)"~!.

In both cases, the remaining region of the rectangular pattern can be uniquely filled with white tiles. The
sequence of right labels of the rectangular pattern starts with 00n. Such a sequence cannot be written as
an image under the map 7,, because there is no a € V,, such that 7, (@) starts with 00z and is of length n.

Suppose that u € M, N Z,, = {00n, 00%, 01n,01n} and v = 00n. We have |1,(1)| = |1, (v)| = n + 1.
From Lemma 5.2, there exists a unique choice of tiles for the bottom row whose sequence of top labels
is (111)". Since v = 00n, from a symmetric version of Lemma 5.2, there exists a unique choice of tiles
for the left column whose sequence of right labels is (111)" and top-most top label is 007. Since the
bottom row is of length n, and white tiles increase the last digit by one, the remaining region can be
uniquely filled with white tiles. Since the sequence of top labels of the rectangular pattern starts with
00w, it cannot be written as an image under the map 7.

Suppose that u € {00n,01n} andv € M, \ Z,, = {11n, 11n}. We have |1, (1)| = n+1 and |7, (v)| = n.
From Lemma 5.2, there exists a unique choice of tiles for the bottom row whose sequence of top labels
is (111)". Symmetrically, there exists a unique choice of tiles for the left column whose sequence of
right labels is (111)" and top-most top label is in {00n, 007}. The remaining region can be uniquely
filled with white tiles. The sequence of top labels is in {00z, 007} - (117)"~'. Such a sequence cannot
be written as an image under the map 7, because there is no @ € V,, such that 7, (@) starts with 00n or
007 and is of length n.

Suppose that u = llnand v € V, \ Z,, oru = 00n and v € M, N Z,, or u € M, \ Z, and
v € {007, 01n}. A rectangular pattern respecting the constraints can be obtained by taking the image
under reflection of the rectangular pattern constructed above. O
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117 11n
* * * *
1n 1n
height n — 1 height n — 1
114 113
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113 112
113 112
* * * *
112 111

Figure 18. The height of a valid vertical column made entirely of white tiles from Ty, is at most n — 1 if
the bottom label of the bottom-most tile is 112 or if the top label of the top-most tile is 11n.

Proposition 5.8. Let u,v € V,,. There exists a valid rectangular pattern of tiles in T,] whose sequence
of bottom labels is 1,,(v) and sequence of left labels is 1, (u) if and only if

(U, v) € Va\Zu XV \Z) UM N Zy XMy NZy) UM\ Zy X Z,) U(Zy X Mp \ Z).  (5.5)

Proof. Letu,v € V,.( = ) We show the contrapositive — namely, that if (5.5) does not hold, then there
is no rectangular pattern with 7, («) as the sequence of labels on the left and 7,,(v) as the sequence of
labels at the bottom. If (5.5) does not hold, then

(u,v) 6((Zn XVa\Zy) U (Vu \ Zy X Z) U (Z,, X Zn))
\ (My N Zy X My 0 Zy) U (M \ Zyy X Z) U (Zn X My \ Zy))
= (Zn X Vy \ (Mn Uzn)) U (Vn \ (Mn UZn) X Zn) U (Zn X Zy \Mn) U (Zn \Mn X Zn)-

There are four cases to consider:

o Assume u € Z, andv € V, \ (M,, U Z,). We have v = 11 with 1 < j < n. From Lemma 5.2, the
bottom row of the rectangular pattern has at least one label 112 on its top. Since the difference between
the last digit of the top label and the last digit of the bottom label of a white tile is 1 and the maximal
last digit of a white tile in 7, is 7z, the height of the white tile region is at most n — 1; see Figure 18.
Thus, |7, (u)| < n. This is incompatible with u € Z,, because u € Z,, implies that |7, (u)| = n + 1.

o Assumeu € V,\ (M, UZ,) and v € Z,. This case also leads to a contradiction following an argument
symmetric to the previous one.

o Assume u € Z, and v € Z, \ M. We have v = 00j with0 < j <norv =015 with1 < j < n.In
both cases, we have from Lemma 5.2 that the bottom row of the rectangular pattern has at least one
label 112 on its top. For the same reason as in the first item, the height of the rectangular pattern is
|7 (1)] < n. This is incompatible with u € Z,, because u € Z,, implies that |7, (u)| = n + 1.

o Assume u € Z, \ M, and v € Z,. This case also leads to a contradiction following an argument
symmetric to the previous one.

(&) Let

P=(Vn\ZnXVn\Zn)U(MnﬂZnXMnnZn)U(Mn\ZnXZn)U(ZnXMn\Zn)’
B

0 =1<(u,v) €V, xV, | there exists a, 8 € V,, such that MDG eT)t.
\ %4
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Notice that O C P and

P \ 0= ({llﬁ} X Vi \ Zn) U (Vn \ Zy X {llﬁ})
U ({00n} x M, N Z,) U (M,, N Z, x {00n}) (5.6)
U ({00m,01n} x M, \ Z,) U (M, \ Z,, x {00, 017}).

We assume that (5.5) holds; that is, (1, v) € P. There are two cases to consider.

o If (u,v) € Q, then, from Lemma 5.3, there exists a valid rectangular pattern with tiles in 7,/ whose
left and bottom labels are respectively 7, («) and 7, (v).

o If (u,v) € P\ Q, then using (5.6) and Lemma 5.7, there exists a valid rectangular pattern with tiles
in 7,] whose left and bottom labels are respectively 7, («) and 7, (v). O

Proposition 5.9. Leta, 8, u, v € V,,. There exists a valid rectangular pattern with tiles in T,] whose right,
B

top, left and bottom labels are respectively T, (), 7,(B), 7, (u) and 7,,(v) if and only if u D a eT/
v

Proof. Leta,B,u,v € V,. ( <=) The existence of the rectangular pattern was proved in Lemma 5.3.

( = ) Suppose that there exists a valid rectangular pattern with tiles in 7,/ whose right, top, left
and bottom labels are respectively 7, (@), 7,(8), 7, («) and 7, (v). From Proposition 5.8, (u, v) satisfies
(5.5); that is (u,v) € P. From Lemma 5.7, (u, v) does not satisfy (5.4) because all boundary words can
be written as the image of 7,,. Thus, (u,v) ¢ P\ Q using (5.6). We conclude that («,v) € Q. Thus, there

g
exists @’, 8’ € V,, such that u D o €7, From Lemma 5.3, there exists a valid rectangular pattern
v

with tiles in 7, whose right, top, left and bottom labels are respectively 7, (@), T, (8"), Tn (1) and 7, (v).
From Lemma 2.1, we must have 7,(e”) = 7,(@) and 7,(8’) = 7,,(8) because 7,/ is SW-deterministic
from Lemma 4.3. Since 7, is injective over the set V;,, we have @ = @’ and 8 = f8’. O

Proposition 5.9 is used in Lemma 6.6 in order to desubstitute configurations in Q,, over tiles in 7.
Nevertheless, considering tiles in 7, is necessary for Proposition 5.9 to hold for every integer n > 1.
Following Lemma 5.5, Proposition 5.9 can be restated as follows when n > 2.

Corollary 5.10. Suppose thatn > 2 is an integer and let «, B, u,v € V,,. There exists a valid rectangular
pattern with tiles in T, whose right, top, left and bottom labels are respectively T, (@), T,(B8), T, (u) and
B

T, (v) if and only if MDQ eT7,.
A4

Proof. Leta,B,u,v € V,. (=) follows from Proposition 5.9 since T, C 7,/.
( &) From Lemma 5.5, for every tile t € 7,/, the rectangular pattern wy, () satisfies the boundary
conditions, and it contains only the tiles from the set 7;,. m]

6. A desubstitution Q, «— Q/,

In this section, we decompose configurations in €, and in Q, into rectangular blocks called return
blocks. The external boundary labels of the return blocks within a configuration in Q,, behave like a
new set 7, of Wang tiles which contains 7, as a subset.

6.1. Return blocks in the Wang shift Q,,

In this section, we study some properties of the Wang shift 2/, defined by the Wang tiles 7,,. Since
Tn € T, forevery n > 1, we have Q, C Q;,. Thus, the properties shown for Q;, also hold for Q,,.
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Figure 19. A valid 15 X 15 pattern using the extended set T, of Wang tiles. Note that it contains some
antigreen tiles.

A tiling with the set 7, is shown in Figure 19. We observe the presence of rows and columns of
colored tiles. At the intersection of these colored rows and columns are junction tiles. In other words,
the set of positions of junction tiles in the figure is the Cartesian product of two sets. Also, the distance
between two consecutive junction tiles in the same row or column is 4 or 5. In the following lemmas,
we prove that these observations hold in general.

Lemma 6.1. Let n > 1 be an integer. For every valid configuration ¢ € Q,,, the distance between two
consecutive occurrences of junction tiles in the same row isn, n + 1 or n + 2.

Also, the sequence of bottom labels of the tiles between two consecutive junction tiles (including the
left junction tile but not the right one) belongs to {00n,01n,01n} - {11n, 11n}".

Proof. The horizontal Rauzy graph restricted to tiles whose vertical edge labels are starting with zero
is shown in Figure 20. An arc in the horizontal Rauzy graph links two tiles s — ¢ if and only if the right
label of tile s is equal to the left label of tile . The graph allows to visualize the combinatorial structure
between two consecutive junction tiles on the same horizontal row within a configuration of Q/,.

The right label of a junction tile is 000, 001 or 011, which implies that the last digit of the right label
of a junction tile is 0 or 1. The left label of a junction tile is 00n, 01n or 017, which implies that the last
digit of the left label of a junction tile is n or 7. Since the last digit increases by 1 from the left label to
the right label of every intermediate tile (a tile appearing in between two consecutive junction tiles in
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Figure 20. Combinatorial structure between two consecutive junction tiles on the same horizontal row
within a configuration of Q... The nodes of the graph are placed such that any two tiles appearing in the
same column have the same last digit for its left or right labels. The length of a path from a junction tile
to a junction tileisn, n+ 1 orn+2.

the same row), the number of tiles in between two consecutive junction tiles on the same row is at least
n— 1 and at most n — 0 = n + 1. We conclude that the distance (number of edges in the Rauzy graph)
between two consecutive junction tiles in the same row is n, n + 1 or n + 2. In particular, it is at least n.

The bottom label of a junction tile is in the set {00n, 01n, 017}. The bottom label of every intermediate
tile is 117 or 117. Therefore, the sequence of bottom labels of the tiles between two consecutive junction
tiles (including the left junction tile but not the right one) belongs to {00n, 01n, 0172} - {11n, 11n}*; see
Figure 20. O

Lemma 6.2. Let n > 1 be an integer. For every valid configuration ¢ € Q,,, the distance between two
consecutive occurrences of a vertical stripe tile (blue, green, yellow or antigreen) in the same row is
n—1,norn+1.

Proof. The horizontal Rauzy graph restricted to vertical edge labels starting with 1 is shown in Figure 21.
An arc in the horizontal Rauzy graph links two tiles s — ¢ if and only if the right label of tile s is
equal to the left label of tile #. The graph allows to visualize the combinatorial structure between two
consecutive vertical stripe tiles on the same horizontal row within a configuration of Q..

The right label of a vertical stripe tile is 111 or 112, which implies that the last digit of the right label
of a vertical stripe tile is 1 or 2. The left label of a vertical stripe tile is 11n or 117, which implies that
the last digit of the left label of a vertical stripe tile is n or 7. Since the last digit increases by 1 from
the left label to the right label of every intermediate tile (a tile appearing in between two consecutive
vertical stripe tiles in the same row), the number of tiles in between two consecutive vertical stripe tiles
on the same row is at least n — 2 and at most 7 — 1 = n. We conclude that the distance (number of edges
in the Rauzy graph) between two consecutive vertical stripe tiles in the same row isn — 1, norn+ 1. In
particular, it is at most n + 1. O

Lemma 6.3. Let n > 1 be an integer. For every valid configuration ¢ € Q., there exist two strictly
increasing sequences A, B : Z — Z such that the following hold.
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Figure 21. Combinatorial structure between two consecutive vertical stripe tile on the same horizontal
row within a configuration of Q.. The length of a path from a vertical stripe tile to a vertical stripe tile
isn—1,norn+1.

1. The set of positions of junction tiles in the configuration c is the Cartesian product ¢~'(J!) =
A(Z) x B(Z).

2. The distance between two consecutive occurrences of junction tiles in the same row is n or n + 1;
that is, A(k + 1) — A(k) € {n,n + 1} for every k € Z.

3. The distance between two consecutive occurrences of junction tiles in the same column is n orn+ 1;
that is, B(k + 1) — B(k) € {n,n+ 1} for every k € Z.

Proof. (1) Let

E = {(a1a2a3, 123, Y1Y2Y3,016203) € T,) | @1 =0} € T/,
F = {(a1a2a3, B1B2B3, 17273, 616283) € T,) | B1 =0} C T,,.

Tiles in E have zero as the first coordinate of their right and left edge labels since @1 = ;. Tiles in
F have zero as the first coordinate of their top and bottom edge labels since 8; = ¢;. Notice that we
have EUF C Y, UY,UG,UG,UB,UB,UJ,UA,UA, and ENF =J/.Letc € Q, be a valid
configuration. The positions of tiles from E in ¢ are contiguous rows; that is, there exists B C Z such
that c‘l(E) = Z % B. The positions of tiles from F in ¢ are contiguous columns; that is, there exists
A C Z such that ¢c™'(F) = A x Z. Therefore, the set of positions of junction tiles in c is given by the
Cartesian product of A and B:

Iy =c EnF)=c " (E)Ync(F)=(ZxB)Nn(AXZ)=AXB.

The fact that the sets A and B are the images of increasing maps Z — Z follows from observations (2)
and (3) proved below.

(2) From Lemma 6.1, the distance between two consecutive occurrences of junction tiles in the same
row isn, n+1 or n+2. From Lemma 6.2, the distance between two consecutive occurrences of a vertical
stripe tile (blue, green, yellow or antigreen) in the same row is n — 1, n or n + 1. Since vertical strips and
junction tiles are vertically aligned, the difference between two consecutive elements of A C Z is n or
n+1.Also,ifae A, thena+ne Aora+n+1€ A. Alsoa—ne Aora—n—1¢€ A. Thus, A is the
image of an increasing map A : Z — Z such that A(k + 1) — A(k) € {n,n+ 1} for every k € Z.

(3) From the symmetry of the set 7, of tiles, the same observation holds for the distance between
consecutive junction tiles in the same column. m

Lemma 6.3 means that we can subdivide valid configurations in Q;, by rectangular patterns containing
a unique junction tile at their bottom left corners; see Figure 22.
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Figure 22. Return blocks appearing in Figure 19. Each return block contains a unique junction tile at
its bottom left corner.

Proposition 6.4. Every configuration in Q) can be divided uniquely into rectangular blocks of sizes
nXn, nXn, nXnandn X nwith a unique junction tile at their bottom left corners.

Proof. Let ¢ € Q;, be a configuration. Let A, B : Z — Z be the two increasing maps from Lemma 6.3
such that ¢=!(J!) = A(Z) x B(Z). For every £ = ({1,{,) € Z*, the pattern appearing in c at support
[A(€)), A€ +1) = 1] X [B(£2), B(£y + 1) — 1] is a rectangular pattern containing a unique junction tile
at its bottom left corner. |

We call such a rectangular pattern described in Proposition 6.4 a return block (to a junction tile)
(see Figure 23), following the terminology of return words in combinatorics on words [16, 64]. While
the classical notion of return word is to a single pattern, here the notion of return block is to a subset of
tiles — namely, the junction tiles. From Proposition 6.4, the width (and height) of these blocks is n or
n + 1. On the right of the junction tile within a return block is the bottom row where horizontal blue,
green, yellow or antigreen tiles appear. Similarly, above the junction tile within a return block is the left
column where vertical blue, green, yellow or antigreen tiles appear.

We may observe that the sequences of bottom labels of a return block made of tiles in 7, appearing
completely in Figure 19 and in Figure 22 are in the set

004-114-115-114 - 115,
004-115-114-115- 115,
015-114-115-115- 115,
014-114-115- 115,
014 -115-115- 115,
015-115-115-115

¢ 70 (V). (6.1)

In particular, 004 - 114 - 115- 114 - 115 does not belong to the image of 7, when n = 4. But the sequence
of bottom labels of a return block has a particular structure for configurations in €,,. This is the subject
of the next section.
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Figure 23. A return block is split into four disjoint parts: the junction tile, the left column, the bottom
row and the white tiles. Both its width W and its height H take values in the set {n,n + 1}.
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Figure 24. Combinatorial structure between two consecutive junction tiles on the same horizontal row
within a configuration of Q,,. The nodes of the graph are placed such that any two tiles appearing in the
same column have the same last digit for its left or right labels.

6.2. Return blocks in the Wang shift Q,,

When considering configurations in €,, instead of Q,, there are no antigreen tiles in the row between
two consecutive junction tiles. Thus, Figure 20 simplifies to Figure 24. In particular, in the bottom row
of a return block within a configuration in €, the horizontal blue, green and yellow stripes appear in
this order (when they appear). The same observation holds for the left column of a return block ordered
from bottom to top.

Surprisingly, when the tiles are restricted to the set 7,, the boundary of the return blocks can be
decoded using the map 7, defined in Section 5.

Lemma 6.5. Let r be a return block appearing in a configuration ¢ € Q. The sequences of bottom
labels of tiles in the bottom row of the return block r (from left to right) belong to the set
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T,(V,) ={017- (117)" |n—1<i < n}
U{0ln- (11n)'(110) |i,j >0,n—1<i+j <n}
U {00n - (11n) (117)’ | i,j > 0,i+ j = n}.

Proof. From Lemma 6.1, the sequence of bottom labels of the tiles between two consecutive junction
tiles (including the left junction tile but not the right one) belongs to {00n, 01n, 01n} - {11n, 111}".

In the bottom row of every return block within a configuration in €,,, there is no antigreen stripe
tile, and the horizontal blue, green and yellow stripe tiles appear in this order: blue — green — yellow.
Since the bottom label of a blue horizontal stripe tile is 11n and the bottom label of a green or yellow
horizontal stripe tile is 117, the sequence of bottom labels of tiles in a horizontal row starting from a
junction tile and ending before the next occurrence of a junction tile is in the set

{00n, 01n, 017} - (11n)*(117)".

Some more restrictions are imposed:

o If it starts with 00n, the length of the sequence is n + 1. Indeed, if the bottom label of a junction
tile is 00n, then its right label is 000 with last digit 0. From Figure 24, the width of the return block
containing this junction tile must be n + 1 or n + 2. A return block of width W = n + 2 is impossible
from Proposition 6.4. Thus, the width of the return bock is W = n + 1.

o Also, if it starts with 017, the next label is not 11z and has to be 117. Indeed 017 is the bottom label
of a junction tile with right label 011, and 011 must be the left label of a yellow horizontal stripe tile
with bottom label 11%; see Figure 24.

Restricting the sequences to those of lengths n or 7, we have that the sequence of bottom labels of tiles
in the bottom row of the return block r (from left to right) belongs to the set

{o1m- (11a)' |n—1<i<n}
U{0ln- (11n)'(11n)’ |i,j >0,n—1<i+j <n}
U{00n - (11n) (117) |i,j > 0,i+j =n}
= {7 (111), 7,(000) }
U{t,(000) |1 <i<n+1}U{r,(1li)|2<i<n+1}
U{r,(01i) |1 <i<n+1}
=7(Vy). O

6.3. Desubstitution Q, — Q,

In this section, we prove that every valid configuration with the tiles 7,, can be desubstituted into a valid
configuration over 7,/ using the substitution wy,. It is based on the following lemma which relates return
blocks in Q, to tiles of 7,,.

Lemma 6.6. Let y € Q, be a configuration. For every return block r appearing in y, there exists a

B 7n(B)
unique tilet = v D a €T, such that r = w),(t) with external labels ™ (¥) D Tn(a)
o 75 (6)

Proof. Let y € Q, be a configuration. From Proposition 6.4, the configuration y can be divided into
return blocks, — that is, rectangular blocks of sizes n X n, n X 1, n X n or n X n with a unique junction
tiles at the bottom left corner; see Figure 23.

Let r be a return block appearing in y. From Lemma 6.5, the sequences of bottom labels of tiles in
the bottom row of the return block r (from left to right) belong to the set 7,(V,). By symmetry and
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since r is surrounded by returns blocks, this also holds for the right, top and left labels of r. Therefore,
let @, 8,y,6 € V, such that the right, top, left and bottom labels of the return block r are respectively

B

T, (@), 17,(B), T.(y) and 1,,(6). From Proposition 5.9, ¢ = ¥ D a € 7,. From Lemma 5.3, there
5

exists a unique rectangular pattern with these external labels. Thus, r = w), (). O

Proposition 6.7. Let n > 1 be an integer. For every configuration y € €, there exist a unique

configuration x € Q. and a unique vector k € {0, 1,...,n}? such that y = o* (w/, (x)).

Proof. Let w;, : Q) — Q! be the 2-dimensional substitution defined in (5.2).

Let y € Q, be a configuration. From Lemma 6.3, there exist two strictly increasing sequences
A, B : Z — Z such that the set of positions of junction tiles in the configuration y is the Cartesian product
A(Z) x B(Z). Also, the distance between two consecutive occurrences of junction tiles in the same row
or the same column is n or n+ 1; thatis, A(€+1) — A(€) € {n,n+1} and B(¢+1) — B({) € {n,n+1} for
every ¢ € Z. We may suppose without loss of generality that the sequences A and B are defined in such
a way that the sequences take nonnegative values for nonnegative indices exclusively. In other words,
A(¢) = 0ifand only if £ > 0 and B(¢) > 0 if and only if £ > 0.

For every € = ({1, {») € Z*, consider the return block y|s, of support S¢ = [A(£1), A(€; + 1) — 1] x
[B(£2), B(£, + 1) — 1]. From Lemma 6.6, there exists a unique tile x, € 7,/ such that y|s, = w},(x¢).
Let k = (—A(=1),—B(-1)). The configuration c%(y) has a junction tile at the origin (0,0). The
configuration x = (x);cz2 belongs to Q/, and satisfies that w/, (x) = o ¥ (y). Thus, y = o*w/ (x). O

Proposition 6.8. For every integer n > 1, the 2-dimensional substitution w,, : Q;, — Q. satisfies
—_——
Q, Cw,(Q,) .
Proof. From Proposition 6.7, for every configuration y € Q,,, there exist a unique configuration x € Q,
o
and a unique vector k € {0, 1,...,n}? such that y = 0% (w/,(x)). Therefore, Q, C w,(Q},) . O

7. Tilesin 7, \ 7T, are illegal so that Q;, = Q,

By definition 7,, € 7,/, so that Q, C Q. In this section, we prove that in every configuration of the
Wang shift Q;, defined from the set 7,/, only the tiles from 7,, appear; that is, Q, C Q,,.

7.1. Illegal tiles

Recall that the additional tiles are
T\ T = Ag UA, U (g1 00} U (b)), B}

The proof that these tiles do not appear in any configuration in 2], follows from the following lemmas.
The easiest is to show that no configuration contains the last blue tile because the argument is very local.

Lemma 7.1. A valid configuration in Q;, contains no blue tile in {b},, EE}.

Proof. Let ¢ € Q. be a valid configuration. The configuration ¢ does not contain the tile b} =
111

00n 00n

11n because no tile from 7,/ has left label 00%. Similarly, the configuration ¢ does not contain
the tile b}; because no tile from 7,/ has bottom label 007. O

Then, we show that no configuration of €, contains any antigreen tile. The argument is more difficult
because antigreen tiles admit large surroundings; see Figure 19. As seen in the figure and proved in the
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0ln 11n

200
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*

0xn |11(n-1)
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-T- * * * *
02 111
02 111
B(k, - 1) + * § § *
* *
f f
A(ky) 4

Figure 25. The presence of the antigreen a), leads to a contradiction.

next lemma, the presence of an antigreen tile forces the presence of another antigreen tile a few rows
below that is closer to the left to a junction tile.

Lemma 7.2. A valid configuration in Q,, contains no antigreen tile from the set A,, U Ay,.

112

= 01i 00

Proof. Let ¢ € Q; be a valid configuration. Recall that lin . The configuration ¢ does
not contain the tile a}} because a’: has left label 007, but no tile from 7, has left label 007. Similarly,
the configuration ¢ does not contain the tile EE because EE has top label 007, but no tile from 7, has
top label 00n.

Suppose by contradiction that a’, appears in the configuration ¢ for some integer i such that 1 < i <
n—1.Let A, B : Z — Z be the two increasing maps from Lemma 6.3 such that ¢! (J/) = A(Z) x B(Z).
Suppose that a’, appears at position £ = (£1, () € Z*. Let k = (ky, k2) € Z? be such that A(k;) < £ <
A(k;+1)and B(ky) < €, < B(ky+1). Note that we must have B(k;) = £,. Suppose that the occurrence
¢ is chosen such that £; — A(ky) is the minimum among all occurrences of the tile @', in ¢ — in other
words, such that the distance to the nearest junction tile to its left on the same row is minimal. Since the
bottom and top labels of @, start with 1, the column ¢; in the configuration ¢ contains no junction tile;
thus, A(ky) # ¢, and £; — A(k1) > 1. There are two cases to consider.

Casg {1 — A(k1) = 1. In this case, the tile at position (A(k1), B(k»)) is a junction tile with right label
011 and bottom label 017. Also, the antigreen tile at position (£, £>) is a). Below the antigreen tile are
white tiles, and below the junction tile is a yellow or green tile that we show in gray in Figure 25.

So the unit parts of horizontal edge labels decrease by one at each level from top to bottom until
we reach the white tile at position (£;, B(k, — 1) + 1) with bottom label 111 and a tile at position
(A(ky), B(ky — 1) + 1) with bottom label 0=2. The tile at position (£;, B(k, — 1)) must be a green or
blue tile with left label 00x. The tile at position (A(k), B(k, — 1) must be a junction tile, but there are
no junction tiles with top label 0%2. So this case leads to a contradiction.

Case ¢; —A(ky) > 1. This means that tiles in the column to the left of a’, do not contain junction tiles.
On Figure 20, we observe that only the yellow tile y’~! has right label 01i. Thus, the tile to the left of @/, at
position (£; — 1, £,) needs to be the yellow tile yi~!. For every integer j such that B(ky— 1) < j < B(ky),
the tiles at positions (£; — 1, j) and (£, j) are white tiles. So the unit parts of the horizontal edge labels

https://doi.org/10.1017/fms.2025.10069 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10069

Forum of Mathematics, Sigma 41

* =112 112
siy-e+ fo @ o |T 2|2 @
* Zlm | 1
um | ln
— * * * *
ln [ll(n-1)
113 112
— * * * *
112 111
* 112
B(ky—-1) + * * % %
* 11n
Il Il Il
T T T
A(ky) a-1 4

Figure 26. The presence of the antigreen a', leads to a contradiction.

decrease by one at each level from top to bottom. Thus, the tile at position (¢; — 1, B(k— 1)) has top label
112, and the tile at position (£1, B(ky — 1)) has top label 111. The situation is illustrated in Figure 26.

Since 112 and 111 are the labels of consecutive horizontal edges, we deduce from Figure 20 that
the tile at position (¢; — 1, B(ky — 1)) must be an antigreen tile as well. We observe that this antigreen
tile is closer in distance to a junction tile to its left on the same row. This is a contradiction with the
minimality of £, — A(k1). Thus, the configuration ¢ does not contain the antigreen tile a’,.

Finally, by contradiction, suppose that the tile a’, appears in the configuration c. Since 7,/ is symmetric

— that is, 7,/ = 7,] — the symmetric configuration ¢ is also a valid configuration in Q). Thus, the
configuration ¢ contains the tile a, which contradicts the conclusion of the previous paragraph. O

The previous lemma implies that the pattern shown in Figure 19 cannot be extended to a valid
configuration in },.

.0,0,1,1 .1,1,0,0

Lemma 7.3. A valid configuration in Q;, contains no junction tile from the set { j, s Jn }.
Proof. Recall that
011 000
00.LE = 017 | % 000 and W = jL100 = o0n [Ix fo11
00n 017

Let x € Q;, be a valid configuration. We first prove that x does not contain the tile j2’°"". By
contradiction, suppose that the tile ]'2’0’]’1 appears in the configuration x at some position £ € Z>.
Consider the return block containing this junction tile and let W be its width and H be its height.

The bottom label of the junction tile 1'2’0’1’1 is 00n, and its right label is 000 with last digit 0. From
Figure 20, the width of the return block containing this junction tile must be n+ 1 or n+2. A return block
of width W = n + 2 is impossible from Proposition 6.4. Thus, the width of the return bock is W = n + 1.

If n > 1, then we have W = n, which is a contradiction. Indeed, the tile appearing above the junction
tile j%""" must be a vertical stripe tile with right label 112, either yellow or antigreen. From the

observation made in Figure 18, the width of this return block is W = n.
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Figure 27. Extended metallic mean Wang tile sets T, for n = 1.

If n = 1, three different junction tiles can appear on top of j2’°’1’1. All of them have right label 001.

On the right of ]'2’0’1’1, there may be a green or a blue tile, both of them having top label 111. We get

the following picture where we illustrate the blue or green tile in gray.

*

00

*

011
Z01 111
SXEIE -
00n *

But no tiles from 7'1’ have left label 001 and bottom label 111; see Figure 27. Thus, no tile can be
placed at position £ + (1, 1). This is a contradiction.

Finally, by contradiction, suppose that the tile j,i’l’o’o = jg’o’l’l appears in the configuration x. Since

7T, is symmetric — that is 7,/ = 7, — the symmetric configuration X is also a valid configuration in Q},.

Thus, the configuration x contains the tile ]'2’0’1’1, which contradicts the first part of the proof. O

‘We may now prove the following result.
Proposition 7.4. For every integern > 1, Q) = Q,,.

Proof. Since T, € 7,/, we have Q, C Q7.

Let ¢ € Q) be a valid configuration. From Lemma 7.1, the configuration ¢ contains no blue tile in
{b, BE}. From Lemma 7.2, the configuration ¢ contains no antigreen tile from A, U ;\; From Lemma
7.3, the configuration ¢ contains no junction tile from the set { j,?‘o’l’l, j,i’]’o’o}. Thus, the range of c is

c(Z?) c Ty,. Thus, ¢ € Q,, from which we conclude that Q) C Q. O

8. Q, is self-similar and aperiodic

In this section, we show that Q,, is self-similar and aperiodic. We prove Theorem A below after recalling
its statement.

Theorem A. For every integer n > 1, the set T, containing (n + 3)> Wang tiles defines a Wang shift

Q, which is self-similar. More precisely, there exists an expansive and recognizable 2-dimensional
—0

substitution w,, : Q, — &, which is onto up to a shift — that is, such that Q, = w,(Q,) .
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Proof. Letn > 1 be an integer From Proposition 6.8, the 2-dimensional substitution w;, : Q; — Q;,
defined in (5.2) satisfies Q,, C w), (Q ) From Proposition 7.4, we have Q; = Q,. The restriction
of w), to Q, is the 2-dimensional substitution w, : Q, — Q, defined in (5.3). From Lemma 5.6,
wn(,) C Q,. Therefore, we have

Q, Cwp(@) = wh( Q) = Qu(wn) S Q.

Therefore, w,, is in fact a 2-dimensional substitution Q, — Q, satisfying Q, = wn(Qn)U. The 2-
dimensional substitution w, is recognizable following Proposition 6.4 since every configuration in Q,
can be uniquely divided into return blocks. The 2-dimensional substitution w,, is expansive (the image
of every tile contains a junction tile and the image of every junction tile has a height and width at least 2).
Hence, the Wang shift Q,, is self-similar with respect to the substitution w,,. O

Proof of Corollary B. From Theorem A, we have that the Wang shift Q, is self-similar, satisfying

s O
Q, = w,(Q,) .Since the substitution w,, is expansive and recognizable, it follows from Proposition 3.5
that Q,, is aperiodic. O

9. The self-similarity is primitive

Substitutive shifts obtained from expansive and primitive morphisms are interesting for their properties.
As in the 1-dimensional case, we say that w is primitive if there exists m € N such that for every
a,b € A, the letter b occurs in ™ (a). In this section, we show that the 2-dimensional substitution w,
is primitive.

Lemma 9.1. For every integer n > 1, the 2-dimensional substitution w,, : Q,, — Q, is primitive.

Proof. The proof follows from the following observations about the substitution w,:

in the image of every tile in 7, under w,,, there is some junction tile;
in the image of every junction tile there is a white tile w,; L1
in the image of the white tile wn , there is the junction tile j,’
in the image of the junction tile ]1 LI there are the junction tile j,

the white tile w’'!, and all blue tiles B,, U B, including the blue tiles {5°, 0} (all blue tiles appear
in the image because the left and bottom label of ]1 LLL4

1,1,1,1,
0000

O O O O

, all white tiles W,, including

is 01n; see Lemma 5.2 and Figure 13);

o in the image of the blue tiles {59, bg}, there are all yellow tiles ¥,, U Y including the yellow tiles
{}, ;Z} (all yellow tiles appear in the images because the left label of »? is 000 and the bottom label
of Z)E is 000; see Lemma 5.2 and Figure 12);

o in the image of yellow tiles ¥, U Y,,, there are the junction tiles { ]0 1,00 ]2 0.0, 1},

o in the image of Y, U Y U {]0 0.0, } there are all green tiles G, U Gy,:

— green tiles g/t and g; appear in the image of ]n 9-0 pecause the left and bottom label of Jn
00n; see Lemma 5.2 and Figure 12;

0000

— green tiles g/, and g/, for 0 < i < n appear in the images of the yellow tiles because the bottom
label of y:l is 01; see Lemma 5.2 and Figure 13);
o in the image of ]n 0-09 there is the e junction tile ]”’1’0 L

o in the image of the blue tiles {y!, yn} there are the green tiles {g?, gn}
OLLL G110y

[¢]

in the image of the green tiles {g9, gn} there are the junction tiles {j,

The tiles that can be obtained from the successive application of the substitution w,, are shown in
Figure 28. The graph in the figure shows that every tile appears at distance 7 of every tile in 7,. Thus,
for every tile t € T, the pattern (w,)’(¢) contains all tiles of 7,,. Therefore, we conclude that w,, is
primitive. O

https://doi.org/10.1017/fms.2025.10069 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10069

44 S. Labbé

{t}, for some t € T,

— T

{t}, for some t € 7, {t}, for some t € J,
} .
{t}, for someti‘ {Wll,l}
|
{wh! {t}, for some r € J,, (jLnLLy
} } /
Un {w') {63,053
-~ | K
{w 1‘,‘} (b, b} Uy oy}
' N }
T Y, Ur, T B BN O S P!

<]\ SO } \ }

0000} W, BnUB {10100 0001} GnUG {jOIOI} {1111} YnU{/; {JOIII 1101}

Figure 28. When an arrow appears linking sets of tiles S — T and vertex T has in-degree one, it means
that T C Uges{t € Tu | t occurs in w,(s)}; that is, every tile t € T appears in the image of some tile
s € S under the substitution w,. When two arrows S — T and S’ — T appear, it means that every tile
t € T appears in the image of some tile s € S U S” under the substitution w,,. The figure illustrates that
for every tile t € T, the pattern (w,)’ (t) contains every tile of T,. This shows the primitivity of the
substitution wy,.

The exponent 7 deduced in the previous proof is not sharp, as computations illustrate that for every
integer n > 2, the incidence matrix of (w,)* is already positive, while the incidence matrix of (w1)’ is
positive.

Lemma 9.2. The Perron—Frobenius dominant eigenvalue of the incidence matrix of w, is 82, the square
of the n'" metallic mean number, and the inflation factor of w,, is By.

Proof. We may deduce the dominant eigenvalue of the incidence matrix of w,, from that of a simpler
substitution. For every integer n > 1, let p,, be the following 1-dimensional substitution:

n s {3, b} — {a,b}"
a +— ab”
b +— ab™!

1 1

nn-—1
whose characteristic polynomial is x> — nx — 1. The Perron—Frobenius dominant eigenvalue of the
incidence matrix of p,, is the positive root 3, of the polynomial x> — nx — 1. Since p,, is primitive,

the growth rate of |pX ()| is independent of u € {a, b} and is equal to 8, [51, Corollary 5.2]. In other
words, for every u € {a, b}, we have

The incidence matrix of p,, is

lim |pf()[* = By ©.1)
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We observe that the 2-dimensional substitution w,, is an extension of the direct product p, X p, of
the 1-dimensional substitution p,, with itself. By extension, we mean the existence of a map

Ty — {a,b} x{a,b}

(a,a) ifted,,

(b,a) ifteB,UY, UG,
(a,b) ifte€B,UY,UG,,
(b,b) ifte W,,

such that (p,, X pp) 0L = o wy,.

Since w,, is primitive, the dominant eigenvalue A of the incidence matrix of the substitution w,, is
equal to the growth rate of AREA(a)’,j(t)) as k — oo, where ¢ € 7T, is any tile and AReA(p) denotes the
cardinality of the support of a rectangular pattern p € (7;,)*2. Let t € 7, such that £(t) = (t1,1,) for
some t,t; € {a,b}. Since ¢ is a tile to tile map, it preserves the area. Thus, we have

A= klim AREA(Q)II;(I))% = klirn AREA(( o a)fl(t))% = klim AREA((pn X pp)¥ 0 g“(t))i
= lim area((pn X o) (L (D) = Jim areA((on X p)* (11,12)) %
3 I CH))
= lim (1% (] 1k 1) = tim [k G01E - Jim ok () = B B = B

Therefore, the incidence matrices of the substitutions w, and p, X p, have the same Perron-Frobenius
dominant eigenvalue, and it is equal to 52.

The inflation factor is the factor of the homogeneous dilation associated with the stone inflation
constructed from the direct product p,, X p,, [5, §5.6] (for example, a stone inflation for p4 X p4 is shown
in Figure 30 when n = 4). The inflation factor of the stone inflation of p, X p, is B, as it multiplies
distances between points by /3, and the areas by 52. O

Theorem C. For every integer n > 1, the 2-dimensional substitution w,, : Q, — &, is primitive.
The Perron—Frobenius dominant eigenvalue of the incidence matrix of w, is ,Bﬁ, the square of the n'"
metallic mean number, and the inflation factor of w,, is By.

Proof. From Lemma 9.1, w, is primitive. The Perron—Frobenius dominant eigenvalue of the incidence
matrix of w,, and its inflation factor is computed in Lemma 9.2. O

From Perron—Frobenius theorem, the primitivity of the substitution w,, implies that every Wang tile
in 7,, appears with positive frequency in a configuration in the substitutive subshift X, generated by
the substitution w,. The frequencies of the tiles are given by the entries of the right-eigenvector of the
incidence matrix of w,, normalized so that the sum of its entries is 1.

10. Q,, is minimal

The goal of this section is to prove that Q,, is minimal. To prove minimality, we need more notions. We
use the method proposed in [37, §3.3].

10.1. A criterion for minimality of a self-similar subshift

Recall that a subshift X is self-similar if X = w(X )(r for some expansive d-dimensional substitution;
see Definition 3.2 and Definition 3.3. First we recall Lemma 3.8 from [37].
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Lemma 10.1. Let w : A — A be an expansive and primitive d-dimensional morphism. Let X C A

be a nonempty subshift such that X = w(X )0-. Then X, C X.

Proof. The language of X is also self-similar satisfying £(X) = L(w(L(X))). Recursively, L(X) =
L(w™(L(X))) for every m > 1. Since X is nonempty, there exists a letter a € A such that forallm > 1,
the d-dimensional word w™ (a) is in the language £(X). From the primitivity of w, there exists m > 1
such that w™(a) contains an occurrence of every letter of the alphabet 4. Therefore, every letter is in
L(X), and the d-dimensional word w™ (a) is in the language £(X) for all letters a € A and all m > 1.
So we conclude that £(X,,) € £(X) and X, C X. m|

Proving that a self-similar d-dimensional subshift X satisfying X = w(X)U is equal to X, can be
tricky. As illustrated in the following example, it depends on the combinatorics of the substitution.

Example 10.2. Consider the following 2-dimensional substitution v over alphabet {a, b, c}:

ccccc ccbhbca ccacc
viab|cccceccel|l, b—o|lcccccl|, c—|cccbc)|
ccacc ccccce ccccc

We may observe that the vertical domino ( ) does not belong to the language of the substitutive subshift
X, since it does not appear in any of the k-th image of any letter under the substitution. But one can see
that the vertical domino (3 ) is preserved by the substitution. Therefore, there exists a configuration x
containing a single vertical domino ( § ) which is fixed by the substitution. Thus, we have

@ # X, CX U{o"(x)|neZ?.

The subshift X, U {o"(x) |n € Z?} is self-similar, but it is not minimal because it contains a proper
nonempty subshift.

Therefore, to conclude that we have the equality X, = X for a self-similar subshift X, it is convenient
to consider the domino patterns of size 1 X 2 and 2 X 1 straddling the images of the two letters of a
domino as well as the 2 X 2 patterns straddling the images of the four letters of 2 X 2 pattern. More
precisely, we need to consider the following directed graphs:

o Let G52 = (V22 E22) be the directed graph whose vertices and edges are

V22 = {(?Z) €A |a=b,c=1d,a=c,b= d},

a is the bottom right letter of w(e),
£ _ (e P ) s (ab) b is the bottom left letter of w( f),
w g h ¢ d/| ¢ is the top right letter of w(g),
d is the top left letter of w(h)

o Let G = (V21 EZ1) be the directed graph whose vertices and edges are

VEl={(ab) e A2 |a = b},

there exists an integer j such that 0 < j < HEIGHT(w(e)) and
(e f) — (ab)|aisthe letter in the j-th row in the right-most column of w(e),
b is the letter in the j-th row in the left-most column of w( f)

&
2
X
Jay
|
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(cczf) (ac) C(Z)

| SN
(o) Ceo) < (3)

Figure 29. The graphs G2*%, G>*! and G? for the substitution v.

v

o Let G1X? = (V12 E1>2) be the directed graph whose vertices and edges are

Vit ={(H e la= ),

there exists an integer i such that 0 < i < wiptH(w(e)) and
EX?=4(g) = (9)|ais the letter in the i-th column in the bottom-most row of w(e),
¢ is the letter in the i-th column in the top-most row of w(g)

Finally, for every directed graph G = (V, E), we define the set of recurrent vertices — that is, those
belonging to a cycle of the graph:

RECURRENTVERTICES(G) = {v € V | v belongs to a cycle of G}.

Example 10.3. The graphs G2, G2*! and G1*? for the 2-dimensional substitution v defined in Exam-
ple 10.2 are shown in Figure 29. The recurrent vertices of the graphs are as follows:

RECURRENTVERTICES(G2?) = {(£ ¢)}
RECURRENTVERTICES(G‘Z,XI) ={(ce)}

RECURRENTVERTICES (G,"?) = {(§), (), (4), (§), (), (£)}

In particular, we observe that the vertical domino ( § ) belongs to a cycle of G},XZ, even though it is not
in the language L£(X)).

The recurrent vertices of the three graphs G252, G2 and G!*? provide a criteria for the minimality of
a self-similar subshift X = ma. Lemma 3.7 and Lemma 3.9 from [37] gave hypothesis under which
an expansive and primitive 2-dimensional substitution has a unique nonempty self-similar subshift. The
following lemma is a relaxed version which allows to conclude that a self-similar subshift is minimal
even when the 2-dimensional substitution admits more than one self-similar subshift (some made of
configurations which are not uniformly recurrent).

Lemma 10.4. Let X = w(X )(T be a nonempty self-similar subshift where w : A — A is an expansive
and primitive 2-dimensional morphism. The following are equivalent:

(1) L£(X) N RecurrentVERTICES(G?,) C L(X,,) for every size s € {2 x2,2x1,1x2},
(ii) X = X,
(iii) X is minimal.

An element u € A" is called a d-dimensional word of size n = (n;,...,ny) € N9 on the alphabet
A. We use the notation size(#) = n when necessary.
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Proof. Assume that X = mg for some @ # X C AZ".

(i) = (ii) From Lemma 10.1, we have X, C X. Let z € £(X). We want to show that 7 € L(X,).
Since w is expansive, let m € N such that the image of every letter a € A by w™ is larger than z; that
is, size(w™(a)) = size(z) for all a € A. We have z € L(X) = L(w™(L(X))). By the choice of m, z
cannot overlap more than two blocks w™ (a) in the same direction. Thus, there exists a word u € £(X)
of size 1 x1,2x 1, 1x2 or 2 x 2 such that z is a subword of w" (u). If u is of size 1 x 1, then z € L(X,,).
We may assume that the word u has the smallest possible rectangular size s € {2 x 1,1 x 2,2 x 2}.

We have u € V. Since u € L£(X) and X is self-similar, there exists a sequence (ug)ren With
ur € V3, N L(X) for all k € N such that

T Ukl D U DU D Ug = U

is a left-infinite path in the graph G%,. Since V) is finite, there exist some k, k" € N with k < &’ such that
ur = uy. Thus, ux € RECURRENTVERTICES(G?,) and u is a subword of w® (uy). From the hypothesis,
we have uy, € £(X,,). Since w is primitive, there exists £ such that uy is a subword of w’(a) for every
a € A. Therefore, z is a subword of w”***(a) for every a € A. Then z € L(X,,) and L(X) C L(X,,).
Thus, X € X, and X = X,.

(i) = () If X = X,, then L(X) = L(X,,). Thus, £L(X) N RECURRENTVERTICES(G?)) C L(X) =
L(X,,) forevery size s € {2x2,2x 1,1 x2}.

(ii) = (iii) The substitutive shift of w is well defined since w is expansive, and it is minimal since
w is primitive, using standard arguments [51, §5.2].

(iii) = (ii) From Lemma 10.1, we have X, C X. Since X is minimal, we conclude that X, = X. O

10.2. The Wang shift Q,, is minimal when n > 2

The proof that the Wang shift Q,, is minimal needs to be split into two cases. When n = 1, configurations
in Q) have consecutive rows containing junction tiles, whereas this does not happen when n > 2. This
affects the language of patterns of vertical domino support. In particular, a vertical domino made of two
junction tiles may appear in the language of Q,, when n = 1. In this section, we consider the case n > 2.

Lemma 10.5. Let n > 2 be an integer. The following vertical dominoes appear in the language of the
substitutive subshift X, :

].0,1, ,0 jO,l, ,1 jO,l,0,0 jO,l,O,l jO,l,l,l

n n n n n

Lral¥o) 29|75 || g ( Rl W i R
n n n n n

.1,1,0,1 .1,1,0,1 .1,1,1,1 .0,0,0,0 .0,0,0,1
U (JnA )(JnA )(JnA ) Jn Jn
gn yo o by byt
i-1 i
SEATENTR
Wn W}’l
bi*l bi
ull r o N t<i<ntull Jml1<i<n—1
EA RN

Proof. We show that every vertical domino listed above appears in the image of some tile under the
application of the 2-dimensional substitution w,,. Below, we use the notation p SN g to denote that g
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is a pattern appearing in the image w,(p). We have

70 :1,1,0.1 1 2 n
0101 @ [ BY | en (I Yao Ya o --- Vn
. n > > s
Jn 0,0,0,0 1,n 2,n n,n |
Jn en wyhowyt o wy,
3 .1,1,1,1 1 2 n—1
0,1,0,1 @n [ whl ) @ [y A A
Jn 0 T 2,n _ 3.n n,n |°
bn Yn Wno Wn - Wn
.1,1,1,1 :0,0,0,0 0 1 n-1
.0,1,0,1 @n W;l’l Wn Jn wn | Jn bn bn bn
Jn bO n bn_l 1,n-1 2,n—1 n,n—1 |°
n n = owy w;, oWy
- :0,0,0.1 :0,1,0,0 1 2 -1
0 @n }l wn | Jn wn | Jn bn b” . bz
8n T | L0111 > n1 > ni  Ln-1 _2n-1 n—1,n—1
]n bn gn Wﬂ Wn A Wﬂ
Also,
- .0,1,0,1
1 @n g,ll Wn Jn
8n 7| .0,1,0,1 n1
n gll
Since n > 2, we have
1 .0,1,0,0
L1,1,1 “n, b N n o (JIn_
J :0,0,0,0 whn o1
Jn n Yn
2,2 :0,1,0,1
1.1 @“Wn (Wn ) Wn Jn
w, —> — —
n 1 n-1
Yn Yn
o on Wfil o J111,1,0,1
g, — bl — )’,?1 s
n n
5 0 .0,1,1,1
1,1 @n y Wn 8n wn_ | Jn
wio | i lon |
Jn n Yn O

Lemma 10.6. The following four 2 X 2 patterns belong to the language of the substitutive subshift

L(Xy,):
-1 .0,0,0,0 ~1 :0,1,0,1 1 :0,1,0,0 -1 ;0.0,0.1
bu™" n 8 Jn bu™ Jn §n  Jn
n-1,n—1 -1 ’ n,n -1 ’ n,n—1 -1 ’ n-1,n -1
Wn by Wi &n Wn 8n Wn by
11_] 2000 11_| 2001 11_] 2000 11_[ 001
giis|g™s| |8 |88l |22
IS S S (=} IS s (2 — IS S |2 = (ST S
— 11n 00n 11n 0ln 11n 0ln 11n 00n C.£2 2(X )
in_[ 00n_|” [_1in_| Otn_|” [_ttn_|_0ln_| " | 11n_|_00m_ XERT@n S
13115 ~00i~ ST :boﬂ— S =b02'_ 13,7 ~00n~

Proof. We show that every pattern listed above appears in the image of some tile under some repeated
application of the 2-dimensional substitution w,,. Below, we use the notation p Ln, q to denote that g is
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a pattern appearing in the image w,, (p). The four patterns can be obtained in a few steps when applying

the substitution w,, on the tiles j,

1,1,1,1

jLLLL 80118
Jn j\ =
0lm
an,
_oo1| | 112
0 1,1 5 ElE©
( by wy, ) _ [Tloo™ | "111
:0,0.0,0 0 =
Jn by, 2000_[ 111
g (= 8 =}
00n. 1In
an
112_ {011
o, -1,1,1,1 5 5|5 E
( Y In” ) _ “1m | Noim
y,n 7L
Wy Yn _lim_ | _01nm
5SS
11n 01n
J'Wn
81118 80008
bl 720,00 EACE LT
T . n n
—1,n—-1 n—1
wp " by HllnH _0on_
5| S
‘“11n“ “00n~
wnj Iwn
oLl | 2001
. (=} —| = o
gt Jojf’l _ B P
n,n n—1 -
wy, In Jlim_ | _0ln
S G[5E
110 | T 00R

a0
(o
( w2
n
Yn
n—1
Yn
wh~ 1n
ot !
wnn
Wy,
n—1
In
U‘n 1,n

and y). We have the following:

112
Yn = |2 =
117
Wn,
o11_| 112
wbl )= |2 =z =2
n :‘ -
000 | 111
wn
113_] 012
=118, 012
. s Sis R
Y _ T2 T
jhbit Stz | o1t
2 g2 e
s 5|5
11n 01m
lwn
RIEN E001c>
:0,0,0,1
0, 5 5|5 48
In " _ |®um” P gon
bt _117_ | _00n
= =l E
51,7 [Foon
van
81110 80000
j01.00 S
n___ \311” 0ln
gnt _lin_|_o1n
|
& S0 |5
117" | *loon
gmE S00]8
§0.0.0,1 - |- £
n__ Ehw % dn
bt _1m_ | Joon
e =
B0 | oo™

Lemma 10.7. Let n > 2 be an integer. The following two vertical dominoes are illegal in Q,,:

011
s e
orm= 1,1,1,1
LS U i P

om |—\| =
— - n
3| —

00n

Proof. Let ¢ € Q, be a valid configuration. Let A, B :

) ¢ L(Q,) and

Lemma 6.3 such that ¢! (J,,) = A(Z) x B(Z). N
Suppose that j,ll’]’l’l appears at position £ = (£}, £,) € Z? and that g?* appears at position ({1, £, —1) in

c.Letk = (ky,ky) € Z* be such that A(k;) <

011

uiQ
100

0ln

0ln

1T
IT1

U

00n

.0,1,1,1

n—1 ¢ L(QH)

Z — Z be the two increasing maps from

6y < A(ky+1) and B(k,) < € < B(k,+1). Since j1-11!

is ajunction tile, we must have A (k) = £, and B(k;y) = £5. At position (£}, £, — 2), there must be a blue

tile by~ = since only this tile has top label 00n when n >
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& 011
B(k2) =42 + * x| - :S E
* b1
01m
x
bOn
00n,
:
00
* *
B(ka—1) + |% “%| --- * %
* *
f f f
A(k1 —1) A(k1) =0

Consider the return block with support [A(k; — 1), A(k1)) X [B(k2), B(ky + 1)). It has label O1n
at the far right of its bottom row. From Lemma 5.2, the width of this return block cannot be n, so it
has to be

Alk)) —A(ki = 1) =n+1.

Now consider the return block with support [A(k; — 1), A(k1)) X [B(ky — 1), B(k2)). The white tile at
position (A(k;) — 1,¢, — 2) has right label 11n. From the observation made in Figure 18, the width of
this return block is

A(k]) - A(k1 - l) =n.

1,1,1,1
This is a contradiction. Thus, (J " ) ¢ L(Q,).

n

The same contradiction is obtained if we suppose that jg’l’l’l appears at position £ = (£y, 6,) € Z°

—

and that gﬁ’l appears at position (£, £, — 1) in c. Indeed, a blue tile with left label 11n is also forced to
appear at position (£, £, — 2). O
Note that Lemma 10.7 cannot be extended to the case n = 1.

Proposition 10.8. For every integer n > 2, the Wang shift Q,, is minimal and is equal to the substitutive
subshift Q, = X, .

Proof. Let n > 2 be an integer. From Theorem C, the 2-dimensional substitution w,, is primitive.
—_—
Also, w,, is expansive. From Theorem A, the Wang shift Q,, is self-similar, satisfying Q, = w,(Q,) .

Therefore, we may use Lemma 10.4 to show that the Wang shift €,, is minimal and X,,, = €. From
Lemma 10.4, our goal is show that

L(€2,) N RECURRENTVERTICES (G, ) € L(Xy,)

for every size s € {2%x2,2x 1,1 x2}.
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CaseE s = 1 X 2. We have

RECURRENTVERTICES(GL:Z)

there exists e, g € A such that wiptH(w,,(g)) = wiDTH(wW,(e))

c ( a ) there exists an integer i such that 0 < i < wiptH(w, (¢)) and

= |\ ¢ /| a is the letter in the i-th column in the bottom-most row of w, (e),
¢ is the letter in the i-th column in the top-most row of w,(g)

.0,0,0,0 .0,0,0,1 .0,1,0,0 .0,1,0,1 .1,1,0,1
a€{jn " Jn e s }}

ce{bil, gil gn}

0,1,0,0 .0,1,0,1 .0,1,1,1 .1,1,0,1 .1,1,1,1
Y ( )ae{J ST Y Y }
ce{yr Ly ant gny

._1 l'

gn gn 8n 8n .
U -, Jd o ll1r<i<
(e (o e} (g )2

bl*l btl ) bi bl )
“{(w’f:")’(w;z"-‘)"S’S”}“{(wf")’(wi:"*)‘l“”“}

yll y yi yi
ulln Ll 2 l2<i<nlu 2l S |1 <i<ng.
(e (o ) ol (S o ) <50

However, we can estimate the set of vertical dominoes in £(€2,) by the pair of tiles sharing the same
label on the common horizontal edge excluding the two illegal dominoes from Lemma 10.7:

£1><2(Qn) N {( Z)

a is a junction tile or a horizontal stripe tile }

.0,1,0,0 .0,1,0,1 .0,1,1,1 .0,1,1,1
E 9 9 T T
C ( ) @€ Un T dn e \ ]"l’n?l (tiles sharing edge label 011)
cefgilyny n
1,1,0,1 1,1,1,1 1,1,1,1
U {( ) @ {J »Jn ) } \ {(J"7 )} (tiles sharing edge label 017)
c € {gi, yn} &n
:0,0,0,0 .0,0,0,1
e 9
u @ €ln_"n (tiles sharing edge label 00n)
ce by
of( nJ0sisn-L (tiles sharing edge label 117)
whn 11 < k < n iles sharing edge label 11n
o \|[1<is<n, : . _
u {( wf, n ) l<k< n} (tiles sharing edge label 117)
gn \|0<i<n, , . _
U {( wf, n) l<k< n} (tiles sharing edge label 117).
Note that

RECURRENTVERTICES(GB("Z) c {( i )

a is a junction tile or a horizontal stripe tile }
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Thus, we can compute the intersection of the two sets, and using Lemma 10.5, we obtain

RECURRENTVERTICES(GB?) N L(Q,)

= RECURRENTVERTICES(GIXZ) N Lix2(2,)

ae{JOIOO’ngOl,J-g,lIl} \ J()lll
ce{grt iy} -1

Vl
n
)ae{jll()lj,l,’l’l’l}} {( 1111)}
c €{gn.yn}
()()0() ()()()1}
ce{b" 1} }

bll bi

i ‘)’““”}“{(wfﬁ-l

(2]
Wn Wn

c Ele(Xwn) c ﬁ(Xwn)-

Cast s = 2 x 1. The condition is satisfied because this case is symmetric to the case s = 1 X 2.
Cask s = 2 x 2. The tiles appearing on the corners of images of letters under w,, are quite restricted.

Therefore, we have the following inclusion:

RECURRENTVERTICES(G%;(Z)
n

there exist e, f, g, h € T, such that
a is the bottom right letter of w(e),
b is the bottom left letter of w( f),
¢ is the top right letter of w(g),

d is the top left letter of w(h)

N
—_——
o Q
QU™
—_—

ae{by gn!
(a b) be {0 O 0t 00y

CE{Wnlnlwznlwzlnwnn

de by gy

The above set has size 2 X 4 X 4 x 2 = 64. Of those, only four belong to £(€2,,) because the choice made
for the tile b imposes a unique choice for the tiles a, d and c. Thus, using Lemma 10.6, we obtain

L(&y) N RECURRENTVERTICES(Gif)

= Lo (Q,) N RECURRENTVERTICES(GZXZ)

_ .0,0,0,0 .0,1,0,1 — .0,1,0,0 .0,0,0,1
c bpt gnt n A i T S
S bt et Pl gnt [t gt P wp b
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11112000 111_ [ Zo01 111 _ 12000 111_|[ Lo
(=3 (=2 =} (=3 (=3 == (=3 f=3 (==} (=3 (= == (=3
(=} =R =] 8 (=} = | = S =] ==} S (=} = | =
1= S (S = 3 (=3 = IS S (S = = 3|3

_ 1n" | 00n ln |~ Oln in" | Oln 1n |~ 00n
tn_[ J00n_|" [ _tia_[_otn_|" [ _tin_[_o1n_|" [ _11m_|[ _joom
\:11n= :0()2»— 3 11n=‘ :\00£~ B 112:\ :\002— \sllnz :0()2»—

N

L2><2(Xw,,) C L(Xwn)-

From Lemma 10.4, we conclude that the Wang shift Q,, is minimal and Q,, = X, . m|

10.3. The Wang shift Q,, is minimal when n = 1

From Theorem E, 7, is equivalent to the 16 Ammann Wang tiles when n = 1. We know from [24] that the
16 Ammann Wang tiles are self-similar and that the self-similarity is recognizable (the decomposition
of every configuration into the 16 supertiles shown in [24, Figure 11.1.6] is unique). This corresponds
to the case n = 1 of Theorem A proved here. Therefore, from Lemma 10.1, we have X,,, € ;. The goal
of this section is to prove that the equality holds and therefore that Q; is minimal. Note that minimality
of ©; was not proved in [24], neither in the more recent works about Ammann A2 tilings [1, 15].

The proof made in the previous section for n > 2 does not directly work for n = 1 because it is
not true anymore that next to a junction tile is never a junction tile. Indeed, when n = 1, two junction
tiles can be adjacent horizontally or vertically. This observation changes the description of vertical and
horizontal dominoes that appear in the language.

Adapting the proof made above for n > 2 to the case n = 1 is possible. But, instead of doing this,
we have chosen to provide a proof based on computer experiments in order to check that the criterion
provided in Lemma 10.4 is satisfied. We hope that it may be useful to study other examples.

Lemma 10.9. The Wang shift Q, is minimal and Q| = X,,,,.

Proof. From Theorem C, the 2-dimensional substitution w; is primitive. Also, w; is expansive. From
Theorem A, the Wang shift Q, is self-similar, satisfying Q; = wl(Ql)a. Therefore, we may use
Lemma 10.4 to show the minimality of €.

We compute below the patternsin £, () and £, (&, ) foreverysize s € {2x2,2x1, 1x2}. As we ob-
serve below, these sets are equal. Therefore, it is not necessary to compute RECURRENTVERTICES(G?, ).
We define w; as a 2-dimensional substitution over the alphabet {0, 1,2, ..., 15} according to the label-
ing of the tiles shown in Figure 31. We compute the patterns of size s € {2 X 2,2 X 1,1 X 2} in the
substitutive subshift X, :

—_

sage: from slabbe import Substitution2d
sage: omegal = Substitution2d({®: [[9], [151]1, 1: [[61, [711, 2: [[13]1, [14]1]1, 3: [[611, 4: 2
(rs1, 711, 5: [[12, 41, [11, 311, 6: [[12, 11, [11, 311, 7: [[8, 411, 8: [[13, @1,
[14, 311, 9: [[12, 4], [14, 3]1]1, 10: [[12, 1], [14, 311, 11: [[6, 211, 12: [[9, O],
[15, 311, 13: [[8, 41, [15, 311, 14: [[10, 211, 15: [[9, 011}
sage: patterns_1x2_in_subst_shift = set((a,b) for [[a,b]] in omegal.list_dominoes(direction 3
="vertical", output_format="list_of_lists"))

sage: len(patterns_1x2_in_subst_shift) 4
30 5
sage: min(patterns_1x2_in_subst_shift) # show some minimal element 6
@, 5 7
sage: patterns_2x1_in_subst_shift = set((a,b) for [[a],[b]] in omegal.list_dominoes( 8
direction="horizontal", output_format="list_of_lists"))
sage: len(patterns_2x1l_in_subst_shift) 9
30 10
sage: min(patterns_2x1_in_subst_shift) # show some minimal element 11
©, 1 12
sage: patterns_2x2_in_subst_shift = sorted(omegal.list_2x2_factors()) 13
sage: len(patterns_2x2_in_subst_shift) 14
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51 15
sage: min(patterns_2x2_in_subst_shift) # show some minimal element 16
[[o, 51, [3, 71] 17

We choose a solver to compute the dominoes and 2 X 2 patterns below. Three reductions are available:
to a mixed-integer linear program, to a SAT instance or to an exact cover problem solved with Knuth’s
dancing links algorithm [31]. We use Knuth’s algorithm because it performs well and it is in SageMath
by default.

sage: solver = "dancing_links" # other options are: solver="gurobi" or solver="kissat" 18

We define the set 71 of Wang tiles in an order consistent with the labeling of the tiles with the indices
intheset {0, 1,2, ..., 15} as shown in Figure 31. We compute the patterns of size s € {2x2,2x 1, 1x2}

in the Wang shift Q:
sage: from slabbe import WangTileSet 19
sage: tiles = [("111", "912", "112", "001"), ("111", "01", "111", "080"), ("112", "912", " 20

112", "e11"), ("1ii2", "112", "111", "111"), ("i11", "ei11i", "ii2", "0ee"), ("011", "001
", "e11", "e12"), ("e11", "eii", "e12", "eiz2"), ("e12", "1ii12", "e11", "112"), ("001",
"o00", "001", "011"), ("001", "661", "011", "011"), ("601", "011", "012", "011"), ("
oo1", "111", "000", "111"), ("000", "000", "001", "001"), ("000", "001", "011", "001")
, ("e11", "111“, "eee", "112"), ("e12", "111", "O01", "112")]

sage: Tl = WangTileSet(tiles) 21
sage: T1 22
Wang tile set of cardinality 16 23
sage: patterns_1x2_in_sft = Tl.dominoes_with_surrounding(i=2, radius=1, solver=solver) 24
sage: len(patterns_1x2_in_sft) 25
30 26
sage: min(patterns_1x2_in_sft) # show some minimal element 27
@, 5) 28
sage: patterns_2xl_in_sft = T1l.dominoes_with_surrounding(i=1, radius=1, solver=solver) 29
sage: len(patterns_2xl_in_sft) 30
30 31
sage: min(patterns_2x1_in_sft) # show some minimal element 32
@, D 33
sage: patterns_2x2_in_sft = Tl.tilings_with_surrounding(2,2, radius=3, solver=solver) 34
sage: patterns_2x2_in_sft = sorted(pattern.table() for pattern in patterns_2x2_in_sft) 35
sage: len(patterns_2x2_in_sft) 36
51 37
sage: min(patterns_2x2_in_sft) # show some minimal element 38
[re, 51, [3, 711 39

We compare the sets of horizontal dominoes, vertical dominoes and 2 X 2 patterns computed above
within the language of the substitutive subshift X,,, and within the language of the Wang shift ;. We
observe their equality:

1

sage: patterns_1x2_in_subst_shift == patterns_1x2_in_sft 40
True 41
sage: patterns_2x1_in_subst_shift == patterns_2x1l_in_sft 42
True 43
sage: patterns_2x2_in_subst_shift == patterns_2x2_in_sft 44
True 45

Therefore, the above computations prove that we have the following equality:
L£,(Q1) = Ly(Xa)
for every size s € {2 x2,2x 1,1 x 2}. Thus, for every size s € {2 x2,2x 1,1 x 2}, we have
L(1) N RECURRENTVERTICES(Gy, ) C L(Q1) = Li( X)) C L(Xy)).

From Lemma 10.4, we conclude that ; is minimal and Q = X,,,. O
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10.4. Proof of Theorem D

Theorem D. For every integer n > 1, the Wang shift Q,, is minimal and is equal to the substitutive
subshift Q, = X,,, .

Proof. If n = 1, then Q is minimal and Q = X,, from Lemma 10.9. If n > 2, then Q,, is minimal and
Q, = X, from Proposition 10.8. m]

11. Open questions

Note that the n* metallic mean is a quadratic Pisot unit; that is, it is an algebraic unit of degree two, and
all its algebraic conjugates have modulus strictly less than one. The other quadratic Pisot units are the
positive roots of x> —nx+1 for n > 3. The family of quadratic Pisot units has nice properties [10, 32, 41];
see also [3]. The continued fraction expansion of the positive root of x> — nx + 1is [n—1; (1,n—2)*].
In particular, it is not purely periodic.

Question 1. Let 8 be a positive quadratic Pisot unit which is not a metallic mean. Can we construct a
self-similar set of Wang tiles whose inflation factor is 8?

An alternative question is about those quadratic integers whose continued fraction expansion is purely
periodic.

Question 2. Let 8 be a positive quadratic integer whose continued fraction expansion is purely periodic.
Does there exist a set of Wang tiles such that the shift is self-similar with inflation factor equal to 3?

The procedure explained in [24, p.594-598] starts from the Ammann A2 shapes shown in Figure |
and constructs a set of 16 Wang tiles which we show in Theorem E to be equivalent to the set 7;.
A question we can ask is whether this construction can be inverted. More precisely, starting from the
Ammann set of 16 Wang tiles, can we recover the two Ammann shapes shown in Figure | with their
Ammann bars? In general, we ask the following question.

Question 3. For every integer n > 1, can we find geometrical shapes with Ammann bars on them such
that encoding their tilings by rhombi along a pair of Ammann bars is equivalent to the tiles 7,,?

Theorem E together with the discussion [24, p.594-598] is an answer to Question 3 when n = 1. An
answer to Question 3 would shed light on Mr. Ammann’s remarkable insights [57].

Relation to the work of Mozes

Let n > 1 be an integer and recall the 1-dimensional substitution

_Jamab”
Pr=1p s apm!

over alphabet {a, b} defined in the proof of Lemma 9.2. The incidence matrix of p,, is ( ,i nll

characteristic polynomial is x> — nx — 1, and whose Perron—Frobenius dominant eigenvalue is the n

) whose
th

metallic mean. A right dominant eigenvector is ( ﬁnl_l )and a left dominant eigenvector is (7 B.-1).

Following the theory on inflation tilings [5, §6], a stone inflation associated with the substitution p,,
gives a volume of n to the letter a and a volume of 3, — 1 to the letter b. The stone inflation induced by
the direct product p,, X p,, of the substitution p,, with itself in the sense of [43, §6] is shown in Figure 30;
see also [5, Example 5.9]. Note that another substitution with same inflation factor and often used in
examples illustrating metallic means is a — a"b,b — a [5, Remark 4.7].

From the work of Mozes [43], we know that there exists a tiling system given by a finite set of tiles
and a finite set of matching rules such that the tiling system is a symbolic extension of the substitutive
dynamical system generated by the 2-dimensional substitution p,, X p,, over a four-letter alphabet. Since
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/3"_1[.]_) /;),,,—ID RN

g Bu—1

Figure 30. Stone inflation associated with the direct product of the substitution p, with itself with
inflation factor equal to B, the n'" metallic mean. The size of the rectangles are given by the entries of
a Perron—Frobenius dominant left-eigenvector of the incidence matrix of py. The figure is drawn with
parameter n = 4. Color is added to the tiles to differentiate them and visually link them to the tiles in T,.

the substitution p, X p, is recognizable (or has ‘unique derivation’, using the vocabulary of Mozes),
the tiling system constructed by Mozes is even measure-theoretically isomorphic to the substitutive
dynamical system. Note that the construction of an equivalent tiling system out of a substitution was
extended to geometric substitutions [23].

In this contribution, we provide an explicit construction of a tiling system £,, which is a symbolic
extension of the 2-dimensional substitutive subshift defined by p,, X p,. The set of Wang tiles deduced
from [43] when applied on p,, X p,, would be much larger than (n +3)?. This raises a question about the
optimality of a tiling system for 2-dimensional substitutions.

Question 4. Is the size of 7,, optimal? In other words, does there exist a set 7 of Wang tiles of cardinality
#T < (n+3)? such that the Wang shift Q is isomorphic to the 2-dimensional substitutive subshift

Xpn XpPn ?

A. Appendix A: The substitutions w, for 1 <n <5

012 001_] 111 001 011_] _112 012 001_] 111 112 011,
T R AN R = R N
001 0117 | 112 000 012~ | "112 011 0017 | 112 111 012

011 | 112 0oL | 112 011

o g el S1E|E32 oy N

JOLL 1 2000 L2 | 000 | 1 Nggg | T111Y | [0 | |00 | 11| | SH2s| | Y000
oM 2 ESEISTS| |Eos| S22 25|

000 012" | 112 012 000, | Ll 012 2000, | SLLL 112 2000,

£123/218 123|213 €52

0017 | 111 0017 <111 011

012_[_112_ o11_[ 112, Joor [ 112 012,

S0~ |- 3= ) oy R o d1e|=m3e o

2000 |“por |T1117| | Q000 |“0o0 | T111” 0Ll 17000 | "1117| petblsl | |S011”
S 88| > = 9|~ =108 = =i d

25t 001_| 111 e 000_| 111 = 000_| 111 = E 011,

011 011 ofellls 011 = = 111 Oy

138|812 SL2Z|81= E123|81= 562

0017 | 112 0017 | <112 0017 | 112 012

_012_[ 112 o11_[ 112, 012, 012,

0 30 4 3 2 0

2000 ] |Soo” |=1 | [IOL] | Shod” | Fii® ]| Sy ] S
S129| = =g Sld=| = 2155 | =

001 01 L 001 20001 111 112 oL, 112 2001

E08|8152 Ss3|8152 g8 |58

0117 | 112 0117 | 112 011 011

Figure 31. Substitution w.
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Figure 32. Substitution w,.
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Figure 33. Substitution ws (rotated 90 degrees counterclockwise).
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Figure 34. Substitution wy (rotated 90 degrees counterclockwise).
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Figure 35. Substitution ws (rotated 90 degrees counterclockwise).
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B. Appendix B: Proving the self-similarity of Q, in SageMath

In this section, we illustrate how Theorem A can be proved in SageMath for a specific but not too big
integer n > 1. Since the proof of Theorem A given in this article was deduced from such computer
experiments performed for small values of n, we hope that the approach shown below can be used to
study and show the self-similarity of other aperiodic set of Wang tiles.

We use here a method proposed in [35] to study the substitutive structure of the Jeandel-Rao Wang
shift [26]. The method is based on the notion of marker tiles (not to be confused with the notion of marker
used in Lemma 10.1.8 from [40]). A nonempty subset M C A is called markers for the direction e,
within a subshift X ¢ AZ” if for every configuration x € X, the positions of the markers are nonadjacent
rows; that is, x~! (M) = Z x P for some set P C Z such that 1 ¢ P — P. A symmetric definition holds
for markers for the direction e;. It was proved that the existence of marker tiles allows to decompose
uniquely a Wang shift. Informally, marker tiles are merged with the tiles that appear just on top of (or just
below) them. Remaining tiles are kept unchanged. The search for markers and the construction of the
substitution is performed by two algorithms FINDMARKERs and FinpSuBsTiTuTION. Their pseudocode
can be found in [35]; see also the chapter [37] where a simpler example is considered.

Below, we prove the self-similarity of €, when n = 2 using SageMath [54] with optional package
slabbe [38]. The algorithms FiINbMarKERs and FiINpDSuBsTITUTION are used twice horizontally and
then twice vertically. The computations show that every configuration in 2, can be decomposed uniquely
into 25 supertiles. The 25 supertiles are equivalent to the original set of 25 tiles. Thus, the Wang shift
€, is self-similar and we compute the self-similarity.

We choose a solver to search for markers and desubstitutions below.

sage: solver = "dancing_links" # other options are: solver="gurobi" or solver="kissat" 46

First, we define the set 7, of Wang tiles.

sage: from slabbe import WangTileSet 47
sage: tiles = [("111", "@13", "113", "@02"), ("111", "@2", "112", "001"), ("112", "@13", ™ 48
113", "e12"), ("1ii2", "113", "111", "112"), ("113", "113", "112", "112"), ("111", "012
', "113", "ee1"), ("1i11", "e61", "112", "000™), ("112", "@12", "113", "@11"), ("112",
112", "111", "111"), ("113", "112", "112", "111"), ("111", "O11", "113", "00@"), ("
e11", "ee1", "612", "€13"), ("e11", "611", "€13", "613"), ("612", "112", "011", "113")

, ("e13", "i12", "e12", "113"), ("601", "060", "602", "012"), ("661", "601", "012", "
012"), ("e01", "O11", "013", "012"), ("661", "111", "060", "112"), ("062", "111", "001
", "112™), ("0e00", "000", "002", "002"), ("6000", "001", "012", "002"), ("611", "111",

"ge0", "113"), ("e12", "111", "€61", "113™), ("613", "111", "602", "113")]
sage: T2 = WangTileSet(tiles) 49
sage: T2_tikz = T2.tikz(ncolumns=10, scale=1.2, label_shift=.15) 50

013 002 013 113 113 012 001 012 112 112
o T PN | -1 S o | 1o R TN R | N1 I R

— | | || | [ i | [ — || i [ —
002 001 012 112 112 001 000 011 111 111
OIIH ()01‘_1 mUllv_‘ ‘_(11201 <_\1112m 000_< 001‘_1 011'_1 111H ,—4111
=10 =||= 11 =~ 5125 8135 5148 0158 —=169= 1722 182|219 2
000 013 013 113 113 012 012 012 112 112
C\]0000 NOOlo 0111'_‘ .—<111c\1 Nlllm
sz z22ngIe22g223242

002 002 113 113 113

1
o
1
1
o

Then, we search for markers for the direction e (such markers appear on nonadjacent columns). We
fusion the markers with the possible tiles appearing on their right (thus the marker appear on the left
side of each pair).

sage: T2.find markers(i=1, radius=1, solver=solver) 51
[e, 1, 2, 5, 6, 7, 10, 11, 12, 15, 16, 17, 20, 21]] 52
sage: M = [0, 1, 2, 5, 6, 7, 16, 11, 12, 15, 16, 17, 20, 21] 53
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sage: Ul, sl = T2.find_substitution(M=M, i=1, radius=2, solver=solver, side="left") 54
sage: sl_tikz = sl.wang_tikz(domain_tiles=Ul, codomain_tiles=T2, ncolumns=5, scale=1.2, 55
label_shift=.15, direction="left", extra_space=1.2)

FRIEN FRIEN 2] 2] 112 ] 112 ] 2] 112 IRETON RSN
24D e =Z02 9 S e— =12 13z — =2 g Z 142 — |23 5 S5« 248
112 112 111 111 113 113 113 113 112 112
I I 03| 113 OI3113) [ 002_| 113 Q02113] [ 002 | T12_ 002112
= = RO B o - R A
22835 |25 3 SO0Dm3 e 2T |SlgEd e =8 |Z1gm8 ofem =92
113 113 002 | 112 002112 001 | 112 001112 001 | 111 001111
0B _J 113 _ 0I3113] [ _012_|_113 ] 012113 [0 ] 112 012112) [_001_|_112_ Q0IT12] [ 012 ] TI3_] 012113
S2om 4 S 210D ESom s ol 21l 25 S8 o212 D6z 8 o S8n D 7oz 4 e D
012" | 112 012112 001 | 112 001112 001 | 111 001111 000 | 111 000111 011 | 112 011112
2] 112 012112] [ 011 | 112 ] O] [001_|_ 112 Q0TI12) [ OI1 | 112 OITI12) [ 000 | 111 000111
STEE9S R REOZE8 o 26D [ElUZEBI e ElTg ERIEBZ e Z18 EBEZEIVE — S
011" | 111 011111 000" | 111 000111 013|113 013113 013|113 013113 012|112 012113
000 TTIT Q00TL1]  [Z001_|_TIT ] QOIITL] [ 00I | 111_ QO] [ 0L | 111_ QITIIT 01T [ 111 OITIIT
e B | : | : SN s Ep EPoe
S158E8E «— 220F 16525198« Z218 |Z1652285|« 223 Z173E198« |28 E1ZEuBI|— ZuZ
012|113 012113 012|112 012112 012|113 012113 012|112 012112 012|113 012113
L000_]_TI1 Q00ITT] [ 00I_]_TII QOIITL] [ 001 | 111 001111
o = o= o = ~ =
S2088183|«+— 2253 22188188« 2263 |221882Z « 2272
002|112 002112 002|112 002112 002|113 002113

The resulting set of Wang tiles (shown above at the source of the arrows) is obtained by concatenating
the top and bottom labels of the merged pairs:

sage: Ul_tikz = Ul.tikz(scale=1.4, label_shift=0.15) 56
113 112 112 112 111 111 111 013113 || 002113 || 002112

Tl BE 2 EIE 3B 482 EE 6 T 7 IS g IS g =

— — || —| D [e=) |} few) [«=] B Ken) (=] B} [e=) ) fau) | — || — || — —
112 111 113 113 112 113 113 002112 || 001112 || 001111

013113 || 012113 || 012112 || 001112 || 012113 || 012112 || 011112 || 001112 || 011112 || 000111
012112 || 001112 || 001111 || 000111 || O11112 || O11111 || 000111 || 013113 || 013113 || 012112
000111 || 001111 || 001111 || O11111 || O11111 || 000111 || OO1111 || OO1111

012113 || 012112 || 012113 || 012112 || 012113 || 002112 || 002112 || 002113

sage: Ul.find_markers(i=1, radius=1, solver=solver) 57
[re, 1, 2, 3, 4, 5, 6]1] 58
sage: M =10, 1, 2, 3, 4, 5, 6] 59
sage: U2, s2 = Ul.find_substitution(M=M, i=1, radius=1, solver=solver) 60
sage: U2_tikz = U2.tikz(scale=1.7, label_shift=0.15, ncolumns=12) 61

013113 002112 013113 012113 012112 001112 012113 012112 011112 001112 011112 000111

2o allg gz zlzsgzaglzsgzezrlzs o gzl ng
— - — ] — - 7 = v—<v—<"v—< — |~ — |~ - f=0 i R} f=0 N R} (=1

002112 001111 012112 001112 001111 000111 011112 011111 000111 013113 013113 012112

000111 001111 001111 011111 011111 013113113/ (002113113||002112113| |002112112| |012113113||012112113||001112112
o 5 @ ) ) ™| | ™| | ™| ol ac) ™ )
s 12 13 2 = 16

Z Zoar BE o 32 19 32 20 2|3 a 35 2 3|2 33
012113 || 012112 || 012113 || 012112 || 012113 ||002112112| |001112112|[001111112| |001111111|{001112112| |001111112| 000111111

2

012

|| ™ I~
—=||l= 15 &
M zlz 152

012
012

— == — || = = =

01

001112112 |{000111111||000111112]|001111111{|001111112||{000111111||000111111}|001111111{[001111111|[001111112

2uzlEngEngzaznz|EngEnszaging|Zus

013113113 |012112113|]012113113] |012112113| [012113113||002112112|]002112113||002112112{ [002112113| 002113113
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sage: U2.find _markers(i=2, radius=1, solver=solver) 62
[r9, 10, 11, 12, 13, 14, 15, 16, 24, 25, 27, 28, 29, 30, 31, 32, 33]] 63
sage: M = [9, 10, 11, 12, 13, 14, 15, 16, 24, 25, 27, 28, 29, 30, 31, 33] 64
sage: U3, s3 = U2.find_substitution(M=M, i=2, radius=1, solver=solver, side="left") 65
sage: U3_tikz = U3.tikz(scale=1.9, label_shift=0.1) 66
013113 013113 012113 012113 | [013113113 | [ 002113113 | [ 012113113 | [ 012113 012113 001112
(] o | ol (e [
o ™ P ol [, o . ™| [ - ™| [ m| | == = =
0 1 = 2 D2 3 Z[lE 4 gz 5 oZlE 6 g TR S 8 3 = 9
f=1 f=11 =] f=11[=}
002112 012112 001112 011112 | [ 002112112 || 001112112 | | 001112112 | | 013113 013113 012112
011112 011112 002112 012112 012112 012112 012112 ][ 002113113 | [ DT2113113 | [ 001112112
o o | o | o | af (o N (e ™| | belRia] ] 3]
a2 a1z al e Qs ] k] k] i (i 23 2l 9
T 10z 11oFE 12 g8 B8 SR 4 SR 1B IR 16 R 1T OBE 18 FE 19 R
(=1 [=10=3 —| = o | = o = —| |= | |= —| = —||= —1 j==3 —
(=] (=] NI} (=] i [==} (=] =] [=INi=] of (© (=] N =} (=] [==} [=] i ==} (=] (=}
012112 012113 012112 012112 012113 012112 012113 | | 013113113 | | 013113113 | | 012112113
002112112 | [ 002112113 | [ 012112113 | [ 001112112 | [001TI2112 | [ 002112112 | [ 002112112 | [ 002112113 | | 012112113
(] ™| | o ™| | o] (e ™| | ™| | M| | o
) i) 2R (il 2l a2 2l 2 9 bt
S 20 H|m o2t H|ls 2 H|§ 23 58 24 [ a 25 = 26 || 27 |8 28 X
— = = = = =] [=1N=} —| = S| = | = = = —
(=] (=] N (==} (=1 (==} (=] NI} [=IN(=] =1N{=] 2| 1S (=1 (==} (=] [~} (=]
012112113 | | 012113113 | | 012113113 | | 002112112 | | 002112113 | | 002112112 | | 002112113 | | 002113113 | | 002113113
sage: U3.find _markers(i=2, radius=1, solver=solver) 67
[fe, 1, 2, 3, 4, 5, 611 68
sage: M = [0, 1, 2, 3, 4, 5, 6] 69
sage: U4, s4 = U3.find_substitution(M=M, i=2, radius=1, solver=solver) 70
sage: U4_tikz = U4.tikz(scale=2.2, label_shift=.1) 71
012113 012113 012112 012112 002113113 012113113 002112112 002112113 012112113 002112112
5~ 00T 1 IE 2 SR 3 F[lm 4 ; 5005 B|la 6 Flld 7 ; S 8 FE 9 3
3 = 3|12 == 3|12 3|12 == 3|12 3|12 == 3
013113 013113 012113 012113 013113113 013113113 012112113 012113113 012113113 002112113
002112113 012112113 - 012113 il | 012113 ol [ 012113 | on 013113 il |om 013113 ol [ 013113 | on 013113 o | 013113 .
o =||= o =2 =2 =i =l |2 =2 =l |2 == =
T 0 omlls o oF[E 12 ZE 1B ZIE o Z[E o1 ZE 16 ZIE o1 ZIE 1w ZE 19 2
= 2= =l |a al|a ol a IR al = ol a = ol = =
g gl 8 gl |18 3|2 gl 2 gl |12 3| |= gl =2 =
002113113 002113113 012112 012112 012113 012112 012112 012113 012112 012113
S()(]211311{S :01211511%,2 cjl)lillillﬁr S()(]211511{S :(]121“11*1E ﬁl)(l?llillﬁr :()171131“2 :(]lillill‘lE El)lillillﬁr
§ 20 g § 21 g § 22 2 § 23 g § 24 g § 25 ; § 26 g § 27 g § 28 ;
= 2 HIE = 5 |z 5| |5 5| = S 5| |5 =
g z zl5 g ElE El5 ElIE ElIE Ellg E
()llllzlli (|121121H 1)12112115 ()1)2112112 002112112~ 002112113 ()(]211211{ 002112112~ 002112113

It turns out that tiles with indices 11, 14, 20, 27 are not needed within the above set of tiles as they do
not have a surrounding of radius 2 as confirmed by the following computation. Thus, they cannot appear
in any tiling. In fact, they correspond to antigreen tiles and other tiles proved to be illegal in Section 7.
We compute the remaining twenty five tiles below.

sage: U5 = U4.tiles_allowing_surrounding(radius=2,
sage: U5_tikz = U5.tikz(scale=2.1,

label_shift=.1)

solver=solver)

72
73
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sage: U4_tiles = U4.tiles() 74
sage: US5_tiles = U5.tilesQ) 75
sage: d = {i:U4_tiles.index(U5_tiles[i]) for i in range(len(U5))} 76
sage: from slabbe import Substitution2d 77
sage: s5 = Substitution2d.from_permutation(d) 78

We confirm that the set Us is equivalent to the set 7,, of Wang tiles we started with. We extract the
bijection s6 between the indices of the tiles. Also, it gives a bijection for the horizontal edge labels and
vertical edge labels. Both are equal. This bijection corresponds to the map 7,, when n = 2 defined in

Section 5.1.
sage: T2.is_equivalent(U5) 79
True 80
sage: _,vert_bijection,horiz_bijection,s6 = T2.is_equivalent(U5, certificate=True) 81
sage: vert_bijection == horiz_bijection 82
True 83
sage: vert_bijection 84

{’113’: ’012112°, ’'111’: ’013113’, ’112’: ’012113’, ’'012’: ’0602112113°, ’011’: ’002113113°, 85
013’ : ’002112112°, ’001°: 012113113, ’000’: '013113113°, ’002’: ’012112113°}

One may compare the bijection computed above with the map 7, defined in Section 5. The only
difference is that the image of the label 003 does not appear in the computed bijection above because it
is does not appear as an edge label in the set 75.

The self-similarity is:

sage: self similarity = sl1*s2%s3*s4*s5%s6 86
sage: self_similarity 87
0 1 89 s 5 8 4 P 1 89 3 79 4 5 8
16 19 24 )° 162314 )° 211823 ) 1723 ) 1623 )
1 8 4 5 3 4 1 8 4 7 4 53
S g3 1a) 2 liza) T lai2z) 3 {i2is) 0 1113)’
13 4 5 3 4 1 3 4 7 53
10|—>(111314),11»—> 6 8 9,12~ 6 8 9|,13—~(10 8|, 14—~]| 6 8|,
2018 19 2018 19 1519 1519
0 3 4 5 3 4 1 3 4 4 2 4
15—~ 1 8 9|,16—| 6 8 9|,17—| 6 8 9],18—| 7 9,19~ 5 8],
21 18 23 2018 23 20 18 23 17 23 16 23
0 3 4 5 3 4 2 4 2 4 0 3
20 1 8 9,21 6 8 9,22 7 9|, 23| 5 8|,24—]| 1 8|
16 19 24 1519 24 17 19 16 19 16 19
The characteristic polynomial of the incidence matrix of the self-similarity is:
sage: matrix(self_similarity).charpoly().factor() 88

=1 x+1D-x' (P —6x+1) - (x> +2x - 1)2

The self-similarity shown with the associated Wang tiles:

sage: sim_tikz = self_similarity.wang_tikz(domain_tiles=T2, codomain_tiles=T2, ncolumns=5, 89
scale=1.2, label_shift=.15)
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sage: version() 90
SageMath version 10.6.beta7, Release Date: 2025-02-21 91
sage: import importlib.metadata 92
sage: importlib.metadata.version("slabbe") 93
0.8.0 94

The fact that these software are open-source means that anyone is free to use, reproduce, verify, adapt for their
own needs all of the computations performed therein according to the GNU General Public License (version 2, 1991,
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The contents of all of the sageexample environments from the tex source are gathered in the file
demos/arXiv_2312_03652_doctest.sage autogenerated by SageTeX when running pdflatex. This file is included in the
slabbe package and available at https://gitlab.com/seblabbe/slabbe/. It allows to make sure that future releases of the package do
not break the code included in this article. It is possible to reproduce all computations present in this article and check that all out-
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References

[1] S. Akiyama, ‘A note on aperiodic Ammann tiles’, Discrete Comput. Geom. 48(3) (2012), 702-710.
[2] S. Akiyama and Y. Araki, ‘An alternative proof for an aperiodic monotile’, Preprint, 2023, arxiv:2307.12322.

https://doi.org/10.1017/fms.2025.10069 Published online by Cambridge University Press


https://doi.org/10.55776/I6750
http://www.gnu.org/licenses/gpl.html
https://gitlab.com/seblabbe/slabbe/
arxiv:2307.12322
https://doi.org/10.1017/fms.2025.10069

Forum of Mathematics, Sigma 67

[3] S. Akiyama and V. Komornik, ‘Discrete spectra and Pisot numbers’, J. Number Theory 133(2) (2013), 375-390.
[4] R. Ammann, B. Griinbaum and G. C. Shephard, ‘Aperiodic tiles’, Discrete Comput. Geom. 8(1) (1992), 1-25.
[5] M. Baake and U. Grimm. Aperiodic Order. Vol. 1 (Encyclopedia of Mathematics and Its Applications) vol. 149 (Cambridge
University Press, Cambridge, 2013).
[6] M. Baake, F. Gihler and L. Sadun, ‘Dynamics and topology of the Hat family of tilings’, Preprint, 2023, arxiv:2305.05639.
[7]1 F. P. M. Beenker, Algebraic Theory of Non-Periodic Tilings of the Plane by Two Simple Building Blocks: A Square and a
Rhombus (EUT-Rep.) (Eindhoven 82-WSK-04, 1982).
[8] R. Berger, ‘The undecidability of the domino problem’, Mem. Amer. Math. Soc. No. 66 (1966), 72.
[9] V. Berthé, W. Steiner, J. M. Thuswaldner and R. Yassawi, ‘Recognizability for sequences of morphisms’, Ergodic Theory
Dynam. Systems 39(11) (2019), 2896-2931.
[10] P. Borwein and K. G. Hare, ‘General forms for minimal spectral values for a class of quadratic Pisot numbers’, Bull. London
Math. Soc. 35(1) (2003). 47-54.
[11] E. Charlier, T. Kdrki and M. Rigo, ‘Multidimensional generalized automatic sequences and shape-symmetric morphic
words’, Discrete Math. 310(6-7) (2010), 1238-1252.
[12] N. Govert de Bruijn, ‘Algebraic theory of Penrose’s nonperiodic tilings of the plane, I, II’, Nederl. Akad. Wetensch. Indag.
Math. 43(1) (1981), 39-52, 53—66.
[13] V. W. de Spinadel, ‘The family of metallic means,” Vis. Math. 1(3) (1999), 1 HTML document; approx. 16.
[14] T. Dotera, S. Bekku and P. Ziherl, ‘Bronze-mean hexagonal quasicrystal’, Nature Materials 16(10) (2017), 987-992.
[15] B. Durand, A. Shen and N. Vereshchagin, ‘On the structure of Ammann A2 tilings’, Discrete Comput. Geom. 63(3) (2020),
577-606.
[16] F. Durand, ‘A characterization of substitutive sequences using return words’, Discrete Math. 179(1-3) (1998), 89—-101.
[17] D. Frettloh, A. L. D. Say-awen and M. L. A. N. De Las Peiias, ‘Substitution tilings with dense tile orientations and n-fold
rotational symmetry’, Indag. Math., New Ser. 28(1) (2017), 120-131.
[18] D. Frettloh, ‘More inflation tilings’, In Aperiodic order Vol. 2. (Encyclopedia Math. Appl.) vol. 166 (Cambridge Univ. Press,
Cambridge, 2017), 1-37.
[19] D. Frettloh, A. Garber and N. Maiiibo, ‘Substitution tilings with transcendental inflation factor’, Discrete Anal. (2024), Paper
No. 11, 24.
[20] D. Frettloh, E. Harriss and F. Géhler, ‘Tilings encyclopedia: Bronze-mean tiling’, 2023, https://tilings.math.uni-bielefeld.de/
substitution/bronze-mean/.
[21] F. Géhler, A. Julien and J Savinien, ‘Combinatorics and topology of the Robinson tiling’, C. R. Math. Acad. Sci. Paris
350(11-12) (2012), 627-631.
[22] F. Gibhler, E. E. Kwan and G. R. Maloney, ‘A computer search for planar substitution tilings with n-fold rotational symmetry’,
Discrete Comput. Geom. 53(2) (2015), 445-465.
[23] C. Goodman-Strauss, ‘Matching rules and substitution tilings’, Ann. of Math. (2) 147(1) (1998), 181-223.
[24] B. Griinbaum and G. C. Shephard, Tilings and Patterns (W. H. Freeman and Company, New York, 1987).
[25] M. Hochman, ‘Multidimensional shifts of finite type and sofic shifts’, in Combinatorics, Words and Symbolic Dynamics
(Encyclopedia Math. Appl.) vol. 159 (Cambridge Univ. Press, Cambridge, 2016), 296-358.
[26] E.Jeandel and M. Rao, ‘An aperiodic set of 11 Wang tiles’, Adv. Comb. 2021 (2021), 37. Id/No 1.
[27] J. Kari and P. Papasoglu, ‘Deterministic aperiodic tile sets’, Geom. Funct. Anal. 9(2) (1999), 353-369.
[28] J. Kari and V. H. Lutfalla, ‘Substitution discrete plane tilings with 2n-fold rotational symmetry for odd n’, Discrete Comput.
Geom. 69(2) (2023), 349-398.
[29] J.Kari and M. Rissanen, ‘Sub Rosa, a system of quasiperiodic rhombic substitution tilings with n-fold rotational symmetry’,
Discrete Comput. Geom. 55(4) (2016), 972-996.
[30] D. E. Knuth, The Art of Computer Programming. Vol. 1: Fundamental Algorithms, second printing (Addison-Wesley
Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969).
[31] D. E. Knuth, ‘Dancing links’, in Millenial Perspectives in Computer Science (Red Globe Press, London, 2000), 187-214,
arxiv:cs/0011047.
[32] T. Komatsu, ‘An approximation property of quadratic irrationals’, Bull. Soc. Math. France 130(1) (2002), 35-48.
[33] S. Labbé, ‘A self-similar aperiodic set of 19 Wang tiles’, Geom. Dedicata 201 (2019), 81-109.
[34] S. Labbé, ‘Markov partitions for toral Z>-rotations featuring Jeandel-Rao Wang shift and model sets’, Ann. H. Lebesgue 4
(2021), 283-324.
[35] S. Labbé, ‘Substitutive structure of Jeandel-Rao aperiodic tilings’, Discrete Comput. Geom. 65(3) (2021), 800-855.
[36] S. Labbé, C. Mann and J. McLoud-Mann, ‘Nonexpansive directions in the Jeandel-Rao Wang shift’, Discrete Contin. Dyn.
Syst. 43(9) (2023), 3213-3250.
[37] S. Labbé, ‘Three characterizations of a self-similar aperiodic 2-dimensional subshift’, Preprint, 2020, arxiv:2012.03892.
[38] S. Labbé, Optional SageMath Package slabbe (Version 0.7.7), 2024, https://pypi.python.org/pypi/slabbe/.
[39] D. Lind, ‘Multi-dimensional symbolic dynamics’, in Symbolic Dynamics and Its Applications (Proc. Sympos. Appl. Math.)
vol. 60 (Amer. Math. Soc., Providence, RI, 2004), 61-79.
[40] D.Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding (Cambridge University Press, Cambridge, 1995).
[41] Z. Masdkovd, K. Pastirédkova and E. Pelantovd, ‘Description of spectra of quadratic Pisot units’, J. Number Theory 150
(2015), 168-190.

https://doi.org/10.1017/fms.2025.10069 Published online by Cambridge University Press


arxiv:2305.05639
https://tilings.math.uni-bielefeld.de/substitution/bronze-mean/
arxiv:cs/0011047
arxiv:2012.03892
https://pypi.python.org/pypi/slabbe/
https://doi.org/10.1017/fms.2025.10069

68 S. Labbé

[42] B. Mossé, ‘Puissances de mots et reconnaissabilité des points fixes d’une substitution’, Theoret. Comput. Sci. 99(2) (1992),
327-334.

[43] S.Mozes, ‘Tilings, substitution systems and dynamical systems generated by them’, J. Analyse Math. 53 (1989), 139-186.

[44] J. Nakakura, P. Ziherl, J. Matsuzawa and T. Dotera, ‘Metallic-mean quasicrystals as aperiodic approximants of periodic
crystals’, Nature Communications 10(1) (2019), Article number: 4235.

[45] OEIS Foundation Inc., ‘Entry A352403 in the on-line encyclopedia of integer sequences’, 2023, https://oeis.org/A352403.

[46] OEIS Foundation Inc., ‘Metallic means’, 2023, https://oeis.org/wiki/Metallic_means.

[47] S. Pautze, ‘Cyclotomic aperiodic substitution tilings’, Symmetry 9(2) (2017), Article number: 19.

[48] R. Penrose, ‘The role of aesthetics in pure and applied mathematical research’, Bull. Inst. Math. Appl. 10(Jul-Aug) (1974),
266-271.

[49] R. Penrose, ‘Pentaplexity. A class of non-periodic tilings of the plane’, Math. Intell. 2 (1979), 32-37.

[50] R.Penrose, ‘Remarks on tiling: Details of a (1+ &+ 52)—aperiodic set’, in The Mathematics of Long-Range Aperiodic Order.
Proceedings of the NATO Advanced Study Institute, Waterloo, Ontario, Canada, August 21-September 1, 1995 (Kluwer
Academic Publishers, Dordrecht, 1997), 467-497.

[51] M. Queftélec, Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics) vol. 1294, second edn.
(Springer-Verlag, Berlin, 2010).

[52] E. A. Robinson, ‘On the table and the chair’, Indag. Math., New Ser. 10(4) (1999), 581-599.

[53] R. M. Robinson, ‘Undecidability and nonperiodicity for tilings of the plane’, Invent. Math. 12 (1971), 177-209.

[54] Sage Developers, SageMath, the Sage Mathematics Software System (Version 10.5), 2024, http://www.sagemath.org.

[55] K. Schmidt, ‘Multi—dimensional symbolic dynamical systems’, in Codes, Systems, and Graphical Models (Minneapolis,
MN, 1999) (IMA Vol. Math. Appl.) vol. 123 (Springer, New York, 2001), 67-82.

[56] M. Schroeder, Fractals, Chaos, Power Laws. Minutes from an Infinite Paradise (W.H. Freeman and Company, New York,
1991).

[57] M. Senechal, ‘The mysterious Mr. Ammann’, Math. Intelligencer 26(4) (2004), 10-21.

[58] D. Smith, J. S. Myers, C. S. Kaplan and C. Goodman-Strauss, ‘An aperiodic monotile’, Comb. Theory 4(1) (2024), Paper
No. 6, 91.

[59] D. Smith, J. S. Myers, C. S. Kaplan and C. Goodman-Strauss, ‘A chiral aperiodic monotile’, Comb. Theory 4(2) (2024),
Paper No. 13, 25.

[60] J. E. S. Socolar, ‘Quasicrystalline structure of the hat monotile tilings’, Phys. Rev. B 108 (2023), 224109.

[61] J. E. S. Socolar and J. M. Taylor, ‘An aperiodic hexagonal tile’, J. Combin. Theory Ser. A 118(8) (2011), 2207-2231.

[62] B. Solomyak, ‘Nonperiodicity implies unique composition for self-similar translationally finite tilings’, Discrete Comput.
Geom. 20(2) (1998), 265-279.

[63] B. Solomyak, ‘Dynamics of self-similar tilings’, Ergodic Theory Dynam. Systems 17(3) (1997), 695-738.

[64] L. Vuillon, ‘A characterization of Sturmian words by return words’, European J. Combin. 22(2) (2001), 263-275.

[65] P. Walters, An Introduction to Ergodic Theory (GTM) vol. 79 (Springer-Verlag, New York-Berlin, 1982).

[66] H. Wang, ‘Proving theorems by pattern recognition — II’, Bell System Technical Journal 40(1) (1961), 1-41.

https://doi.org/10.1017/fms.2025.10069 Published online by Cambridge University Press


https://oeis.org/A352403
https://oeis.org/wiki/Metallic_means
http://www.sagemath.org
https://doi.org/10.1017/fms.2025.10069

	1 Introduction
	2 Preliminaries on Wang shifts
	2.1 Topological dynamical systems
	2.2 Subshifts and shifts of finite type
	2.3 Wang shifts
	2.4 Directional determinism

	3 Preliminaries on 2-dimensional substitutions
	3.1 d-dimensional word
	3.2 d-dimensional language
	3.3 d-dimensional morphisms
	3.4 Self-similar subshifts
	3.5 d-dimensional recognizability

	4 The family of metallic mean Wang tiles
	4.1 The tiles
	4.2 The extended set Tn of metallic mean Wang tiles
	4.3 The subset Tn of metallic mean Wang tiles
	4.4 The Ammann aperiodic set of 16 Wang tiles
	4.5 Symmetric properties
	4.6 Directional determinism

	5 A substitution Ωn→Ωn
	5.1 A 1-dimensional substitution for the boundary
	5.2 A substitution ωn for the tiles in Tn
	5.3 A substitution ωn for the tiles in Tn
	5.4 A sufficient and necessary condition

	6 A desubstitution ΩnΩn
	6.1 Return blocks in the Wang shift Ωn
	6.2 Return blocks in the Wang shift Ωn
	6.3 Desubstitution ΩnΩn

	7 Tiles in TnTn are illegal so that Ωn=Ωn
	7.1 Illegal tiles

	8 Ωn is self-similar and aperiodic
	9 The self-similarity is primitive
	10 Ωn is minimal
	10.1 A criterion for minimality of a self-similar subshift
	10.2 The Wang shift Ωn is minimal when n≥2
	10.3 The Wang shift Ωn is minimal when n=1
	10.4 Proof of Theorem D

	11 Open questions
	A Appendix A: The substitutions ωn for 1n5
	B Appendix B: Proving the self-similarity of Ω2 in SageMath
	References

