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1. Introduction. A systematic and easily automated least squares procedure, not using
integral equations or special functions, is presented for approximating the solutions of general
dual trigonometric equations. This is desirable, since current analytic methods apply only to
special equations, require the use of integral equation and special function theory, and do not
lend themselves easily to numerical work; see, e.g. [1, 2, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

The series are described in § 2. The equation for least squares approximation is derived
in §3 and used to develop the computer program DUTSA (DUal Trigonometric Series
Analyser). A few examples are presented in § 4 from amongst the several dozen dual trigono-
metric series to which DUTSA has been applied. These include examples from classes of dual
equations for which solutions are not now available (save possibly for very special cases),
e.g. arbitrary series not connected with applications, series associated with harmonic mixed
boundary value problems in (bounded) rectangles and series with one of the mixed boundary
conditions corresponding to a (linear) radiation condition.} The evidence from these computa-
tions indicates that most dual trigonometric series from applications can be solved with a
relative least squares error (defined in § 5) smaller than 4%, in 10 seconds or fewer on a computer
with a 6 microsecond multiplication time.

Our analysis, in common with earlier studies, is heuristic: the numerical evidence is
suggestive, but it does not rigorously describe the limitations of the method. The least squares
approach is so simple that we searched the literature carefully, but found no evidence of its
prior use. We expect that it will be helpful in studying other dual and similar series.

2. Series and expansions. Let {¢,(x):n=1,2,...} be a complete set of orthonormal,
trigonometric functions associated with the Sturm-Liouville operator d2/dx? on the interval
[0, d] [4, pp. 2311, p. 271], and c a fixed point in the interval. {b,,} and {b,,} are sequences
of positive constants. The sequence of functions {b,(x)} is defined on [0, d] by b,(x) = b,
for x < ¢ and b,(x) =b,, for x> ¢c. Any series Y a,b,(x)p,(x) (abbreviation: S(a)) con-

n
structed formally with an arbitrary sequence of real numbers, a = {a,}, is called a dual trigono-
metric series. S(a) is called the dual trigonometric expansion of a function f(x) if the relation

o<}

Y a,b0)m=f(x) (1)

n=1

1 The work of RBK was supported in part by Contract No. N00014-67-A-0299-0001 (Task No. N0041-278)
with the Office of Naval Research (U.S.A.).

1 The definition of radiation boundary condition is given in [11, § 1.2]. A theoretical solution for dual
trigonometric series associated with a problem in which the potential satisfies a radiation condition over part of
the bgundggy_ has been suggested in [11, p. 151], but this did not include the radiation condition as one of the
mixed conditions.
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holds on [0, 4] (in an ordinary or generalized sense). The sequences {¢,} and {b,} are referred
to, respectively, as the kernel and the modifier of the series. The general problem is: given

{4}, {b,} and f, find {a,}.

3. Least squares approximation. An approximation of the form
a¥"=(@ah,d},...,ad,0,0,..)

for a in equation (1) is sought to minimize the L, norm of the deviations, i.e., a" is the vector
minimizing

d[” 2

| S@~-11? =J [Zl a, by(x)¢,(x) —f(X)] dx,
Otn=

subject to the restraint @, = 0 for n > N. This necessitates that

5‘Z_“s(a)_f“z:o (n=1,2...,N). @

Equation (2) determines a" and implies that

iAknarllv=Fk (k=1:29"-,N)1 (3)
d

Ay = L Pu(X)Pu(x)bi(x)by(x) dx, @

Fp= Lf (¥)bi(x)i(x) dx. ()

Program DUTSA implements equations (3), (4), (5). The user supplies as data ¢, d, and N. The
subroutine for 4,, is based upon expressing the integrals in equation (4) as a linear sum of
cosines. Either (i) the integrals in equation (5) are computed beforehand and read in as data
or (ii) f is provided as a function subroutine and the integrals are computed automatically by
Filon integration [3, p. 194]. Gaussian elimination is used as an efficient method for solving
(3), since the matrix (4,,) is not sparse [S].

The plotting of the figures below was done on line by a CDC 3898 microfilm recorder and
controller. All computations were perfomed on a CDC 6400.

4. Examples,

Example 1. This problem occurs in fracture mechanics and was brought to our attention
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by our colleague, Dr F. W. Smith. Because of the nonstandard form of the modifier, it has
not, to our knowledge, been solved previously.

a, © 2 1/2
\T’ +”§2 a, (;) cos(n—Dx=mncos2x (0<x < n/d),

a, i a,

2 1/2
2\/_n+“=zm<;> cos(n—-Dx=0 (nfd<x<n).

Plots of S(a%°), $(a'°°) and f are given in Fig. 1.

4.0 T T i
- — —S(a?°)
3.0
S(a'®?) )
§ -
2.0 .
-—1
1.0 -
0
] ] .
-1.0 - + 37 g
4 2 4

FiG. 1. Graphical illustration of Example 1. In the region 0 < x < /4 the fit between the approximate curves
and f(x) is so close that they appear indistinguishable on the graph.

https://doi.org/10.1017/50017089500001841 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500001841

114 ROBERT B. KELMAN AND CHESTER A. KOPER, Jr

Example 2.

@

Z a, (z)llz cos (n—%)x =1 (0 <x < 71'/’2),

,,=1n+/1—-} T

-2

2 1/2
Y a, (; cos(n—4x=0 (/2 < x < 7).

n=1

Here A is a non-negative constant. This dual equation arises in seeking the potential u in the
rectangular strip 0 < x < = and y > 0 with the mixed conditionsony =0:u = 1 for 0<x<n/2
and u, = Au for n/2 < x <n. This problem illustrates the uniform manner in which least

2.0 T T T

S(a'©?) x=3.5

— f

-1.0

|
37
0 g

Dl
VER

FiG. 2. lllustration of Example 2 with 1=3.5 showing the comparison between f(x) and the 100th order
approximation,
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squares analysis resolves dual trigonometric expansions arising in problems in which one of
the mixed conditions is a radiation condition. Also, Tranter [13, 15] has given a closed form
solution, not involving quadratures, for the Neumann condition 4 =0, thus providing a useful

test case. Tranter’s solution is
1/2 P ~ 0
d,, = E " 1( ) , (6)
2/ K(cosm/4)

where P, is a Legendre polynomial and K is the complete elliptic integral of the first kind.
S(a'°°) and f with A =3.5 are shown in Fig. 2, while in Fig. 3 the case A =0 is illustrated using
S(a%®) and a 60-term Tranter approximation based on equation (6).

3.0 T T T
|
20+ l S(a®°) =0 -
|l ——— Tronter's
5 : Solution, N=60
I f
1.O P o W

~-1.0

| | 1

0 x ks s ™
4 2 4

Fic.3. Example?2 with 1 =0 showing a comparison between the least squares approximation and the analytic

solution given by equation (6). The two solutions are neatly the same for 0 <x <=/2 while for #/2<x <n the
least squares approximation gives what is clearly a closer fit.
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Example 3.
=) 2 1/2
Y a,ntanhnn (1?) sinnx=7n  (0<x<0.5),
n=1

-] 1/2
) a,,(;) sinnx =x* (0.5<x<n).
n=1

This dual series tests least squares method with {¢,} and f'chosen so that convergence must be
slow and nonuniform (cf. [7, Section 16]); here ¢,(0) and ¢,(n) are both zero while neither
f(0) nor f(x) is zero. This series arises in seeking the potential in the square 0 < x, y <,

with u = 0 on three sides of the square, whileon y =0, u, = —= for 0 < x < 0.5 and u = x?
for 0.5 < x <m. Results are shown in Fig. 4.

20.0 T T i
———S (0 20)

16.0 - .
S (OIOO)

L f -

12.0 |- .

1 | [
I I 3T
© 4 2 4

Fic. 4. This figure illustrates least squares approximations for Example 3. One observes a Gibbs’ type
phenomenon at the end points due to the choice of kernel.
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Example 4.
® A+(=DM [ sin?A,n|"Y? . . [nx
'E‘la,,{l———df— §+T sin 4, x = sin ~ (0 < x < e[n),
) H 2,1 -1/2
Y a1+l —(-1)“)}[§+S‘“u; ] sinhx=1 (en<x<n)
n=1 n
where 1, is the nth positive root of the equation A = —tanAn. This example demonstrates a

choice of modifier unrelated to applications and a kernel for which 4, is not an integer or an
integer plus one half. Figure 5 presents plots of S(a2°), S(¢'°°) and f.

20 T T T
L 4
- S(ozo)
1.6} S(OlOO) i
f
= R

08¢ ..
04r .
0 1 - I
T T 5 T
e - T
0 4 2 4
FiG. 5. The results for Example 4 based on 20th and 100th order approximations.
B
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5. Conclusion. To provide an indication of the acceptability of the answer given by
equation (3), the relative least squares error R(N) is introduced as

. S(a™) —
11l
TABLE 1
Example
N 1 2 2 2+ 3 4
A=3.5 A=0 A=0

20 0.020 0.065 0.024 0.23 0.22 0.036

40 0.014 0.038 0.014 0.23 0.16 0.026

60 0.011 0.031 0.011 0.23 0.13 0.023

80 0.009 0.027 0.010 0.23 0.12 0.021
100 0.008 0.024 0.009 0.23 0.1 0.021

The relative least squares error computed from formula (7) for the examples dis-
cussed in Section 4. All error estimates are based on least squares solutions save for
column 2* where the analytic solution given by equation (6) was used.

Values of R(N) for the examples given above are listed in Table I. These values and the above
figures indicate that the least squares procedure has provided an effective approximation in
each case.
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